1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/amba/bus.h> 10 #include <linux/device.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/host1x_context_bus.h> 20 #include <linux/iommu.h> 21 #include <linux/idr.h> 22 #include <linux/err.h> 23 #include <linux/pci.h> 24 #include <linux/pci-ats.h> 25 #include <linux/bitops.h> 26 #include <linux/platform_device.h> 27 #include <linux/property.h> 28 #include <linux/fsl/mc.h> 29 #include <linux/module.h> 30 #include <linux/cc_platform.h> 31 #include <linux/cdx/cdx_bus.h> 32 #include <trace/events/iommu.h> 33 #include <linux/sched/mm.h> 34 #include <linux/msi.h> 35 36 #include "dma-iommu.h" 37 #include "iommu-priv.h" 38 39 static struct kset *iommu_group_kset; 40 static DEFINE_IDA(iommu_group_ida); 41 static DEFINE_IDA(iommu_global_pasid_ida); 42 43 static unsigned int iommu_def_domain_type __read_mostly; 44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 45 static u32 iommu_cmd_line __read_mostly; 46 47 struct iommu_group { 48 struct kobject kobj; 49 struct kobject *devices_kobj; 50 struct list_head devices; 51 struct xarray pasid_array; 52 struct mutex mutex; 53 void *iommu_data; 54 void (*iommu_data_release)(void *iommu_data); 55 char *name; 56 int id; 57 struct iommu_domain *default_domain; 58 struct iommu_domain *blocking_domain; 59 struct iommu_domain *domain; 60 struct list_head entry; 61 unsigned int owner_cnt; 62 void *owner; 63 }; 64 65 struct group_device { 66 struct list_head list; 67 struct device *dev; 68 char *name; 69 }; 70 71 /* Iterate over each struct group_device in a struct iommu_group */ 72 #define for_each_group_device(group, pos) \ 73 list_for_each_entry(pos, &(group)->devices, list) 74 75 struct iommu_group_attribute { 76 struct attribute attr; 77 ssize_t (*show)(struct iommu_group *group, char *buf); 78 ssize_t (*store)(struct iommu_group *group, 79 const char *buf, size_t count); 80 }; 81 82 static const char * const iommu_group_resv_type_string[] = { 83 [IOMMU_RESV_DIRECT] = "direct", 84 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 85 [IOMMU_RESV_RESERVED] = "reserved", 86 [IOMMU_RESV_MSI] = "msi", 87 [IOMMU_RESV_SW_MSI] = "msi", 88 }; 89 90 #define IOMMU_CMD_LINE_DMA_API BIT(0) 91 #define IOMMU_CMD_LINE_STRICT BIT(1) 92 93 static int iommu_bus_notifier(struct notifier_block *nb, 94 unsigned long action, void *data); 95 static void iommu_release_device(struct device *dev); 96 static struct iommu_domain * 97 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type); 98 static int __iommu_attach_device(struct iommu_domain *domain, 99 struct device *dev); 100 static int __iommu_attach_group(struct iommu_domain *domain, 101 struct iommu_group *group); 102 103 enum { 104 IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0, 105 }; 106 107 static int __iommu_device_set_domain(struct iommu_group *group, 108 struct device *dev, 109 struct iommu_domain *new_domain, 110 unsigned int flags); 111 static int __iommu_group_set_domain_internal(struct iommu_group *group, 112 struct iommu_domain *new_domain, 113 unsigned int flags); 114 static int __iommu_group_set_domain(struct iommu_group *group, 115 struct iommu_domain *new_domain) 116 { 117 return __iommu_group_set_domain_internal(group, new_domain, 0); 118 } 119 static void __iommu_group_set_domain_nofail(struct iommu_group *group, 120 struct iommu_domain *new_domain) 121 { 122 WARN_ON(__iommu_group_set_domain_internal( 123 group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED)); 124 } 125 126 static int iommu_setup_default_domain(struct iommu_group *group, 127 int target_type); 128 static int iommu_create_device_direct_mappings(struct iommu_domain *domain, 129 struct device *dev); 130 static ssize_t iommu_group_store_type(struct iommu_group *group, 131 const char *buf, size_t count); 132 static struct group_device *iommu_group_alloc_device(struct iommu_group *group, 133 struct device *dev); 134 static void __iommu_group_free_device(struct iommu_group *group, 135 struct group_device *grp_dev); 136 137 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 138 struct iommu_group_attribute iommu_group_attr_##_name = \ 139 __ATTR(_name, _mode, _show, _store) 140 141 #define to_iommu_group_attr(_attr) \ 142 container_of(_attr, struct iommu_group_attribute, attr) 143 #define to_iommu_group(_kobj) \ 144 container_of(_kobj, struct iommu_group, kobj) 145 146 static LIST_HEAD(iommu_device_list); 147 static DEFINE_SPINLOCK(iommu_device_lock); 148 149 static const struct bus_type * const iommu_buses[] = { 150 &platform_bus_type, 151 #ifdef CONFIG_PCI 152 &pci_bus_type, 153 #endif 154 #ifdef CONFIG_ARM_AMBA 155 &amba_bustype, 156 #endif 157 #ifdef CONFIG_FSL_MC_BUS 158 &fsl_mc_bus_type, 159 #endif 160 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS 161 &host1x_context_device_bus_type, 162 #endif 163 #ifdef CONFIG_CDX_BUS 164 &cdx_bus_type, 165 #endif 166 }; 167 168 /* 169 * Use a function instead of an array here because the domain-type is a 170 * bit-field, so an array would waste memory. 171 */ 172 static const char *iommu_domain_type_str(unsigned int t) 173 { 174 switch (t) { 175 case IOMMU_DOMAIN_BLOCKED: 176 return "Blocked"; 177 case IOMMU_DOMAIN_IDENTITY: 178 return "Passthrough"; 179 case IOMMU_DOMAIN_UNMANAGED: 180 return "Unmanaged"; 181 case IOMMU_DOMAIN_DMA: 182 case IOMMU_DOMAIN_DMA_FQ: 183 return "Translated"; 184 case IOMMU_DOMAIN_PLATFORM: 185 return "Platform"; 186 default: 187 return "Unknown"; 188 } 189 } 190 191 static int __init iommu_subsys_init(void) 192 { 193 struct notifier_block *nb; 194 195 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 196 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 197 iommu_set_default_passthrough(false); 198 else 199 iommu_set_default_translated(false); 200 201 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 202 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 203 iommu_set_default_translated(false); 204 } 205 } 206 207 if (!iommu_default_passthrough() && !iommu_dma_strict) 208 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 209 210 pr_info("Default domain type: %s%s\n", 211 iommu_domain_type_str(iommu_def_domain_type), 212 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 213 " (set via kernel command line)" : ""); 214 215 if (!iommu_default_passthrough()) 216 pr_info("DMA domain TLB invalidation policy: %s mode%s\n", 217 iommu_dma_strict ? "strict" : "lazy", 218 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 219 " (set via kernel command line)" : ""); 220 221 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL); 222 if (!nb) 223 return -ENOMEM; 224 225 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { 226 nb[i].notifier_call = iommu_bus_notifier; 227 bus_register_notifier(iommu_buses[i], &nb[i]); 228 } 229 230 return 0; 231 } 232 subsys_initcall(iommu_subsys_init); 233 234 static int remove_iommu_group(struct device *dev, void *data) 235 { 236 if (dev->iommu && dev->iommu->iommu_dev == data) 237 iommu_release_device(dev); 238 239 return 0; 240 } 241 242 /** 243 * iommu_device_register() - Register an IOMMU hardware instance 244 * @iommu: IOMMU handle for the instance 245 * @ops: IOMMU ops to associate with the instance 246 * @hwdev: (optional) actual instance device, used for fwnode lookup 247 * 248 * Return: 0 on success, or an error. 249 */ 250 int iommu_device_register(struct iommu_device *iommu, 251 const struct iommu_ops *ops, struct device *hwdev) 252 { 253 int err = 0; 254 255 /* We need to be able to take module references appropriately */ 256 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 257 return -EINVAL; 258 259 iommu->ops = ops; 260 if (hwdev) 261 iommu->fwnode = dev_fwnode(hwdev); 262 263 spin_lock(&iommu_device_lock); 264 list_add_tail(&iommu->list, &iommu_device_list); 265 spin_unlock(&iommu_device_lock); 266 267 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) 268 err = bus_iommu_probe(iommu_buses[i]); 269 if (err) 270 iommu_device_unregister(iommu); 271 return err; 272 } 273 EXPORT_SYMBOL_GPL(iommu_device_register); 274 275 void iommu_device_unregister(struct iommu_device *iommu) 276 { 277 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) 278 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group); 279 280 spin_lock(&iommu_device_lock); 281 list_del(&iommu->list); 282 spin_unlock(&iommu_device_lock); 283 284 /* Pairs with the alloc in generic_single_device_group() */ 285 iommu_group_put(iommu->singleton_group); 286 iommu->singleton_group = NULL; 287 } 288 EXPORT_SYMBOL_GPL(iommu_device_unregister); 289 290 #if IS_ENABLED(CONFIG_IOMMUFD_TEST) 291 void iommu_device_unregister_bus(struct iommu_device *iommu, 292 const struct bus_type *bus, 293 struct notifier_block *nb) 294 { 295 bus_unregister_notifier(bus, nb); 296 iommu_device_unregister(iommu); 297 } 298 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus); 299 300 /* 301 * Register an iommu driver against a single bus. This is only used by iommufd 302 * selftest to create a mock iommu driver. The caller must provide 303 * some memory to hold a notifier_block. 304 */ 305 int iommu_device_register_bus(struct iommu_device *iommu, 306 const struct iommu_ops *ops, 307 const struct bus_type *bus, 308 struct notifier_block *nb) 309 { 310 int err; 311 312 iommu->ops = ops; 313 nb->notifier_call = iommu_bus_notifier; 314 err = bus_register_notifier(bus, nb); 315 if (err) 316 return err; 317 318 spin_lock(&iommu_device_lock); 319 list_add_tail(&iommu->list, &iommu_device_list); 320 spin_unlock(&iommu_device_lock); 321 322 err = bus_iommu_probe(bus); 323 if (err) { 324 iommu_device_unregister_bus(iommu, bus, nb); 325 return err; 326 } 327 return 0; 328 } 329 EXPORT_SYMBOL_GPL(iommu_device_register_bus); 330 #endif 331 332 static struct dev_iommu *dev_iommu_get(struct device *dev) 333 { 334 struct dev_iommu *param = dev->iommu; 335 336 lockdep_assert_held(&iommu_probe_device_lock); 337 338 if (param) 339 return param; 340 341 param = kzalloc(sizeof(*param), GFP_KERNEL); 342 if (!param) 343 return NULL; 344 345 mutex_init(¶m->lock); 346 dev->iommu = param; 347 return param; 348 } 349 350 static void dev_iommu_free(struct device *dev) 351 { 352 struct dev_iommu *param = dev->iommu; 353 354 dev->iommu = NULL; 355 if (param->fwspec) { 356 fwnode_handle_put(param->fwspec->iommu_fwnode); 357 kfree(param->fwspec); 358 } 359 kfree(param); 360 } 361 362 /* 363 * Internal equivalent of device_iommu_mapped() for when we care that a device 364 * actually has API ops, and don't want false positives from VFIO-only groups. 365 */ 366 static bool dev_has_iommu(struct device *dev) 367 { 368 return dev->iommu && dev->iommu->iommu_dev; 369 } 370 371 static u32 dev_iommu_get_max_pasids(struct device *dev) 372 { 373 u32 max_pasids = 0, bits = 0; 374 int ret; 375 376 if (dev_is_pci(dev)) { 377 ret = pci_max_pasids(to_pci_dev(dev)); 378 if (ret > 0) 379 max_pasids = ret; 380 } else { 381 ret = device_property_read_u32(dev, "pasid-num-bits", &bits); 382 if (!ret) 383 max_pasids = 1UL << bits; 384 } 385 386 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids); 387 } 388 389 void dev_iommu_priv_set(struct device *dev, void *priv) 390 { 391 /* FSL_PAMU does something weird */ 392 if (!IS_ENABLED(CONFIG_FSL_PAMU)) 393 lockdep_assert_held(&iommu_probe_device_lock); 394 dev->iommu->priv = priv; 395 } 396 EXPORT_SYMBOL_GPL(dev_iommu_priv_set); 397 398 /* 399 * Init the dev->iommu and dev->iommu_group in the struct device and get the 400 * driver probed 401 */ 402 static int iommu_init_device(struct device *dev, const struct iommu_ops *ops) 403 { 404 struct iommu_device *iommu_dev; 405 struct iommu_group *group; 406 int ret; 407 408 if (!dev_iommu_get(dev)) 409 return -ENOMEM; 410 411 if (!try_module_get(ops->owner)) { 412 ret = -EINVAL; 413 goto err_free; 414 } 415 416 iommu_dev = ops->probe_device(dev); 417 if (IS_ERR(iommu_dev)) { 418 ret = PTR_ERR(iommu_dev); 419 goto err_module_put; 420 } 421 dev->iommu->iommu_dev = iommu_dev; 422 423 ret = iommu_device_link(iommu_dev, dev); 424 if (ret) 425 goto err_release; 426 427 group = ops->device_group(dev); 428 if (WARN_ON_ONCE(group == NULL)) 429 group = ERR_PTR(-EINVAL); 430 if (IS_ERR(group)) { 431 ret = PTR_ERR(group); 432 goto err_unlink; 433 } 434 dev->iommu_group = group; 435 436 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev); 437 if (ops->is_attach_deferred) 438 dev->iommu->attach_deferred = ops->is_attach_deferred(dev); 439 return 0; 440 441 err_unlink: 442 iommu_device_unlink(iommu_dev, dev); 443 err_release: 444 if (ops->release_device) 445 ops->release_device(dev); 446 err_module_put: 447 module_put(ops->owner); 448 err_free: 449 dev->iommu->iommu_dev = NULL; 450 dev_iommu_free(dev); 451 return ret; 452 } 453 454 static void iommu_deinit_device(struct device *dev) 455 { 456 struct iommu_group *group = dev->iommu_group; 457 const struct iommu_ops *ops = dev_iommu_ops(dev); 458 459 lockdep_assert_held(&group->mutex); 460 461 iommu_device_unlink(dev->iommu->iommu_dev, dev); 462 463 /* 464 * release_device() must stop using any attached domain on the device. 