xref: /linux/drivers/iommu/iommu.c (revision 17b121ad0c43342bc894632f6710b894849ca372)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/bug.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/errno.h>
17 #include <linux/iommu.h>
18 #include <linux/idr.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/pci.h>
22 #include <linux/bitops.h>
23 #include <linux/property.h>
24 #include <linux/fsl/mc.h>
25 #include <linux/module.h>
26 #include <trace/events/iommu.h>
27 
28 static struct kset *iommu_group_kset;
29 static DEFINE_IDA(iommu_group_ida);
30 
31 static unsigned int iommu_def_domain_type __read_mostly;
32 static bool iommu_dma_strict __read_mostly = true;
33 static u32 iommu_cmd_line __read_mostly;
34 
35 struct iommu_group {
36 	struct kobject kobj;
37 	struct kobject *devices_kobj;
38 	struct list_head devices;
39 	struct mutex mutex;
40 	struct blocking_notifier_head notifier;
41 	void *iommu_data;
42 	void (*iommu_data_release)(void *iommu_data);
43 	char *name;
44 	int id;
45 	struct iommu_domain *default_domain;
46 	struct iommu_domain *domain;
47 	struct list_head entry;
48 };
49 
50 struct group_device {
51 	struct list_head list;
52 	struct device *dev;
53 	char *name;
54 };
55 
56 struct iommu_group_attribute {
57 	struct attribute attr;
58 	ssize_t (*show)(struct iommu_group *group, char *buf);
59 	ssize_t (*store)(struct iommu_group *group,
60 			 const char *buf, size_t count);
61 };
62 
63 static const char * const iommu_group_resv_type_string[] = {
64 	[IOMMU_RESV_DIRECT]			= "direct",
65 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
66 	[IOMMU_RESV_RESERVED]			= "reserved",
67 	[IOMMU_RESV_MSI]			= "msi",
68 	[IOMMU_RESV_SW_MSI]			= "msi",
69 };
70 
71 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
72 #define IOMMU_CMD_LINE_STRICT		BIT(1)
73 
74 static int iommu_alloc_default_domain(struct iommu_group *group,
75 				      struct device *dev);
76 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
77 						 unsigned type);
78 static int __iommu_attach_device(struct iommu_domain *domain,
79 				 struct device *dev);
80 static int __iommu_attach_group(struct iommu_domain *domain,
81 				struct iommu_group *group);
82 static void __iommu_detach_group(struct iommu_domain *domain,
83 				 struct iommu_group *group);
84 static int iommu_create_device_direct_mappings(struct iommu_group *group,
85 					       struct device *dev);
86 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
87 static ssize_t iommu_group_store_type(struct iommu_group *group,
88 				      const char *buf, size_t count);
89 
90 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
91 struct iommu_group_attribute iommu_group_attr_##_name =		\
92 	__ATTR(_name, _mode, _show, _store)
93 
94 #define to_iommu_group_attr(_attr)	\
95 	container_of(_attr, struct iommu_group_attribute, attr)
96 #define to_iommu_group(_kobj)		\
97 	container_of(_kobj, struct iommu_group, kobj)
98 
99 static LIST_HEAD(iommu_device_list);
100 static DEFINE_SPINLOCK(iommu_device_lock);
101 
102 /*
103  * Use a function instead of an array here because the domain-type is a
104  * bit-field, so an array would waste memory.
105  */
106 static const char *iommu_domain_type_str(unsigned int t)
107 {
108 	switch (t) {
109 	case IOMMU_DOMAIN_BLOCKED:
110 		return "Blocked";
111 	case IOMMU_DOMAIN_IDENTITY:
112 		return "Passthrough";
113 	case IOMMU_DOMAIN_UNMANAGED:
114 		return "Unmanaged";
115 	case IOMMU_DOMAIN_DMA:
116 		return "Translated";
117 	default:
118 		return "Unknown";
119 	}
120 }
121 
122 static int __init iommu_subsys_init(void)
123 {
124 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
125 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
126 			iommu_set_default_passthrough(false);
127 		else
128 			iommu_set_default_translated(false);
129 
130 		if (iommu_default_passthrough() && mem_encrypt_active()) {
131 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
132 			iommu_set_default_translated(false);
133 		}
134 	}
135 
136 	pr_info("Default domain type: %s %s\n",
137 		iommu_domain_type_str(iommu_def_domain_type),
138 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
139 			"(set via kernel command line)" : "");
140 
141 	return 0;
142 }
143 subsys_initcall(iommu_subsys_init);
144 
145 /**
146  * iommu_device_register() - Register an IOMMU hardware instance
147  * @iommu: IOMMU handle for the instance
148  * @ops:   IOMMU ops to associate with the instance
149  * @hwdev: (optional) actual instance device, used for fwnode lookup
150  *
151  * Return: 0 on success, or an error.
152  */
153 int iommu_device_register(struct iommu_device *iommu,
154 			  const struct iommu_ops *ops, struct device *hwdev)
155 {
156 	/* We need to be able to take module references appropriately */
157 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
158 		return -EINVAL;
159 
160 	iommu->ops = ops;
161 	if (hwdev)
162 		iommu->fwnode = hwdev->fwnode;
163 
164 	spin_lock(&iommu_device_lock);
165 	list_add_tail(&iommu->list, &iommu_device_list);
166 	spin_unlock(&iommu_device_lock);
167 	return 0;
168 }
169 EXPORT_SYMBOL_GPL(iommu_device_register);
170 
171 void iommu_device_unregister(struct iommu_device *iommu)
172 {
173 	spin_lock(&iommu_device_lock);
174 	list_del(&iommu->list);
175 	spin_unlock(&iommu_device_lock);
176 }
177 EXPORT_SYMBOL_GPL(iommu_device_unregister);
178 
179 static struct dev_iommu *dev_iommu_get(struct device *dev)
180 {
181 	struct dev_iommu *param = dev->iommu;
182 
183 	if (param)
184 		return param;
185 
186 	param = kzalloc(sizeof(*param), GFP_KERNEL);
187 	if (!param)
188 		return NULL;
189 
190 	mutex_init(&param->lock);
191 	dev->iommu = param;
192 	return param;
193 }
194 
195 static void dev_iommu_free(struct device *dev)
196 {
197 	iommu_fwspec_free(dev);
198 	kfree(dev->iommu);
199 	dev->iommu = NULL;
200 }
201 
202 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
203 {
204 	const struct iommu_ops *ops = dev->bus->iommu_ops;
205 	struct iommu_device *iommu_dev;
206 	struct iommu_group *group;
207 	int ret;
208 
209 	if (!ops)
210 		return -ENODEV;
211 
212 	if (!dev_iommu_get(dev))
213 		return -ENOMEM;
214 
215 	if (!try_module_get(ops->owner)) {
216 		ret = -EINVAL;
217 		goto err_free;
218 	}
219 
220 	iommu_dev = ops->probe_device(dev);
221 	if (IS_ERR(iommu_dev)) {
222 		ret = PTR_ERR(iommu_dev);
223 		goto out_module_put;
224 	}
225 
226 	dev->iommu->iommu_dev = iommu_dev;
227 
228 	group = iommu_group_get_for_dev(dev);
229 	if (IS_ERR(group)) {
230 		ret = PTR_ERR(group);
231 		goto out_release;
232 	}
233 	iommu_group_put(group);
234 
235 	if (group_list && !group->default_domain && list_empty(&group->entry))
236 		list_add_tail(&group->entry, group_list);
237 
238 	iommu_device_link(iommu_dev, dev);
239 
240 	return 0;
241 
242 out_release:
243 	ops->release_device(dev);
244 
245 out_module_put:
246 	module_put(ops->owner);
247 
248 err_free:
249 	dev_iommu_free(dev);
250 
251 	return ret;
252 }
253 
254 int iommu_probe_device(struct device *dev)
255 {
256 	const struct iommu_ops *ops = dev->bus->iommu_ops;
257 	struct iommu_group *group;
258 	int ret;
259 
260 	ret = __iommu_probe_device(dev, NULL);
261 	if (ret)
262 		goto err_out;
263 
264 	group = iommu_group_get(dev);
265 	if (!group) {
266 		ret = -ENODEV;
267 		goto err_release;
268 	}
269 
270 	/*
271 	 * Try to allocate a default domain - needs support from the
272 	 * IOMMU driver. There are still some drivers which don't
273 	 * support default domains, so the return value is not yet
274 	 * checked.
