xref: /linux/drivers/iommu/iommu.c (revision 26225bea1d84b090b378838a1797daec62d4ad0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/device.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/iommu.h>
20 #include <linux/idr.h>
21 #include <linux/notifier.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/bitops.h>
25 #include <linux/property.h>
26 #include <linux/fsl/mc.h>
27 #include <linux/module.h>
28 #include <trace/events/iommu.h>
29 
30 static struct kset *iommu_group_kset;
31 static DEFINE_IDA(iommu_group_ida);
32 
33 static unsigned int iommu_def_domain_type __read_mostly;
34 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_STRICT);
35 static u32 iommu_cmd_line __read_mostly;
36 
37 struct iommu_group {
38 	struct kobject kobj;
39 	struct kobject *devices_kobj;
40 	struct list_head devices;
41 	struct mutex mutex;
42 	struct blocking_notifier_head notifier;
43 	void *iommu_data;
44 	void (*iommu_data_release)(void *iommu_data);
45 	char *name;
46 	int id;
47 	struct iommu_domain *default_domain;
48 	struct iommu_domain *domain;
49 	struct list_head entry;
50 };
51 
52 struct group_device {
53 	struct list_head list;
54 	struct device *dev;
55 	char *name;
56 };
57 
58 struct iommu_group_attribute {
59 	struct attribute attr;
60 	ssize_t (*show)(struct iommu_group *group, char *buf);
61 	ssize_t (*store)(struct iommu_group *group,
62 			 const char *buf, size_t count);
63 };
64 
65 static const char * const iommu_group_resv_type_string[] = {
66 	[IOMMU_RESV_DIRECT]			= "direct",
67 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
68 	[IOMMU_RESV_RESERVED]			= "reserved",
69 	[IOMMU_RESV_MSI]			= "msi",
70 	[IOMMU_RESV_SW_MSI]			= "msi",
71 };
72 
73 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
74 #define IOMMU_CMD_LINE_STRICT		BIT(1)
75 
76 static int iommu_alloc_default_domain(struct iommu_group *group,
77 				      struct device *dev);
78 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
79 						 unsigned type);
80 static int __iommu_attach_device(struct iommu_domain *domain,
81 				 struct device *dev);
82 static int __iommu_attach_group(struct iommu_domain *domain,
83 				struct iommu_group *group);
84 static void __iommu_detach_group(struct iommu_domain *domain,
85 				 struct iommu_group *group);
86 static int iommu_create_device_direct_mappings(struct iommu_group *group,
87 					       struct device *dev);
88 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
89 static ssize_t iommu_group_store_type(struct iommu_group *group,
90 				      const char *buf, size_t count);
91 
92 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
93 struct iommu_group_attribute iommu_group_attr_##_name =		\
94 	__ATTR(_name, _mode, _show, _store)
95 
96 #define to_iommu_group_attr(_attr)	\
97 	container_of(_attr, struct iommu_group_attribute, attr)
98 #define to_iommu_group(_kobj)		\
99 	container_of(_kobj, struct iommu_group, kobj)
100 
101 static LIST_HEAD(iommu_device_list);
102 static DEFINE_SPINLOCK(iommu_device_lock);
103 
104 /*
105  * Use a function instead of an array here because the domain-type is a
106  * bit-field, so an array would waste memory.
107  */
108 static const char *iommu_domain_type_str(unsigned int t)
109 {
110 	switch (t) {
111 	case IOMMU_DOMAIN_BLOCKED:
112 		return "Blocked";
113 	case IOMMU_DOMAIN_IDENTITY:
114 		return "Passthrough";
115 	case IOMMU_DOMAIN_UNMANAGED:
116 		return "Unmanaged";
117 	case IOMMU_DOMAIN_DMA:
118 	case IOMMU_DOMAIN_DMA_FQ:
119 		return "Translated";
120 	default:
121 		return "Unknown";
122 	}
123 }
124 
125 static int __init iommu_subsys_init(void)
126 {
127 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
128 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
129 			iommu_set_default_passthrough(false);
130 		else
131 			iommu_set_default_translated(false);
132 
133 		if (iommu_default_passthrough() && mem_encrypt_active()) {
134 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
135 			iommu_set_default_translated(false);
136 		}
137 	}
138 
139 	if (!iommu_default_passthrough() && !iommu_dma_strict)
140 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
141 
142 	pr_info("Default domain type: %s %s\n",
143 		iommu_domain_type_str(iommu_def_domain_type),
144 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
145 			"(set via kernel command line)" : "");
146 
147 	pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
148 		iommu_dma_strict ? "strict" : "lazy",
149 		(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
150 			"(set via kernel command line)" : "");
151 
152 	return 0;
153 }
154 subsys_initcall(iommu_subsys_init);
155 
156 /**
157  * iommu_device_register() - Register an IOMMU hardware instance
158  * @iommu: IOMMU handle for the instance
159  * @ops:   IOMMU ops to associate with the instance
160  * @hwdev: (optional) actual instance device, used for fwnode lookup
161  *
162  * Return: 0 on success, or an error.
163  */
164 int iommu_device_register(struct iommu_device *iommu,
165 			  const struct iommu_ops *ops, struct device *hwdev)
166 {
167 	/* We need to be able to take module references appropriately */
168 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
169 		return -EINVAL;
170 
171 	iommu->ops = ops;
172 	if (hwdev)
173 		iommu->fwnode = hwdev->fwnode;
174 
175 	spin_lock(&iommu_device_lock);
176 	list_add_tail(&iommu->list, &iommu_device_list);
177 	spin_unlock(&iommu_device_lock);
178 	return 0;
179 }
180 EXPORT_SYMBOL_GPL(iommu_device_register);
181 
182 void iommu_device_unregister(struct iommu_device *iommu)
183 {
184 	spin_lock(&iommu_device_lock);
185 	list_del(&iommu->list);
186 	spin_unlock(&iommu_device_lock);
187 }
188 EXPORT_SYMBOL_GPL(iommu_device_unregister);
189 
190 static struct dev_iommu *dev_iommu_get(struct device *dev)
191 {
192 	struct dev_iommu *param = dev->iommu;
193 
194 	if (param)
195 		return param;
196 
197 	param = kzalloc(sizeof(*param), GFP_KERNEL);
198 	if (!param)
199 		return NULL;
200 
201 	mutex_init(&param->lock);
202 	dev->iommu = param;
203 	return param;
204 }
205 
206 static void dev_iommu_free(struct device *dev)
207 {
208 	iommu_fwspec_free(dev);
209 	kfree(dev->iommu);
210 	dev->iommu = NULL;
211 }
212 
213 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
214 {
215 	const struct iommu_ops *ops = dev->bus->iommu_ops;
216 	struct iommu_device *iommu_dev;
217 	struct iommu_group *group;
218 	int ret;
219 
220 	if (!ops)
221 		return -ENODEV;
222 
223 	if (!dev_iommu_get(dev))
224 		return -ENOMEM;
225 
226 	if (!try_module_get(ops->owner)) {
227 		ret = -EINVAL;
228 		goto err_free;
229 	}
230 
231 	iommu_dev = ops->probe_device(dev);
232 	if (IS_ERR(iommu_dev)) {
233 		ret = PTR_ERR(iommu_dev);
234 		goto out_module_put;
235 	}
236 
237 	dev->iommu->iommu_dev = iommu_dev;
238 
239 	group = iommu_group_get_for_dev(dev);
240 	if (IS_ERR(group)) {
241 		ret = PTR_ERR(group);
242 		goto out_release;
243 	}
244 	iommu_group_put(group);
245 
246 	if (group_list && !group->default_domain && list_empty(&group->entry))
247 		list_add_tail(&group->entry, group_list);
248 
249 	iommu_device_link(iommu_dev, dev);
250 
251 	return 0;
252 
253 out_release:
254 	ops->release_device(dev);
255 
256 out_module_put:
257 	module_put(ops->owner);
258 
259 err_free:
260 	dev_iommu_free(dev);
261 
262 	return ret;
263 }
264 
265 int iommu_probe_device(struct device *dev)
266 {
267 	const struct iommu_ops *ops = dev->bus->iommu_ops;
268 	struct iommu_group *group;
269 	int ret;
270 
271 	ret = __iommu_probe_device(dev, NULL);
272 	if (ret)
273 		goto err_out;
274 
275 	group = iommu_group_get(dev);
276 	if (!group) {
277 		ret = -ENODEV;
278 		goto err_release;
279 	}
280 
281 	/*
282 	 * Try to allocate a default domain - needs support from the
283 	 * IOMMU driver. There are still some drivers which don't
284 	 * support default domains, so the return value is not yet
285 	 * checked.
286 	 */
287 	iommu_alloc_default_domain(group, dev);
288 
289 	if (group->default_domain) {
290 		ret = __iommu_attach_device(group->default_domain, dev);
291 		if (ret) {
292 			iommu_group_put(group);
293 			goto err_release;
294 		}
295 	}
296 
297 	iommu_create_device_direct_mappings(group, dev);
298 
299 	iommu_group_put(group);
300 
301 	if (ops->probe_finalize)
302 		ops->probe_finalize(dev);
303 
304 	return 0;
305 
306 err_release:
307 	iommu_release_device(dev);
308 
309 err_out:
310 	return ret;
311 
312 }
313 
314 void iommu_release_device(struct device *dev)
315 {
316 	const struct iommu_ops *ops = dev->bus->iommu_ops;
317 
318 	if (!dev->iommu)
319 		return;
320 
321 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
322 
323 	ops->release_device(dev);
324 
325 	iommu_group_remove_device(dev);
326 	module_put(ops->owner);
327 	dev_iommu_free(dev);
328 }
329 
330 static int __init iommu_set_def_domain_type(char *str)
331 {
332 	bool pt;
333 	int ret;
334 
335 	ret = kstrtobool(str, &pt);
336 	if (ret)
337 		return ret;
338 
339 	if (pt)
340 		iommu_set_default_passthrough(true);
341 	else
342 		iommu_set_default_translated(true);
343 
344 	return 0;
345 }
346 early_param("iommu.passthrough", iommu_set_def_domain_type);
347 
348 static int __init iommu_dma_setup(char *str)
349 {
350 	int ret = kstrtobool(str, &iommu_dma_strict);
351 
352 	if (!ret)
353 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
354 	return ret;
355 }
356 early_param("iommu.strict", iommu_dma_setup);
357 
358 void iommu_set_dma_strict(void)
359 {
360 	iommu_dma_strict = true;
361 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
362 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
363 }
364 
365 static ssize_t iommu_group_attr_show(struct kobject *kobj,
366 				     struct attribute *__attr, char *buf)
367 {
368 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
369 	struct iommu_group *group = to_iommu_group(kobj);
370 	ssize_t ret = -EIO;
371 
372 	if (attr->show)
373 		ret = attr->show(group, buf);
374 	return ret;
375 }
376 
377 static ssize_t iommu_group_attr_store(struct kobject *kobj,
378 				      struct attribute *__attr,
379 				      const char *buf, size_t count)
380 {
381 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
382 	struct iommu_group *group = to_iommu_group(kobj);
383 	ssize_t ret = -EIO;
384 
385 	if (attr->store)
386 		ret = attr->store(group, buf, count);
387 	return ret;
388 }
389 
390 static const struct sysfs_ops iommu_group_sysfs_ops = {
391 	.show = iommu_group_attr_show,
392 	.store = iommu_group_attr_store,
393 };
394 
395 static int iommu_group_create_file(struct iommu_group *group,
396 				   struct iommu_group_attribute *attr)
397 {
398 	return sysfs_create_file(&group->kobj, &attr->attr);
399 }
400 
401 static void iommu_group_remove_file(struct iommu_group *group,
402 				    struct iommu_group_attribute *attr)
403 {
404 	sysfs_remove_file(&group->kobj, &attr->attr);
405 }
406 
407 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
408 {
409 	return sprintf(buf, "%s\n", group->name);
410 }
411 
412 /**
413  * iommu_insert_resv_region - Insert a new region in the
414  * list of reserved regions.
415  * @new: new region to insert
416  * @regions: list of regions
417  *
418  * Elements are sorted by start address and overlapping segments
419  * of the same type are merged.