465 * If there are still other devices in the group, they are not affected 466 * by this callback. 467 * 468 * If the iommu driver provides release_domain, the core code ensures 469 * that domain is attached prior to calling release_device. Drivers can 470 * use this to enforce a translation on the idle iommu. Typically, the 471 * global static blocked_domain is a good choice. 472 * 473 * Otherwise, the iommu driver must set the device to either an identity 474 * or a blocking translation in release_device() and stop using any 475 * domain pointer, as it is going to be freed. 476 * 477 * Regardless, if a delayed attach never occurred, then the release 478 * should still avoid touching any hardware configuration either. 479 */ 480 if (!dev->iommu->attach_deferred && ops->release_domain) 481 ops->release_domain->ops->attach_dev(ops->release_domain, dev); 482 483 if (ops->release_device) 484 ops->release_device(dev); 485 486 /* 487 * If this is the last driver to use the group then we must free the 488 * domains before we do the module_put(). 489 */ 490 if (list_empty(&group->devices)) { 491 if (group->default_domain) { 492 iommu_domain_free(group->default_domain); 493 group->default_domain = NULL; 494 } 495 if (group->blocking_domain) { 496 iommu_domain_free(group->blocking_domain); 497 group->blocking_domain = NULL; 498 } 499 group->domain = NULL; 500 } 501 502 /* Caller must put iommu_group */ 503 dev->iommu_group = NULL; 504 module_put(ops->owner); 505 dev_iommu_free(dev); 506 } 507 508 DEFINE_MUTEX(iommu_probe_device_lock); 509 510 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 511 { 512 const struct iommu_ops *ops; 513 struct iommu_fwspec *fwspec; 514 struct iommu_group *group; 515 struct group_device *gdev; 516 int ret; 517 518 /* 519 * For FDT-based systems and ACPI IORT/VIOT, drivers register IOMMU 520 * instances with non-NULL fwnodes, and client devices should have been 521 * identified with a fwspec by this point. Otherwise, we can currently 522 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can 523 * be present, and that any of their registered instances has suitable 524 * ops for probing, and thus cheekily co-opt the same mechanism. 525 */ 526 fwspec = dev_iommu_fwspec_get(dev); 527 if (fwspec && fwspec->ops) 528 ops = fwspec->ops; 529 else 530 ops = iommu_ops_from_fwnode(NULL); 531 532 if (!ops) 533 return -ENODEV; 534 /* 535 * Serialise to avoid races between IOMMU drivers registering in 536 * parallel and/or the "replay" calls from ACPI/OF code via client 537 * driver probe. Once the latter have been cleaned up we should 538 * probably be able to use device_lock() here to minimise the scope, 539 * but for now enforcing a simple global ordering is fine. 540 */ 541 lockdep_assert_held(&iommu_probe_device_lock); 542 543 /* Device is probed already if in a group */ 544 if (dev->iommu_group) 545 return 0; 546 547 ret = iommu_init_device(dev, ops); 548 if (ret) 549 return ret; 550 551 group = dev->iommu_group; 552 gdev = iommu_group_alloc_device(group, dev); 553 mutex_lock(&group->mutex); 554 if (IS_ERR(gdev)) { 555 ret = PTR_ERR(gdev); 556 goto err_put_group; 557 } 558 559 /* 560 * The gdev must be in the list before calling 561 * iommu_setup_default_domain() 562 */ 563 list_add_tail(&gdev->list, &group->devices); 564 WARN_ON(group->default_domain && !group->domain); 565 if (group->default_domain) 566 iommu_create_device_direct_mappings(group->default_domain, dev); 567 if (group->domain) { 568 ret = __iommu_device_set_domain(group, dev, group->domain, 0); 569 if (ret) 570 goto err_remove_gdev; 571 } else if (!group->default_domain && !group_list) { 572 ret = iommu_setup_default_domain(group, 0); 573 if (ret) 574 goto err_remove_gdev; 575 } else if (!group->default_domain) { 576 /* 577 * With a group_list argument we defer the default_domain setup 578 * to the caller by providing a de-duplicated list of groups 579 * that need further setup. 580 */ 581 if (list_empty(&group->entry)) 582 list_add_tail(&group->entry, group_list); 583 } 584 585 if (group->default_domain) 586 iommu_setup_dma_ops(dev); 587 588 mutex_unlock(&group->mutex); 589 590 return 0; 591 592 err_remove_gdev: 593 list_del(&gdev->list); 594 __iommu_group_free_device(group, gdev); 595 err_put_group: 596 iommu_deinit_device(dev); 597 mutex_unlock(&group->mutex); 598 iommu_group_put(group); 599 600 return ret; 601 } 602 603 int iommu_probe_device(struct device *dev) 604 { 605 const struct iommu_ops *ops; 606 int ret; 607 608 mutex_lock(&iommu_probe_device_lock); 609 ret = __iommu_probe_device(dev, NULL); 610 mutex_unlock(&iommu_probe_device_lock); 611 if (ret) 612 return ret; 613 614 ops = dev_iommu_ops(dev); 615 if (ops->probe_finalize) 616 ops->probe_finalize(dev); 617 618 return 0; 619 } 620 621 static void __iommu_group_free_device(struct iommu_group *group, 622 struct group_device *grp_dev) 623 { 624 struct device *dev = grp_dev->dev; 625 626 sysfs_remove_link(group->devices_kobj, grp_dev->name); 627 sysfs_remove_link(&dev->kobj, "iommu_group"); 628 629 trace_remove_device_from_group(group->id, dev); 630 631 /* 632 * If the group has become empty then ownership must have been 633 * released, and the current domain must be set back to NULL or 634 * the default domain. 635 */ 636 if (list_empty(&group->devices)) 637 WARN_ON(group->owner_cnt || 638 group->domain != group->default_domain); 639 640 kfree(grp_dev->name); 641 kfree(grp_dev); 642 } 643 644 /* Remove the iommu_group from the struct device. */ 645 static void __iommu_group_remove_device(struct device *dev) 646 { 647 struct iommu_group *group = dev->iommu_group; 648 struct group_device *device; 649 650 mutex_lock(&group->mutex); 651 for_each_group_device(group, device) { 652 if (device->dev != dev) 653 continue; 654 655 list_del(&device->list); 656 __iommu_group_free_device(group, device); 657 if (dev_has_iommu(dev)) 658 iommu_deinit_device(dev); 659 else 660 dev->iommu_group = NULL; 661 break; 662 } 663 mutex_unlock(&group->mutex); 664 665 /* 666 * Pairs with the get in iommu_init_device() or 667 * iommu_group_add_device() 668 */ 669 iommu_group_put(group); 670 } 671 672 static void iommu_release_device(struct device *dev) 673 { 674 struct iommu_group *group = dev->iommu_group; 675 676 if (group) 677 __iommu_group_remove_device(dev); 678 679 /* Free any fwspec if no iommu_driver was ever attached */ 680 if (dev->iommu) 681 dev_iommu_free(dev); 682 } 683 684 static int __init iommu_set_def_domain_type(char *str) 685 { 686 bool pt; 687 int ret; 688 689 ret = kstrtobool(str, &pt); 690 if (ret) 691 return ret; 692 693 if (pt) 694 iommu_set_default_passthrough(true); 695 else 696 iommu_set_default_translated(true); 697 698 return 0; 699 } 700 early_param("iommu.passthrough", iommu_set_def_domain_type); 701 702 static int __init iommu_dma_setup(char *str) 703 { 704 int ret = kstrtobool(str, &iommu_dma_strict); 705 706 if (!ret) 707 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 708 return ret; 709 } 710 early_param("iommu.strict", iommu_dma_setup); 711 712 void iommu_set_dma_strict(void) 713 { 714 iommu_dma_strict = true; 715 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 716 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 717 } 718 719 static ssize_t iommu_group_attr_show(struct kobject *kobj, 720 struct attribute *__attr, char *buf) 721 { 722 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 723 struct iommu_group *group = to_iommu_group(kobj); 724 ssize_t ret = -EIO; 725 726 if (attr->show) 727 ret = attr->show(group, buf); 728 return ret; 729 } 730 731 static ssize_t iommu_group_attr_store(struct kobject *kobj, 732 struct attribute *__attr, 733 const char *buf, size_t count) 734 { 735 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 736 struct iommu_group *group = to_iommu_group(kobj); 737 ssize_t ret = -EIO; 738 739 if (attr->store) 740 ret = attr->store(group, buf, count); 741 return ret; 742 } 743 744 static const struct sysfs_ops iommu_group_sysfs_ops = { 745 .show = iommu_group_attr_show, 746 .store = iommu_group_attr_store, 747 }; 748 749 static int iommu_group_create_file(struct iommu_group *group, 750 struct iommu_group_attribute *attr) 751 { 752 return sysfs_create_file(&group->kobj, &attr->attr); 753 } 754 755 static void iommu_group_remove_file(struct iommu_group *group, 756 struct iommu_group_attribute *attr) 757 { 758 sysfs_remove_file(&group->kobj, &attr->attr); 759 } 760 761 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 762 { 763 return sysfs_emit(buf, "%s\n", group->name); 764 } 765 766 /** 767 * iommu_insert_resv_region - Insert a new region in the 768 * list of reserved regions. 769 * @new: new region to insert 770 * @regions: list of regions 771 * 772 * Elements are sorted by start address and overlapping segments 773 * of the same type are merged. 774 */ 775 static int iommu_insert_resv_region(struct iommu_resv_region *new, 776 struct list_head *regions) 777 { 778 struct iommu_resv_region *iter, *tmp, *nr, *top; 779 LIST_HEAD(stack); 780 781 nr = iommu_alloc_resv_region(new->start, new->length, 782 new->prot, new->type, GFP_KERNEL); 783 if (!nr) 784 return -ENOMEM; 785 786 /* First add the new element based on start address sorting */ 787 list_for_each_entry(iter, regions, list) { 788 if (nr->start < iter->start || 789 (nr->start == iter->start && nr->type <= iter->type)) 790 break; 791 } 792 list_add_tail(&nr->list, &iter->list); 793 794 /* Merge overlapping segments of type nr->type in @regions, if any */ 795 list_for_each_entry_safe(iter, tmp, regions, list) { 796 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 797 798 /* no merge needed on elements of different types than @new */ 799 if (iter->type != new->type) { 800 list_move_tail(&iter->list, &stack); 801 continue; 802 } 803 804 /* look for the last stack element of same type as @iter */ 805 list_for_each_entry_reverse(top, &stack, list) 806 if (top->type == iter->type) 807 goto check_overlap; 808 809 list_move_tail(&iter->list, &stack); 810 continue; 811 812 check_overlap: 813 top_end = top->start + top->length - 1; 814 815 if (iter->start > top_end + 1) { 816 list_move_tail(&iter->list, &stack); 817 } else { 818 top->length = max(top_end, iter_end) - top->start + 1; 819 list_del(&iter->list); 820 kfree(iter); 821 } 822 } 823 list_splice(&stack, regions); 824 return 0; 825 } 826 827 static int 828 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 829 struct list_head *group_resv_regions) 830 { 831 struct iommu_resv_region *entry; 832 int ret = 0; 833 834 list_for_each_entry(entry, dev_resv_regions, list) { 835 ret = iommu_insert_resv_region(entry, group_resv_regions); 836 if (ret) 837 break; 838 } 839 return ret; 840 } 841 842 int iommu_get_group_resv_regions(struct iommu_group *group, 843 struct list_head *head) 844 { 845 struct group_device *device; 846 int ret = 0; 847 848 mutex_lock(&group->mutex); 849 for_each_group_device(group, device) { 850 struct list_head dev_resv_regions; 851 852 /* 853 * Non-API groups still expose reserved_regions in sysfs, 854 * so filter out calls that get here that way. 855 */ 856 if (!dev_has_iommu(device->dev)) 857 break; 858 859 INIT_LIST_HEAD(&dev_resv_regions); 860 iommu_get_resv_regions(device->dev, &dev_resv_regions); 861 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 862 iommu_put_resv_regions(device->dev, &dev_resv_regions); 863 if (ret) 864 break; 865 } 866 mutex_unlock(&group->mutex); 867 return ret; 868 } 869 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 870 871 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 872 char *buf) 873 { 874 struct iommu_resv_region *region, *next; 875 struct list_head group_resv_regions; 876 int offset = 0; 877 878 INIT_LIST_HEAD(&group_resv_regions); 879 iommu_get_group_resv_regions(group, &group_resv_regions); 880 881 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 882 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n", 883 (long long)region->start, 884 (long long)(region->start + 885 region->length - 1), 886 iommu_group_resv_type_string[region->type]); 887 kfree(region); 888 } 889 890 return offset; 891 } 892 893 static ssize_t iommu_group_show_type(struct iommu_group *group, 894 char *buf) 895 { 896 char *type = "unknown"; 897 898 mutex_lock(&group->mutex); 899 if (group->default_domain) { 900 switch (group->default_domain->type) { 901 case IOMMU_DOMAIN_BLOCKED: 902 type = "blocked"; 903 break; 904 case IOMMU_DOMAIN_IDENTITY: 905 type = "identity"; 906 break; 907 case IOMMU_DOMAIN_UNMANAGED: 908 type = "unmanaged"; 909 break; 910 case IOMMU_DOMAIN_DMA: 911 type = "DMA"; 912 break; 913 case IOMMU_DOMAIN_DMA_FQ: 914 type = "DMA-FQ"; 915 break; 916 } 917 } 918 mutex_unlock(&group->mutex); 919 920 return sysfs_emit(buf, "%s\n", type); 921 } 922 923 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 924 925 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 926 iommu_group_show_resv_regions, NULL); 927 928 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 929 iommu_group_store_type); 930 931 static void iommu_group_release(struct kobject *kobj) 932 { 933 struct iommu_group *group = to_iommu_group(kobj); 934 935 pr_debug("Releasing group %d\n", group->id); 936 937 if (group->iommu_data_release) 938 group->iommu_data_release(group->iommu_data); 939 940 ida_free(&iommu_group_ida, group->id); 941 942 /* Domains are free'd by iommu_deinit_device() */ 943 WARN_ON(group->default_domain); 944 WARN_ON(group->blocking_domain); 945 946 kfree(group->name); 947 kfree(group); 948 } 949 950 static const struct kobj_type iommu_group_ktype = { 951 .sysfs_ops = &iommu_group_sysfs_ops, 952 .release = iommu_group_release, 953 }; 954 955 /** 956 * iommu_group_alloc - Allocate a new group 957 * 958 * This function is called by an iommu driver to allocate a new iommu 959 * group. The iommu group represents the minimum granularity of the iommu. 