275 	 */
276 	iommu_alloc_default_domain(group, dev);
277 
278 	if (group->default_domain) {
279 		ret = __iommu_attach_device(group->default_domain, dev);
280 		if (ret) {
281 			iommu_group_put(group);
282 			goto err_release;
283 		}
284 	}
285 
286 	iommu_create_device_direct_mappings(group, dev);
287 
288 	iommu_group_put(group);
289 
290 	if (ops->probe_finalize)
291 		ops->probe_finalize(dev);
292 
293 	return 0;
294 
295 err_release:
296 	iommu_release_device(dev);
297 
298 err_out:
299 	return ret;
300 
301 }
302 
303 void iommu_release_device(struct device *dev)
304 {
305 	const struct iommu_ops *ops = dev->bus->iommu_ops;
306 
307 	if (!dev->iommu)
308 		return;
309 
310 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
311 
312 	ops->release_device(dev);
313 
314 	iommu_group_remove_device(dev);
315 	module_put(ops->owner);
316 	dev_iommu_free(dev);
317 }
318 
319 static int __init iommu_set_def_domain_type(char *str)
320 {
321 	bool pt;
322 	int ret;
323 
324 	ret = kstrtobool(str, &pt);
325 	if (ret)
326 		return ret;
327 
328 	if (pt)
329 		iommu_set_default_passthrough(true);
330 	else
331 		iommu_set_default_translated(true);
332 
333 	return 0;
334 }
335 early_param("iommu.passthrough", iommu_set_def_domain_type);
336 
337 static int __init iommu_dma_setup(char *str)
338 {
339 	int ret = kstrtobool(str, &iommu_dma_strict);
340 
341 	if (!ret)
342 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
343 	return ret;
344 }
345 early_param("iommu.strict", iommu_dma_setup);
346 
347 void iommu_set_dma_strict(bool strict)
348 {
349 	if (strict || !(iommu_cmd_line & IOMMU_CMD_LINE_STRICT))
350 		iommu_dma_strict = strict;
351 }
352 
353 bool iommu_get_dma_strict(struct iommu_domain *domain)
354 {
355 	/* only allow lazy flushing for DMA domains */
356 	if (domain->type == IOMMU_DOMAIN_DMA)
357 		return iommu_dma_strict;
358 	return true;
359 }
360 EXPORT_SYMBOL_GPL(iommu_get_dma_strict);
361 
362 static ssize_t iommu_group_attr_show(struct kobject *kobj,
363 				     struct attribute *__attr, char *buf)
364 {
365 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
366 	struct iommu_group *group = to_iommu_group(kobj);
367 	ssize_t ret = -EIO;
368 
369 	if (attr->show)
370 		ret = attr->show(group, buf);
371 	return ret;
372 }
373 
374 static ssize_t iommu_group_attr_store(struct kobject *kobj,
375 				      struct attribute *__attr,
376 				      const char *buf, size_t count)
377 {
378 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
379 	struct iommu_group *group = to_iommu_group(kobj);
380 	ssize_t ret = -EIO;
381 
382 	if (attr->store)
383 		ret = attr->store(group, buf, count);
384 	return ret;
385 }
386 
387 static const struct sysfs_ops iommu_group_sysfs_ops = {
388 	.show = iommu_group_attr_show,
389 	.store = iommu_group_attr_store,
390 };
391 
392 static int iommu_group_create_file(struct iommu_group *group,
393 				   struct iommu_group_attribute *attr)
394 {
395 	return sysfs_create_file(&group->kobj, &attr->attr);
396 }
397 
398 static void iommu_group_remove_file(struct iommu_group *group,
399 				    struct iommu_group_attribute *attr)
400 {
401 	sysfs_remove_file(&group->kobj, &attr->attr);
402 }
403 
404 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
405 {
406 	return sprintf(buf, "%s\n", group->name);
407 }
408 
409 /**
410  * iommu_insert_resv_region - Insert a new region in the
411  * list of reserved regions.
412  * @new: new region to insert
413  * @regions: list of regions
414  *
415  * Elements are sorted by start address and overlapping segments
416  * of the same type are merged.
417  */
418 static int iommu_insert_resv_region(struct iommu_resv_region *new,
419 				    struct list_head *regions)
420 {
421 	struct iommu_resv_region *iter, *tmp, *nr, *top;
422 	LIST_HEAD(stack);
423 
424 	nr = iommu_alloc_resv_region(new->start, new->length,
425 				     new->prot, new->type);
426 	if (!nr)
427 		return -ENOMEM;
428 
429 	/* First add the new element based on start address sorting */
430 	list_for_each_entry(iter, regions, list) {
431 		if (nr->start < iter->start ||
432 		    (nr->start == iter->start && nr->type <= iter->type))
433 			break;
434 	}
435 	list_add_tail(&nr->list, &iter->list);
436 
437 	/* Merge overlapping segments of type nr->type in @regions, if any */
438 	list_for_each_entry_safe(iter, tmp, regions, list) {
439 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
440 
441 		/* no merge needed on elements of different types than @new */
442 		if (iter->type != new->type) {
443 			list_move_tail(&iter->list, &stack);
444 			continue;
445 		}
446 
447 		/* look for the last stack element of same type as @iter */
448 		list_for_each_entry_reverse(top, &stack, list)
449 			if (top->type == iter->type)
450 				goto check_overlap;
451 
452 		list_move_tail(&iter->list, &stack);
453 		continue;
454 
455 check_overlap:
456 		top_end = top->start + top->length - 1;
457 
458 		if (iter->start > top_end + 1) {
459 			list_move_tail(&iter->list, &stack);
460 		} else {
461 			top->length = max(top_end, iter_end) - top->start + 1;
462 			list_del(&iter->list);
463 			kfree(iter);
464 		}
465 	}
466 	list_splice(&stack, regions);
467 	return 0;
468 }
469 
470 static int
471 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
472 				 struct list_head *group_resv_regions)
473 {
474 	struct iommu_resv_region *entry;
475 	int ret = 0;
476 
477 	list_for_each_entry(entry, dev_resv_regions, list) {
478 		ret = iommu_insert_resv_region(entry, group_resv_regions);
479 		if (ret)
480 			break;
481 	}
482 	return ret;
483 }
484 
485 int iommu_get_group_resv_regions(struct iommu_group *group,
486 				 struct list_head *head)
487 {
488 	struct group_device *device;
489 	int ret = 0;
490 
491 	mutex_lock(&group->mutex);
492 	list_for_each_entry(device, &group->devices, list) {
493 		struct list_head dev_resv_regions;
494 
495 		INIT_LIST_HEAD(&dev_resv_regions);
496 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
497 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
498 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
499 		if (ret)
500 			break;
501 	}
502 	mutex_unlock(&group->mutex);
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
506 
507 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
508 					     char *buf)
509 {
510 	struct iommu_resv_region *region, *next;
511 	struct list_head group_resv_regions;
512 	char *str = buf;
513 
514 	INIT_LIST_HEAD(&group_resv_regions);
515 	iommu_get_group_resv_regions(group, &group_resv_regions);
516 
517 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
518 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
519 			       (long long int)region->start,
520 			       (long long int)(region->start +
521 						region->length - 1),
522 			       iommu_group_resv_type_string[region->type]);
523 		kfree(region);
524 	}
525 
526 	return (str - buf);
527 }
528 
529 static ssize_t iommu_group_show_type(struct iommu_group *group,
530 				     char *buf)
531 {
532 	char *type = "unknown\n";
533 
534 	mutex_lock(&group->mutex);
535 	if (group->default_domain) {
536 		switch (group->default_domain->type) {
537 		case IOMMU_DOMAIN_BLOCKED:
538 			type = "blocked\n";
539 			break;
540 		case IOMMU_DOMAIN_IDENTITY:
541 			type = "identity\n";
542 			break;
543 		case IOMMU_DOMAIN_UNMANAGED:
544 			type = "unmanaged\n";
545 			break;
546 		case IOMMU_DOMAIN_DMA:
547 			type = "DMA\n";
548 			break;
549 		}
550 	}
551 	mutex_unlock(&group->mutex);
552 	strcpy(buf, type);
553 
554 	return strlen(type);
555 }
556 
557 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
558 
559 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
560 			iommu_group_show_resv_regions, NULL);
561 
562 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
563 			iommu_group_store_type);
564 
565 static void iommu_group_release(struct kobject *kobj)
566 {
567 	struct iommu_group *group = to_iommu_group(kobj);
568 
569 	pr_debug("Releasing group %d\n", group->id);
570 
571 	if (group->iommu_data_release)
572 		group->iommu_data_release(group->iommu_data);
573 
574 	ida_simple_remove(&iommu_group_ida, group->id);
575 
576 	if (group->default_domain)
577 		iommu_domain_free(group->default_domain);
578 
579 	kfree(group->name);
580 	kfree(group);
581 }
582 
583 static struct kobj_type iommu_group_ktype = {
584 	.sysfs_ops = &iommu_group_sysfs_ops,
585 	.release = iommu_group_release,
586 };
587 
588 /**
589  * iommu_group_alloc - Allocate a new group
590  *
591  * This function is called by an iommu driver to allocate a new iommu
592  * group.  The iommu group represents the minimum granularity of the iommu.