420  */
421 static int iommu_insert_resv_region(struct iommu_resv_region *new,
422 				    struct list_head *regions)
423 {
424 	struct iommu_resv_region *iter, *tmp, *nr, *top;
425 	LIST_HEAD(stack);
426 
427 	nr = iommu_alloc_resv_region(new->start, new->length,
428 				     new->prot, new->type);
429 	if (!nr)
430 		return -ENOMEM;
431 
432 	/* First add the new element based on start address sorting */
433 	list_for_each_entry(iter, regions, list) {
434 		if (nr->start < iter->start ||
435 		    (nr->start == iter->start && nr->type <= iter->type))
436 			break;
437 	}
438 	list_add_tail(&nr->list, &iter->list);
439 
440 	/* Merge overlapping segments of type nr->type in @regions, if any */
441 	list_for_each_entry_safe(iter, tmp, regions, list) {
442 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
443 
444 		/* no merge needed on elements of different types than @new */
445 		if (iter->type != new->type) {
446 			list_move_tail(&iter->list, &stack);
447 			continue;
448 		}
449 
450 		/* look for the last stack element of same type as @iter */
451 		list_for_each_entry_reverse(top, &stack, list)
452 			if (top->type == iter->type)
453 				goto check_overlap;
454 
455 		list_move_tail(&iter->list, &stack);
456 		continue;
457 
458 check_overlap:
459 		top_end = top->start + top->length - 1;
460 
461 		if (iter->start > top_end + 1) {
462 			list_move_tail(&iter->list, &stack);
463 		} else {
464 			top->length = max(top_end, iter_end) - top->start + 1;
465 			list_del(&iter->list);
466 			kfree(iter);
467 		}
468 	}
469 	list_splice(&stack, regions);
470 	return 0;
471 }
472 
473 static int
474 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
475 				 struct list_head *group_resv_regions)
476 {
477 	struct iommu_resv_region *entry;
478 	int ret = 0;
479 
480 	list_for_each_entry(entry, dev_resv_regions, list) {
481 		ret = iommu_insert_resv_region(entry, group_resv_regions);
482 		if (ret)
483 			break;
484 	}
485 	return ret;
486 }
487 
488 int iommu_get_group_resv_regions(struct iommu_group *group,
489 				 struct list_head *head)
490 {
491 	struct group_device *device;
492 	int ret = 0;
493 
494 	mutex_lock(&group->mutex);
495 	list_for_each_entry(device, &group->devices, list) {
496 		struct list_head dev_resv_regions;
497 
498 		INIT_LIST_HEAD(&dev_resv_regions);
499 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
500 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
501 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
502 		if (ret)
503 			break;
504 	}
505 	mutex_unlock(&group->mutex);
506 	return ret;
507 }
508 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
509 
510 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
511 					     char *buf)
512 {
513 	struct iommu_resv_region *region, *next;
514 	struct list_head group_resv_regions;
515 	char *str = buf;
516 
517 	INIT_LIST_HEAD(&group_resv_regions);
518 	iommu_get_group_resv_regions(group, &group_resv_regions);
519 
520 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
521 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
522 			       (long long int)region->start,
523 			       (long long int)(region->start +
524 						region->length - 1),
525 			       iommu_group_resv_type_string[region->type]);
526 		kfree(region);
527 	}
528 
529 	return (str - buf);
530 }
531 
532 static ssize_t iommu_group_show_type(struct iommu_group *group,
533 				     char *buf)
534 {
535 	char *type = "unknown\n";
536 
537 	mutex_lock(&group->mutex);
538 	if (group->default_domain) {
539 		switch (group->default_domain->type) {
540 		case IOMMU_DOMAIN_BLOCKED:
541 			type = "blocked\n";
542 			break;
543 		case IOMMU_DOMAIN_IDENTITY:
544 			type = "identity\n";
545 			break;
546 		case IOMMU_DOMAIN_UNMANAGED:
547 			type = "unmanaged\n";
548 			break;
549 		case IOMMU_DOMAIN_DMA:
550 			type = "DMA\n";
551 			break;
552 		case IOMMU_DOMAIN_DMA_FQ:
553 			type = "DMA-FQ\n";
554 			break;
555 		}
556 	}
557 	mutex_unlock(&group->mutex);
558 	strcpy(buf, type);
559 
560 	return strlen(type);
561 }
562 
563 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
564 
565 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
566 			iommu_group_show_resv_regions, NULL);
567 
568 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
569 			iommu_group_store_type);
570 
571 static void iommu_group_release(struct kobject *kobj)
572 {
573 	struct iommu_group *group = to_iommu_group(kobj);
574 
575 	pr_debug("Releasing group %d\n", group->id);
576 
577 	if (group->iommu_data_release)
578 		group->iommu_data_release(group->iommu_data);
579 
580 	ida_simple_remove(&iommu_group_ida, group->id);
581 
582 	if (group->default_domain)
583 		iommu_domain_free(group->default_domain);
584 
585 	kfree(group->name);
586 	kfree(group);
587 }
588 
589 static struct kobj_type iommu_group_ktype = {
590 	.sysfs_ops = &iommu_group_sysfs_ops,
591 	.release = iommu_group_release,
592 };
593 
594 /**
595  * iommu_group_alloc - Allocate a new group
596  *
597  * This function is called by an iommu driver to allocate a new iommu
598  * group.  The iommu group represents the minimum granularity of the iommu.
599  * Upon successful return, the caller holds a reference to the supplied
600  * group in order to hold the group until devices are added.  Use
601  * iommu_group_put() to release this extra reference count, allowing the
602  * group to be automatically reclaimed once it has no devices or external
603  * references.
604  */
605 struct iommu_group *iommu_group_alloc(void)
606 {
607 	struct iommu_group *group;
608 	int ret;
609 
610 	group = kzalloc(sizeof(*group), GFP_KERNEL);
611 	if (!group)
612 		return ERR_PTR(-ENOMEM);
613 
614 	group->kobj.kset = iommu_group_kset;
615 	mutex_init(&group->mutex);
616 	INIT_LIST_HEAD(&group->devices);
617 	INIT_LIST_HEAD(&group->entry);
618 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
619 
620 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
621 	if (ret < 0) {
622 		kfree(group);
623 		return ERR_PTR(ret);
624 	}
625 	group->id = ret;
626 
627 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
628 				   NULL, "%d", group->id);
629 	if (ret) {
630 		ida_simple_remove(&iommu_group_ida, group->id);
631 		kobject_put(&group->kobj);
632 		return ERR_PTR(ret);
633 	}
634 
635 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
636 	if (!group->devices_kobj) {
637 		kobject_put(&group->kobj); /* triggers .release & free */
638 		return ERR_PTR(-ENOMEM);
639 	}
640 
641 	/*
642 	 * The devices_kobj holds a reference on the group kobject, so
643 	 * as long as that exists so will the group.  We can therefore
644 	 * use the devices_kobj for reference counting.
645 	 */
646 	kobject_put(&group->kobj);
647 
648 	ret = iommu_group_create_file(group,
649 				      &iommu_group_attr_reserved_regions);
650 	if (ret)
651 		return ERR_PTR(ret);
652 
653 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
654 	if (ret)
655 		return ERR_PTR(ret);
656 
657 	pr_debug("Allocated group %d\n", group->id);
658 
659 	return group;
660 }
661 EXPORT_SYMBOL_GPL(iommu_group_alloc);
662 
663 struct iommu_group *iommu_group_get_by_id(int id)
664 {
665 	struct kobject *group_kobj;
666 	struct iommu_group *group;
667 	const char *name;
668 
669 	if (!iommu_group_kset)
670 		return NULL;
671 
672 	name = kasprintf(GFP_KERNEL, "%d", id);
673 	if (!name)
674 		return NULL;
675 
676 	group_kobj = kset_find_obj(iommu_group_kset, name);
677 	kfree(name);
678 
679 	if (!group_kobj)
680 		return NULL;
681 
682 	group = container_of(group_kobj, struct iommu_group, kobj);
683 	BUG_ON(group->id != id);
684 
685 	kobject_get(group->devices_kobj);
686 	kobject_put(&group->kobj);
687 
688 	return group;
689 }
690 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
691 
692 /**
693  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
694  * @group: the group
695  *
696  * iommu drivers can store data in the group for use when doing iommu
697  * operations.  This function provides a way to retrieve it.  Caller
698  * should hold a group reference.
699  */
700 void *iommu_group_get_iommudata(struct iommu_group *group)
701 {
702 	return group->iommu_data;
703 }
704 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
705 
706 /**
707  * iommu_group_set_iommudata - set iommu_data for a group
708  * @group: the group
709  * @iommu_data: new data
710  * @release: release function for iommu_data
711  *
712  * iommu drivers can store data in the group for use when doing iommu
713  * operations.  This function provides a way to set the data after
714  * the group has been allocated.  Caller should hold a group reference.
715  */
716 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
717 			       void (*release)(void *iommu_data))
718 {
719 	group->iommu_data = iommu_data;
720 	group->iommu_data_release = release;
721 }
722 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
723 
724 /**
725  * iommu_group_set_name - set name for a group
726  * @group: the group
727  * @name: name
728  *
729  * Allow iommu driver to set a name for a group.  When set it will
730  * appear in a name attribute file under the group in sysfs.
731  */
732 int iommu_group_set_name(struct iommu_group *group, const char *name)
733 {
734 	int ret;
735 
736 	if (group->name) {
737 		iommu_group_remove_file(group, &iommu_group_attr_name);
738 		kfree(group->name);
739 		group->name = NULL;
740 		if (!name)
741 			return 0;
742 	}
743 
744 	group->name = kstrdup(name, GFP_KERNEL);
745 	if (!group->name)
746 		return -ENOMEM;
747 
748 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
749 	if (ret) {
750 		kfree(group->name);
751 		group->name = NULL;
752 		return ret;
753 	}
754 
755 	return 0;
756 }
757 EXPORT_SYMBOL_GPL(iommu_group_set_name);
758 
759 static int iommu_create_device_direct_mappings(struct iommu_group *group,
760 					       struct device *dev)
761 {
762 	struct iommu_domain *domain = group->default_domain;
763 	struct iommu_resv_region *entry;
764 	struct list_head mappings;
765 	unsigned long pg_size;
766 	int ret = 0;
767 
768 	if (!domain || !iommu_is_dma_domain(domain))
769 		return 0;
770 
771 	BUG_ON(!domain->pgsize_bitmap);
772 
773 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
774 	INIT_LIST_HEAD(&mappings);
775 
776 	iommu_get_resv_regions(dev, &mappings);
777 
778 	/* We need to consider overlapping regions for different devices */
779 	list_for_each_entry(entry, &mappings, list) {
780 		dma_addr_t start, end, addr;
781 		size_t map_size = 0;
782 
783 		if (domain->ops->apply_resv_region)
784 			domain->ops->apply_resv_region(dev, domain, entry);
785 
786 		start = ALIGN(entry->start, pg_size);
787 		end   = ALIGN(entry->start + entry->length, pg_size);
788 
789 		if (entry->type != IOMMU_RESV_DIRECT &&
790 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
791 			continue;
792 
793 		for (addr = start; addr <= end; addr += pg_size) {
794 			phys_addr_t phys_addr;
795 
796 			if (addr == end)
797 				goto map_end;
798 
799 			phys_addr = iommu_iova_to_phys(domain, addr);
800 			if (!phys_addr) {
801 				map_size += pg_size;
802 				continue;
803 			}
804 
805 map_end:
806 			if (map_size) {
807 				ret = iommu_map(domain, addr - map_size,
808 						addr - map_size, map_size,
809 						entry->prot);
810 				if (ret)
811 					goto out;
812 				map_size = 0;
813 			}
814 		}
815 
816 	}
817 
818 	iommu_flush_iotlb_all(domain);
819 
820 out:
821 	iommu_put_resv_regions(dev, &mappings);
822 
823 	return ret;
824 }
825 
826 static bool iommu_is_attach_deferred(struct iommu_domain *domain,
827 				     struct device *dev)
828 {
829 	if (domain->ops->is_attach_deferred)
830 		return domain->ops->is_attach_deferred(domain, dev);
831 
832 	return false;
833 }
834 
835 /**
836  * iommu_group_add_device - add a device to an iommu group
837  * @group: the group into which to add the device (reference should be held)
838  * @dev: the device
839  *
840  * This function is called by an iommu driver to add a device into a
841  * group.  Adding a device increments the group reference count.
842  */
843 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
844 {
845 	int ret, i = 0;
846 	struct group_device *device;
847 
848 	device = kzalloc(sizeof(*device), GFP_KERNEL);
849 	if (!device)
850 		return -ENOMEM;
851 
852 	device->dev = dev;
853 
854 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
855 	if (ret)
856 		goto err_free_device;
857 
858 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
859 rename:
860 	if (!device->name) {
861 		ret = -ENOMEM;
862 		goto err_remove_link;
863 	}
864 
865 	ret = sysfs_create_link_nowarn(group->devices_kobj,
866 				       &dev->kobj, device->name);
867 	if (ret) {
868 		if (ret == -EEXIST && i >= 0) {
869 			/*
870 			 * Account for the slim chance of collision
871 			 * and append an instance to the name.