960 * Upon successful return, the caller holds a reference to the supplied 961 * group in order to hold the group until devices are added. Use 962 * iommu_group_put() to release this extra reference count, allowing the 963 * group to be automatically reclaimed once it has no devices or external 964 * references. 965 */ 966 struct iommu_group *iommu_group_alloc(void) 967 { 968 struct iommu_group *group; 969 int ret; 970 971 group = kzalloc(sizeof(*group), GFP_KERNEL); 972 if (!group) 973 return ERR_PTR(-ENOMEM); 974 975 group->kobj.kset = iommu_group_kset; 976 mutex_init(&group->mutex); 977 INIT_LIST_HEAD(&group->devices); 978 INIT_LIST_HEAD(&group->entry); 979 xa_init(&group->pasid_array); 980 981 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL); 982 if (ret < 0) { 983 kfree(group); 984 return ERR_PTR(ret); 985 } 986 group->id = ret; 987 988 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 989 NULL, "%d", group->id); 990 if (ret) { 991 kobject_put(&group->kobj); 992 return ERR_PTR(ret); 993 } 994 995 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 996 if (!group->devices_kobj) { 997 kobject_put(&group->kobj); /* triggers .release & free */ 998 return ERR_PTR(-ENOMEM); 999 } 1000 1001 /* 1002 * The devices_kobj holds a reference on the group kobject, so 1003 * as long as that exists so will the group. We can therefore 1004 * use the devices_kobj for reference counting. 1005 */ 1006 kobject_put(&group->kobj); 1007 1008 ret = iommu_group_create_file(group, 1009 &iommu_group_attr_reserved_regions); 1010 if (ret) { 1011 kobject_put(group->devices_kobj); 1012 return ERR_PTR(ret); 1013 } 1014 1015 ret = iommu_group_create_file(group, &iommu_group_attr_type); 1016 if (ret) { 1017 kobject_put(group->devices_kobj); 1018 return ERR_PTR(ret); 1019 } 1020 1021 pr_debug("Allocated group %d\n", group->id); 1022 1023 return group; 1024 } 1025 EXPORT_SYMBOL_GPL(iommu_group_alloc); 1026 1027 /** 1028 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 1029 * @group: the group 1030 * 1031 * iommu drivers can store data in the group for use when doing iommu 1032 * operations. This function provides a way to retrieve it. Caller 1033 * should hold a group reference. 1034 */ 1035 void *iommu_group_get_iommudata(struct iommu_group *group) 1036 { 1037 return group->iommu_data; 1038 } 1039 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 1040 1041 /** 1042 * iommu_group_set_iommudata - set iommu_data for a group 1043 * @group: the group 1044 * @iommu_data: new data 1045 * @release: release function for iommu_data 1046 * 1047 * iommu drivers can store data in the group for use when doing iommu 1048 * operations. This function provides a way to set the data after 1049 * the group has been allocated. Caller should hold a group reference. 1050 */ 1051 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 1052 void (*release)(void *iommu_data)) 1053 { 1054 group->iommu_data = iommu_data; 1055 group->iommu_data_release = release; 1056 } 1057 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 1058 1059 /** 1060 * iommu_group_set_name - set name for a group 1061 * @group: the group 1062 * @name: name 1063 * 1064 * Allow iommu driver to set a name for a group. When set it will 1065 * appear in a name attribute file under the group in sysfs. 1066 */ 1067 int iommu_group_set_name(struct iommu_group *group, const char *name) 1068 { 1069 int ret; 1070 1071 if (group->name) { 1072 iommu_group_remove_file(group, &iommu_group_attr_name); 1073 kfree(group->name); 1074 group->name = NULL; 1075 if (!name) 1076 return 0; 1077 } 1078 1079 group->name = kstrdup(name, GFP_KERNEL); 1080 if (!group->name) 1081 return -ENOMEM; 1082 1083 ret = iommu_group_create_file(group, &iommu_group_attr_name); 1084 if (ret) { 1085 kfree(group->name); 1086 group->name = NULL; 1087 return ret; 1088 } 1089 1090 return 0; 1091 } 1092 EXPORT_SYMBOL_GPL(iommu_group_set_name); 1093 1094 static int iommu_create_device_direct_mappings(struct iommu_domain *domain, 1095 struct device *dev) 1096 { 1097 struct iommu_resv_region *entry; 1098 struct list_head mappings; 1099 unsigned long pg_size; 1100 int ret = 0; 1101 1102 pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0; 1103 INIT_LIST_HEAD(&mappings); 1104 1105 if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size)) 1106 return -EINVAL; 1107 1108 iommu_get_resv_regions(dev, &mappings); 1109 1110 /* We need to consider overlapping regions for different devices */ 1111 list_for_each_entry(entry, &mappings, list) { 1112 dma_addr_t start, end, addr; 1113 size_t map_size = 0; 1114 1115 if (entry->type == IOMMU_RESV_DIRECT) 1116 dev->iommu->require_direct = 1; 1117 1118 if ((entry->type != IOMMU_RESV_DIRECT && 1119 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) || 1120 !iommu_is_dma_domain(domain)) 1121 continue; 1122 1123 start = ALIGN(entry->start, pg_size); 1124 end = ALIGN(entry->start + entry->length, pg_size); 1125 1126 for (addr = start; addr <= end; addr += pg_size) { 1127 phys_addr_t phys_addr; 1128 1129 if (addr == end) 1130 goto map_end; 1131 1132 phys_addr = iommu_iova_to_phys(domain, addr); 1133 if (!phys_addr) { 1134 map_size += pg_size; 1135 continue; 1136 } 1137 1138 map_end: 1139 if (map_size) { 1140 ret = iommu_map(domain, addr - map_size, 1141 addr - map_size, map_size, 1142 entry->prot, GFP_KERNEL); 1143 if (ret) 1144 goto out; 1145 map_size = 0; 1146 } 1147 } 1148 1149 } 1150 1151 if (!list_empty(&mappings) && iommu_is_dma_domain(domain)) 1152 iommu_flush_iotlb_all(domain); 1153 1154 out: 1155 iommu_put_resv_regions(dev, &mappings); 1156 1157 return ret; 1158 } 1159 1160 /* This is undone by __iommu_group_free_device() */ 1161 static struct group_device *iommu_group_alloc_device(struct iommu_group *group, 1162 struct device *dev) 1163 { 1164 int ret, i = 0; 1165 struct group_device *device; 1166 1167 device = kzalloc(sizeof(*device), GFP_KERNEL); 1168 if (!device) 1169 return ERR_PTR(-ENOMEM); 1170 1171 device->dev = dev; 1172 1173 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 1174 if (ret) 1175 goto err_free_device; 1176 1177 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 1178 rename: 1179 if (!device->name) { 1180 ret = -ENOMEM; 1181 goto err_remove_link; 1182 } 1183 1184 ret = sysfs_create_link_nowarn(group->devices_kobj, 1185 &dev->kobj, device->name); 1186 if (ret) { 1187 if (ret == -EEXIST && i >= 0) { 1188 /* 1189 * Account for the slim chance of collision 1190 * and append an instance to the name. 1191 */ 1192 kfree(device->name); 1193 device->name = kasprintf(GFP_KERNEL, "%s.%d", 1194 kobject_name(&dev->kobj), i++); 1195 goto rename; 1196 } 1197 goto err_free_name; 1198 } 1199 1200 trace_add_device_to_group(group->id, dev); 1201 1202 dev_info(dev, "Adding to iommu group %d\n", group->id); 1203 1204 return device; 1205 1206 err_free_name: 1207 kfree(device->name); 1208 err_remove_link: 1209 sysfs_remove_link(&dev->kobj, "iommu_group"); 1210 err_free_device: 1211 kfree(device); 1212 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 1213 return ERR_PTR(ret); 1214 } 1215 1216 /** 1217 * iommu_group_add_device - add a device to an iommu group 1218 * @group: the group into which to add the device (reference should be held) 1219 * @dev: the device 1220 * 1221 * This function is called by an iommu driver to add a device into a 1222 * group. Adding a device increments the group reference count. 1223 */ 1224 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 1225 { 1226 struct group_device *gdev; 1227 1228 gdev = iommu_group_alloc_device(group, dev); 1229 if (IS_ERR(gdev)) 1230 return PTR_ERR(gdev); 1231 1232 iommu_group_ref_get(group); 1233 dev->iommu_group = group; 1234 1235 mutex_lock(&group->mutex); 1236 list_add_tail(&gdev->list, &group->devices); 1237 mutex_unlock(&group->mutex); 1238 return 0; 1239 } 1240 EXPORT_SYMBOL_GPL(iommu_group_add_device); 1241 1242 /** 1243 * iommu_group_remove_device - remove a device from it's current group 1244 * @dev: device to be removed 1245 * 1246 * This function is called by an iommu driver to remove the device from 1247 * it's current group. This decrements the iommu group reference count. 1248 */ 1249 void iommu_group_remove_device(struct device *dev) 1250 { 1251 struct iommu_group *group = dev->iommu_group; 1252 1253 if (!group) 1254 return; 1255 1256 dev_info(dev, "Removing from iommu group %d\n", group->id); 1257 1258 __iommu_group_remove_device(dev); 1259 } 1260 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 1261 1262 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API) 1263 /** 1264 * iommu_group_mutex_assert - Check device group mutex lock 1265 * @dev: the device that has group param set 1266 * 1267 * This function is called by an iommu driver to check whether it holds 1268 * group mutex lock for the given device or not. 1269 * 1270 * Note that this function must be called after device group param is set. 1271 */ 1272 void iommu_group_mutex_assert(struct device *dev) 1273 { 1274 struct iommu_group *group = dev->iommu_group; 1275 1276 lockdep_assert_held(&group->mutex); 1277 } 1278 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert); 1279 #endif 1280 1281 static struct device *iommu_group_first_dev(struct iommu_group *group) 1282 { 1283 lockdep_assert_held(&group->mutex); 1284 return list_first_entry(&group->devices, struct group_device, list)->dev; 1285 } 1286 1287 /** 1288 * iommu_group_for_each_dev - iterate over each device in the group 1289 * @group: the group 1290 * @data: caller opaque data to be passed to callback function 1291 * @fn: caller supplied callback function 1292 * 1293 * This function is called by group users to iterate over group devices. 1294 * Callers should hold a reference count to the group during callback. 1295 * The group->mutex is held across callbacks, which will block calls to 1296 * iommu_group_add/remove_device. 1297 */ 1298 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1299 int (*fn)(struct device *, void *)) 1300 { 1301 struct group_device *device; 1302 int ret = 0; 1303 1304 mutex_lock(&group->mutex); 1305 for_each_group_device(group, device) { 1306 ret = fn(device->dev, data); 1307 if (ret) 1308 break; 1309 } 1310 mutex_unlock(&group->mutex); 1311 1312 return ret; 1313 } 1314 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1315 1316 /** 1317 * iommu_group_get - Return the group for a device and increment reference 1318 * @dev: get the group that this device belongs to 1319 * 1320 * This function is called by iommu drivers and users to get the group 1321 * for the specified device. If found, the group is returned and the group 1322 * reference in incremented, else NULL. 1323 */ 1324 struct iommu_group *iommu_group_get(struct device *dev) 1325 { 1326 struct iommu_group *group = dev->iommu_group; 1327 1328 if (group) 1329 kobject_get(group->devices_kobj); 1330 1331 return group; 1332 } 1333 EXPORT_SYMBOL_GPL(iommu_group_get); 1334 1335 /** 1336 * iommu_group_ref_get - Increment reference on a group 1337 * @group: the group to use, must not be NULL 1338 * 1339 * This function is called by iommu drivers to take additional references on an 1340 * existing group. Returns the given group for convenience. 