593  * Upon successful return, the caller holds a reference to the supplied
594  * group in order to hold the group until devices are added.  Use
595  * iommu_group_put() to release this extra reference count, allowing the
596  * group to be automatically reclaimed once it has no devices or external
597  * references.
598  */
599 struct iommu_group *iommu_group_alloc(void)
600 {
601 	struct iommu_group *group;
602 	int ret;
603 
604 	group = kzalloc(sizeof(*group), GFP_KERNEL);
605 	if (!group)
606 		return ERR_PTR(-ENOMEM);
607 
608 	group->kobj.kset = iommu_group_kset;
609 	mutex_init(&group->mutex);
610 	INIT_LIST_HEAD(&group->devices);
611 	INIT_LIST_HEAD(&group->entry);
612 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
613 
614 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
615 	if (ret < 0) {
616 		kfree(group);
617 		return ERR_PTR(ret);
618 	}
619 	group->id = ret;
620 
621 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
622 				   NULL, "%d", group->id);
623 	if (ret) {
624 		ida_simple_remove(&iommu_group_ida, group->id);
625 		kobject_put(&group->kobj);
626 		return ERR_PTR(ret);
627 	}
628 
629 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
630 	if (!group->devices_kobj) {
631 		kobject_put(&group->kobj); /* triggers .release & free */
632 		return ERR_PTR(-ENOMEM);
633 	}
634 
635 	/*
636 	 * The devices_kobj holds a reference on the group kobject, so
637 	 * as long as that exists so will the group.  We can therefore
638 	 * use the devices_kobj for reference counting.
639 	 */
640 	kobject_put(&group->kobj);
641 
642 	ret = iommu_group_create_file(group,
643 				      &iommu_group_attr_reserved_regions);
644 	if (ret)
645 		return ERR_PTR(ret);
646 
647 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
648 	if (ret)
649 		return ERR_PTR(ret);
650 
651 	pr_debug("Allocated group %d\n", group->id);
652 
653 	return group;
654 }
655 EXPORT_SYMBOL_GPL(iommu_group_alloc);
656 
657 struct iommu_group *iommu_group_get_by_id(int id)
658 {
659 	struct kobject *group_kobj;
660 	struct iommu_group *group;
661 	const char *name;
662 
663 	if (!iommu_group_kset)
664 		return NULL;
665 
666 	name = kasprintf(GFP_KERNEL, "%d", id);
667 	if (!name)
668 		return NULL;
669 
670 	group_kobj = kset_find_obj(iommu_group_kset, name);
671 	kfree(name);
672 
673 	if (!group_kobj)
674 		return NULL;
675 
676 	group = container_of(group_kobj, struct iommu_group, kobj);
677 	BUG_ON(group->id != id);
678 
679 	kobject_get(group->devices_kobj);
680 	kobject_put(&group->kobj);
681 
682 	return group;
683 }
684 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
685 
686 /**
687  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
688  * @group: the group
689  *
690  * iommu drivers can store data in the group for use when doing iommu
691  * operations.  This function provides a way to retrieve it.  Caller
692  * should hold a group reference.
693  */
694 void *iommu_group_get_iommudata(struct iommu_group *group)
695 {
696 	return group->iommu_data;
697 }
698 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
699 
700 /**
701  * iommu_group_set_iommudata - set iommu_data for a group
702  * @group: the group
703  * @iommu_data: new data
704  * @release: release function for iommu_data
705  *
706  * iommu drivers can store data in the group for use when doing iommu
707  * operations.  This function provides a way to set the data after
708  * the group has been allocated.  Caller should hold a group reference.
709  */
710 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
711 			       void (*release)(void *iommu_data))
712 {
713 	group->iommu_data = iommu_data;
714 	group->iommu_data_release = release;
715 }
716 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
717 
718 /**
719  * iommu_group_set_name - set name for a group
720  * @group: the group
721  * @name: name
722  *
723  * Allow iommu driver to set a name for a group.  When set it will
724  * appear in a name attribute file under the group in sysfs.
725  */
726 int iommu_group_set_name(struct iommu_group *group, const char *name)
727 {
728 	int ret;
729 
730 	if (group->name) {
731 		iommu_group_remove_file(group, &iommu_group_attr_name);
732 		kfree(group->name);
733 		group->name = NULL;
734 		if (!name)
735 			return 0;
736 	}
737 
738 	group->name = kstrdup(name, GFP_KERNEL);
739 	if (!group->name)
740 		return -ENOMEM;
741 
742 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
743 	if (ret) {
744 		kfree(group->name);
745 		group->name = NULL;
746 		return ret;
747 	}
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL_GPL(iommu_group_set_name);
752 
753 static int iommu_create_device_direct_mappings(struct iommu_group *group,
754 					       struct device *dev)
755 {
756 	struct iommu_domain *domain = group->default_domain;
757 	struct iommu_resv_region *entry;
758 	struct list_head mappings;
759 	unsigned long pg_size;
760 	int ret = 0;
761 
762 	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
763 		return 0;
764 
765 	BUG_ON(!domain->pgsize_bitmap);
766 
767 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
768 	INIT_LIST_HEAD(&mappings);
769 
770 	iommu_get_resv_regions(dev, &mappings);
771 
772 	/* We need to consider overlapping regions for different devices */
773 	list_for_each_entry(entry, &mappings, list) {
774 		dma_addr_t start, end, addr;
775 		size_t map_size = 0;
776 
777 		if (domain->ops->apply_resv_region)
778 			domain->ops->apply_resv_region(dev, domain, entry);
779 
780 		start = ALIGN(entry->start, pg_size);
781 		end   = ALIGN(entry->start + entry->length, pg_size);
782 
783 		if (entry->type != IOMMU_RESV_DIRECT &&
784 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
785 			continue;
786 
787 		for (addr = start; addr <= end; addr += pg_size) {
788 			phys_addr_t phys_addr;
789 
790 			if (addr == end)
791 				goto map_end;
792 
793 			phys_addr = iommu_iova_to_phys(domain, addr);
794 			if (!phys_addr) {
795 				map_size += pg_size;
796 				continue;
797 			}
798 
799 map_end:
800 			if (map_size) {
801 				ret = iommu_map(domain, addr - map_size,
802 						addr - map_size, map_size,
803 						entry->prot);
804 				if (ret)
805 					goto out;
806 				map_size = 0;
807 			}
808 		}
809 
810 	}
811 
812 	iommu_flush_iotlb_all(domain);
813 
814 out:
815 	iommu_put_resv_regions(dev, &mappings);
816 
817 	return ret;
818 }
819 
820 static bool iommu_is_attach_deferred(struct iommu_domain *domain,
821 				     struct device *dev)
822 {
823 	if (domain->ops->is_attach_deferred)
824 		return domain->ops->is_attach_deferred(domain, dev);
825 
826 	return false;
827 }
828 
829 /**
830  * iommu_group_add_device - add a device to an iommu group
831  * @group: the group into which to add the device (reference should be held)
832  * @dev: the device
833  *
834  * This function is called by an iommu driver to add a device into a
835  * group.  Adding a device increments the group reference count.
836  */
837 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
838 {
839 	int ret, i = 0;
840 	struct group_device *device;
841 
842 	device = kzalloc(sizeof(*device), GFP_KERNEL);
843 	if (!device)
844 		return -ENOMEM;
845 
846 	device->dev = dev;
847 
848 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
849 	if (ret)
850 		goto err_free_device;
851 
852 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
853 rename:
854 	if (!device->name) {
855 		ret = -ENOMEM;
856 		goto err_remove_link;
857 	}
858 
859 	ret = sysfs_create_link_nowarn(group->devices_kobj,
860 				       &dev->kobj, device->name);
861 	if (ret) {
862 		if (ret == -EEXIST && i >= 0) {
863 			/*
864 			 * Account for the slim chance of collision
865 			 * and append an instance to the name.