872 			 */
873 			kfree(device->name);
874 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
875 						 kobject_name(&dev->kobj), i++);
876 			goto rename;
877 		}
878 		goto err_free_name;
879 	}
880 
881 	kobject_get(group->devices_kobj);
882 
883 	dev->iommu_group = group;
884 
885 	mutex_lock(&group->mutex);
886 	list_add_tail(&device->list, &group->devices);
887 	if (group->domain  && !iommu_is_attach_deferred(group->domain, dev))
888 		ret = __iommu_attach_device(group->domain, dev);
889 	mutex_unlock(&group->mutex);
890 	if (ret)
891 		goto err_put_group;
892 
893 	/* Notify any listeners about change to group. */
894 	blocking_notifier_call_chain(&group->notifier,
895 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
896 
897 	trace_add_device_to_group(group->id, dev);
898 
899 	dev_info(dev, "Adding to iommu group %d\n", group->id);
900 
901 	return 0;
902 
903 err_put_group:
904 	mutex_lock(&group->mutex);
905 	list_del(&device->list);
906 	mutex_unlock(&group->mutex);
907 	dev->iommu_group = NULL;
908 	kobject_put(group->devices_kobj);
909 	sysfs_remove_link(group->devices_kobj, device->name);
910 err_free_name:
911 	kfree(device->name);
912 err_remove_link:
913 	sysfs_remove_link(&dev->kobj, "iommu_group");
914 err_free_device:
915 	kfree(device);
916 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
917 	return ret;
918 }
919 EXPORT_SYMBOL_GPL(iommu_group_add_device);
920 
921 /**
922  * iommu_group_remove_device - remove a device from it's current group
923  * @dev: device to be removed
924  *
925  * This function is called by an iommu driver to remove the device from
926  * it's current group.  This decrements the iommu group reference count.
927  */
928 void iommu_group_remove_device(struct device *dev)
929 {
930 	struct iommu_group *group = dev->iommu_group;
931 	struct group_device *tmp_device, *device = NULL;
932 
933 	dev_info(dev, "Removing from iommu group %d\n", group->id);
934 
935 	/* Pre-notify listeners that a device is being removed. */
936 	blocking_notifier_call_chain(&group->notifier,
937 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
938 
939 	mutex_lock(&group->mutex);
940 	list_for_each_entry(tmp_device, &group->devices, list) {
941 		if (tmp_device->dev == dev) {
942 			device = tmp_device;
943 			list_del(&device->list);
944 			break;
945 		}
946 	}
947 	mutex_unlock(&group->mutex);
948 
949 	if (!device)
950 		return;
951 
952 	sysfs_remove_link(group->devices_kobj, device->name);
953 	sysfs_remove_link(&dev->kobj, "iommu_group");
954 
955 	trace_remove_device_from_group(group->id, dev);
956 
957 	kfree(device->name);
958 	kfree(device);
959 	dev->iommu_group = NULL;
960 	kobject_put(group->devices_kobj);
961 }
962 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
963 
964 static int iommu_group_device_count(struct iommu_group *group)
965 {
966 	struct group_device *entry;
967 	int ret = 0;
968 
969 	list_for_each_entry(entry, &group->devices, list)
970 		ret++;
971 
972 	return ret;
973 }
974 
975 /**
976  * iommu_group_for_each_dev - iterate over each device in the group
977  * @group: the group
978  * @data: caller opaque data to be passed to callback function
979  * @fn: caller supplied callback function
980  *
981  * This function is called by group users to iterate over group devices.
982  * Callers should hold a reference count to the group during callback.
983  * The group->mutex is held across callbacks, which will block calls to
984  * iommu_group_add/remove_device.
985  */
986 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
987 				      int (*fn)(struct device *, void *))
988 {
989 	struct group_device *device;
990 	int ret = 0;
991 
992 	list_for_each_entry(device, &group->devices, list) {
993 		ret = fn(device->dev, data);
994 		if (ret)
995 			break;
996 	}
997 	return ret;
998 }
999 
1000 
1001 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1002 			     int (*fn)(struct device *, void *))
1003 {
1004 	int ret;
1005 
1006 	mutex_lock(&group->mutex);
1007 	ret = __iommu_group_for_each_dev(group, data, fn);
1008 	mutex_unlock(&group->mutex);
1009 
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1013 
1014 /**
1015  * iommu_group_get - Return the group for a device and increment reference
1016  * @dev: get the group that this device belongs to
1017  *
1018  * This function is called by iommu drivers and users to get the group
1019  * for the specified device.  If found, the group is returned and the group
1020  * reference in incremented, else NULL.
1021  */
1022 struct iommu_group *iommu_group_get(struct device *dev)
1023 {
1024 	struct iommu_group *group = dev->iommu_group;
1025 
1026 	if (group)
1027 		kobject_get(group->devices_kobj);
1028 
1029 	return group;
1030 }
1031 EXPORT_SYMBOL_GPL(iommu_group_get);
1032 
1033 /**
1034  * iommu_group_ref_get - Increment reference on a group
1035  * @group: the group to use, must not be NULL
1036  *
1037  * This function is called by iommu drivers to take additional references on an
1038  * existing group.  Returns the given group for convenience.
1039  */
1040 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1041 {
1042 	kobject_get(group->devices_kobj);
1043 	return group;
1044 }
1045 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1046 
1047 /**
1048  * iommu_group_put - Decrement group reference
1049  * @group: the group to use
1050  *
1051  * This function is called by iommu drivers and users to release the
1052  * iommu group.  Once the reference count is zero, the group is released.
1053  */
1054 void iommu_group_put(struct iommu_group *group)
1055 {
1056 	if (group)
1057 		kobject_put(group->devices_kobj);
1058 }
1059 EXPORT_SYMBOL_GPL(iommu_group_put);
1060 
1061 /**
1062  * iommu_group_register_notifier - Register a notifier for group changes
1063  * @group: the group to watch
1064  * @nb: notifier block to signal
1065  *
1066  * This function allows iommu group users to track changes in a group.
1067  * See include/linux/iommu.h for actions sent via this notifier.  Caller
1068  * should hold a reference to the group throughout notifier registration.
1069  */
1070 int iommu_group_register_notifier(struct iommu_group *group,
1071 				  struct notifier_block *nb)
1072 {
1073 	return blocking_notifier_chain_register(&group->notifier, nb);
1074 }
1075 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
1076 
1077 /**
1078  * iommu_group_unregister_notifier - Unregister a notifier
1079  * @group: the group to watch
1080  * @nb: notifier block to signal
1081  *
1082  * Unregister a previously registered group notifier block.
1083  */
1084 int iommu_group_unregister_notifier(struct iommu_group *group,
1085 				    struct notifier_block *nb)
1086 {
1087 	return blocking_notifier_chain_unregister(&group->notifier, nb);
1088 }
1089 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
1090 
1091 /**
1092  * iommu_register_device_fault_handler() - Register a device fault handler
1093  * @dev: the device
1094  * @handler: the fault handler
1095  * @data: private data passed as argument to the handler
1096  *
1097  * When an IOMMU fault event is received, this handler gets called with the
1098  * fault event and data as argument. The handler should return 0 on success. If
1099  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1100  * complete the fault by calling iommu_page_response() with one of the following
1101  * response code:
1102  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1103  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1104  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1105  *   page faults if possible.
1106  *
1107  * Return 0 if the fault handler was installed successfully, or an error.
1108  */
1109 int iommu_register_device_fault_handler(struct device *dev,
1110 					iommu_dev_fault_handler_t handler,
1111 					void *data)
1112 {
1113 	struct dev_iommu *param = dev->iommu;
1114 	int ret = 0;
1115 
1116 	if (!param)
1117 		return -EINVAL;
1118 
1119 	mutex_lock(&param->lock);
1120 	/* Only allow one fault handler registered for each device */
1121 	if (param->fault_param) {
1122 		ret = -EBUSY;
1123 		goto done_unlock;
1124 	}
1125 
1126 	get_device(dev);
1127 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1128 	if (!param->fault_param) {
1129 		put_device(dev);
1130 		ret = -ENOMEM;
1131 		goto done_unlock;
1132 	}
1133 	param->fault_param->handler = handler;
1134 	param->fault_param->data = data;
1135 	mutex_init(&param->fault_param->lock);
1136 	INIT_LIST_HEAD(&param->fault_param->faults);
1137 
1138 done_unlock:
1139 	mutex_unlock(&param->lock);
1140 
1141 	return ret;
1142 }
1143 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1144 
1145 /**
1146  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1147  * @dev: the device
1148  *
1149  * Remove the device fault handler installed with
1150  * iommu_register_device_fault_handler().
1151  *
1152  * Return 0 on success, or an error.
1153  */
1154 int iommu_unregister_device_fault_handler(struct device *dev)
1155 {
1156 	struct dev_iommu *param = dev->iommu;
1157 	int ret = 0;
1158 
1159 	if (!param)
1160 		return -EINVAL;
1161 
1162 	mutex_lock(&param->lock);
1163 
1164 	if (!param->fault_param)
1165 		goto unlock;
1166 
1167 	/* we cannot unregister handler if there are pending faults */
1168 	if (!list_empty(&param->fault_param->faults)) {
1169 		ret = -EBUSY;
1170 		goto unlock;
1171 	}
1172 
1173 	kfree(param->fault_param);
1174 	param->fault_param = NULL;
1175 	put_device(dev);
1176 unlock:
1177 	mutex_unlock(&param->lock);
1178 
1179 	return ret;
1180 }
1181 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1182 
1183 /**
1184  * iommu_report_device_fault() - Report fault event to device driver
1185  * @dev: the device
1186  * @evt: fault event data
1187  *
1188  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1189  * handler. When this function fails and the fault is recoverable, it is the
1190  * caller's responsibility to complete the fault.
1191  *
1192  * Return 0 on success, or an error.
1193  */
1194 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1195 {
1196 	struct dev_iommu *param = dev->iommu;
1197 	struct iommu_fault_event *evt_pending = NULL;
1198 	struct iommu_fault_param *fparam;
1199 	int ret = 0;
1200 
1201 	if (!param || !evt)
1202 		return -EINVAL;
1203 
1204 	/* we only report device fault if there is a handler registered */
1205 	mutex_lock(&param->lock);
1206 	fparam = param->fault_param;
1207 	if (!fparam || !fparam->handler) {
1208 		ret = -EINVAL;
1209 		goto done_unlock;
1210 	}
1211 
1212 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1213 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1214 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1215 				      GFP_KERNEL);
1216 		if (!evt_pending) {
1217 			ret = -ENOMEM;
1218 			goto done_unlock;
1219 		}
1220 		mutex_lock(&fparam->lock);
1221 		list_add_tail(&evt_pending->list, &fparam->faults);
1222 		mutex_unlock(&fparam->lock);
1223 	}
1224 
1225 	ret = fparam->handler(&evt->fault, fparam->data);
1226 	if (ret && evt_pending) {
1227 		mutex_lock(&fparam->lock);
1228 		list_del(&evt_pending->list);
1229 		mutex_unlock(&fparam->lock);
1230 		kfree(evt_pending);
1231 	}
1232 done_unlock:
1233 	mutex_unlock(&param->lock);
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1237 
1238 int iommu_page_response(struct device *dev,
1239 			struct iommu_page_response *msg)
1240 {
1241 	bool needs_pasid;
1242 	int ret = -EINVAL;
1243 	struct iommu_fault_event *evt;
1244 	struct iommu_fault_page_request *prm;
1245 	struct dev_iommu *param = dev->iommu;
1246 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1247 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1248 
1249 	if (!domain || !domain->ops->page_response)
1250 		return -ENODEV;
1251 
1252 	if (!param || !param->fault_param)
1253 		return -EINVAL;
1254 
1255 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1256 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1257 		return -EINVAL;
1258 
1259 	/* Only send response if there is a fault report pending */
1260 	mutex_lock(&param->fault_param->lock);
1261 	if (list_empty(&param->fault_param->faults)) {
1262 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1263 		goto done_unlock;
1264 	}
1265 	/*
1266 	 * Check if we have a matching page request pending to respond,
1267 	 * otherwise return -EINVAL
1268 	 */
1269 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1270 		prm = &evt->fault.prm;
1271 		if (prm->grpid != msg->grpid)
1272 			continue;
1273 
1274 		/*
1275 		 * If the PASID is required, the corresponding request is
1276 		 * matched using the group ID, the PASID valid bit and the PASID
1277 		 * value. Otherwise only the group ID matches request and
1278 		 * response.