1341 */ 1342 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1343 { 1344 kobject_get(group->devices_kobj); 1345 return group; 1346 } 1347 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1348 1349 /** 1350 * iommu_group_put - Decrement group reference 1351 * @group: the group to use 1352 * 1353 * This function is called by iommu drivers and users to release the 1354 * iommu group. Once the reference count is zero, the group is released. 1355 */ 1356 void iommu_group_put(struct iommu_group *group) 1357 { 1358 if (group) 1359 kobject_put(group->devices_kobj); 1360 } 1361 EXPORT_SYMBOL_GPL(iommu_group_put); 1362 1363 /** 1364 * iommu_group_id - Return ID for a group 1365 * @group: the group to ID 1366 * 1367 * Return the unique ID for the group matching the sysfs group number. 1368 */ 1369 int iommu_group_id(struct iommu_group *group) 1370 { 1371 return group->id; 1372 } 1373 EXPORT_SYMBOL_GPL(iommu_group_id); 1374 1375 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1376 unsigned long *devfns); 1377 1378 /* 1379 * To consider a PCI device isolated, we require ACS to support Source 1380 * Validation, Request Redirection, Completer Redirection, and Upstream 1381 * Forwarding. This effectively means that devices cannot spoof their 1382 * requester ID, requests and completions cannot be redirected, and all 1383 * transactions are forwarded upstream, even as it passes through a 1384 * bridge where the target device is downstream. 1385 */ 1386 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1387 1388 /* 1389 * For multifunction devices which are not isolated from each other, find 1390 * all the other non-isolated functions and look for existing groups. For 1391 * each function, we also need to look for aliases to or from other devices 1392 * that may already have a group. 1393 */ 1394 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1395 unsigned long *devfns) 1396 { 1397 struct pci_dev *tmp = NULL; 1398 struct iommu_group *group; 1399 1400 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1401 return NULL; 1402 1403 for_each_pci_dev(tmp) { 1404 if (tmp == pdev || tmp->bus != pdev->bus || 1405 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1406 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1407 continue; 1408 1409 group = get_pci_alias_group(tmp, devfns); 1410 if (group) { 1411 pci_dev_put(tmp); 1412 return group; 1413 } 1414 } 1415 1416 return NULL; 1417 } 1418 1419 /* 1420 * Look for aliases to or from the given device for existing groups. DMA 1421 * aliases are only supported on the same bus, therefore the search 1422 * space is quite small (especially since we're really only looking at pcie 1423 * device, and therefore only expect multiple slots on the root complex or 1424 * downstream switch ports). It's conceivable though that a pair of 1425 * multifunction devices could have aliases between them that would cause a 1426 * loop. To prevent this, we use a bitmap to track where we've been. 1427 */ 1428 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1429 unsigned long *devfns) 1430 { 1431 struct pci_dev *tmp = NULL; 1432 struct iommu_group *group; 1433 1434 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1435 return NULL; 1436 1437 group = iommu_group_get(&pdev->dev); 1438 if (group) 1439 return group; 1440 1441 for_each_pci_dev(tmp) { 1442 if (tmp == pdev || tmp->bus != pdev->bus) 1443 continue; 1444 1445 /* We alias them or they alias us */ 1446 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1447 group = get_pci_alias_group(tmp, devfns); 1448 if (group) { 1449 pci_dev_put(tmp); 1450 return group; 1451 } 1452 1453 group = get_pci_function_alias_group(tmp, devfns); 1454 if (group) { 1455 pci_dev_put(tmp); 1456 return group; 1457 } 1458 } 1459 } 1460 1461 return NULL; 1462 } 1463 1464 struct group_for_pci_data { 1465 struct pci_dev *pdev; 1466 struct iommu_group *group; 1467 }; 1468 1469 /* 1470 * DMA alias iterator callback, return the last seen device. Stop and return 1471 * the IOMMU group if we find one along the way. 1472 */ 1473 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1474 { 1475 struct group_for_pci_data *data = opaque; 1476 1477 data->pdev = pdev; 1478 data->group = iommu_group_get(&pdev->dev); 1479 1480 return data->group != NULL; 1481 } 1482 1483 /* 1484 * Generic device_group call-back function. It just allocates one 1485 * iommu-group per device. 1486 */ 1487 struct iommu_group *generic_device_group(struct device *dev) 1488 { 1489 return iommu_group_alloc(); 1490 } 1491 EXPORT_SYMBOL_GPL(generic_device_group); 1492 1493 /* 1494 * Generic device_group call-back function. It just allocates one 1495 * iommu-group per iommu driver instance shared by every device 1496 * probed by that iommu driver. 1497 */ 1498 struct iommu_group *generic_single_device_group(struct device *dev) 1499 { 1500 struct iommu_device *iommu = dev->iommu->iommu_dev; 1501 1502 if (!iommu->singleton_group) { 1503 struct iommu_group *group; 1504 1505 group = iommu_group_alloc(); 1506 if (IS_ERR(group)) 1507 return group; 1508 iommu->singleton_group = group; 1509 } 1510 return iommu_group_ref_get(iommu->singleton_group); 1511 } 1512 EXPORT_SYMBOL_GPL(generic_single_device_group); 1513 1514 /* 1515 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1516 * to find or create an IOMMU group for a device. 1517 */ 1518 struct iommu_group *pci_device_group(struct device *dev) 1519 { 1520 struct pci_dev *pdev = to_pci_dev(dev); 1521 struct group_for_pci_data data; 1522 struct pci_bus *bus; 1523 struct iommu_group *group = NULL; 1524 u64 devfns[4] = { 0 }; 1525 1526 if (WARN_ON(!dev_is_pci(dev))) 1527 return ERR_PTR(-EINVAL); 1528 1529 /* 1530 * Find the upstream DMA alias for the device. A device must not 1531 * be aliased due to topology in order to have its own IOMMU group. 1532 * If we find an alias along the way that already belongs to a 1533 * group, use it. 1534 */ 1535 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1536 return data.group; 1537 1538 pdev = data.pdev; 1539 1540 /* 1541 * Continue upstream from the point of minimum IOMMU granularity 1542 * due to aliases to the point where devices are protected from 1543 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1544 * group, use it. 1545 */ 1546 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1547 if (!bus->self) 1548 continue; 1549 1550 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1551 break; 1552 1553 pdev = bus->self; 1554 1555 group = iommu_group_get(&pdev->dev); 1556 if (group) 1557 return group; 1558 } 1559 1560 /* 1561 * Look for existing groups on device aliases. If we alias another 1562 * device or another device aliases us, use the same group. 1563 */ 1564 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1565 if (group) 1566 return group; 1567 1568 /* 1569 * Look for existing groups on non-isolated functions on the same 1570 * slot and aliases of those funcions, if any. No need to clear 1571 * the search bitmap, the tested devfns are still valid. 1572 */ 1573 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1574 if (group) 1575 return group; 1576 1577 /* No shared group found, allocate new */ 1578 return iommu_group_alloc(); 1579 } 1580 EXPORT_SYMBOL_GPL(pci_device_group); 1581 1582 /* Get the IOMMU group for device on fsl-mc bus */ 1583 struct iommu_group *fsl_mc_device_group(struct device *dev) 1584 { 1585 struct device *cont_dev = fsl_mc_cont_dev(dev); 1586 struct iommu_group *group; 1587 1588 group = iommu_group_get(cont_dev); 1589 if (!group) 1590 group = iommu_group_alloc(); 1591 return group; 1592 } 1593 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1594 1595 static struct iommu_domain * 1596 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type) 1597 { 1598 if (group->default_domain && group->default_domain->type == req_type) 1599 return group->default_domain; 1600 return __iommu_group_domain_alloc(group, req_type); 1601 } 1602 1603 /* 1604 * req_type of 0 means "auto" which means to select a domain based on 1605 * iommu_def_domain_type or what the driver actually supports. 1606 */ 1607 static struct iommu_domain * 1608 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type) 1609 { 1610 const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group)); 1611 struct iommu_domain *dom; 1612 1613 lockdep_assert_held(&group->mutex); 1614 1615 /* 1616 * Allow legacy drivers to specify the domain that will be the default 1617 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM 1618 * domain. Do not use in new drivers. 1619 */ 1620 if (ops->default_domain) { 1621 if (req_type != ops->default_domain->type) 1622 return ERR_PTR(-EINVAL); 1623 return ops->default_domain; 1624 } 1625 1626 if (req_type) 1627 return __iommu_group_alloc_default_domain(group, req_type); 1628 1629 /* The driver gave no guidance on what type to use, try the default */ 1630 dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type); 1631 if (!IS_ERR(dom)) 1632 return dom; 1633 1634 /* Otherwise IDENTITY and DMA_FQ defaults will try DMA */ 1635 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA) 1636 return ERR_PTR(-EINVAL); 1637 dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA); 1638 if (IS_ERR(dom)) 1639 return dom; 1640 1641 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1642 iommu_def_domain_type, group->name); 1643 return dom; 1644 } 1645 1646 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1647 { 1648 return group->default_domain; 1649 } 1650 1651 static int probe_iommu_group(struct device *dev, void *data) 1652 { 1653 struct list_head *group_list = data; 1654 int ret; 1655 1656 mutex_lock(&iommu_probe_device_lock); 1657 ret = __iommu_probe_device(dev, group_list); 1658 mutex_unlock(&iommu_probe_device_lock); 1659 if (ret == -ENODEV) 1660 ret = 0; 1661 1662 return ret; 1663 } 1664 1665 static int iommu_bus_notifier(struct notifier_block *nb, 1666 unsigned long action, void *data) 1667 { 1668 struct device *dev = data; 1669 1670 if (action == BUS_NOTIFY_ADD_DEVICE) { 1671 int ret; 1672 1673 ret = iommu_probe_device(dev); 1674 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1675 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1676 iommu_release_device(dev); 1677 return NOTIFY_OK; 1678 } 1679 1680 return 0; 1681 } 1682 1683 /* 1684 * Combine the driver's chosen def_domain_type across all the devices in a 1685 * group. Drivers must give a consistent result. 1686 */ 1687 static int iommu_get_def_domain_type(struct iommu_group *group, 1688 struct device *dev, int cur_type) 1689 { 1690 const struct iommu_ops *ops = dev_iommu_ops(dev); 1691 int type; 1692 1693 if (ops->default_domain) { 1694 /* 1695 * Drivers that declare a global static default_domain will 1696 * always choose that. 1697 */ 1698 type = ops->default_domain->type; 1699 } else { 1700 if (ops->def_domain_type) 1701 type = ops->def_domain_type(dev); 1702 else 1703 return cur_type; 1704 } 1705 if (!type || cur_type == type) 1706 return cur_type; 1707 if (!cur_type) 1708 return type; 1709 1710 dev_err_ratelimited( 1711 dev, 1712 "IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n", 1713 iommu_domain_type_str(cur_type), iommu_domain_type_str(type), 1714 group->id); 1715 1716 /* 1717 * Try to recover, drivers are allowed to force IDENITY or DMA, IDENTITY 1718 * takes precedence. 1719 */ 1720 if (type == IOMMU_DOMAIN_IDENTITY) 1721 return type; 1722 return cur_type; 1723 } 1724 1725 /* 1726 * A target_type of 0 will select the best domain type. 0 can be returned in 1727 * this case meaning the global default should be used. 1728 */ 1729 static int iommu_get_default_domain_type(struct iommu_group *group, 1730 int target_type) 1731 { 1732 struct device *untrusted = NULL; 1733 struct group_device *gdev; 1734 int driver_type = 0; 1735 1736 lockdep_assert_held(&group->mutex); 1737 1738 /* 1739 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an 1740 * identity_domain and it will automatically become their default 1741 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain. 1742 * Override the selection to IDENTITY. 1743 */ 1744 if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) { 1745 static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) && 1746 IS_ENABLED(CONFIG_IOMMU_DMA))); 1747 driver_type = IOMMU_DOMAIN_IDENTITY; 1748 } 1749 1750 for_each_group_device(group, gdev) { 1751 driver_type = iommu_get_def_domain_type(group, gdev->dev, 1752 driver_type); 1753 1754 if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) { 1755 /* 1756 * No ARM32 using systems will set untrusted, it cannot 1757 * work. 1758 */ 1759 if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))) 1760 return -1; 1761 untrusted = gdev->dev; 1762 } 1763 } 1764 1765 /* 1766 * If the common dma ops are not selected in kconfig then we cannot use 1767 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been 1768 * selected. 