866 			 */
867 			kfree(device->name);
868 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
869 						 kobject_name(&dev->kobj), i++);
870 			goto rename;
871 		}
872 		goto err_free_name;
873 	}
874 
875 	kobject_get(group->devices_kobj);
876 
877 	dev->iommu_group = group;
878 
879 	mutex_lock(&group->mutex);
880 	list_add_tail(&device->list, &group->devices);
881 	if (group->domain  && !iommu_is_attach_deferred(group->domain, dev))
882 		ret = __iommu_attach_device(group->domain, dev);
883 	mutex_unlock(&group->mutex);
884 	if (ret)
885 		goto err_put_group;
886 
887 	/* Notify any listeners about change to group. */
888 	blocking_notifier_call_chain(&group->notifier,
889 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
890 
891 	trace_add_device_to_group(group->id, dev);
892 
893 	dev_info(dev, "Adding to iommu group %d\n", group->id);
894 
895 	return 0;
896 
897 err_put_group:
898 	mutex_lock(&group->mutex);
899 	list_del(&device->list);
900 	mutex_unlock(&group->mutex);
901 	dev->iommu_group = NULL;
902 	kobject_put(group->devices_kobj);
903 	sysfs_remove_link(group->devices_kobj, device->name);
904 err_free_name:
905 	kfree(device->name);
906 err_remove_link:
907 	sysfs_remove_link(&dev->kobj, "iommu_group");
908 err_free_device:
909 	kfree(device);
910 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
911 	return ret;
912 }
913 EXPORT_SYMBOL_GPL(iommu_group_add_device);
914 
915 /**
916  * iommu_group_remove_device - remove a device from it's current group
917  * @dev: device to be removed
918  *
919  * This function is called by an iommu driver to remove the device from
920  * it's current group.  This decrements the iommu group reference count.
921  */
922 void iommu_group_remove_device(struct device *dev)
923 {
924 	struct iommu_group *group = dev->iommu_group;
925 	struct group_device *tmp_device, *device = NULL;
926 
927 	if (!group)
928 		return;
929 
930 	dev_info(dev, "Removing from iommu group %d\n", group->id);
931 
932 	/* Pre-notify listeners that a device is being removed. */
933 	blocking_notifier_call_chain(&group->notifier,
934 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
935 
936 	mutex_lock(&group->mutex);
937 	list_for_each_entry(tmp_device, &group->devices, list) {
938 		if (tmp_device->dev == dev) {
939 			device = tmp_device;
940 			list_del(&device->list);
941 			break;
942 		}
943 	}
944 	mutex_unlock(&group->mutex);
945 
946 	if (!device)
947 		return;
948 
949 	sysfs_remove_link(group->devices_kobj, device->name);
950 	sysfs_remove_link(&dev->kobj, "iommu_group");
951 
952 	trace_remove_device_from_group(group->id, dev);
953 
954 	kfree(device->name);
955 	kfree(device);
956 	dev->iommu_group = NULL;
957 	kobject_put(group->devices_kobj);
958 }
959 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
960 
961 static int iommu_group_device_count(struct iommu_group *group)
962 {
963 	struct group_device *entry;
964 	int ret = 0;
965 
966 	list_for_each_entry(entry, &group->devices, list)
967 		ret++;
968 
969 	return ret;
970 }
971 
972 /**
973  * iommu_group_for_each_dev - iterate over each device in the group
974  * @group: the group
975  * @data: caller opaque data to be passed to callback function
976  * @fn: caller supplied callback function
977  *
978  * This function is called by group users to iterate over group devices.
979  * Callers should hold a reference count to the group during callback.
980  * The group->mutex is held across callbacks, which will block calls to
981  * iommu_group_add/remove_device.
982  */
983 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
984 				      int (*fn)(struct device *, void *))
985 {
986 	struct group_device *device;
987 	int ret = 0;
988 
989 	list_for_each_entry(device, &group->devices, list) {
990 		ret = fn(device->dev, data);
991 		if (ret)
992 			break;
993 	}
994 	return ret;
995 }
996 
997 
998 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
999 			     int (*fn)(struct device *, void *))
1000 {
1001 	int ret;
1002 
1003 	mutex_lock(&group->mutex);
1004 	ret = __iommu_group_for_each_dev(group, data, fn);
1005 	mutex_unlock(&group->mutex);
1006 
1007 	return ret;
1008 }
1009 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1010 
1011 /**
1012  * iommu_group_get - Return the group for a device and increment reference
1013  * @dev: get the group that this device belongs to
1014  *
1015  * This function is called by iommu drivers and users to get the group
1016  * for the specified device.  If found, the group is returned and the group
1017  * reference in incremented, else NULL.
1018  */
1019 struct iommu_group *iommu_group_get(struct device *dev)
1020 {
1021 	struct iommu_group *group = dev->iommu_group;
1022 
1023 	if (group)
1024 		kobject_get(group->devices_kobj);
1025 
1026 	return group;
1027 }
1028 EXPORT_SYMBOL_GPL(iommu_group_get);
1029 
1030 /**
1031  * iommu_group_ref_get - Increment reference on a group
1032  * @group: the group to use, must not be NULL
1033  *
1034  * This function is called by iommu drivers to take additional references on an
1035  * existing group.  Returns the given group for convenience.
1036  */
1037 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1038 {
1039 	kobject_get(group->devices_kobj);
1040 	return group;
1041 }
1042 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1043 
1044 /**
1045  * iommu_group_put - Decrement group reference
1046  * @group: the group to use
1047  *
1048  * This function is called by iommu drivers and users to release the
1049  * iommu group.  Once the reference count is zero, the group is released.
1050  */
1051 void iommu_group_put(struct iommu_group *group)
1052 {
1053 	if (group)
1054 		kobject_put(group->devices_kobj);
1055 }
1056 EXPORT_SYMBOL_GPL(iommu_group_put);
1057 
1058 /**
1059  * iommu_group_register_notifier - Register a notifier for group changes
1060  * @group: the group to watch
1061  * @nb: notifier block to signal
1062  *
1063  * This function allows iommu group users to track changes in a group.
1064  * See include/linux/iommu.h for actions sent via this notifier.  Caller
1065  * should hold a reference to the group throughout notifier registration.
1066  */
1067 int iommu_group_register_notifier(struct iommu_group *group,
1068 				  struct notifier_block *nb)
1069 {
1070 	return blocking_notifier_chain_register(&group->notifier, nb);
1071 }
1072 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
1073 
1074 /**
1075  * iommu_group_unregister_notifier - Unregister a notifier
1076  * @group: the group to watch
1077  * @nb: notifier block to signal
1078  *
1079  * Unregister a previously registered group notifier block.
1080  */
1081 int iommu_group_unregister_notifier(struct iommu_group *group,
1082 				    struct notifier_block *nb)
1083 {
1084 	return blocking_notifier_chain_unregister(&group->notifier, nb);
1085 }
1086 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
1087 
1088 /**
1089  * iommu_register_device_fault_handler() - Register a device fault handler
1090  * @dev: the device
1091  * @handler: the fault handler
1092  * @data: private data passed as argument to the handler
1093  *
1094  * When an IOMMU fault event is received, this handler gets called with the
1095  * fault event and data as argument. The handler should return 0 on success. If
1096  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1097  * complete the fault by calling iommu_page_response() with one of the following
1098  * response code:
1099  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1100  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1101  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1102  *   page faults if possible.
1103  *
1104  * Return 0 if the fault handler was installed successfully, or an error.
1105  */
1106 int iommu_register_device_fault_handler(struct device *dev,
1107 					iommu_dev_fault_handler_t handler,
1108 					void *data)
1109 {
1110 	struct dev_iommu *param = dev->iommu;
1111 	int ret = 0;
1112 
1113 	if (!param)
1114 		return -EINVAL;
1115 
1116 	mutex_lock(&param->lock);
1117 	/* Only allow one fault handler registered for each device */
1118 	if (param->fault_param) {
1119 		ret = -EBUSY;
1120 		goto done_unlock;
1121 	}
1122 
1123 	get_device(dev);
1124 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1125 	if (!param->fault_param) {
1126 		put_device(dev);
1127 		ret = -ENOMEM;
1128 		goto done_unlock;
1129 	}
1130 	param->fault_param->handler = handler;
1131 	param->fault_param->data = data;
1132 	mutex_init(&param->fault_param->lock);
1133 	INIT_LIST_HEAD(&param->fault_param->faults);
1134 
1135 done_unlock:
1136 	mutex_unlock(&param->lock);
1137 
1138 	return ret;
1139 }
1140 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1141 
1142 /**
1143  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1144  * @dev: the device
1145  *
1146  * Remove the device fault handler installed with
1147  * iommu_register_device_fault_handler().
1148  *
1149  * Return 0 on success, or an error.