1279 		 */
1280 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1281 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1282 			continue;
1283 
1284 		if (!needs_pasid && has_pasid) {
1285 			/* No big deal, just clear it. */
1286 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1287 			msg->pasid = 0;
1288 		}
1289 
1290 		ret = domain->ops->page_response(dev, evt, msg);
1291 		list_del(&evt->list);
1292 		kfree(evt);
1293 		break;
1294 	}
1295 
1296 done_unlock:
1297 	mutex_unlock(&param->fault_param->lock);
1298 	return ret;
1299 }
1300 EXPORT_SYMBOL_GPL(iommu_page_response);
1301 
1302 /**
1303  * iommu_group_id - Return ID for a group
1304  * @group: the group to ID
1305  *
1306  * Return the unique ID for the group matching the sysfs group number.
1307  */
1308 int iommu_group_id(struct iommu_group *group)
1309 {
1310 	return group->id;
1311 }
1312 EXPORT_SYMBOL_GPL(iommu_group_id);
1313 
1314 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1315 					       unsigned long *devfns);
1316 
1317 /*
1318  * To consider a PCI device isolated, we require ACS to support Source
1319  * Validation, Request Redirection, Completer Redirection, and Upstream
1320  * Forwarding.  This effectively means that devices cannot spoof their
1321  * requester ID, requests and completions cannot be redirected, and all
1322  * transactions are forwarded upstream, even as it passes through a
1323  * bridge where the target device is downstream.
1324  */
1325 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1326 
1327 /*
1328  * For multifunction devices which are not isolated from each other, find
1329  * all the other non-isolated functions and look for existing groups.  For
1330  * each function, we also need to look for aliases to or from other devices
1331  * that may already have a group.
1332  */
1333 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1334 							unsigned long *devfns)
1335 {
1336 	struct pci_dev *tmp = NULL;
1337 	struct iommu_group *group;
1338 
1339 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1340 		return NULL;
1341 
1342 	for_each_pci_dev(tmp) {
1343 		if (tmp == pdev || tmp->bus != pdev->bus ||
1344 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1345 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1346 			continue;
1347 
1348 		group = get_pci_alias_group(tmp, devfns);
1349 		if (group) {
1350 			pci_dev_put(tmp);
1351 			return group;
1352 		}
1353 	}
1354 
1355 	return NULL;
1356 }
1357 
1358 /*
1359  * Look for aliases to or from the given device for existing groups. DMA
1360  * aliases are only supported on the same bus, therefore the search
1361  * space is quite small (especially since we're really only looking at pcie
1362  * device, and therefore only expect multiple slots on the root complex or
1363  * downstream switch ports).  It's conceivable though that a pair of
1364  * multifunction devices could have aliases between them that would cause a
1365  * loop.  To prevent this, we use a bitmap to track where we've been.
1366  */
1367 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1368 					       unsigned long *devfns)
1369 {
1370 	struct pci_dev *tmp = NULL;
1371 	struct iommu_group *group;
1372 
1373 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1374 		return NULL;
1375 
1376 	group = iommu_group_get(&pdev->dev);
1377 	if (group)
1378 		return group;
1379 
1380 	for_each_pci_dev(tmp) {
1381 		if (tmp == pdev || tmp->bus != pdev->bus)
1382 			continue;
1383 
1384 		/* We alias them or they alias us */
1385 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1386 			group = get_pci_alias_group(tmp, devfns);
1387 			if (group) {
1388 				pci_dev_put(tmp);
1389 				return group;
1390 			}
1391 
1392 			group = get_pci_function_alias_group(tmp, devfns);
1393 			if (group) {
1394 				pci_dev_put(tmp);
1395 				return group;
1396 			}
1397 		}
1398 	}
1399 
1400 	return NULL;
1401 }
1402 
1403 struct group_for_pci_data {
1404 	struct pci_dev *pdev;
1405 	struct iommu_group *group;
1406 };
1407 
1408 /*
1409  * DMA alias iterator callback, return the last seen device.  Stop and return
1410  * the IOMMU group if we find one along the way.
1411  */
1412 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1413 {
1414 	struct group_for_pci_data *data = opaque;
1415 
1416 	data->pdev = pdev;
1417 	data->group = iommu_group_get(&pdev->dev);
1418 
1419 	return data->group != NULL;
1420 }
1421 
1422 /*
1423  * Generic device_group call-back function. It just allocates one
1424  * iommu-group per device.
1425  */
1426 struct iommu_group *generic_device_group(struct device *dev)
1427 {
1428 	return iommu_group_alloc();
1429 }
1430 EXPORT_SYMBOL_GPL(generic_device_group);
1431 
1432 /*
1433  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1434  * to find or create an IOMMU group for a device.
1435  */
1436 struct iommu_group *pci_device_group(struct device *dev)
1437 {
1438 	struct pci_dev *pdev = to_pci_dev(dev);
1439 	struct group_for_pci_data data;
1440 	struct pci_bus *bus;
1441 	struct iommu_group *group = NULL;
1442 	u64 devfns[4] = { 0 };
1443 
1444 	if (WARN_ON(!dev_is_pci(dev)))
1445 		return ERR_PTR(-EINVAL);
1446 
1447 	/*
1448 	 * Find the upstream DMA alias for the device.  A device must not
1449 	 * be aliased due to topology in order to have its own IOMMU group.
1450 	 * If we find an alias along the way that already belongs to a
1451 	 * group, use it.
1452 	 */
1453 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1454 		return data.group;
1455 
1456 	pdev = data.pdev;
1457 
1458 	/*
1459 	 * Continue upstream from the point of minimum IOMMU granularity
1460 	 * due to aliases to the point where devices are protected from
1461 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1462 	 * group, use it.
1463 	 */
1464 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1465 		if (!bus->self)
1466 			continue;
1467 
1468 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1469 			break;
1470 
1471 		pdev = bus->self;
1472 
1473 		group = iommu_group_get(&pdev->dev);
1474 		if (group)
1475 			return group;
1476 	}
1477 
1478 	/*
1479 	 * Look for existing groups on device aliases.  If we alias another
1480 	 * device or another device aliases us, use the same group.
1481 	 */
1482 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1483 	if (group)
1484 		return group;
1485 
1486 	/*
1487 	 * Look for existing groups on non-isolated functions on the same
1488 	 * slot and aliases of those funcions, if any.  No need to clear
1489 	 * the search bitmap, the tested devfns are still valid.
1490 	 */
1491 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1492 	if (group)
1493 		return group;
1494 
1495 	/* No shared group found, allocate new */
1496 	return iommu_group_alloc();
1497 }
1498 EXPORT_SYMBOL_GPL(pci_device_group);
1499 
1500 /* Get the IOMMU group for device on fsl-mc bus */
1501 struct iommu_group *fsl_mc_device_group(struct device *dev)
1502 {
1503 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1504 	struct iommu_group *group;
1505 
1506 	group = iommu_group_get(cont_dev);
1507 	if (!group)
1508 		group = iommu_group_alloc();
1509 	return group;
1510 }
1511 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1512 
1513 static int iommu_get_def_domain_type(struct device *dev)
1514 {
1515 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1516 
1517 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1518 		return IOMMU_DOMAIN_DMA;
1519 
1520 	if (ops->def_domain_type)
1521 		return ops->def_domain_type(dev);
1522 
1523 	return 0;
1524 }
1525 
1526 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1527 					    struct iommu_group *group,
1528 					    unsigned int type)
1529 {
1530 	struct iommu_domain *dom;
1531 
1532 	dom = __iommu_domain_alloc(bus, type);
1533 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1534 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1535 		if (dom)
1536 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1537 				type, group->name);
1538 	}
1539 
1540 	if (!dom)
1541 		return -ENOMEM;
1542 
1543 	group->default_domain = dom;
1544 	if (!group->domain)
1545 		group->domain = dom;
1546 	return 0;
1547 }
1548 
1549 static int iommu_alloc_default_domain(struct iommu_group *group,
1550 				      struct device *dev)
1551 {
1552 	unsigned int type;
1553 
1554 	if (group->default_domain)
1555 		return 0;
1556 
1557 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1558 
1559 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1560 }
1561 
1562 /**
1563  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1564  * @dev: target device
1565  *
1566  * This function is intended to be called by IOMMU drivers and extended to
1567  * support common, bus-defined algorithms when determining or creating the
1568  * IOMMU group for a device.  On success, the caller will hold a reference
1569  * to the returned IOMMU group, which will already include the provided
1570  * device.  The reference should be released with iommu_group_put().
1571  */
1572 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1573 {
1574 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1575 	struct iommu_group *group;
1576 	int ret;
1577 
1578 	group = iommu_group_get(dev);
1579 	if (group)
1580 		return group;
1581 
1582 	if (!ops)
1583 		return ERR_PTR(-EINVAL);
1584 
1585 	group = ops->device_group(dev);
1586 	if (WARN_ON_ONCE(group == NULL))
1587 		return ERR_PTR(-EINVAL);
1588 
1589 	if (IS_ERR(group))
1590 		return group;
1591 
1592 	ret = iommu_group_add_device(group, dev);
1593 	if (ret)
1594 		goto out_put_group;
1595 
1596 	return group;
1597 
1598 out_put_group:
1599 	iommu_group_put(group);
1600 
1601 	return ERR_PTR(ret);
1602 }
1603 
1604 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1605 {
1606 	return group->default_domain;
1607 }
1608 
1609 static int probe_iommu_group(struct device *dev, void *data)
1610 {
1611 	struct list_head *group_list = data;
1612 	struct iommu_group *group;
1613 	int ret;
1614 
1615 	/* Device is probed already if in a group */
1616 	group = iommu_group_get(dev);
1617 	if (group) {
1618 		iommu_group_put(group);
1619 		return 0;
1620 	}
1621 
1622 	ret = __iommu_probe_device(dev, group_list);
1623 	if (ret == -ENODEV)
1624 		ret = 0;
1625 
1626 	return ret;
1627 }
1628 
1629 static int remove_iommu_group(struct device *dev, void *data)
1630 {
1631 	iommu_release_device(dev);
1632 
1633 	return 0;
1634 }
1635 
1636 static int iommu_bus_notifier(struct notifier_block *nb,
1637 			      unsigned long action, void *data)
1638 {
1639 	unsigned long group_action = 0;
1640 	struct device *dev = data;
1641 	struct iommu_group *group;
1642 
1643 	/*
1644 	 * ADD/DEL call into iommu driver ops if provided, which may
1645 	 * result in ADD/DEL notifiers to group->notifier
1646 	 */
1647 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1648 		int ret;
1649 
1650 		ret = iommu_probe_device(dev);
1651 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1652 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1653 		iommu_release_device(dev);
1654 		return NOTIFY_OK;
1655 	}
1656 
1657 	/*
1658 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1659 	 * group, if anyone is listening
1660 	 */
1661 	group = iommu_group_get(dev);
1662 	if (!group)
1663 		return 0;
1664 
1665 	switch (action) {
1666 	case BUS_NOTIFY_BIND_DRIVER:
1667 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1668 		break;
1669 	case BUS_NOTIFY_BOUND_DRIVER:
1670 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1671 		break;
1672 	case BUS_NOTIFY_UNBIND_DRIVER:
1673 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1674 		break;
1675 	case BUS_NOTIFY_UNBOUND_DRIVER:
1676 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1677 		break;
1678 	}
1679 
1680 	if (group_action)
1681 		blocking_notifier_call_chain(&group->notifier,
1682 					     group_action, dev);
1683 
1684 	iommu_group_put(group);
1685 	return 0;
1686 }
1687 
1688 struct __group_domain_type {
1689 	struct device *dev;
1690 	unsigned int type;
1691 };
1692 
1693 static int probe_get_default_domain_type(struct device *dev, void *data)
1694 {
1695 	struct __group_domain_type *gtype = data;
1696 	unsigned int type = iommu_get_def_domain_type(dev);
1697 
1698 	if (type) {
1699 		if (gtype->type && gtype->type != type) {
1700 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1701 				 iommu_domain_type_str(type),
1702 				 dev_name(gtype->dev),
1703 				 iommu_domain_type_str(gtype->type));
1704 			gtype->type = 0;
1705 		}
1706 
1707 		if (!gtype->dev) {
1708 			gtype->dev  = dev;
1709 			gtype->type = type;
1710 		}
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 static void probe_alloc_default_domain(struct bus_type *bus,
1717 				       struct iommu_group *group)
1718 {
1719 	struct __group_domain_type gtype;
1720 
1721 	memset(&gtype, 0, sizeof(gtype));
1722 
1723 	/* Ask for default domain requirements of all devices in the group */
1724 	__iommu_group_for_each_dev(group, &gtype,
1725 				   probe_get_default_domain_type);
1726 
1727 	if (!gtype.type)
1728 		gtype.type = iommu_def_domain_type;
1729 
1730 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1731 
1732 }
1733 
1734 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1735 {
1736 	struct iommu_domain *domain = data;
1737 	int ret = 0;
1738 
1739 	if (!iommu_is_attach_deferred(domain, dev))
1740 		ret = __iommu_attach_device(domain, dev);
1741 
1742 	return ret;
1743 }
1744 
1745 static int __iommu_group_dma_attach(struct iommu_group *group)
1746 {
1747 	return __iommu_group_for_each_dev(group, group->default_domain,
1748 					  iommu_group_do_dma_attach);
1749 }
1750 
1751 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1752 {
1753 	struct iommu_domain *domain = data;
1754 
1755 	if (domain->ops->probe_finalize)
1756 		domain->ops->probe_finalize(dev);
1757 
1758 	return 0;
1759 }
1760 
1761 static void __iommu_group_dma_finalize(struct iommu_group *group)
1762 {
1763 	__iommu_group_for_each_dev(group, group->default_domain,
1764 				   iommu_group_do_probe_finalize);
1765 }
1766 
1767 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1768 {
1769 	struct iommu_group *group = data;
1770 
1771 	iommu_create_device_direct_mappings(group, dev);
1772 
1773 	return 0;
1774 }
1775 
1776 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1777 {
1778 	return __iommu_group_for_each_dev(group, group,
1779 					  iommu_do_create_direct_mappings);
1780 }
1781 
1782 int bus_iommu_probe(struct bus_type *bus)
1783 {
1784 	struct iommu_group *group, *next;
1785 	LIST_HEAD(group_list);
1786 	int ret;
1787 
1788 	/*
1789 	 * This code-path does not allocate the default domain when
1790 	 * creating the iommu group, so do it after the groups are
1791 	 * created.