1769 */ 1770 if (!IS_ENABLED(CONFIG_IOMMU_DMA)) { 1771 if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA)) 1772 return -1; 1773 if (!driver_type) 1774 driver_type = IOMMU_DOMAIN_IDENTITY; 1775 } 1776 1777 if (untrusted) { 1778 if (driver_type && driver_type != IOMMU_DOMAIN_DMA) { 1779 dev_err_ratelimited( 1780 untrusted, 1781 "Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n", 1782 group->id, iommu_domain_type_str(driver_type)); 1783 return -1; 1784 } 1785 driver_type = IOMMU_DOMAIN_DMA; 1786 } 1787 1788 if (target_type) { 1789 if (driver_type && target_type != driver_type) 1790 return -1; 1791 return target_type; 1792 } 1793 return driver_type; 1794 } 1795 1796 static void iommu_group_do_probe_finalize(struct device *dev) 1797 { 1798 const struct iommu_ops *ops = dev_iommu_ops(dev); 1799 1800 if (ops->probe_finalize) 1801 ops->probe_finalize(dev); 1802 } 1803 1804 int bus_iommu_probe(const struct bus_type *bus) 1805 { 1806 struct iommu_group *group, *next; 1807 LIST_HEAD(group_list); 1808 int ret; 1809 1810 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1811 if (ret) 1812 return ret; 1813 1814 list_for_each_entry_safe(group, next, &group_list, entry) { 1815 struct group_device *gdev; 1816 1817 mutex_lock(&group->mutex); 1818 1819 /* Remove item from the list */ 1820 list_del_init(&group->entry); 1821 1822 /* 1823 * We go to the trouble of deferred default domain creation so 1824 * that the cross-group default domain type and the setup of the 1825 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios. 1826 */ 1827 ret = iommu_setup_default_domain(group, 0); 1828 if (ret) { 1829 mutex_unlock(&group->mutex); 1830 return ret; 1831 } 1832 for_each_group_device(group, gdev) 1833 iommu_setup_dma_ops(gdev->dev); 1834 mutex_unlock(&group->mutex); 1835 1836 /* 1837 * FIXME: Mis-locked because the ops->probe_finalize() call-back 1838 * of some IOMMU drivers calls arm_iommu_attach_device() which 1839 * in-turn might call back into IOMMU core code, where it tries 1840 * to take group->mutex, resulting in a deadlock. 1841 */ 1842 for_each_group_device(group, gdev) 1843 iommu_group_do_probe_finalize(gdev->dev); 1844 } 1845 1846 return 0; 1847 } 1848 1849 /** 1850 * iommu_present() - make platform-specific assumptions about an IOMMU 1851 * @bus: bus to check 1852 * 1853 * Do not use this function. You want device_iommu_mapped() instead. 1854 * 1855 * Return: true if some IOMMU is present and aware of devices on the given bus; 1856 * in general it may not be the only IOMMU, and it may not have anything to do 1857 * with whatever device you are ultimately interested in. 1858 */ 1859 bool iommu_present(const struct bus_type *bus) 1860 { 1861 bool ret = false; 1862 1863 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { 1864 if (iommu_buses[i] == bus) { 1865 spin_lock(&iommu_device_lock); 1866 ret = !list_empty(&iommu_device_list); 1867 spin_unlock(&iommu_device_lock); 1868 } 1869 } 1870 return ret; 1871 } 1872 EXPORT_SYMBOL_GPL(iommu_present); 1873 1874 /** 1875 * device_iommu_capable() - check for a general IOMMU capability 1876 * @dev: device to which the capability would be relevant, if available 1877 * @cap: IOMMU capability 1878 * 1879 * Return: true if an IOMMU is present and supports the given capability 1880 * for the given device, otherwise false. 1881 */ 1882 bool device_iommu_capable(struct device *dev, enum iommu_cap cap) 1883 { 1884 const struct iommu_ops *ops; 1885 1886 if (!dev_has_iommu(dev)) 1887 return false; 1888 1889 ops = dev_iommu_ops(dev); 1890 if (!ops->capable) 1891 return false; 1892 1893 return ops->capable(dev, cap); 1894 } 1895 EXPORT_SYMBOL_GPL(device_iommu_capable); 1896 1897 /** 1898 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi() 1899 * for a group 1900 * @group: Group to query 1901 * 1902 * IOMMU groups should not have differing values of 1903 * msi_device_has_isolated_msi() for devices in a group. However nothing 1904 * directly prevents this, so ensure mistakes don't result in isolation failures 1905 * by checking that all the devices are the same. 1906 */ 1907 bool iommu_group_has_isolated_msi(struct iommu_group *group) 1908 { 1909 struct group_device *group_dev; 1910 bool ret = true; 1911 1912 mutex_lock(&group->mutex); 1913 for_each_group_device(group, group_dev) 1914 ret &= msi_device_has_isolated_msi(group_dev->dev); 1915 mutex_unlock(&group->mutex); 1916 return ret; 1917 } 1918 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi); 1919 1920 /** 1921 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1922 * @domain: iommu domain 1923 * @handler: fault handler 1924 * @token: user data, will be passed back to the fault handler 1925 * 1926 * This function should be used by IOMMU users which want to be notified 1927 * whenever an IOMMU fault happens. 1928 * 1929 * The fault handler itself should return 0 on success, and an appropriate 1930 * error code otherwise. 1931 */ 1932 void iommu_set_fault_handler(struct iommu_domain *domain, 1933 iommu_fault_handler_t handler, 1934 void *token) 1935 { 1936 BUG_ON(!domain); 1937 1938 domain->handler = handler; 1939 domain->handler_token = token; 1940 } 1941 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1942 1943 static struct iommu_domain *__iommu_domain_alloc(const struct iommu_ops *ops, 1944 struct device *dev, 1945 unsigned int type) 1946 { 1947 struct iommu_domain *domain; 1948 unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS; 1949 1950 if (alloc_type == IOMMU_DOMAIN_IDENTITY && ops->identity_domain) 1951 return ops->identity_domain; 1952 else if (alloc_type == IOMMU_DOMAIN_BLOCKED && ops->blocked_domain) 1953 return ops->blocked_domain; 1954 else if (type & __IOMMU_DOMAIN_PAGING && ops->domain_alloc_paging) 1955 domain = ops->domain_alloc_paging(dev); 1956 else if (ops->domain_alloc) 1957 domain = ops->domain_alloc(alloc_type); 1958 else 1959 return ERR_PTR(-EOPNOTSUPP); 1960 1961 /* 1962 * Many domain_alloc ops now return ERR_PTR, make things easier for the 1963 * driver by accepting ERR_PTR from all domain_alloc ops instead of 1964 * having two rules. 1965 */ 1966 if (IS_ERR(domain)) 1967 return domain; 1968 if (!domain) 1969 return ERR_PTR(-ENOMEM); 1970 1971 domain->type = type; 1972 domain->owner = ops; 1973 /* 1974 * If not already set, assume all sizes by default; the driver 1975 * may override this later 1976 */ 1977 if (!domain->pgsize_bitmap) 1978 domain->pgsize_bitmap = ops->pgsize_bitmap; 1979 1980 if (!domain->ops) 1981 domain->ops = ops->default_domain_ops; 1982 1983 if (iommu_is_dma_domain(domain)) { 1984 int rc; 1985 1986 rc = iommu_get_dma_cookie(domain); 1987 if (rc) { 1988 iommu_domain_free(domain); 1989 return ERR_PTR(rc); 1990 } 1991 } 1992 return domain; 1993 } 1994 1995 static struct iommu_domain * 1996 __iommu_group_domain_alloc(struct iommu_group *group, unsigned int type) 1997 { 1998 struct device *dev = iommu_group_first_dev(group); 1999 2000 return __iommu_domain_alloc(dev_iommu_ops(dev), dev, type); 2001 } 2002 2003 static int __iommu_domain_alloc_dev(struct device *dev, void *data) 2004 { 2005 const struct iommu_ops **ops = data; 2006 2007 if (!dev_has_iommu(dev)) 2008 return 0; 2009 2010 if (WARN_ONCE(*ops && *ops != dev_iommu_ops(dev), 2011 "Multiple IOMMU drivers present for bus %s, which the public IOMMU API can't fully support yet. You will still need to disable one or more for this to work, sorry!\n", 2012 dev_bus_name(dev))) 2013 return -EBUSY; 2014 2015 *ops = dev_iommu_ops(dev); 2016 return 0; 2017 } 2018 2019 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus) 2020 { 2021 const struct iommu_ops *ops = NULL; 2022 int err = bus_for_each_dev(bus, NULL, &ops, __iommu_domain_alloc_dev); 2023 struct iommu_domain *domain; 2024 2025 if (err || !ops) 2026 return NULL; 2027 2028 domain = __iommu_domain_alloc(ops, NULL, IOMMU_DOMAIN_UNMANAGED); 2029 if (IS_ERR(domain)) 2030 return NULL; 2031 return domain; 2032 } 2033 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 2034 2035 void iommu_domain_free(struct iommu_domain *domain) 2036 { 2037 if (domain->type == IOMMU_DOMAIN_SVA) 2038 mmdrop(domain->mm); 2039 iommu_put_dma_cookie(domain); 2040 if (domain->ops->free) 2041 domain->ops->free(domain); 2042 } 2043 EXPORT_SYMBOL_GPL(iommu_domain_free); 2044 2045 /* 2046 * Put the group's domain back to the appropriate core-owned domain - either the 2047 * standard kernel-mode DMA configuration or an all-DMA-blocked domain. 2048 */ 2049 static void __iommu_group_set_core_domain(struct iommu_group *group) 2050 { 2051 struct iommu_domain *new_domain; 2052 2053 if (group->owner) 2054 new_domain = group->blocking_domain; 2055 else 2056 new_domain = group->default_domain; 2057 2058 __iommu_group_set_domain_nofail(group, new_domain); 2059 } 2060 2061 static int __iommu_attach_device(struct iommu_domain *domain, 2062 struct device *dev) 2063 { 2064 int ret; 2065 2066 if (unlikely(domain->ops->attach_dev == NULL)) 2067 return -ENODEV; 2068 2069 ret = domain->ops->attach_dev(domain, dev); 2070 if (ret) 2071 return ret; 2072 dev->iommu->attach_deferred = 0; 2073 trace_attach_device_to_domain(dev); 2074 return 0; 2075 } 2076 2077 /** 2078 * iommu_attach_device - Attach an IOMMU domain to a device 2079 * @domain: IOMMU domain to attach 2080 * @dev: Device that will be attached 2081 * 2082 * Returns 0 on success and error code on failure 2083 * 2084 * Note that EINVAL can be treated as a soft failure, indicating 2085 * that certain configuration of the domain is incompatible with 2086 * the device. In this case attaching a different domain to the 2087 * device may succeed. 2088 */ 2089 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 2090 { 2091 /* Caller must be a probed driver on dev */ 2092 struct iommu_group *group = dev->iommu_group; 2093 int ret; 2094 2095 if (!group) 2096 return -ENODEV; 2097 2098 /* 2099 * Lock the group to make sure the device-count doesn't 2100 * change while we are attaching 2101 */ 2102 mutex_lock(&group->mutex); 2103 ret = -EINVAL; 2104 if (list_count_nodes(&group->devices) != 1) 2105 goto out_unlock; 2106 2107 ret = __iommu_attach_group(domain, group); 2108 2109 out_unlock: 2110 mutex_unlock(&group->mutex); 2111 return ret; 2112 } 2113 EXPORT_SYMBOL_GPL(iommu_attach_device); 2114 2115 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2116 { 2117 if (dev->iommu && dev->iommu->attach_deferred) 2118 return __iommu_attach_device(domain, dev); 2119 2120 return 0; 2121 } 2122 2123 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2124 { 2125 /* Caller must be a probed driver on dev */ 2126 struct iommu_group *group = dev->iommu_group; 2127 2128 if (!group) 2129 return; 2130 2131 mutex_lock(&group->mutex); 2132 if (WARN_ON(domain != group->domain) || 2133 WARN_ON(list_count_nodes(&group->devices) != 1)) 2134 goto out_unlock; 2135 __iommu_group_set_core_domain(group); 2136 2137 out_unlock: 2138 mutex_unlock(&group->mutex); 2139 } 2140 EXPORT_SYMBOL_GPL(iommu_detach_device); 2141 2142 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2143 { 2144 /* Caller must be a probed driver on dev */ 2145 struct iommu_group *group = dev->iommu_group; 2146 2147 if (!group) 2148 return NULL; 2149 2150 return group->domain; 2151 } 2152 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2153 2154 /* 2155 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2156 * guarantees that the group and its default domain are valid and correct. 2157 */ 2158 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2159 { 2160 return dev->iommu_group->default_domain; 2161 } 2162 2163 static int __iommu_attach_group(struct iommu_domain *domain, 2164 struct iommu_group *group) 2165 { 2166 struct device *dev; 2167 2168 if (group->domain && group->domain != group->default_domain && 2169 group->domain != group->blocking_domain) 2170 return -EBUSY; 2171 2172 dev = iommu_group_first_dev(group); 2173 if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner) 2174 return -EINVAL; 2175 2176 return __iommu_group_set_domain(group, domain); 2177 } 2178 2179 /** 2180 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group 2181 * @domain: IOMMU domain to attach 2182 * @group: IOMMU group that will be attached 2183 * 2184 * Returns 0 on success and error code on failure 2185 * 2186 * Note that EINVAL can be treated as a soft failure, indicating 2187 * that certain configuration of the domain is incompatible with 2188 * the group. In this case attaching a different domain to the 2189 * group may succeed. 2190 */ 2191 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2192 { 2193 int ret; 2194 2195 mutex_lock(&group->mutex); 2196 ret = __iommu_attach_group(domain, group); 2197 mutex_unlock(&group->mutex); 2198 2199 return ret; 2200 } 2201 EXPORT_SYMBOL_GPL(iommu_attach_group); 2202 2203 /** 2204 * iommu_group_replace_domain - replace the domain that a group is attached to 2205 * @new_domain: new IOMMU domain to replace with 2206 * @group: IOMMU group that will be attached to the new domain 2207 * 2208 * This API allows the group to switch domains without being forced to go to 2209 * the blocking domain in-between. 