1150  */
1151 int iommu_unregister_device_fault_handler(struct device *dev)
1152 {
1153 	struct dev_iommu *param = dev->iommu;
1154 	int ret = 0;
1155 
1156 	if (!param)
1157 		return -EINVAL;
1158 
1159 	mutex_lock(&param->lock);
1160 
1161 	if (!param->fault_param)
1162 		goto unlock;
1163 
1164 	/* we cannot unregister handler if there are pending faults */
1165 	if (!list_empty(&param->fault_param->faults)) {
1166 		ret = -EBUSY;
1167 		goto unlock;
1168 	}
1169 
1170 	kfree(param->fault_param);
1171 	param->fault_param = NULL;
1172 	put_device(dev);
1173 unlock:
1174 	mutex_unlock(&param->lock);
1175 
1176 	return ret;
1177 }
1178 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1179 
1180 /**
1181  * iommu_report_device_fault() - Report fault event to device driver
1182  * @dev: the device
1183  * @evt: fault event data
1184  *
1185  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1186  * handler. When this function fails and the fault is recoverable, it is the
1187  * caller's responsibility to complete the fault.
1188  *
1189  * Return 0 on success, or an error.
1190  */
1191 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1192 {
1193 	struct dev_iommu *param = dev->iommu;
1194 	struct iommu_fault_event *evt_pending = NULL;
1195 	struct iommu_fault_param *fparam;
1196 	int ret = 0;
1197 
1198 	if (!param || !evt)
1199 		return -EINVAL;
1200 
1201 	/* we only report device fault if there is a handler registered */
1202 	mutex_lock(&param->lock);
1203 	fparam = param->fault_param;
1204 	if (!fparam || !fparam->handler) {
1205 		ret = -EINVAL;
1206 		goto done_unlock;
1207 	}
1208 
1209 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1210 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1211 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1212 				      GFP_KERNEL);
1213 		if (!evt_pending) {
1214 			ret = -ENOMEM;
1215 			goto done_unlock;
1216 		}
1217 		mutex_lock(&fparam->lock);
1218 		list_add_tail(&evt_pending->list, &fparam->faults);
1219 		mutex_unlock(&fparam->lock);
1220 	}
1221 
1222 	ret = fparam->handler(&evt->fault, fparam->data);
1223 	if (ret && evt_pending) {
1224 		mutex_lock(&fparam->lock);
1225 		list_del(&evt_pending->list);
1226 		mutex_unlock(&fparam->lock);
1227 		kfree(evt_pending);
1228 	}
1229 done_unlock:
1230 	mutex_unlock(&param->lock);
1231 	return ret;
1232 }
1233 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1234 
1235 int iommu_page_response(struct device *dev,
1236 			struct iommu_page_response *msg)
1237 {
1238 	bool needs_pasid;
1239 	int ret = -EINVAL;
1240 	struct iommu_fault_event *evt;
1241 	struct iommu_fault_page_request *prm;
1242 	struct dev_iommu *param = dev->iommu;
1243 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1244 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1245 
1246 	if (!domain || !domain->ops->page_response)
1247 		return -ENODEV;
1248 
1249 	if (!param || !param->fault_param)
1250 		return -EINVAL;
1251 
1252 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1253 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1254 		return -EINVAL;
1255 
1256 	/* Only send response if there is a fault report pending */
1257 	mutex_lock(&param->fault_param->lock);
1258 	if (list_empty(&param->fault_param->faults)) {
1259 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1260 		goto done_unlock;
1261 	}
1262 	/*
1263 	 * Check if we have a matching page request pending to respond,
1264 	 * otherwise return -EINVAL
1265 	 */
1266 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1267 		prm = &evt->fault.prm;
1268 		if (prm->grpid != msg->grpid)
1269 			continue;
1270 
1271 		/*
1272 		 * If the PASID is required, the corresponding request is
1273 		 * matched using the group ID, the PASID valid bit and the PASID
1274 		 * value. Otherwise only the group ID matches request and
1275 		 * response.
1276 		 */
1277 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1278 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1279 			continue;
1280 
1281 		if (!needs_pasid && has_pasid) {
1282 			/* No big deal, just clear it. */
1283 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1284 			msg->pasid = 0;
1285 		}
1286 
1287 		ret = domain->ops->page_response(dev, evt, msg);
1288 		list_del(&evt->list);
1289 		kfree(evt);
1290 		break;
1291 	}
1292 
1293 done_unlock:
1294 	mutex_unlock(&param->fault_param->lock);
1295 	return ret;
1296 }
1297 EXPORT_SYMBOL_GPL(iommu_page_response);
1298 
1299 /**
1300  * iommu_group_id - Return ID for a group
1301  * @group: the group to ID
1302  *
1303  * Return the unique ID for the group matching the sysfs group number.
1304  */
1305 int iommu_group_id(struct iommu_group *group)
1306 {
1307 	return group->id;
1308 }
1309 EXPORT_SYMBOL_GPL(iommu_group_id);
1310 
1311 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1312 					       unsigned long *devfns);
1313 
1314 /*
1315  * To consider a PCI device isolated, we require ACS to support Source
1316  * Validation, Request Redirection, Completer Redirection, and Upstream
1317  * Forwarding.  This effectively means that devices cannot spoof their
1318  * requester ID, requests and completions cannot be redirected, and all
1319  * transactions are forwarded upstream, even as it passes through a
1320  * bridge where the target device is downstream.
1321  */
1322 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1323 
1324 /*
1325  * For multifunction devices which are not isolated from each other, find
1326  * all the other non-isolated functions and look for existing groups.  For
1327  * each function, we also need to look for aliases to or from other devices
1328  * that may already have a group.
1329  */
1330 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1331 							unsigned long *devfns)
1332 {
1333 	struct pci_dev *tmp = NULL;
1334 	struct iommu_group *group;
1335 
1336 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1337 		return NULL;
1338 
1339 	for_each_pci_dev(tmp) {
1340 		if (tmp == pdev || tmp->bus != pdev->bus ||
1341 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1342 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1343 			continue;
1344 
1345 		group = get_pci_alias_group(tmp, devfns);
1346 		if (group) {
1347 			pci_dev_put(tmp);
1348 			return group;
1349 		}
1350 	}
1351 
1352 	return NULL;
1353 }
1354 
1355 /*
1356  * Look for aliases to or from the given device for existing groups. DMA
1357  * aliases are only supported on the same bus, therefore the search
1358  * space is quite small (especially since we're really only looking at pcie
1359  * device, and therefore only expect multiple slots on the root complex or
1360  * downstream switch ports).  It's conceivable though that a pair of
1361  * multifunction devices could have aliases between them that would cause a
1362  * loop.  To prevent this, we use a bitmap to track where we've been.
1363  */
1364 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1365 					       unsigned long *devfns)
1366 {
1367 	struct pci_dev *tmp = NULL;
1368 	struct iommu_group *group;
1369 
1370 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1371 		return NULL;
1372 
1373 	group = iommu_group_get(&pdev->dev);
1374 	if (group)
1375 		return group;
1376 
1377 	for_each_pci_dev(tmp) {
1378 		if (tmp == pdev || tmp->bus != pdev->bus)
1379 			continue;
1380 
1381 		/* We alias them or they alias us */
1382 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1383 			group = get_pci_alias_group(tmp, devfns);
1384 			if (group) {
1385 				pci_dev_put(tmp);
1386 				return group;
1387 			}
1388 
1389 			group = get_pci_function_alias_group(tmp, devfns);
1390 			if (group) {
1391 				pci_dev_put(tmp);
1392 				return group;
1393 			}
1394 		}
1395 	}
1396 
1397 	return NULL;
1398 }
1399 
1400 struct group_for_pci_data {
1401 	struct pci_dev *pdev;
1402 	struct iommu_group *group;
1403 };
1404 
1405 /*
1406  * DMA alias iterator callback, return the last seen device.  Stop and return
1407  * the IOMMU group if we find one along the way.
1408  */
1409 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1410 {
1411 	struct group_for_pci_data *data = opaque;
1412 
1413 	data->pdev = pdev;
1414 	data->group = iommu_group_get(&pdev->dev);
1415 
1416 	return data->group != NULL;
1417 }
1418 
1419 /*
1420  * Generic device_group call-back function. It just allocates one
1421  * iommu-group per device.
1422  */
1423 struct iommu_group *generic_device_group(struct device *dev)
1424 {
1425 	return iommu_group_alloc();
1426 }
1427 EXPORT_SYMBOL_GPL(generic_device_group);
1428 
1429 /*
1430  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1431  * to find or create an IOMMU group for a device.
1432  */
1433 struct iommu_group *pci_device_group(struct device *dev)
1434 {
1435 	struct pci_dev *pdev = to_pci_dev(dev);
1436 	struct group_for_pci_data data;
1437 	struct pci_bus *bus;
1438 	struct iommu_group *group = NULL;
1439 	u64 devfns[4] = { 0 };
1440 
1441 	if (WARN_ON(!dev_is_pci(dev)))
1442 		return ERR_PTR(-EINVAL);
1443 
1444 	/*
1445 	 * Find the upstream DMA alias for the device.  A device must not
1446 	 * be aliased due to topology in order to have its own IOMMU group.