1792 	 */
1793 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1794 	if (ret)
1795 		return ret;
1796 
1797 	list_for_each_entry_safe(group, next, &group_list, entry) {
1798 		/* Remove item from the list */
1799 		list_del_init(&group->entry);
1800 
1801 		mutex_lock(&group->mutex);
1802 
1803 		/* Try to allocate default domain */
1804 		probe_alloc_default_domain(bus, group);
1805 
1806 		if (!group->default_domain) {
1807 			mutex_unlock(&group->mutex);
1808 			continue;
1809 		}
1810 
1811 		iommu_group_create_direct_mappings(group);
1812 
1813 		ret = __iommu_group_dma_attach(group);
1814 
1815 		mutex_unlock(&group->mutex);
1816 
1817 		if (ret)
1818 			break;
1819 
1820 		__iommu_group_dma_finalize(group);
1821 	}
1822 
1823 	return ret;
1824 }
1825 
1826 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1827 {
1828 	struct notifier_block *nb;
1829 	int err;
1830 
1831 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1832 	if (!nb)
1833 		return -ENOMEM;
1834 
1835 	nb->notifier_call = iommu_bus_notifier;
1836 
1837 	err = bus_register_notifier(bus, nb);
1838 	if (err)
1839 		goto out_free;
1840 
1841 	err = bus_iommu_probe(bus);
1842 	if (err)
1843 		goto out_err;
1844 
1845 
1846 	return 0;
1847 
1848 out_err:
1849 	/* Clean up */
1850 	bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1851 	bus_unregister_notifier(bus, nb);
1852 
1853 out_free:
1854 	kfree(nb);
1855 
1856 	return err;
1857 }
1858 
1859 /**
1860  * bus_set_iommu - set iommu-callbacks for the bus
1861  * @bus: bus.
1862  * @ops: the callbacks provided by the iommu-driver
1863  *
1864  * This function is called by an iommu driver to set the iommu methods
1865  * used for a particular bus. Drivers for devices on that bus can use
1866  * the iommu-api after these ops are registered.
1867  * This special function is needed because IOMMUs are usually devices on
1868  * the bus itself, so the iommu drivers are not initialized when the bus
1869  * is set up. With this function the iommu-driver can set the iommu-ops
1870  * afterwards.
1871  */
1872 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1873 {
1874 	int err;
1875 
1876 	if (ops == NULL) {
1877 		bus->iommu_ops = NULL;
1878 		return 0;
1879 	}
1880 
1881 	if (bus->iommu_ops != NULL)
1882 		return -EBUSY;
1883 
1884 	bus->iommu_ops = ops;
1885 
1886 	/* Do IOMMU specific setup for this bus-type */
1887 	err = iommu_bus_init(bus, ops);
1888 	if (err)
1889 		bus->iommu_ops = NULL;
1890 
1891 	return err;
1892 }
1893 EXPORT_SYMBOL_GPL(bus_set_iommu);
1894 
1895 bool iommu_present(struct bus_type *bus)
1896 {
1897 	return bus->iommu_ops != NULL;
1898 }
1899 EXPORT_SYMBOL_GPL(iommu_present);
1900 
1901 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1902 {
1903 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1904 		return false;
1905 
1906 	return bus->iommu_ops->capable(cap);
1907 }
1908 EXPORT_SYMBOL_GPL(iommu_capable);
1909 
1910 /**
1911  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1912  * @domain: iommu domain
1913  * @handler: fault handler
1914  * @token: user data, will be passed back to the fault handler
1915  *
1916  * This function should be used by IOMMU users which want to be notified
1917  * whenever an IOMMU fault happens.
1918  *
1919  * The fault handler itself should return 0 on success, and an appropriate
1920  * error code otherwise.
1921  */
1922 void iommu_set_fault_handler(struct iommu_domain *domain,
1923 					iommu_fault_handler_t handler,
1924 					void *token)
1925 {
1926 	BUG_ON(!domain);
1927 
1928 	domain->handler = handler;
1929 	domain->handler_token = token;
1930 }
1931 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1932 
1933 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1934 						 unsigned type)
1935 {
1936 	struct iommu_domain *domain;
1937 
1938 	if (bus == NULL || bus->iommu_ops == NULL)
1939 		return NULL;
1940 
1941 	domain = bus->iommu_ops->domain_alloc(type);
1942 	if (!domain)
1943 		return NULL;
1944 
1945 	domain->ops  = bus->iommu_ops;
1946 	domain->type = type;
1947 	/* Assume all sizes by default; the driver may override this later */
1948 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1949 
1950 	/* Temporarily avoid -EEXIST while drivers still get their own cookies */
1951 	if (iommu_is_dma_domain(domain) && !domain->iova_cookie && iommu_get_dma_cookie(domain)) {
1952 		iommu_domain_free(domain);
1953 		domain = NULL;
1954 	}
1955 	return domain;
1956 }
1957 
1958 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1959 {
1960 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1961 }
1962 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1963 
1964 void iommu_domain_free(struct iommu_domain *domain)
1965 {
1966 	iommu_put_dma_cookie(domain);
1967 	domain->ops->domain_free(domain);
1968 }
1969 EXPORT_SYMBOL_GPL(iommu_domain_free);
1970 
1971 static int __iommu_attach_device(struct iommu_domain *domain,
1972 				 struct device *dev)
1973 {
1974 	int ret;
1975 
1976 	if (unlikely(domain->ops->attach_dev == NULL))
1977 		return -ENODEV;
1978 
1979 	ret = domain->ops->attach_dev(domain, dev);
1980 	if (!ret)
1981 		trace_attach_device_to_domain(dev);
1982 	return ret;
1983 }
1984 
1985 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1986 {
1987 	struct iommu_group *group;
1988 	int ret;
1989 
1990 	group = iommu_group_get(dev);
1991 	if (!group)
1992 		return -ENODEV;
1993 
1994 	/*
1995 	 * Lock the group to make sure the device-count doesn't
1996 	 * change while we are attaching
1997 	 */
1998 	mutex_lock(&group->mutex);
1999 	ret = -EINVAL;
2000 	if (iommu_group_device_count(group) != 1)
2001 		goto out_unlock;
2002 
2003 	ret = __iommu_attach_group(domain, group);
2004 
2005 out_unlock:
2006 	mutex_unlock(&group->mutex);
2007 	iommu_group_put(group);
2008 
2009 	return ret;
2010 }
2011 EXPORT_SYMBOL_GPL(iommu_attach_device);
2012 
2013 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2014 {
2015 	const struct iommu_ops *ops = domain->ops;
2016 
2017 	if (ops->is_attach_deferred && ops->is_attach_deferred(domain, dev))
2018 		return __iommu_attach_device(domain, dev);
2019 
2020 	return 0;
2021 }
2022 
2023 /*
2024  * Check flags and other user provided data for valid combinations. We also
2025  * make sure no reserved fields or unused flags are set. This is to ensure
2026  * not breaking userspace in the future when these fields or flags are used.
2027  */
2028 static int iommu_check_cache_invl_data(struct iommu_cache_invalidate_info *info)
2029 {
2030 	u32 mask;
2031 	int i;
2032 
2033 	if (info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
2034 		return -EINVAL;
2035 
2036 	mask = (1 << IOMMU_CACHE_INV_TYPE_NR) - 1;
2037 	if (info->cache & ~mask)
2038 		return -EINVAL;
2039 
2040 	if (info->granularity >= IOMMU_INV_GRANU_NR)
2041 		return -EINVAL;
2042 
2043 	switch (info->granularity) {
2044 	case IOMMU_INV_GRANU_ADDR:
2045 		if (info->cache & IOMMU_CACHE_INV_TYPE_PASID)
2046 			return -EINVAL;
2047 
2048 		mask = IOMMU_INV_ADDR_FLAGS_PASID |
2049 			IOMMU_INV_ADDR_FLAGS_ARCHID |
2050 			IOMMU_INV_ADDR_FLAGS_LEAF;
2051 
2052 		if (info->granu.addr_info.flags & ~mask)
2053 			return -EINVAL;
2054 		break;
2055 	case IOMMU_INV_GRANU_PASID:
2056 		mask = IOMMU_INV_PASID_FLAGS_PASID |
2057 			IOMMU_INV_PASID_FLAGS_ARCHID;
2058 		if (info->granu.pasid_info.flags & ~mask)
2059 			return -EINVAL;
2060 
2061 		break;
2062 	case IOMMU_INV_GRANU_DOMAIN:
2063 		if (info->cache & IOMMU_CACHE_INV_TYPE_DEV_IOTLB)
2064 			return -EINVAL;
2065 		break;
2066 	default:
2067 		return -EINVAL;
2068 	}
2069 
2070 	/* Check reserved padding fields */
2071 	for (i = 0; i < sizeof(info->padding); i++) {
2072 		if (info->padding[i])
2073 			return -EINVAL;
2074 	}
2075 
2076 	return 0;
2077 }
2078 
2079 int iommu_uapi_cache_invalidate(struct iommu_domain *domain, struct device *dev,
2080 				void __user *uinfo)
2081 {
2082 	struct iommu_cache_invalidate_info inv_info = { 0 };
2083 	u32 minsz;
2084 	int ret;
2085 
2086 	if (unlikely(!domain->ops->cache_invalidate))
2087 		return -ENODEV;
2088 
2089 	/*
2090 	 * No new spaces can be added before the variable sized union, the
2091 	 * minimum size is the offset to the union.
2092 	 */
2093 	minsz = offsetof(struct iommu_cache_invalidate_info, granu);
2094 
2095 	/* Copy minsz from user to get flags and argsz */
2096 	if (copy_from_user(&inv_info, uinfo, minsz))
2097 		return -EFAULT;
2098 
2099 	/* Fields before the variable size union are mandatory */
2100 	if (inv_info.argsz < minsz)
2101 		return -EINVAL;
2102 
2103 	/* PASID and address granu require additional info beyond minsz */
2104 	if (inv_info.granularity == IOMMU_INV_GRANU_PASID &&
2105 	    inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.pasid_info))
2106 		return -EINVAL;
2107 
2108 	if (inv_info.granularity == IOMMU_INV_GRANU_ADDR &&
2109 	    inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.addr_info))
2110 		return -EINVAL;
2111 
2112 	/*
2113 	 * User might be using a newer UAPI header which has a larger data
2114 	 * size, we shall support the existing flags within the current
2115 	 * size. Copy the remaining user data _after_ minsz but not more
2116 	 * than the current kernel supported size.