2210 * 2211 * If the currently attached domain is a core domain (e.g. a default_domain), 2212 * it will act just like the iommu_attach_group(). 2213 */ 2214 int iommu_group_replace_domain(struct iommu_group *group, 2215 struct iommu_domain *new_domain) 2216 { 2217 int ret; 2218 2219 if (!new_domain) 2220 return -EINVAL; 2221 2222 mutex_lock(&group->mutex); 2223 ret = __iommu_group_set_domain(group, new_domain); 2224 mutex_unlock(&group->mutex); 2225 return ret; 2226 } 2227 EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL); 2228 2229 static int __iommu_device_set_domain(struct iommu_group *group, 2230 struct device *dev, 2231 struct iommu_domain *new_domain, 2232 unsigned int flags) 2233 { 2234 int ret; 2235 2236 /* 2237 * If the device requires IOMMU_RESV_DIRECT then we cannot allow 2238 * the blocking domain to be attached as it does not contain the 2239 * required 1:1 mapping. This test effectively excludes the device 2240 * being used with iommu_group_claim_dma_owner() which will block 2241 * vfio and iommufd as well. 2242 */ 2243 if (dev->iommu->require_direct && 2244 (new_domain->type == IOMMU_DOMAIN_BLOCKED || 2245 new_domain == group->blocking_domain)) { 2246 dev_warn(dev, 2247 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n"); 2248 return -EINVAL; 2249 } 2250 2251 if (dev->iommu->attach_deferred) { 2252 if (new_domain == group->default_domain) 2253 return 0; 2254 dev->iommu->attach_deferred = 0; 2255 } 2256 2257 ret = __iommu_attach_device(new_domain, dev); 2258 if (ret) { 2259 /* 2260 * If we have a blocking domain then try to attach that in hopes 2261 * of avoiding a UAF. Modern drivers should implement blocking 2262 * domains as global statics that cannot fail. 2263 */ 2264 if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) && 2265 group->blocking_domain && 2266 group->blocking_domain != new_domain) 2267 __iommu_attach_device(group->blocking_domain, dev); 2268 return ret; 2269 } 2270 return 0; 2271 } 2272 2273 /* 2274 * If 0 is returned the group's domain is new_domain. If an error is returned 2275 * then the group's domain will be set back to the existing domain unless 2276 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's 2277 * domains is left inconsistent. This is a driver bug to fail attach with a 2278 * previously good domain. We try to avoid a kernel UAF because of this. 2279 * 2280 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU 2281 * API works on domains and devices. Bridge that gap by iterating over the 2282 * devices in a group. Ideally we'd have a single device which represents the 2283 * requestor ID of the group, but we also allow IOMMU drivers to create policy 2284 * defined minimum sets, where the physical hardware may be able to distiguish 2285 * members, but we wish to group them at a higher level (ex. untrusted 2286 * multi-function PCI devices). Thus we attach each device. 2287 */ 2288 static int __iommu_group_set_domain_internal(struct iommu_group *group, 2289 struct iommu_domain *new_domain, 2290 unsigned int flags) 2291 { 2292 struct group_device *last_gdev; 2293 struct group_device *gdev; 2294 int result; 2295 int ret; 2296 2297 lockdep_assert_held(&group->mutex); 2298 2299 if (group->domain == new_domain) 2300 return 0; 2301 2302 if (WARN_ON(!new_domain)) 2303 return -EINVAL; 2304 2305 /* 2306 * Changing the domain is done by calling attach_dev() on the new 2307 * domain. This switch does not have to be atomic and DMA can be 2308 * discarded during the transition. DMA must only be able to access 2309 * either new_domain or group->domain, never something else. 2310 */ 2311 result = 0; 2312 for_each_group_device(group, gdev) { 2313 ret = __iommu_device_set_domain(group, gdev->dev, new_domain, 2314 flags); 2315 if (ret) { 2316 result = ret; 2317 /* 2318 * Keep trying the other devices in the group. If a 2319 * driver fails attach to an otherwise good domain, and 2320 * does not support blocking domains, it should at least 2321 * drop its reference on the current domain so we don't 2322 * UAF. 2323 */ 2324 if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) 2325 continue; 2326 goto err_revert; 2327 } 2328 } 2329 group->domain = new_domain; 2330 return result; 2331 2332 err_revert: 2333 /* 2334 * This is called in error unwind paths. A well behaved driver should 2335 * always allow us to attach to a domain that was already attached. 2336 */ 2337 last_gdev = gdev; 2338 for_each_group_device(group, gdev) { 2339 /* 2340 * A NULL domain can happen only for first probe, in which case 2341 * we leave group->domain as NULL and let release clean 2342 * everything up. 2343 */ 2344 if (group->domain) 2345 WARN_ON(__iommu_device_set_domain( 2346 group, gdev->dev, group->domain, 2347 IOMMU_SET_DOMAIN_MUST_SUCCEED)); 2348 if (gdev == last_gdev) 2349 break; 2350 } 2351 return ret; 2352 } 2353 2354 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2355 { 2356 mutex_lock(&group->mutex); 2357 __iommu_group_set_core_domain(group); 2358 mutex_unlock(&group->mutex); 2359 } 2360 EXPORT_SYMBOL_GPL(iommu_detach_group); 2361 2362 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2363 { 2364 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2365 return iova; 2366 2367 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2368 return 0; 2369 2370 return domain->ops->iova_to_phys(domain, iova); 2371 } 2372 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2373 2374 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2375 phys_addr_t paddr, size_t size, size_t *count) 2376 { 2377 unsigned int pgsize_idx, pgsize_idx_next; 2378 unsigned long pgsizes; 2379 size_t offset, pgsize, pgsize_next; 2380 unsigned long addr_merge = paddr | iova; 2381 2382 /* Page sizes supported by the hardware and small enough for @size */ 2383 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2384 2385 /* Constrain the page sizes further based on the maximum alignment */ 2386 if (likely(addr_merge)) 2387 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2388 2389 /* Make sure we have at least one suitable page size */ 2390 BUG_ON(!pgsizes); 2391 2392 /* Pick the biggest page size remaining */ 2393 pgsize_idx = __fls(pgsizes); 2394 pgsize = BIT(pgsize_idx); 2395 if (!count) 2396 return pgsize; 2397 2398 /* Find the next biggest support page size, if it exists */ 2399 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2400 if (!pgsizes) 2401 goto out_set_count; 2402 2403 pgsize_idx_next = __ffs(pgsizes); 2404 pgsize_next = BIT(pgsize_idx_next); 2405 2406 /* 2407 * There's no point trying a bigger page size unless the virtual 2408 * and physical addresses are similarly offset within the larger page. 2409 */ 2410 if ((iova ^ paddr) & (pgsize_next - 1)) 2411 goto out_set_count; 2412 2413 /* Calculate the offset to the next page size alignment boundary */ 2414 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2415 2416 /* 2417 * If size is big enough to accommodate the larger page, reduce 2418 * the number of smaller pages. 2419 */ 2420 if (offset + pgsize_next <= size) 2421 size = offset; 2422 2423 out_set_count: 2424 *count = size >> pgsize_idx; 2425 return pgsize; 2426 } 2427 2428 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2429 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2430 { 2431 const struct iommu_domain_ops *ops = domain->ops; 2432 unsigned long orig_iova = iova; 2433 unsigned int min_pagesz; 2434 size_t orig_size = size; 2435 phys_addr_t orig_paddr = paddr; 2436 int ret = 0; 2437 2438 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2439 return -EINVAL; 2440 2441 if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL)) 2442 return -ENODEV; 2443 2444 /* find out the minimum page size supported */ 2445 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2446 2447 /* 2448 * both the virtual address and the physical one, as well as 2449 * the size of the mapping, must be aligned (at least) to the 2450 * size of the smallest page supported by the hardware 2451 */ 2452 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2453 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2454 iova, &paddr, size, min_pagesz); 2455 return -EINVAL; 2456 } 2457 2458 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2459 2460 while (size) { 2461 size_t pgsize, count, mapped = 0; 2462 2463 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2464 2465 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2466 iova, &paddr, pgsize, count); 2467 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2468 gfp, &mapped); 2469 /* 2470 * Some pages may have been mapped, even if an error occurred, 2471 * so we should account for those so they can be unmapped. 2472 */ 2473 size -= mapped; 2474 2475 if (ret) 2476 break; 2477 2478 iova += mapped; 2479 paddr += mapped; 2480 } 2481 2482 /* unroll mapping in case something went wrong */ 2483 if (ret) 2484 iommu_unmap(domain, orig_iova, orig_size - size); 2485 else 2486 trace_map(orig_iova, orig_paddr, orig_size); 2487 2488 return ret; 2489 } 2490 2491 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2492 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2493 { 2494 const struct iommu_domain_ops *ops = domain->ops; 2495 int ret; 2496 2497 might_sleep_if(gfpflags_allow_blocking(gfp)); 2498 2499 /* Discourage passing strange GFP flags */ 2500 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2501 __GFP_HIGHMEM))) 2502 return -EINVAL; 2503 2504 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2505 if (ret == 0 && ops->iotlb_sync_map) { 2506 ret = ops->iotlb_sync_map(domain, iova, size); 2507 if (ret) 2508 goto out_err; 2509 } 2510 2511 return ret; 2512 2513 out_err: 2514 /* undo mappings already done */ 2515 iommu_unmap(domain, iova, size); 2516 2517 return ret; 2518 } 2519 EXPORT_SYMBOL_GPL(iommu_map); 2520 2521 static size_t __iommu_unmap(struct iommu_domain *domain, 2522 unsigned long iova, size_t size, 2523 struct iommu_iotlb_gather *iotlb_gather) 2524 { 2525 const struct iommu_domain_ops *ops = domain->ops; 2526 size_t unmapped_page, unmapped = 0; 2527 unsigned long orig_iova = iova; 2528 unsigned int min_pagesz; 2529 2530 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2531 return 0; 2532 2533 if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL)) 2534 return 0; 2535 2536 /* find out the minimum page size supported */ 2537 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2538 2539 /* 2540 * The virtual address, as well as the size of the mapping, must be 2541 * aligned (at least) to the size of the smallest page supported 2542 * by the hardware 2543 */ 2544 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2545 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2546 iova, size, min_pagesz); 2547 return 0; 2548 } 2549 2550 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2551 2552 /* 2553 * Keep iterating until we either unmap 'size' bytes (or more) 2554 * or we hit an area that isn't mapped. 