1447 	 * If we find an alias along the way that already belongs to a
1448 	 * group, use it.
1449 	 */
1450 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1451 		return data.group;
1452 
1453 	pdev = data.pdev;
1454 
1455 	/*
1456 	 * Continue upstream from the point of minimum IOMMU granularity
1457 	 * due to aliases to the point where devices are protected from
1458 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1459 	 * group, use it.
1460 	 */
1461 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1462 		if (!bus->self)
1463 			continue;
1464 
1465 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1466 			break;
1467 
1468 		pdev = bus->self;
1469 
1470 		group = iommu_group_get(&pdev->dev);
1471 		if (group)
1472 			return group;
1473 	}
1474 
1475 	/*
1476 	 * Look for existing groups on device aliases.  If we alias another
1477 	 * device or another device aliases us, use the same group.
1478 	 */
1479 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1480 	if (group)
1481 		return group;
1482 
1483 	/*
1484 	 * Look for existing groups on non-isolated functions on the same
1485 	 * slot and aliases of those funcions, if any.  No need to clear
1486 	 * the search bitmap, the tested devfns are still valid.
1487 	 */
1488 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1489 	if (group)
1490 		return group;
1491 
1492 	/* No shared group found, allocate new */
1493 	return iommu_group_alloc();
1494 }
1495 EXPORT_SYMBOL_GPL(pci_device_group);
1496 
1497 /* Get the IOMMU group for device on fsl-mc bus */
1498 struct iommu_group *fsl_mc_device_group(struct device *dev)
1499 {
1500 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1501 	struct iommu_group *group;
1502 
1503 	group = iommu_group_get(cont_dev);
1504 	if (!group)
1505 		group = iommu_group_alloc();
1506 	return group;
1507 }
1508 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1509 
1510 static int iommu_get_def_domain_type(struct device *dev)
1511 {
1512 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1513 
1514 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1515 		return IOMMU_DOMAIN_DMA;
1516 
1517 	if (ops->def_domain_type)
1518 		return ops->def_domain_type(dev);
1519 
1520 	return 0;
1521 }
1522 
1523 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1524 					    struct iommu_group *group,
1525 					    unsigned int type)
1526 {
1527 	struct iommu_domain *dom;
1528 
1529 	dom = __iommu_domain_alloc(bus, type);
1530 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1531 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1532 		if (dom)
1533 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1534 				type, group->name);
1535 	}
1536 
1537 	if (!dom)
1538 		return -ENOMEM;
1539 
1540 	group->default_domain = dom;
1541 	if (!group->domain)
1542 		group->domain = dom;
1543 	return 0;
1544 }
1545 
1546 static int iommu_alloc_default_domain(struct iommu_group *group,
1547 				      struct device *dev)
1548 {
1549 	unsigned int type;
1550 
1551 	if (group->default_domain)
1552 		return 0;
1553 
1554 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1555 
1556 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1557 }
1558 
1559 /**
1560  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1561  * @dev: target device
1562  *
1563  * This function is intended to be called by IOMMU drivers and extended to
1564  * support common, bus-defined algorithms when determining or creating the
1565  * IOMMU group for a device.  On success, the caller will hold a reference
1566  * to the returned IOMMU group, which will already include the provided
1567  * device.  The reference should be released with iommu_group_put().
1568  */
1569 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1570 {
1571 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1572 	struct iommu_group *group;
1573 	int ret;
1574 
1575 	group = iommu_group_get(dev);
1576 	if (group)
1577 		return group;
1578 
1579 	if (!ops)
1580 		return ERR_PTR(-EINVAL);
1581 
1582 	group = ops->device_group(dev);
1583 	if (WARN_ON_ONCE(group == NULL))
1584 		return ERR_PTR(-EINVAL);
1585 
1586 	if (IS_ERR(group))
1587 		return group;
1588 
1589 	ret = iommu_group_add_device(group, dev);
1590 	if (ret)
1591 		goto out_put_group;
1592 
1593 	return group;
1594 
1595 out_put_group:
1596 	iommu_group_put(group);
1597 
1598 	return ERR_PTR(ret);
1599 }
1600 
1601 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1602 {
1603 	return group->default_domain;
1604 }
1605 
1606 static int probe_iommu_group(struct device *dev, void *data)
1607 {
1608 	struct list_head *group_list = data;
1609 	struct iommu_group *group;
1610 	int ret;
1611 
1612 	/* Device is probed already if in a group */
1613 	group = iommu_group_get(dev);
1614 	if (group) {
1615 		iommu_group_put(group);
1616 		return 0;
1617 	}
1618 
1619 	ret = __iommu_probe_device(dev, group_list);
1620 	if (ret == -ENODEV)
1621 		ret = 0;
1622 
1623 	return ret;
1624 }
1625 
1626 static int remove_iommu_group(struct device *dev, void *data)
1627 {
1628 	iommu_release_device(dev);
1629 
1630 	return 0;
1631 }
1632 
1633 static int iommu_bus_notifier(struct notifier_block *nb,
1634 			      unsigned long action, void *data)
1635 {
1636 	unsigned long group_action = 0;
1637 	struct device *dev = data;
1638 	struct iommu_group *group;
1639 
1640 	/*
1641 	 * ADD/DEL call into iommu driver ops if provided, which may
1642 	 * result in ADD/DEL notifiers to group->notifier
1643 	 */
1644 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1645 		int ret;
1646 
1647 		ret = iommu_probe_device(dev);
1648 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1649 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1650 		iommu_release_device(dev);
1651 		return NOTIFY_OK;
1652 	}
1653 
1654 	/*
1655 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1656 	 * group, if anyone is listening
1657 	 */
1658 	group = iommu_group_get(dev);
1659 	if (!group)
1660 		return 0;
1661 
1662 	switch (action) {
1663 	case BUS_NOTIFY_BIND_DRIVER:
1664 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1665 		break;
1666 	case BUS_NOTIFY_BOUND_DRIVER:
1667 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1668 		break;
1669 	case BUS_NOTIFY_UNBIND_DRIVER:
1670 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1671 		break;
1672 	case BUS_NOTIFY_UNBOUND_DRIVER:
1673 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1674 		break;
1675 	}
1676 
1677 	if (group_action)
1678 		blocking_notifier_call_chain(&group->notifier,
1679 					     group_action, dev);
1680 
1681 	iommu_group_put(group);
1682 	return 0;
1683 }
1684 
1685 struct __group_domain_type {
1686 	struct device *dev;
1687 	unsigned int type;
1688 };
1689 
1690 static int probe_get_default_domain_type(struct device *dev, void *data)
1691 {
1692 	struct __group_domain_type *gtype = data;
1693 	unsigned int type = iommu_get_def_domain_type(dev);
1694 
1695 	if (type) {
1696 		if (gtype->type && gtype->type != type) {
1697 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1698 				 iommu_domain_type_str(type),
1699 				 dev_name(gtype->dev),
1700 				 iommu_domain_type_str(gtype->type));
1701 			gtype->type = 0;
1702 		}
1703 
1704 		if (!gtype->dev) {
1705 			gtype->dev  = dev;
1706 			gtype->type = type;
1707 		}
1708 	}
1709 
1710 	return 0;
1711 }
1712 
1713 static void probe_alloc_default_domain(struct bus_type *bus,
1714 				       struct iommu_group *group)
1715 {
1716 	struct __group_domain_type gtype;
1717 
1718 	memset(&gtype, 0, sizeof(gtype));
1719 
1720 	/* Ask for default domain requirements of all devices in the group */
1721 	__iommu_group_for_each_dev(group, &gtype,
1722 				   probe_get_default_domain_type);
1723 
1724 	if (!gtype.type)
1725 		gtype.type = iommu_def_domain_type;
1726 
1727 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1728 
1729 }
1730 
1731 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1732 {
1733 	struct iommu_domain *domain = data;
1734 	int ret = 0;
1735 
1736 	if (!iommu_is_attach_deferred(domain, dev))
1737 		ret = __iommu_attach_device(domain, dev);
1738 
1739 	return ret;
1740 }
1741 
1742 static int __iommu_group_dma_attach(struct iommu_group *group)
1743 {
1744 	return __iommu_group_for_each_dev(group, group->default_domain,
1745 					  iommu_group_do_dma_attach);
1746 }
1747 
1748 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1749 {
1750 	struct iommu_domain *domain = data;
1751 
1752 	if (domain->ops->probe_finalize)
1753 		domain->ops->probe_finalize(dev);
1754 
1755 	return 0;
1756 }
1757 
1758 static void __iommu_group_dma_finalize(struct iommu_group *group)
1759 {
1760 	__iommu_group_for_each_dev(group, group->default_domain,
1761 				   iommu_group_do_probe_finalize);
1762 }
1763 
1764 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1765 {
1766 	struct iommu_group *group = data;
1767 
1768 	iommu_create_device_direct_mappings(group, dev);
1769 
1770 	return 0;
1771 }
1772 
1773 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1774 {
1775 	return __iommu_group_for_each_dev(group, group,
1776 					  iommu_do_create_direct_mappings);
1777 }
1778 
1779 int bus_iommu_probe(struct bus_type *bus)
1780 {
1781 	struct iommu_group *group, *next;
1782 	LIST_HEAD(group_list);
1783 	int ret;
1784 
1785 	/*
1786 	 * This code-path does not allocate the default domain when
1787 	 * creating the iommu group, so do it after the groups are
1788 	 * created.