2117 	 */
2118 	if (copy_from_user((void *)&inv_info + minsz, uinfo + minsz,
2119 			   min_t(u32, inv_info.argsz, sizeof(inv_info)) - minsz))
2120 		return -EFAULT;
2121 
2122 	/* Now the argsz is validated, check the content */
2123 	ret = iommu_check_cache_invl_data(&inv_info);
2124 	if (ret)
2125 		return ret;
2126 
2127 	return domain->ops->cache_invalidate(domain, dev, &inv_info);
2128 }
2129 EXPORT_SYMBOL_GPL(iommu_uapi_cache_invalidate);
2130 
2131 static int iommu_check_bind_data(struct iommu_gpasid_bind_data *data)
2132 {
2133 	u64 mask;
2134 	int i;
2135 
2136 	if (data->version != IOMMU_GPASID_BIND_VERSION_1)
2137 		return -EINVAL;
2138 
2139 	/* Check the range of supported formats */
2140 	if (data->format >= IOMMU_PASID_FORMAT_LAST)
2141 		return -EINVAL;
2142 
2143 	/* Check all flags */
2144 	mask = IOMMU_SVA_GPASID_VAL;
2145 	if (data->flags & ~mask)
2146 		return -EINVAL;
2147 
2148 	/* Check reserved padding fields */
2149 	for (i = 0; i < sizeof(data->padding); i++) {
2150 		if (data->padding[i])
2151 			return -EINVAL;
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 static int iommu_sva_prepare_bind_data(void __user *udata,
2158 				       struct iommu_gpasid_bind_data *data)
2159 {
2160 	u32 minsz;
2161 
2162 	/*
2163 	 * No new spaces can be added before the variable sized union, the
2164 	 * minimum size is the offset to the union.
2165 	 */
2166 	minsz = offsetof(struct iommu_gpasid_bind_data, vendor);
2167 
2168 	/* Copy minsz from user to get flags and argsz */
2169 	if (copy_from_user(data, udata, minsz))
2170 		return -EFAULT;
2171 
2172 	/* Fields before the variable size union are mandatory */
2173 	if (data->argsz < minsz)
2174 		return -EINVAL;
2175 	/*
2176 	 * User might be using a newer UAPI header, we shall let IOMMU vendor
2177 	 * driver decide on what size it needs. Since the guest PASID bind data
2178 	 * can be vendor specific, larger argsz could be the result of extension
2179 	 * for one vendor but it should not affect another vendor.
2180 	 * Copy the remaining user data _after_ minsz
2181 	 */
2182 	if (copy_from_user((void *)data + minsz, udata + minsz,
2183 			   min_t(u32, data->argsz, sizeof(*data)) - minsz))
2184 		return -EFAULT;
2185 
2186 	return iommu_check_bind_data(data);
2187 }
2188 
2189 int iommu_uapi_sva_bind_gpasid(struct iommu_domain *domain, struct device *dev,
2190 			       void __user *udata)
2191 {
2192 	struct iommu_gpasid_bind_data data = { 0 };
2193 	int ret;
2194 
2195 	if (unlikely(!domain->ops->sva_bind_gpasid))
2196 		return -ENODEV;
2197 
2198 	ret = iommu_sva_prepare_bind_data(udata, &data);
2199 	if (ret)
2200 		return ret;
2201 
2202 	return domain->ops->sva_bind_gpasid(domain, dev, &data);
2203 }
2204 EXPORT_SYMBOL_GPL(iommu_uapi_sva_bind_gpasid);
2205 
2206 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2207 			     ioasid_t pasid)
2208 {
2209 	if (unlikely(!domain->ops->sva_unbind_gpasid))
2210 		return -ENODEV;
2211 
2212 	return domain->ops->sva_unbind_gpasid(dev, pasid);
2213 }
2214 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
2215 
2216 int iommu_uapi_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2217 				 void __user *udata)
2218 {
2219 	struct iommu_gpasid_bind_data data = { 0 };
2220 	int ret;
2221 
2222 	if (unlikely(!domain->ops->sva_bind_gpasid))
2223 		return -ENODEV;
2224 
2225 	ret = iommu_sva_prepare_bind_data(udata, &data);
2226 	if (ret)
2227 		return ret;
2228 
2229 	return iommu_sva_unbind_gpasid(domain, dev, data.hpasid);
2230 }
2231 EXPORT_SYMBOL_GPL(iommu_uapi_sva_unbind_gpasid);
2232 
2233 static void __iommu_detach_device(struct iommu_domain *domain,
2234 				  struct device *dev)
2235 {
2236 	if (iommu_is_attach_deferred(domain, dev))
2237 		return;
2238 
2239 	if (unlikely(domain->ops->detach_dev == NULL))
2240 		return;
2241 
2242 	domain->ops->detach_dev(domain, dev);
2243 	trace_detach_device_from_domain(dev);
2244 }
2245 
2246 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2247 {
2248 	struct iommu_group *group;
2249 
2250 	group = iommu_group_get(dev);
2251 	if (!group)
2252 		return;
2253 
2254 	mutex_lock(&group->mutex);
2255 	if (iommu_group_device_count(group) != 1) {
2256 		WARN_ON(1);
2257 		goto out_unlock;
2258 	}
2259 
2260 	__iommu_detach_group(domain, group);
2261 
2262 out_unlock:
2263 	mutex_unlock(&group->mutex);
2264 	iommu_group_put(group);
2265 }
2266 EXPORT_SYMBOL_GPL(iommu_detach_device);
2267 
2268 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2269 {
2270 	struct iommu_domain *domain;
2271 	struct iommu_group *group;
2272 
2273 	group = iommu_group_get(dev);
2274 	if (!group)
2275 		return NULL;
2276 
2277 	domain = group->domain;
2278 
2279 	iommu_group_put(group);
2280 
2281 	return domain;
2282 }
2283 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2284 
2285 /*
2286  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2287  * guarantees that the group and its default domain are valid and correct.
2288  */
2289 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2290 {
2291 	return dev->iommu_group->default_domain;
2292 }
2293 
2294 /*
2295  * IOMMU groups are really the natural working unit of the IOMMU, but
2296  * the IOMMU API works on domains and devices.  Bridge that gap by
2297  * iterating over the devices in a group.  Ideally we'd have a single
2298  * device which represents the requestor ID of the group, but we also
2299  * allow IOMMU drivers to create policy defined minimum sets, where
2300  * the physical hardware may be able to distiguish members, but we
2301  * wish to group them at a higher level (ex. untrusted multi-function
2302  * PCI devices).  Thus we attach each device.
2303  */
2304 static int iommu_group_do_attach_device(struct device *dev, void *data)
2305 {
2306 	struct iommu_domain *domain = data;
2307 
2308 	return __iommu_attach_device(domain, dev);
2309 }
2310 
2311 static int __iommu_attach_group(struct iommu_domain *domain,
2312 				struct iommu_group *group)
2313 {
2314 	int ret;
2315 
2316 	if (group->default_domain && group->domain != group->default_domain)
2317 		return -EBUSY;
2318 
2319 	ret = __iommu_group_for_each_dev(group, domain,
2320 					 iommu_group_do_attach_device);
2321 	if (ret == 0)
2322 		group->domain = domain;
2323 
2324 	return ret;
2325 }
2326 
2327 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2328 {
2329 	int ret;
2330 
2331 	mutex_lock(&group->mutex);
2332 	ret = __iommu_attach_group(domain, group);
2333 	mutex_unlock(&group->mutex);
2334 
2335 	return ret;
2336 }
2337 EXPORT_SYMBOL_GPL(iommu_attach_group);
2338 
2339 static int iommu_group_do_detach_device(struct device *dev, void *data)
2340 {
2341 	struct iommu_domain *domain = data;
2342 
2343 	__iommu_detach_device(domain, dev);
2344 
2345 	return 0;
2346 }
2347 
2348 static void __iommu_detach_group(struct iommu_domain *domain,
2349 				 struct iommu_group *group)
2350 {
2351 	int ret;
2352 
2353 	if (!group->default_domain) {
2354 		__iommu_group_for_each_dev(group, domain,
2355 					   iommu_group_do_detach_device);
2356 		group->domain = NULL;
2357 		return;
2358 	}
2359 
2360 	if (group->domain == group->default_domain)
2361 		return;
2362 
2363 	/* Detach by re-attaching to the default domain */
2364 	ret = __iommu_group_for_each_dev(group, group->default_domain,
2365 					 iommu_group_do_attach_device);
2366 	if (ret != 0)
2367 		WARN_ON(1);
2368 	else
2369 		group->domain = group->default_domain;
2370 }
2371 
2372 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2373 {
2374 	mutex_lock(&group->mutex);
2375 	__iommu_detach_group(domain, group);
2376 	mutex_unlock(&group->mutex);
2377 }
2378 EXPORT_SYMBOL_GPL(iommu_detach_group);
2379 
2380 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2381 {
2382 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2383 		return iova;
2384 
2385 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2386 		return 0;
2387 
2388 	return domain->ops->iova_to_phys(domain, iova);
2389 }
2390 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2391 
2392 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2393 			   phys_addr_t paddr, size_t size, size_t *count)
2394 {
2395 	unsigned int pgsize_idx, pgsize_idx_next;
2396 	unsigned long pgsizes;
2397 	size_t offset, pgsize, pgsize_next;
2398 	unsigned long addr_merge = paddr | iova;
2399 
2400 	/* Page sizes supported by the hardware and small enough for @size */
2401 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2402 
2403 	/* Constrain the page sizes further based on the maximum alignment */
2404 	if (likely(addr_merge))
2405 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2406 
2407 	/* Make sure we have at least one suitable page size */
2408 	BUG_ON(!pgsizes);
2409 
2410 	/* Pick the biggest page size remaining */
2411 	pgsize_idx = __fls(pgsizes);
2412 	pgsize = BIT(pgsize_idx);
2413 	if (!count)
2414 		return pgsize;
2415 
2416 	/* Find the next biggest support page size, if it exists */
2417 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2418 	if (!pgsizes)
2419 		goto out_set_count;
2420 
2421 	pgsize_idx_next = __ffs(pgsizes);
2422 	pgsize_next = BIT(pgsize_idx_next);
2423 
2424 	/*
2425 	 * There's no point trying a bigger page size unless the virtual
2426 	 * and physical addresses are similarly offset within the larger page.
2427 	 */
2428 	if ((iova ^ paddr) & (pgsize_next - 1))
2429 		goto out_set_count;
2430 
2431 	/* Calculate the offset to the next page size alignment boundary */
2432 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2433 
2434 	/*
2435 	 * If size is big enough to accommodate the larger page, reduce
2436 	 * the number of smaller pages.
2437 	 */
2438 	if (offset + pgsize_next <= size)
2439 		size = offset;
2440 
2441 out_set_count:
2442 	*count = size >> pgsize_idx;
2443 	return pgsize;
2444 }
2445 
2446 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2447 			     phys_addr_t paddr, size_t size, int prot,
2448 			     gfp_t gfp, size_t *mapped)
2449 {
2450 	const struct iommu_ops *ops = domain->ops;
2451 	size_t pgsize, count;
2452 	int ret;
2453 
2454 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2455 
2456 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2457 		 iova, &paddr, pgsize, count);
2458 
2459 	if (ops->map_pages) {
2460 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2461 				     gfp, mapped);
2462 	} else {
2463 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2464 		*mapped = ret ? 0 : pgsize;
2465 	}
2466 
2467 	return ret;
2468 }
2469 
2470 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2471 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2472 {
2473 	const struct iommu_ops *ops = domain->ops;
2474 	unsigned long orig_iova = iova;
2475 	unsigned int min_pagesz;
2476 	size_t orig_size = size;
2477 	phys_addr_t orig_paddr = paddr;
2478 	int ret = 0;
2479 
2480 	if (unlikely(!(ops->map || ops->map_pages) ||
2481 		     domain->pgsize_bitmap == 0UL))
2482 		return -ENODEV;
2483 
2484 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2485 		return -EINVAL;
2486 
2487 	/* find out the minimum page size supported */
2488 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2489 
2490 	/*
2491 	 * both the virtual address and the physical one, as well as
2492 	 * the size of the mapping, must be aligned (at least) to the
2493 	 * size of the smallest page supported by the hardware
2494 	 */
2495 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2496 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2497 		       iova, &paddr, size, min_pagesz);
2498 		return -EINVAL;
2499 	}
2500 
2501 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2502 
2503 	while (size) {
2504 		size_t mapped = 0;
2505 
2506 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2507 					&mapped);
2508 		/*
2509 		 * Some pages may have been mapped, even if an error occurred,
2510 		 * so we should account for those so they can be unmapped.