2555 */ 2556 while (unmapped < size) { 2557 size_t pgsize, count; 2558 2559 pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count); 2560 unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather); 2561 if (!unmapped_page) 2562 break; 2563 2564 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2565 iova, unmapped_page); 2566 2567 iova += unmapped_page; 2568 unmapped += unmapped_page; 2569 } 2570 2571 trace_unmap(orig_iova, size, unmapped); 2572 return unmapped; 2573 } 2574 2575 size_t iommu_unmap(struct iommu_domain *domain, 2576 unsigned long iova, size_t size) 2577 { 2578 struct iommu_iotlb_gather iotlb_gather; 2579 size_t ret; 2580 2581 iommu_iotlb_gather_init(&iotlb_gather); 2582 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2583 iommu_iotlb_sync(domain, &iotlb_gather); 2584 2585 return ret; 2586 } 2587 EXPORT_SYMBOL_GPL(iommu_unmap); 2588 2589 size_t iommu_unmap_fast(struct iommu_domain *domain, 2590 unsigned long iova, size_t size, 2591 struct iommu_iotlb_gather *iotlb_gather) 2592 { 2593 return __iommu_unmap(domain, iova, size, iotlb_gather); 2594 } 2595 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2596 2597 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2598 struct scatterlist *sg, unsigned int nents, int prot, 2599 gfp_t gfp) 2600 { 2601 const struct iommu_domain_ops *ops = domain->ops; 2602 size_t len = 0, mapped = 0; 2603 phys_addr_t start; 2604 unsigned int i = 0; 2605 int ret; 2606 2607 might_sleep_if(gfpflags_allow_blocking(gfp)); 2608 2609 /* Discourage passing strange GFP flags */ 2610 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2611 __GFP_HIGHMEM))) 2612 return -EINVAL; 2613 2614 while (i <= nents) { 2615 phys_addr_t s_phys = sg_phys(sg); 2616 2617 if (len && s_phys != start + len) { 2618 ret = __iommu_map(domain, iova + mapped, start, 2619 len, prot, gfp); 2620 2621 if (ret) 2622 goto out_err; 2623 2624 mapped += len; 2625 len = 0; 2626 } 2627 2628 if (sg_dma_is_bus_address(sg)) 2629 goto next; 2630 2631 if (len) { 2632 len += sg->length; 2633 } else { 2634 len = sg->length; 2635 start = s_phys; 2636 } 2637 2638 next: 2639 if (++i < nents) 2640 sg = sg_next(sg); 2641 } 2642 2643 if (ops->iotlb_sync_map) { 2644 ret = ops->iotlb_sync_map(domain, iova, mapped); 2645 if (ret) 2646 goto out_err; 2647 } 2648 return mapped; 2649 2650 out_err: 2651 /* undo mappings already done */ 2652 iommu_unmap(domain, iova, mapped); 2653 2654 return ret; 2655 } 2656 EXPORT_SYMBOL_GPL(iommu_map_sg); 2657 2658 /** 2659 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2660 * @domain: the iommu domain where the fault has happened 2661 * @dev: the device where the fault has happened 2662 * @iova: the faulting address 2663 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2664 * 2665 * This function should be called by the low-level IOMMU implementations 2666 * whenever IOMMU faults happen, to allow high-level users, that are 2667 * interested in such events, to know about them. 2668 * 2669 * This event may be useful for several possible use cases: 2670 * - mere logging of the event 2671 * - dynamic TLB/PTE loading 2672 * - if restarting of the faulting device is required 2673 * 2674 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2675 * PTE/TLB loading will one day be supported, implementations will be able 2676 * to tell whether it succeeded or not according to this return value). 2677 * 2678 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2679 * (though fault handlers can also return -ENOSYS, in case they want to 2680 * elicit the default behavior of the IOMMU drivers). 2681 */ 2682 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2683 unsigned long iova, int flags) 2684 { 2685 int ret = -ENOSYS; 2686 2687 /* 2688 * if upper layers showed interest and installed a fault handler, 2689 * invoke it. 2690 */ 2691 if (domain->handler) 2692 ret = domain->handler(domain, dev, iova, flags, 2693 domain->handler_token); 2694 2695 trace_io_page_fault(dev, iova, flags); 2696 return ret; 2697 } 2698 EXPORT_SYMBOL_GPL(report_iommu_fault); 2699 2700 static int __init iommu_init(void) 2701 { 2702 iommu_group_kset = kset_create_and_add("iommu_groups", 2703 NULL, kernel_kobj); 2704 BUG_ON(!iommu_group_kset); 2705 2706 iommu_debugfs_setup(); 2707 2708 return 0; 2709 } 2710 core_initcall(iommu_init); 2711 2712 int iommu_enable_nesting(struct iommu_domain *domain) 2713 { 2714 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2715 return -EINVAL; 2716 if (!domain->ops->enable_nesting) 2717 return -EINVAL; 2718 return domain->ops->enable_nesting(domain); 2719 } 2720 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2721 2722 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2723 unsigned long quirk) 2724 { 2725 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2726 return -EINVAL; 2727 if (!domain->ops->set_pgtable_quirks) 2728 return -EINVAL; 2729 return domain->ops->set_pgtable_quirks(domain, quirk); 2730 } 2731 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2732 2733 /** 2734 * iommu_get_resv_regions - get reserved regions 2735 * @dev: device for which to get reserved regions 2736 * @list: reserved region list for device 2737 * 2738 * This returns a list of reserved IOVA regions specific to this device. 2739 * A domain user should not map IOVA in these ranges. 2740 */ 2741 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2742 { 2743 const struct iommu_ops *ops = dev_iommu_ops(dev); 2744 2745 if (ops->get_resv_regions) 2746 ops->get_resv_regions(dev, list); 2747 } 2748 EXPORT_SYMBOL_GPL(iommu_get_resv_regions); 2749 2750 /** 2751 * iommu_put_resv_regions - release reserved regions 2752 * @dev: device for which to free reserved regions 2753 * @list: reserved region list for device 2754 * 2755 * This releases a reserved region list acquired by iommu_get_resv_regions(). 2756 */ 2757 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2758 { 2759 struct iommu_resv_region *entry, *next; 2760 2761 list_for_each_entry_safe(entry, next, list, list) { 2762 if (entry->free) 2763 entry->free(dev, entry); 2764 else 2765 kfree(entry); 2766 } 2767 } 2768 EXPORT_SYMBOL(iommu_put_resv_regions); 2769 2770 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2771 size_t length, int prot, 2772 enum iommu_resv_type type, 2773 gfp_t gfp) 2774 { 2775 struct iommu_resv_region *region; 2776 2777 region = kzalloc(sizeof(*region), gfp); 2778 if (!region) 2779 return NULL; 2780 2781 INIT_LIST_HEAD(®ion->list); 2782 region->start = start; 2783 region->length = length; 2784 region->prot = prot; 2785 region->type = type; 2786 return region; 2787 } 2788 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2789 2790 void iommu_set_default_passthrough(bool cmd_line) 2791 { 2792 if (cmd_line) 2793 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2794 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2795 } 2796 2797 void iommu_set_default_translated(bool cmd_line) 2798 { 2799 if (cmd_line) 2800 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2801 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2802 } 2803 2804 bool iommu_default_passthrough(void) 2805 { 2806 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2807 } 2808 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2809 2810 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode) 2811 { 2812 const struct iommu_ops *ops = NULL; 2813 struct iommu_device *iommu; 2814 2815 spin_lock(&iommu_device_lock); 2816 list_for_each_entry(iommu, &iommu_device_list, list) 2817 if (iommu->fwnode == fwnode) { 2818 ops = iommu->ops; 2819 break; 2820 } 2821 spin_unlock(&iommu_device_lock); 2822 return ops; 2823 } 2824 2825 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2826 const struct iommu_ops *ops) 2827 { 2828 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2829 2830 if (fwspec) 2831 return ops == fwspec->ops ? 0 : -EINVAL; 2832 2833 if (!dev_iommu_get(dev)) 2834 return -ENOMEM; 2835 2836 /* Preallocate for the overwhelmingly common case of 1 ID */ 2837 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2838 if (!fwspec) 2839 return -ENOMEM; 2840 2841 of_node_get(to_of_node(iommu_fwnode)); 2842 fwspec->iommu_fwnode = iommu_fwnode; 2843 fwspec->ops = ops; 2844 dev_iommu_fwspec_set(dev, fwspec); 2845 return 0; 2846 } 2847 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2848 2849 void iommu_fwspec_free(struct device *dev) 2850 { 2851 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2852 2853 if (fwspec) { 2854 fwnode_handle_put(fwspec->iommu_fwnode); 2855 kfree(fwspec); 2856 dev_iommu_fwspec_set(dev, NULL); 2857 } 2858 } 2859 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2860 2861 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids) 2862 { 2863 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2864 int i, new_num; 2865 2866 if (!fwspec) 2867 return -EINVAL; 2868 2869 new_num = fwspec->num_ids + num_ids; 2870 if (new_num > 1) { 2871 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2872 GFP_KERNEL); 2873 if (!fwspec) 2874 return -ENOMEM; 2875 2876 dev_iommu_fwspec_set(dev, fwspec); 2877 } 2878 2879 for (i = 0; i < num_ids; i++) 2880 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2881 2882 fwspec->num_ids = new_num; 2883 return 0; 2884 } 2885 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2886 2887 /* 2888 * Per device IOMMU features. 2889 */ 2890 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2891 { 2892 if (dev_has_iommu(dev)) { 2893 const struct iommu_ops *ops = dev_iommu_ops(dev); 2894 2895 if (ops->dev_enable_feat) 2896 return ops->dev_enable_feat(dev, feat); 2897 } 2898 2899 return -ENODEV; 2900 } 2901 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2902 2903 /* 2904 * The device drivers should do the necessary cleanups before calling this. 2905 */ 2906 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2907 { 2908 if (dev_has_iommu(dev)) { 2909 const struct iommu_ops *ops = dev_iommu_ops(dev); 2910 2911 if (ops->dev_disable_feat) 2912 return ops->dev_disable_feat(dev, feat); 2913 } 2914 2915 return -EBUSY; 2916 } 2917 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2918 2919 /** 2920 * iommu_setup_default_domain - Set the default_domain for the group 2921 * @group: Group to change 2922 * @target_type: Domain type to set as the default_domain 2923 * 2924 * Allocate a default domain and set it as the current domain on the group. If 2925 * the group already has a default domain it will be changed to the target_type. 2926 * When target_type is 0 the default domain is selected based on driver and 2927 * system preferences. 2928 */ 2929 static int iommu_setup_default_domain(struct iommu_group *group, 2930 int target_type) 2931 { 2932 struct iommu_domain *old_dom = group->default_domain; 2933 struct group_device *gdev; 2934 struct iommu_domain *dom; 2935 bool direct_failed; 2936 int req_type; 2937 int ret; 2938 2939 lockdep_assert_held(&group->mutex); 2940 2941 req_type = iommu_get_default_domain_type(group, target_type); 2942 if (req_type < 0) 2943 return -EINVAL; 2944 2945 dom = iommu_group_alloc_default_domain(group, req_type); 2946 if (IS_ERR(dom)) 2947 return PTR_ERR(dom); 2948 2949 if (group->default_domain == dom) 2950 return 0; 2951 2952 /* 2953 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be 2954 * mapped before their device is attached, in order to guarantee 2955 * continuity with any FW activity 2956 */ 2957 direct_failed = false; 2958 for_each_group_device(group, gdev) { 2959 if (iommu_create_device_direct_mappings(dom, gdev->dev)) { 2960 direct_failed = true; 2961 dev_warn_once( 2962 gdev->dev->iommu->iommu_dev->dev, 2963 "IOMMU driver was not able to establish FW requested direct mapping."); 2964 } 2965 } 2966 2967 /* We must set default_domain early for __iommu_device_set_domain */ 2968 group->default_domain = dom; 2969 if (!group->domain) { 2970 /* 2971 * Drivers are not allowed to fail the first domain attach. 2972 * The only way to recover from this is to fail attaching the 2973 * iommu driver and call ops->release_device. Put the domain 2974 * in group->default_domain so it is freed after. 2975 */ 2976 ret = __iommu_group_set_domain_internal( 2977 group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED); 2978 if (WARN_ON(ret)) 2979 goto out_free_old; 2980 } else { 2981 ret = __iommu_group_set_domain(group, dom); 2982 if (ret) 2983 goto err_restore_def_domain; 2984 } 2985 2986 /* 2987 * Drivers are supposed to allow mappings to be installed in a domain 2988 * before device attachment, but some don't. Hack around this defect by 2989 * trying again after attaching. If this happens it means the device 2990 * will not continuously have the IOMMU_RESV_DIRECT map. 2991 */ 2992 if (direct_failed) { 2993 for_each_group_device(group, gdev) { 2994 ret = iommu_create_device_direct_mappings(dom, gdev->dev); 2995 if (ret) 2996 goto err_restore_domain; 2997 } 2998 } 2999 3000 out_free_old: 3001 if (old_dom) 3002 iommu_domain_free(old_dom); 3003 return ret; 3004 3005 err_restore_domain: 3006 if (old_dom) 3007 __iommu_group_set_domain_internal( 3008 group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED); 3009 err_restore_def_domain: 3010 if (old_dom) { 3011 iommu_domain_free(dom); 3012 group->default_domain = old_dom; 3013 } 3014 return ret; 3015 } 3016 3017 /* 3018 * Changing the default domain through sysfs requires the users to unbind the 3019 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 3020 * transition. Return failure if this isn't met. 3021 * 3022 * We need to consider the race between this and the device release path. 3023 * group->mutex is used here to guarantee that the device release path 3024 * will not be entered at the same time. 3025 */ 3026 static ssize_t iommu_group_store_type(struct iommu_group *group, 3027 const char *buf, size_t count) 3028 { 3029 struct group_device *gdev; 3030 int ret, req_type; 3031 3032 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 3033 return -EACCES; 3034 3035 if (WARN_ON(!group) || !group->default_domain) 3036 return -EINVAL; 3037 3038 if (sysfs_streq(buf, "identity")) 3039 req_type = IOMMU_DOMAIN_IDENTITY; 3040 else if (sysfs_streq(buf, "DMA")) 3041 req_type = IOMMU_DOMAIN_DMA; 3042 else if (sysfs_streq(buf, "DMA-FQ")) 3043 req_type = IOMMU_DOMAIN_DMA_FQ; 3044 else if (sysfs_streq(buf, "auto")) 3045 req_type = 0; 3046 else 3047 return -EINVAL; 3048 3049 mutex_lock(&group->mutex); 3050 /* We can bring up a flush queue without tearing down the domain. */ 3051 if (req_type == IOMMU_DOMAIN_DMA_FQ && 3052 group->default_domain->type == IOMMU_DOMAIN_DMA) { 3053 ret = iommu_dma_init_fq(group->default_domain); 3054 if (ret) 3055 goto out_unlock; 3056 3057 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ; 3058 ret = count; 3059 goto out_unlock; 3060 } 3061 3062 /* Otherwise, ensure that device exists and no driver is bound. */ 3063 if (list_empty(&group->devices) || group->owner_cnt) { 3064 ret = -EPERM; 3065 goto out_unlock; 3066 } 3067 3068 ret = iommu_setup_default_domain(group, req_type); 3069 if (ret) 3070 goto out_unlock; 3071 3072 /* Make sure dma_ops is appropriatley set */ 3073 for_each_group_device(group, gdev) 3074 iommu_setup_dma_ops(gdev->dev); 3075 3076 out_unlock: 3077 mutex_unlock(&group->mutex); 3078 return ret ?: count; 3079 } 3080 3081 /** 3082 * iommu_device_use_default_domain() - Device driver wants to handle device 3083 * DMA through the kernel DMA API. 3084 * @dev: The device. 