1789 	 */
1790 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1791 	if (ret)
1792 		return ret;
1793 
1794 	list_for_each_entry_safe(group, next, &group_list, entry) {
1795 		/* Remove item from the list */
1796 		list_del_init(&group->entry);
1797 
1798 		mutex_lock(&group->mutex);
1799 
1800 		/* Try to allocate default domain */
1801 		probe_alloc_default_domain(bus, group);
1802 
1803 		if (!group->default_domain) {
1804 			mutex_unlock(&group->mutex);
1805 			continue;
1806 		}
1807 
1808 		iommu_group_create_direct_mappings(group);
1809 
1810 		ret = __iommu_group_dma_attach(group);
1811 
1812 		mutex_unlock(&group->mutex);
1813 
1814 		if (ret)
1815 			break;
1816 
1817 		__iommu_group_dma_finalize(group);
1818 	}
1819 
1820 	return ret;
1821 }
1822 
1823 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1824 {
1825 	struct notifier_block *nb;
1826 	int err;
1827 
1828 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1829 	if (!nb)
1830 		return -ENOMEM;
1831 
1832 	nb->notifier_call = iommu_bus_notifier;
1833 
1834 	err = bus_register_notifier(bus, nb);
1835 	if (err)
1836 		goto out_free;
1837 
1838 	err = bus_iommu_probe(bus);
1839 	if (err)
1840 		goto out_err;
1841 
1842 
1843 	return 0;
1844 
1845 out_err:
1846 	/* Clean up */
1847 	bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1848 	bus_unregister_notifier(bus, nb);
1849 
1850 out_free:
1851 	kfree(nb);
1852 
1853 	return err;
1854 }
1855 
1856 /**
1857  * bus_set_iommu - set iommu-callbacks for the bus
1858  * @bus: bus.
1859  * @ops: the callbacks provided by the iommu-driver
1860  *
1861  * This function is called by an iommu driver to set the iommu methods
1862  * used for a particular bus. Drivers for devices on that bus can use
1863  * the iommu-api after these ops are registered.
1864  * This special function is needed because IOMMUs are usually devices on
1865  * the bus itself, so the iommu drivers are not initialized when the bus
1866  * is set up. With this function the iommu-driver can set the iommu-ops
1867  * afterwards.
1868  */
1869 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1870 {
1871 	int err;
1872 
1873 	if (ops == NULL) {
1874 		bus->iommu_ops = NULL;
1875 		return 0;
1876 	}
1877 
1878 	if (bus->iommu_ops != NULL)
1879 		return -EBUSY;
1880 
1881 	bus->iommu_ops = ops;
1882 
1883 	/* Do IOMMU specific setup for this bus-type */
1884 	err = iommu_bus_init(bus, ops);
1885 	if (err)
1886 		bus->iommu_ops = NULL;
1887 
1888 	return err;
1889 }
1890 EXPORT_SYMBOL_GPL(bus_set_iommu);
1891 
1892 bool iommu_present(struct bus_type *bus)
1893 {
1894 	return bus->iommu_ops != NULL;
1895 }
1896 EXPORT_SYMBOL_GPL(iommu_present);
1897 
1898 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1899 {
1900 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1901 		return false;
1902 
1903 	return bus->iommu_ops->capable(cap);
1904 }
1905 EXPORT_SYMBOL_GPL(iommu_capable);
1906 
1907 /**
1908  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1909  * @domain: iommu domain
1910  * @handler: fault handler
1911  * @token: user data, will be passed back to the fault handler
1912  *
1913  * This function should be used by IOMMU users which want to be notified
1914  * whenever an IOMMU fault happens.
1915  *
1916  * The fault handler itself should return 0 on success, and an appropriate
1917  * error code otherwise.
1918  */
1919 void iommu_set_fault_handler(struct iommu_domain *domain,
1920 					iommu_fault_handler_t handler,
1921 					void *token)
1922 {
1923 	BUG_ON(!domain);
1924 
1925 	domain->handler = handler;
1926 	domain->handler_token = token;
1927 }
1928 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1929 
1930 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1931 						 unsigned type)
1932 {
1933 	struct iommu_domain *domain;
1934 
1935 	if (bus == NULL || bus->iommu_ops == NULL)
1936 		return NULL;
1937 
1938 	domain = bus->iommu_ops->domain_alloc(type);
1939 	if (!domain)
1940 		return NULL;
1941 
1942 	domain->ops  = bus->iommu_ops;
1943 	domain->type = type;
1944 	/* Assume all sizes by default; the driver may override this later */
1945 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1946 
1947 	return domain;
1948 }
1949 
1950 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1951 {
1952 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1953 }
1954 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1955 
1956 void iommu_domain_free(struct iommu_domain *domain)
1957 {
1958 	domain->ops->domain_free(domain);
1959 }
1960 EXPORT_SYMBOL_GPL(iommu_domain_free);
1961 
1962 static int __iommu_attach_device(struct iommu_domain *domain,
1963 				 struct device *dev)
1964 {
1965 	int ret;
1966 
1967 	if (unlikely(domain->ops->attach_dev == NULL))
1968 		return -ENODEV;
1969 
1970 	ret = domain->ops->attach_dev(domain, dev);
1971 	if (!ret)
1972 		trace_attach_device_to_domain(dev);
1973 	return ret;
1974 }
1975 
1976 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1977 {
1978 	struct iommu_group *group;
1979 	int ret;
1980 
1981 	group = iommu_group_get(dev);
1982 	if (!group)
1983 		return -ENODEV;
1984 
1985 	/*
1986 	 * Lock the group to make sure the device-count doesn't
1987 	 * change while we are attaching
1988 	 */
1989 	mutex_lock(&group->mutex);
1990 	ret = -EINVAL;
1991 	if (iommu_group_device_count(group) != 1)
1992 		goto out_unlock;
1993 
1994 	ret = __iommu_attach_group(domain, group);
1995 
1996 out_unlock:
1997 	mutex_unlock(&group->mutex);
1998 	iommu_group_put(group);
1999 
2000 	return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(iommu_attach_device);
2003 
2004 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2005 {
2006 	const struct iommu_ops *ops = domain->ops;
2007 
2008 	if (ops->is_attach_deferred && ops->is_attach_deferred(domain, dev))
2009 		return __iommu_attach_device(domain, dev);
2010 
2011 	return 0;
2012 }
2013 
2014 /*
2015  * Check flags and other user provided data for valid combinations. We also
2016  * make sure no reserved fields or unused flags are set. This is to ensure
2017  * not breaking userspace in the future when these fields or flags are used.
2018  */
2019 static int iommu_check_cache_invl_data(struct iommu_cache_invalidate_info *info)
2020 {
2021 	u32 mask;
2022 	int i;
2023 
2024 	if (info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
2025 		return -EINVAL;
2026 
2027 	mask = (1 << IOMMU_CACHE_INV_TYPE_NR) - 1;
2028 	if (info->cache & ~mask)
2029 		return -EINVAL;
2030 
2031 	if (info->granularity >= IOMMU_INV_GRANU_NR)
2032 		return -EINVAL;
2033 
2034 	switch (info->granularity) {
2035 	case IOMMU_INV_GRANU_ADDR:
2036 		if (info->cache & IOMMU_CACHE_INV_TYPE_PASID)
2037 			return -EINVAL;
2038 
2039 		mask = IOMMU_INV_ADDR_FLAGS_PASID |
2040 			IOMMU_INV_ADDR_FLAGS_ARCHID |
2041 			IOMMU_INV_ADDR_FLAGS_LEAF;
2042 
2043 		if (info->granu.addr_info.flags & ~mask)
2044 			return -EINVAL;
2045 		break;
2046 	case IOMMU_INV_GRANU_PASID:
2047 		mask = IOMMU_INV_PASID_FLAGS_PASID |
2048 			IOMMU_INV_PASID_FLAGS_ARCHID;
2049 		if (info->granu.pasid_info.flags & ~mask)
2050 			return -EINVAL;
2051 
2052 		break;
2053 	case IOMMU_INV_GRANU_DOMAIN:
2054 		if (info->cache & IOMMU_CACHE_INV_TYPE_DEV_IOTLB)
2055 			return -EINVAL;
2056 		break;
2057 	default:
2058 		return -EINVAL;
2059 	}
2060 
2061 	/* Check reserved padding fields */
2062 	for (i = 0; i < sizeof(info->padding); i++) {
2063 		if (info->padding[i])
2064 			return -EINVAL;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 int iommu_uapi_cache_invalidate(struct iommu_domain *domain, struct device *dev,
2071 				void __user *uinfo)
2072 {
2073 	struct iommu_cache_invalidate_info inv_info = { 0 };
2074 	u32 minsz;
2075 	int ret;
2076 
2077 	if (unlikely(!domain->ops->cache_invalidate))
2078 		return -ENODEV;
2079 
2080 	/*
2081 	 * No new spaces can be added before the variable sized union, the
2082 	 * minimum size is the offset to the union.