2511 		 */
2512 		size -= mapped;
2513 
2514 		if (ret)
2515 			break;
2516 
2517 		iova += mapped;
2518 		paddr += mapped;
2519 	}
2520 
2521 	/* unroll mapping in case something went wrong */
2522 	if (ret)
2523 		iommu_unmap(domain, orig_iova, orig_size - size);
2524 	else
2525 		trace_map(orig_iova, orig_paddr, orig_size);
2526 
2527 	return ret;
2528 }
2529 
2530 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2531 		      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2532 {
2533 	const struct iommu_ops *ops = domain->ops;
2534 	int ret;
2535 
2536 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2537 	if (ret == 0 && ops->iotlb_sync_map)
2538 		ops->iotlb_sync_map(domain, iova, size);
2539 
2540 	return ret;
2541 }
2542 
2543 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2544 	      phys_addr_t paddr, size_t size, int prot)
2545 {
2546 	might_sleep();
2547 	return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2548 }
2549 EXPORT_SYMBOL_GPL(iommu_map);
2550 
2551 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2552 	      phys_addr_t paddr, size_t size, int prot)
2553 {
2554 	return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2555 }
2556 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2557 
2558 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2559 				  unsigned long iova, size_t size,
2560 				  struct iommu_iotlb_gather *iotlb_gather)
2561 {
2562 	const struct iommu_ops *ops = domain->ops;
2563 	size_t pgsize, count;
2564 
2565 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2566 	return ops->unmap_pages ?
2567 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2568 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2569 }
2570 
2571 static size_t __iommu_unmap(struct iommu_domain *domain,
2572 			    unsigned long iova, size_t size,
2573 			    struct iommu_iotlb_gather *iotlb_gather)
2574 {
2575 	const struct iommu_ops *ops = domain->ops;
2576 	size_t unmapped_page, unmapped = 0;
2577 	unsigned long orig_iova = iova;
2578 	unsigned int min_pagesz;
2579 
2580 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2581 		     domain->pgsize_bitmap == 0UL))
2582 		return 0;
2583 
2584 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2585 		return 0;
2586 
2587 	/* find out the minimum page size supported */
2588 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2589 
2590 	/*
2591 	 * The virtual address, as well as the size of the mapping, must be
2592 	 * aligned (at least) to the size of the smallest page supported
2593 	 * by the hardware
2594 	 */
2595 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2596 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2597 		       iova, size, min_pagesz);
2598 		return 0;
2599 	}
2600 
2601 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2602 
2603 	/*
2604 	 * Keep iterating until we either unmap 'size' bytes (or more)
2605 	 * or we hit an area that isn't mapped.
2606 	 */
2607 	while (unmapped < size) {
2608 		unmapped_page = __iommu_unmap_pages(domain, iova,
2609 						    size - unmapped,
2610 						    iotlb_gather);
2611 		if (!unmapped_page)
2612 			break;
2613 
2614 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2615 			 iova, unmapped_page);
2616 
2617 		iova += unmapped_page;
2618 		unmapped += unmapped_page;
2619 	}
2620 
2621 	trace_unmap(orig_iova, size, unmapped);
2622 	return unmapped;
2623 }
2624 
2625 size_t iommu_unmap(struct iommu_domain *domain,
2626 		   unsigned long iova, size_t size)
2627 {
2628 	struct iommu_iotlb_gather iotlb_gather;
2629 	size_t ret;
2630 
2631 	iommu_iotlb_gather_init(&iotlb_gather);
2632 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2633 	iommu_iotlb_sync(domain, &iotlb_gather);
2634 
2635 	return ret;
2636 }
2637 EXPORT_SYMBOL_GPL(iommu_unmap);
2638 
2639 size_t iommu_unmap_fast(struct iommu_domain *domain,
2640 			unsigned long iova, size_t size,
2641 			struct iommu_iotlb_gather *iotlb_gather)
2642 {
2643 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2644 }
2645 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2646 
2647 static size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2648 			     struct scatterlist *sg, unsigned int nents, int prot,
2649 			     gfp_t gfp)
2650 {
2651 	const struct iommu_ops *ops = domain->ops;
2652 	size_t len = 0, mapped = 0;
2653 	phys_addr_t start;
2654 	unsigned int i = 0;
2655 	int ret;
2656 
2657 	while (i <= nents) {
2658 		phys_addr_t s_phys = sg_phys(sg);
2659 
2660 		if (len && s_phys != start + len) {
2661 			ret = __iommu_map(domain, iova + mapped, start,
2662 					len, prot, gfp);
2663 
2664 			if (ret)
2665 				goto out_err;
2666 
2667 			mapped += len;
2668 			len = 0;
2669 		}
2670 
2671 		if (len) {
2672 			len += sg->length;
2673 		} else {
2674 			len = sg->length;
2675 			start = s_phys;
2676 		}
2677 
2678 		if (++i < nents)
2679 			sg = sg_next(sg);
2680 	}
2681 
2682 	if (ops->iotlb_sync_map)
2683 		ops->iotlb_sync_map(domain, iova, mapped);
2684 	return mapped;
2685 
2686 out_err:
2687 	/* undo mappings already done */
2688 	iommu_unmap(domain, iova, mapped);
2689 
2690 	return 0;
2691 
2692 }
2693 
2694 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2695 		    struct scatterlist *sg, unsigned int nents, int prot)
2696 {
2697 	might_sleep();
2698 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2699 }
2700 EXPORT_SYMBOL_GPL(iommu_map_sg);
2701 
2702 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2703 		    struct scatterlist *sg, unsigned int nents, int prot)
2704 {
2705 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2706 }
2707 
2708 /**
2709  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2710  * @domain: the iommu domain where the fault has happened
2711  * @dev: the device where the fault has happened
2712  * @iova: the faulting address
2713  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2714  *
2715  * This function should be called by the low-level IOMMU implementations
2716  * whenever IOMMU faults happen, to allow high-level users, that are
2717  * interested in such events, to know about them.
2718  *
2719  * This event may be useful for several possible use cases:
2720  * - mere logging of the event
2721  * - dynamic TLB/PTE loading
2722  * - if restarting of the faulting device is required
2723  *
2724  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2725  * PTE/TLB loading will one day be supported, implementations will be able
2726  * to tell whether it succeeded or not according to this return value).
2727  *
2728  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2729  * (though fault handlers can also return -ENOSYS, in case they want to
2730  * elicit the default behavior of the IOMMU drivers).
2731  */
2732 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2733 		       unsigned long iova, int flags)
2734 {
2735 	int ret = -ENOSYS;
2736 
2737 	/*
2738 	 * if upper layers showed interest and installed a fault handler,
2739 	 * invoke it.
2740 	 */
2741 	if (domain->handler)
2742 		ret = domain->handler(domain, dev, iova, flags,
2743 						domain->handler_token);
2744 
2745 	trace_io_page_fault(dev, iova, flags);
2746 	return ret;
2747 }
2748 EXPORT_SYMBOL_GPL(report_iommu_fault);
2749 
2750 static int __init iommu_init(void)
2751 {
2752 	iommu_group_kset = kset_create_and_add("iommu_groups",
2753 					       NULL, kernel_kobj);
2754 	BUG_ON(!iommu_group_kset);
2755 
2756 	iommu_debugfs_setup();
2757 
2758 	return 0;
2759 }
2760 core_initcall(iommu_init);
2761 
2762 int iommu_enable_nesting(struct iommu_domain *domain)
2763 {
2764 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2765 		return -EINVAL;
2766 	if (!domain->ops->enable_nesting)
2767 		return -EINVAL;
2768 	return domain->ops->enable_nesting(domain);
2769 }
2770 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2771 
2772 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2773 		unsigned long quirk)
2774 {
2775 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2776 		return -EINVAL;
2777 	if (!domain->ops->set_pgtable_quirks)
2778 		return -EINVAL;
2779 	return domain->ops->set_pgtable_quirks(domain, quirk);
2780 }
2781 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2782 
2783 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2784 {
2785 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2786 
2787 	if (ops && ops->get_resv_regions)
2788 		ops->get_resv_regions(dev, list);
2789 }
2790 
2791 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2792 {
2793 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2794 
2795 	if (ops && ops->put_resv_regions)
2796 		ops->put_resv_regions(dev, list);
2797 }
2798 
2799 /**
2800  * generic_iommu_put_resv_regions - Reserved region driver helper
2801  * @dev: device for which to free reserved regions
2802  * @list: reserved region list for device
2803  *
2804  * IOMMU drivers can use this to implement their .put_resv_regions() callback
2805  * for simple reservations. Memory allocated for each reserved region will be
2806  * freed. If an IOMMU driver allocates additional resources per region, it is
2807  * going to have to implement a custom callback.
2808  */
2809 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2810 {
2811 	struct iommu_resv_region *entry, *next;
2812 
2813 	list_for_each_entry_safe(entry, next, list, list)
2814 		kfree(entry);
2815 }
2816 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2817 
2818 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2819 						  size_t length, int prot,
2820 						  enum iommu_resv_type type)
2821 {
2822 	struct iommu_resv_region *region;
2823 
2824 	region = kzalloc(sizeof(*region), GFP_KERNEL);
2825 	if (!region)
2826 		return NULL;
2827 
2828 	INIT_LIST_HEAD(&region->list);
2829 	region->start = start;
2830 	region->length = length;
2831 	region->prot = prot;
2832 	region->type = type;
2833 	return region;
2834 }
2835 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2836 
2837 void iommu_set_default_passthrough(bool cmd_line)
2838 {
2839 	if (cmd_line)
2840 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2841 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2842 }
2843 
2844 void iommu_set_default_translated(bool cmd_line)
2845 {
2846 	if (cmd_line)
2847 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2848 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2849 }
2850 
2851 bool iommu_default_passthrough(void)
2852 {
2853 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2854 }
2855 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2856 
2857 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2858 {
2859 	const struct iommu_ops *ops = NULL;
2860 	struct iommu_device *iommu;
2861 
2862 	spin_lock(&iommu_device_lock);
2863 	list_for_each_entry(iommu, &iommu_device_list, list)
2864 		if (iommu->fwnode == fwnode) {
2865 			ops = iommu->ops;
2866 			break;
2867 		}
2868 	spin_unlock(&iommu_device_lock);
2869 	return ops;
2870 }
2871 
2872 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2873 		      const struct iommu_ops *ops)
2874 {
2875 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2876 
2877 	if (fwspec)
2878 		return ops == fwspec->ops ? 0 : -EINVAL;
2879 
2880 	if (!dev_iommu_get(dev))
2881 		return -ENOMEM;
2882 
2883 	/* Preallocate for the overwhelmingly common case of 1 ID */
2884 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2885 	if (!fwspec)
2886 		return -ENOMEM;
2887 
2888 	of_node_get(to_of_node(iommu_fwnode));
2889 	fwspec->iommu_fwnode = iommu_fwnode;
2890 	fwspec->ops = ops;
2891 	dev_iommu_fwspec_set(dev, fwspec);
2892 	return 0;
2893 }
2894 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2895 
2896 void iommu_fwspec_free(struct device *dev)
2897 {
2898 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2899 
2900 	if (fwspec) {
2901 		fwnode_handle_put(fwspec->iommu_fwnode);
2902 		kfree(fwspec);
2903 		dev_iommu_fwspec_set(dev, NULL);
2904 	}
2905 }
2906 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2907 
2908 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2909 {
2910 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2911 	int i, new_num;
2912 
2913 	if (!fwspec)
2914 		return -EINVAL;
2915 
2916 	new_num = fwspec->num_ids + num_ids;
2917 	if (new_num > 1) {
2918 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2919 				  GFP_KERNEL);
2920 		if (!fwspec)
2921 			return -ENOMEM;
2922 
2923 		dev_iommu_fwspec_set(dev, fwspec);
2924 	}
2925 
2926 	for (i = 0; i < num_ids; i++)
2927 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2928 
2929 	fwspec->num_ids = new_num;
2930 	return 0;
2931 }
2932 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2933 
2934 /*
2935  * Per device IOMMU features.
2936  */
2937 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2938 {
2939 	if (dev->iommu && dev->iommu->iommu_dev) {
2940 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2941 
2942 		if (ops->dev_enable_feat)
2943 			return ops->dev_enable_feat(dev, feat);
2944 	}
2945 
2946 	return -ENODEV;
2947 }
2948 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2949 
2950 /*
2951  * The device drivers should do the necessary cleanups before calling this.
2952  * For example, before disabling the aux-domain feature, the device driver
2953  * should detach all aux-domains. Otherwise, this will return -EBUSY.