3085 * 3086 * The device driver about to bind @dev wants to do DMA through the kernel 3087 * DMA API. Return 0 if it is allowed, otherwise an error. 3088 */ 3089 int iommu_device_use_default_domain(struct device *dev) 3090 { 3091 /* Caller is the driver core during the pre-probe path */ 3092 struct iommu_group *group = dev->iommu_group; 3093 int ret = 0; 3094 3095 if (!group) 3096 return 0; 3097 3098 mutex_lock(&group->mutex); 3099 if (group->owner_cnt) { 3100 if (group->domain != group->default_domain || group->owner || 3101 !xa_empty(&group->pasid_array)) { 3102 ret = -EBUSY; 3103 goto unlock_out; 3104 } 3105 } 3106 3107 group->owner_cnt++; 3108 3109 unlock_out: 3110 mutex_unlock(&group->mutex); 3111 return ret; 3112 } 3113 3114 /** 3115 * iommu_device_unuse_default_domain() - Device driver stops handling device 3116 * DMA through the kernel DMA API. 3117 * @dev: The device. 3118 * 3119 * The device driver doesn't want to do DMA through kernel DMA API anymore. 3120 * It must be called after iommu_device_use_default_domain(). 3121 */ 3122 void iommu_device_unuse_default_domain(struct device *dev) 3123 { 3124 /* Caller is the driver core during the post-probe path */ 3125 struct iommu_group *group = dev->iommu_group; 3126 3127 if (!group) 3128 return; 3129 3130 mutex_lock(&group->mutex); 3131 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array))) 3132 group->owner_cnt--; 3133 3134 mutex_unlock(&group->mutex); 3135 } 3136 3137 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group) 3138 { 3139 struct iommu_domain *domain; 3140 3141 if (group->blocking_domain) 3142 return 0; 3143 3144 domain = __iommu_group_domain_alloc(group, IOMMU_DOMAIN_BLOCKED); 3145 if (IS_ERR(domain)) { 3146 /* 3147 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED 3148 * create an empty domain instead. 3149 */ 3150 domain = __iommu_group_domain_alloc(group, 3151 IOMMU_DOMAIN_UNMANAGED); 3152 if (IS_ERR(domain)) 3153 return PTR_ERR(domain); 3154 } 3155 group->blocking_domain = domain; 3156 return 0; 3157 } 3158 3159 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner) 3160 { 3161 int ret; 3162 3163 if ((group->domain && group->domain != group->default_domain) || 3164 !xa_empty(&group->pasid_array)) 3165 return -EBUSY; 3166 3167 ret = __iommu_group_alloc_blocking_domain(group); 3168 if (ret) 3169 return ret; 3170 ret = __iommu_group_set_domain(group, group->blocking_domain); 3171 if (ret) 3172 return ret; 3173 3174 group->owner = owner; 3175 group->owner_cnt++; 3176 return 0; 3177 } 3178 3179 /** 3180 * iommu_group_claim_dma_owner() - Set DMA ownership of a group 3181 * @group: The group. 3182 * @owner: Caller specified pointer. Used for exclusive ownership. 3183 * 3184 * This is to support backward compatibility for vfio which manages the dma 3185 * ownership in iommu_group level. New invocations on this interface should be 3186 * prohibited. Only a single owner may exist for a group. 3187 */ 3188 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner) 3189 { 3190 int ret = 0; 3191 3192 if (WARN_ON(!owner)) 3193 return -EINVAL; 3194 3195 mutex_lock(&group->mutex); 3196 if (group->owner_cnt) { 3197 ret = -EPERM; 3198 goto unlock_out; 3199 } 3200 3201 ret = __iommu_take_dma_ownership(group, owner); 3202 unlock_out: 3203 mutex_unlock(&group->mutex); 3204 3205 return ret; 3206 } 3207 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner); 3208 3209 /** 3210 * iommu_device_claim_dma_owner() - Set DMA ownership of a device 3211 * @dev: The device. 3212 * @owner: Caller specified pointer. Used for exclusive ownership. 3213 * 3214 * Claim the DMA ownership of a device. Multiple devices in the same group may 3215 * concurrently claim ownership if they present the same owner value. Returns 0 3216 * on success and error code on failure 3217 */ 3218 int iommu_device_claim_dma_owner(struct device *dev, void *owner) 3219 { 3220 /* Caller must be a probed driver on dev */ 3221 struct iommu_group *group = dev->iommu_group; 3222 int ret = 0; 3223 3224 if (WARN_ON(!owner)) 3225 return -EINVAL; 3226 3227 if (!group) 3228 return -ENODEV; 3229 3230 mutex_lock(&group->mutex); 3231 if (group->owner_cnt) { 3232 if (group->owner != owner) { 3233 ret = -EPERM; 3234 goto unlock_out; 3235 } 3236 group->owner_cnt++; 3237 goto unlock_out; 3238 } 3239 3240 ret = __iommu_take_dma_ownership(group, owner); 3241 unlock_out: 3242 mutex_unlock(&group->mutex); 3243 return ret; 3244 } 3245 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner); 3246 3247 static void __iommu_release_dma_ownership(struct iommu_group *group) 3248 { 3249 if (WARN_ON(!group->owner_cnt || !group->owner || 3250 !xa_empty(&group->pasid_array))) 3251 return; 3252 3253 group->owner_cnt = 0; 3254 group->owner = NULL; 3255 __iommu_group_set_domain_nofail(group, group->default_domain); 3256 } 3257 3258 /** 3259 * iommu_group_release_dma_owner() - Release DMA ownership of a group 3260 * @group: The group 3261 * 3262 * Release the DMA ownership claimed by iommu_group_claim_dma_owner(). 3263 */ 3264 void iommu_group_release_dma_owner(struct iommu_group *group) 3265 { 3266 mutex_lock(&group->mutex); 3267 __iommu_release_dma_ownership(group); 3268 mutex_unlock(&group->mutex); 3269 } 3270 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner); 3271 3272 /** 3273 * iommu_device_release_dma_owner() - Release DMA ownership of a device 3274 * @dev: The device. 3275 * 3276 * Release the DMA ownership claimed by iommu_device_claim_dma_owner(). 3277 */ 3278 void iommu_device_release_dma_owner(struct device *dev) 3279 { 3280 /* Caller must be a probed driver on dev */ 3281 struct iommu_group *group = dev->iommu_group; 3282 3283 mutex_lock(&group->mutex); 3284 if (group->owner_cnt > 1) 3285 group->owner_cnt--; 3286 else 3287 __iommu_release_dma_ownership(group); 3288 mutex_unlock(&group->mutex); 3289 } 3290 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner); 3291 3292 /** 3293 * iommu_group_dma_owner_claimed() - Query group dma ownership status 3294 * @group: The group. 3295 * 3296 * This provides status query on a given group. It is racy and only for 3297 * non-binding status reporting. 3298 */ 3299 bool iommu_group_dma_owner_claimed(struct iommu_group *group) 3300 { 3301 unsigned int user; 3302 3303 mutex_lock(&group->mutex); 3304 user = group->owner_cnt; 3305 mutex_unlock(&group->mutex); 3306 3307 return user; 3308 } 3309 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed); 3310 3311 static int __iommu_set_group_pasid(struct iommu_domain *domain, 3312 struct iommu_group *group, ioasid_t pasid) 3313 { 3314 struct group_device *device, *last_gdev; 3315 int ret; 3316 3317 for_each_group_device(group, device) { 3318 ret = domain->ops->set_dev_pasid(domain, device->dev, pasid); 3319 if (ret) 3320 goto err_revert; 3321 } 3322 3323 return 0; 3324 3325 err_revert: 3326 last_gdev = device; 3327 for_each_group_device(group, device) { 3328 const struct iommu_ops *ops = dev_iommu_ops(device->dev); 3329 3330 if (device == last_gdev) 3331 break; 3332 ops->remove_dev_pasid(device->dev, pasid, domain); 3333 } 3334 return ret; 3335 } 3336 3337 static void __iommu_remove_group_pasid(struct iommu_group *group, 3338 ioasid_t pasid, 3339 struct iommu_domain *domain) 3340 { 3341 struct group_device *device; 3342 const struct iommu_ops *ops; 3343 3344 for_each_group_device(group, device) { 3345 ops = dev_iommu_ops(device->dev); 3346 ops->remove_dev_pasid(device->dev, pasid, domain); 3347 } 3348 } 3349 3350 /* 3351 * iommu_attach_device_pasid() - Attach a domain to pasid of device 3352 * @domain: the iommu domain. 3353 * @dev: the attached device. 3354 * @pasid: the pasid of the device. 3355 * 3356 * Return: 0 on success, or an error. 3357 */ 3358 int iommu_attach_device_pasid(struct iommu_domain *domain, 3359 struct device *dev, ioasid_t pasid) 3360 { 3361 /* Caller must be a probed driver on dev */ 3362 struct iommu_group *group = dev->iommu_group; 3363 struct group_device *device; 3364 void *curr; 3365 int ret; 3366 3367 if (!domain->ops->set_dev_pasid) 3368 return -EOPNOTSUPP; 3369 3370 if (!group) 3371 return -ENODEV; 3372 3373 if (!dev_has_iommu(dev) || dev_iommu_ops(dev) != domain->owner || 3374 pasid == IOMMU_NO_PASID) 3375 return -EINVAL; 3376 3377 mutex_lock(&group->mutex); 3378 for_each_group_device(group, device) { 3379 if (pasid >= device->dev->iommu->max_pasids) { 3380 ret = -EINVAL; 3381 goto out_unlock; 3382 } 3383 } 3384 3385 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL); 3386 if (curr) { 3387 ret = xa_err(curr) ? : -EBUSY; 3388 goto out_unlock; 3389 } 3390 3391 ret = __iommu_set_group_pasid(domain, group, pasid); 3392 if (ret) 3393 xa_erase(&group->pasid_array, pasid); 3394 out_unlock: 3395 mutex_unlock(&group->mutex); 3396 return ret; 3397 } 3398 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid); 3399 3400 /* 3401 * iommu_detach_device_pasid() - Detach the domain from pasid of device 3402 * @domain: the iommu domain. 3403 * @dev: the attached device. 3404 * @pasid: the pasid of the device. 3405 * 3406 * The @domain must have been attached to @pasid of the @dev with 3407 * iommu_attach_device_pasid(). 3408 */ 3409 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev, 3410 ioasid_t pasid) 3411 { 3412 /* Caller must be a probed driver on dev */ 3413 struct iommu_group *group = dev->iommu_group; 3414 3415 mutex_lock(&group->mutex); 3416 __iommu_remove_group_pasid(group, pasid, domain); 3417 WARN_ON(xa_erase(&group->pasid_array, pasid) != domain); 3418 mutex_unlock(&group->mutex); 3419 } 3420 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid); 3421 3422 /* 3423 * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev 3424 * @dev: the queried device 3425 * @pasid: the pasid of the device 3426 * @type: matched domain type, 0 for any match 3427 * 3428 * This is a variant of iommu_get_domain_for_dev(). It returns the existing 3429 * domain attached to pasid of a device. Callers must hold a lock around this 3430 * function, and both iommu_attach/detach_dev_pasid() whenever a domain of 3431 * type is being manipulated. This API does not internally resolve races with 3432 * attach/detach. 3433 * 3434 * Return: attached domain on success, NULL otherwise. 3435 */ 3436 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev, 3437 ioasid_t pasid, 3438 unsigned int type) 3439 { 3440 /* Caller must be a probed driver on dev */ 3441 struct iommu_group *group = dev->iommu_group; 3442 struct iommu_domain *domain; 3443 3444 if (!group) 3445 return NULL; 3446 3447 xa_lock(&group->pasid_array); 3448 domain = xa_load(&group->pasid_array, pasid); 3449 if (type && domain && domain->type != type) 3450 domain = ERR_PTR(-EBUSY); 3451 xa_unlock(&group->pasid_array); 3452 3453 return domain; 3454 } 3455 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid); 3456 3457 ioasid_t iommu_alloc_global_pasid(struct device *dev) 3458 { 3459 int ret; 3460 3461 /* max_pasids == 0 means that the device does not support PASID */ 3462 if (!dev->iommu->max_pasids) 3463 return IOMMU_PASID_INVALID; 3464 3465 /* 3466 * max_pasids is set up by vendor driver based on number of PASID bits 3467 * supported but the IDA allocation is inclusive. 3468 */ 3469 ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID, 3470 dev->iommu->max_pasids - 1, GFP_KERNEL); 3471 return ret < 0 ? IOMMU_PASID_INVALID : ret; 3472 } 3473 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid); 3474 3475 void iommu_free_global_pasid(ioasid_t pasid) 3476 { 3477 if (WARN_ON(pasid == IOMMU_PASID_INVALID)) 3478 return; 3479 3480 ida_free(&iommu_global_pasid_ida, pasid); 3481 } 3482 EXPORT_SYMBOL_GPL(iommu_free_global_pasid); 3483