2954  */
2955 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2956 {
2957 	if (dev->iommu && dev->iommu->iommu_dev) {
2958 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2959 
2960 		if (ops->dev_disable_feat)
2961 			return ops->dev_disable_feat(dev, feat);
2962 	}
2963 
2964 	return -EBUSY;
2965 }
2966 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2967 
2968 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2969 {
2970 	if (dev->iommu && dev->iommu->iommu_dev) {
2971 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2972 
2973 		if (ops->dev_feat_enabled)
2974 			return ops->dev_feat_enabled(dev, feat);
2975 	}
2976 
2977 	return false;
2978 }
2979 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2980 
2981 /*
2982  * Aux-domain specific attach/detach.
2983  *
2984  * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2985  * true. Also, as long as domains are attached to a device through this
2986  * interface, any tries to call iommu_attach_device() should fail
2987  * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2988  * This should make us safe against a device being attached to a guest as a
2989  * whole while there are still pasid users on it (aux and sva).
2990  */
2991 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2992 {
2993 	int ret = -ENODEV;
2994 
2995 	if (domain->ops->aux_attach_dev)
2996 		ret = domain->ops->aux_attach_dev(domain, dev);
2997 
2998 	if (!ret)
2999 		trace_attach_device_to_domain(dev);
3000 
3001 	return ret;
3002 }
3003 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
3004 
3005 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
3006 {
3007 	if (domain->ops->aux_detach_dev) {
3008 		domain->ops->aux_detach_dev(domain, dev);
3009 		trace_detach_device_from_domain(dev);
3010 	}
3011 }
3012 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
3013 
3014 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
3015 {
3016 	int ret = -ENODEV;
3017 
3018 	if (domain->ops->aux_get_pasid)
3019 		ret = domain->ops->aux_get_pasid(domain, dev);
3020 
3021 	return ret;
3022 }
3023 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
3024 
3025 /**
3026  * iommu_sva_bind_device() - Bind a process address space to a device
3027  * @dev: the device
3028  * @mm: the mm to bind, caller must hold a reference to it
3029  *
3030  * Create a bond between device and address space, allowing the device to access
3031  * the mm using the returned PASID. If a bond already exists between @device and
3032  * @mm, it is returned and an additional reference is taken. Caller must call
3033  * iommu_sva_unbind_device() to release each reference.
3034  *
3035  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
3036  * initialize the required SVA features.
3037  *
3038  * On error, returns an ERR_PTR value.
3039  */
3040 struct iommu_sva *
3041 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
3042 {
3043 	struct iommu_group *group;
3044 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
3045 	const struct iommu_ops *ops = dev->bus->iommu_ops;
3046 
3047 	if (!ops || !ops->sva_bind)
3048 		return ERR_PTR(-ENODEV);
3049 
3050 	group = iommu_group_get(dev);
3051 	if (!group)
3052 		return ERR_PTR(-ENODEV);
3053 
3054 	/* Ensure device count and domain don't change while we're binding */
3055 	mutex_lock(&group->mutex);
3056 
3057 	/*
3058 	 * To keep things simple, SVA currently doesn't support IOMMU groups
3059 	 * with more than one device. Existing SVA-capable systems are not
3060 	 * affected by the problems that required IOMMU groups (lack of ACS
3061 	 * isolation, device ID aliasing and other hardware issues).
3062 	 */
3063 	if (iommu_group_device_count(group) != 1)
3064 		goto out_unlock;
3065 
3066 	handle = ops->sva_bind(dev, mm, drvdata);
3067 
3068 out_unlock:
3069 	mutex_unlock(&group->mutex);
3070 	iommu_group_put(group);
3071 
3072 	return handle;
3073 }
3074 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
3075 
3076 /**
3077  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
3078  * @handle: the handle returned by iommu_sva_bind_device()
3079  *
3080  * Put reference to a bond between device and address space. The device should
3081  * not be issuing any more transaction for this PASID. All outstanding page
3082  * requests for this PASID must have been flushed to the IOMMU.
3083  */
3084 void iommu_sva_unbind_device(struct iommu_sva *handle)
3085 {
3086 	struct iommu_group *group;
3087 	struct device *dev = handle->dev;
3088 	const struct iommu_ops *ops = dev->bus->iommu_ops;
3089 
3090 	if (!ops || !ops->sva_unbind)
3091 		return;
3092 
3093 	group = iommu_group_get(dev);
3094 	if (!group)
3095 		return;
3096 
3097 	mutex_lock(&group->mutex);
3098 	ops->sva_unbind(handle);
3099 	mutex_unlock(&group->mutex);
3100 
3101 	iommu_group_put(group);
3102 }
3103 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
3104 
3105 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
3106 {
3107 	const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
3108 
3109 	if (!ops || !ops->sva_get_pasid)
3110 		return IOMMU_PASID_INVALID;
3111 
3112 	return ops->sva_get_pasid(handle);
3113 }
3114 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
3115 
3116 /*
3117  * Changes the default domain of an iommu group that has *only* one device
3118  *
3119  * @group: The group for which the default domain should be changed
3120  * @prev_dev: The device in the group (this is used to make sure that the device
3121  *	 hasn't changed after the caller has called this function)
3122  * @type: The type of the new default domain that gets associated with the group
3123  *
3124  * Returns 0 on success and error code on failure
3125  *
3126  * Note:
3127  * 1. Presently, this function is called only when user requests to change the
3128  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
3129  *    Please take a closer look if intended to use for other purposes.
3130  */
3131 static int iommu_change_dev_def_domain(struct iommu_group *group,
3132 				       struct device *prev_dev, int type)
3133 {
3134 	struct iommu_domain *prev_dom;
3135 	struct group_device *grp_dev;
3136 	int ret, dev_def_dom;
3137 	struct device *dev;
3138 
3139 	mutex_lock(&group->mutex);
3140 
3141 	if (group->default_domain != group->domain) {
3142 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
3143 		ret = -EBUSY;
3144 		goto out;
3145 	}
3146 
3147 	/*
3148 	 * iommu group wasn't locked while acquiring device lock in
3149 	 * iommu_group_store_type(). So, make sure that the device count hasn't
3150 	 * changed while acquiring device lock.
3151 	 *
3152 	 * Changing default domain of an iommu group with two or more devices
3153 	 * isn't supported because there could be a potential deadlock. Consider
3154 	 * the following scenario. T1 is trying to acquire device locks of all
3155 	 * the devices in the group and before it could acquire all of them,
3156 	 * there could be another thread T2 (from different sub-system and use
3157 	 * case) that has already acquired some of the device locks and might be
3158 	 * waiting for T1 to release other device locks.
3159 	 */
3160 	if (iommu_group_device_count(group) != 1) {
3161 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
3162 		ret = -EINVAL;
3163 		goto out;
3164 	}
3165 
3166 	/* Since group has only one device */
3167 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3168 	dev = grp_dev->dev;
3169 
3170 	if (prev_dev != dev) {
3171 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
3172 		ret = -EBUSY;
3173 		goto out;
3174 	}
3175 
3176 	prev_dom = group->default_domain;
3177 	if (!prev_dom) {
3178 		ret = -EINVAL;
3179 		goto out;
3180 	}
3181 
3182 	dev_def_dom = iommu_get_def_domain_type(dev);
3183 	if (!type) {
3184 		/*
3185 		 * If the user hasn't requested any specific type of domain and
3186 		 * if the device supports both the domains, then default to the
3187 		 * domain the device was booted with
3188 		 */
3189 		type = dev_def_dom ? : iommu_def_domain_type;
3190 	} else if (dev_def_dom && type != dev_def_dom) {
3191 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
3192 				    iommu_domain_type_str(type));
3193 		ret = -EINVAL;
3194 		goto out;
3195 	}
3196 
3197 	/*
3198 	 * Switch to a new domain only if the requested domain type is different
3199 	 * from the existing default domain type
3200 	 */
3201 	if (prev_dom->type == type) {
3202 		ret = 0;
3203 		goto out;
3204 	}
3205 
3206 	/* Sets group->default_domain to the newly allocated domain */
3207 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
3208 	if (ret)
3209 		goto out;
3210 
3211 	ret = iommu_create_device_direct_mappings(group, dev);
3212 	if (ret)
3213 		goto free_new_domain;
3214 
3215 	ret = __iommu_attach_device(group->default_domain, dev);
3216 	if (ret)
3217 		goto free_new_domain;
3218 
3219 	group->domain = group->default_domain;
3220 
3221 	/*
3222 	 * Release the mutex here because ops->probe_finalize() call-back of
3223 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3224 	 * in-turn might call back into IOMMU core code, where it tries to take
3225 	 * group->mutex, resulting in a deadlock.
3226 	 */
3227 	mutex_unlock(&group->mutex);
3228 
3229 	/* Make sure dma_ops is appropriatley set */
3230 	iommu_group_do_probe_finalize(dev, group->default_domain);
3231 	iommu_domain_free(prev_dom);
3232 	return 0;
3233 
3234 free_new_domain:
3235 	iommu_domain_free(group->default_domain);
3236 	group->default_domain = prev_dom;
3237 	group->domain = prev_dom;
3238 
3239 out:
3240 	mutex_unlock(&group->mutex);
3241 
3242 	return ret;
3243 }
3244 
3245 /*
3246  * Changing the default domain through sysfs requires the users to ubind the
3247  * drivers from the devices in the iommu group. Return failure if this doesn't
3248  * meet.
3249  *
3250  * We need to consider the race between this and the device release path.
3251  * device_lock(dev) is used here to guarantee that the device release path
3252  * will not be entered at the same time.
3253  */
3254 static ssize_t iommu_group_store_type(struct iommu_group *group,
3255 				      const char *buf, size_t count)
3256 {
3257 	struct group_device *grp_dev;
3258 	struct device *dev;
3259 	int ret, req_type;
3260 
3261 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3262 		return -EACCES;
3263 
3264 	if (WARN_ON(!group))
3265 		return -EINVAL;
3266 
3267 	if (sysfs_streq(buf, "identity"))
3268 		req_type = IOMMU_DOMAIN_IDENTITY;
3269 	else if (sysfs_streq(buf, "DMA"))
3270 		req_type = IOMMU_DOMAIN_DMA;
3271 	else if (sysfs_streq(buf, "DMA-FQ"))
3272 		req_type = IOMMU_DOMAIN_DMA_FQ;
3273 	else if (sysfs_streq(buf, "auto"))
3274 		req_type = 0;
3275 	else
3276 		return -EINVAL;
3277 
3278 	/*
3279 	 * Lock/Unlock the group mutex here before device lock to
3280 	 * 1. Make sure that the iommu group has only one device (this is a
3281 	 *    prerequisite for step 2)
3282 	 * 2. Get struct *dev which is needed to lock device
3283 	 */
3284 	mutex_lock(&group->mutex);
3285 	if (iommu_group_device_count(group) != 1) {
3286 		mutex_unlock(&group->mutex);
3287 		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3288 		return -EINVAL;
3289 	}
3290 
3291 	/* Since group has only one device */
3292 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3293 	dev = grp_dev->dev;
3294 	get_device(dev);
3295 
3296 	/*
3297 	 * Don't hold the group mutex because taking group mutex first and then
3298 	 * the device lock could potentially cause a deadlock as below. Assume
3299 	 * two threads T1 and T2. T1 is trying to change default domain of an
3300 	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3301 	 * of a PCIe device which is in the same iommu group. T1 takes group
3302 	 * mutex and before it could take device lock assume T2 has taken device
3303 	 * lock and is yet to take group mutex. Now, both the threads will be
3304 	 * waiting for the other thread to release lock. Below, lock order was
3305 	 * suggested.
3306 	 * device_lock(dev);
3307 	 *	mutex_lock(&group->mutex);
3308 	 *		iommu_change_dev_def_domain();
3309 	 *	mutex_unlock(&group->mutex);
3310 	 * device_unlock(dev);
3311 	 *
3312 	 * [1] Typical device release path
3313 	 * device_lock() from device/driver core code
3314 	 *  -> bus_notifier()
3315 	 *   -> iommu_bus_notifier()
3316 	 *    -> iommu_release_device()
3317 	 *     -> ops->release_device() vendor driver calls back iommu core code
3318 	 *      -> mutex_lock() from iommu core code
3319 	 */
3320 	mutex_unlock(&group->mutex);
3321 
3322 	/* Check if the device in the group still has a driver bound to it */
3323 	device_lock(dev);
3324 	if (device_is_bound(dev)) {
3325 		pr_err_ratelimited("Device is still bound to driver\n");
3326 		ret = -EBUSY;
3327 		goto out;
3328 	}
3329 
3330 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3331 	ret = ret ?: count;
3332 
3333 out:
3334 	device_unlock(dev);
3335 	put_device(dev);
3336 
3337 	return ret;
3338 }
3339