2083 	 */
2084 	minsz = offsetof(struct iommu_cache_invalidate_info, granu);
2085 
2086 	/* Copy minsz from user to get flags and argsz */
2087 	if (copy_from_user(&inv_info, uinfo, minsz))
2088 		return -EFAULT;
2089 
2090 	/* Fields before the variable size union are mandatory */
2091 	if (inv_info.argsz < minsz)
2092 		return -EINVAL;
2093 
2094 	/* PASID and address granu require additional info beyond minsz */
2095 	if (inv_info.granularity == IOMMU_INV_GRANU_PASID &&
2096 	    inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.pasid_info))
2097 		return -EINVAL;
2098 
2099 	if (inv_info.granularity == IOMMU_INV_GRANU_ADDR &&
2100 	    inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.addr_info))
2101 		return -EINVAL;
2102 
2103 	/*
2104 	 * User might be using a newer UAPI header which has a larger data
2105 	 * size, we shall support the existing flags within the current
2106 	 * size. Copy the remaining user data _after_ minsz but not more
2107 	 * than the current kernel supported size.
2108 	 */
2109 	if (copy_from_user((void *)&inv_info + minsz, uinfo + minsz,
2110 			   min_t(u32, inv_info.argsz, sizeof(inv_info)) - minsz))
2111 		return -EFAULT;
2112 
2113 	/* Now the argsz is validated, check the content */
2114 	ret = iommu_check_cache_invl_data(&inv_info);
2115 	if (ret)
2116 		return ret;
2117 
2118 	return domain->ops->cache_invalidate(domain, dev, &inv_info);
2119 }
2120 EXPORT_SYMBOL_GPL(iommu_uapi_cache_invalidate);
2121 
2122 static int iommu_check_bind_data(struct iommu_gpasid_bind_data *data)
2123 {
2124 	u64 mask;
2125 	int i;
2126 
2127 	if (data->version != IOMMU_GPASID_BIND_VERSION_1)
2128 		return -EINVAL;
2129 
2130 	/* Check the range of supported formats */
2131 	if (data->format >= IOMMU_PASID_FORMAT_LAST)
2132 		return -EINVAL;
2133 
2134 	/* Check all flags */
2135 	mask = IOMMU_SVA_GPASID_VAL;
2136 	if (data->flags & ~mask)
2137 		return -EINVAL;
2138 
2139 	/* Check reserved padding fields */
2140 	for (i = 0; i < sizeof(data->padding); i++) {
2141 		if (data->padding[i])
2142 			return -EINVAL;
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 static int iommu_sva_prepare_bind_data(void __user *udata,
2149 				       struct iommu_gpasid_bind_data *data)
2150 {
2151 	u32 minsz;
2152 
2153 	/*
2154 	 * No new spaces can be added before the variable sized union, the
2155 	 * minimum size is the offset to the union.
2156 	 */
2157 	minsz = offsetof(struct iommu_gpasid_bind_data, vendor);
2158 
2159 	/* Copy minsz from user to get flags and argsz */
2160 	if (copy_from_user(data, udata, minsz))
2161 		return -EFAULT;
2162 
2163 	/* Fields before the variable size union are mandatory */
2164 	if (data->argsz < minsz)
2165 		return -EINVAL;
2166 	/*
2167 	 * User might be using a newer UAPI header, we shall let IOMMU vendor
2168 	 * driver decide on what size it needs. Since the guest PASID bind data
2169 	 * can be vendor specific, larger argsz could be the result of extension
2170 	 * for one vendor but it should not affect another vendor.
2171 	 * Copy the remaining user data _after_ minsz
2172 	 */
2173 	if (copy_from_user((void *)data + minsz, udata + minsz,
2174 			   min_t(u32, data->argsz, sizeof(*data)) - minsz))
2175 		return -EFAULT;
2176 
2177 	return iommu_check_bind_data(data);
2178 }
2179 
2180 int iommu_uapi_sva_bind_gpasid(struct iommu_domain *domain, struct device *dev,
2181 			       void __user *udata)
2182 {
2183 	struct iommu_gpasid_bind_data data = { 0 };
2184 	int ret;
2185 
2186 	if (unlikely(!domain->ops->sva_bind_gpasid))
2187 		return -ENODEV;
2188 
2189 	ret = iommu_sva_prepare_bind_data(udata, &data);
2190 	if (ret)
2191 		return ret;
2192 
2193 	return domain->ops->sva_bind_gpasid(domain, dev, &data);
2194 }
2195 EXPORT_SYMBOL_GPL(iommu_uapi_sva_bind_gpasid);
2196 
2197 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2198 			     ioasid_t pasid)
2199 {
2200 	if (unlikely(!domain->ops->sva_unbind_gpasid))
2201 		return -ENODEV;
2202 
2203 	return domain->ops->sva_unbind_gpasid(dev, pasid);
2204 }
2205 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
2206 
2207 int iommu_uapi_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2208 				 void __user *udata)
2209 {
2210 	struct iommu_gpasid_bind_data data = { 0 };
2211 	int ret;
2212 
2213 	if (unlikely(!domain->ops->sva_bind_gpasid))
2214 		return -ENODEV;
2215 
2216 	ret = iommu_sva_prepare_bind_data(udata, &data);
2217 	if (ret)
2218 		return ret;
2219 
2220 	return iommu_sva_unbind_gpasid(domain, dev, data.hpasid);
2221 }
2222 EXPORT_SYMBOL_GPL(iommu_uapi_sva_unbind_gpasid);
2223 
2224 static void __iommu_detach_device(struct iommu_domain *domain,
2225 				  struct device *dev)
2226 {
2227 	if (iommu_is_attach_deferred(domain, dev))
2228 		return;
2229 
2230 	if (unlikely(domain->ops->detach_dev == NULL))
2231 		return;
2232 
2233 	domain->ops->detach_dev(domain, dev);
2234 	trace_detach_device_from_domain(dev);
2235 }
2236 
2237 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2238 {
2239 	struct iommu_group *group;
2240 
2241 	group = iommu_group_get(dev);
2242 	if (!group)
2243 		return;
2244 
2245 	mutex_lock(&group->mutex);
2246 	if (iommu_group_device_count(group) != 1) {
2247 		WARN_ON(1);
2248 		goto out_unlock;
2249 	}
2250 
2251 	__iommu_detach_group(domain, group);
2252 
2253 out_unlock:
2254 	mutex_unlock(&group->mutex);
2255 	iommu_group_put(group);
2256 }
2257 EXPORT_SYMBOL_GPL(iommu_detach_device);
2258 
2259 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2260 {
2261 	struct iommu_domain *domain;
2262 	struct iommu_group *group;
2263 
2264 	group = iommu_group_get(dev);
2265 	if (!group)
2266 		return NULL;
2267 
2268 	domain = group->domain;
2269 
2270 	iommu_group_put(group);
2271 
2272 	return domain;
2273 }
2274 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2275 
2276 /*
2277  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2278  * guarantees that the group and its default domain are valid and correct.
2279  */
2280 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2281 {
2282 	return dev->iommu_group->default_domain;
2283 }
2284 
2285 /*
2286  * IOMMU groups are really the natural working unit of the IOMMU, but
2287  * the IOMMU API works on domains and devices.  Bridge that gap by
2288  * iterating over the devices in a group.  Ideally we'd have a single
2289  * device which represents the requestor ID of the group, but we also
2290  * allow IOMMU drivers to create policy defined minimum sets, where
2291  * the physical hardware may be able to distiguish members, but we
2292  * wish to group them at a higher level (ex. untrusted multi-function
2293  * PCI devices).  Thus we attach each device.
2294  */
2295 static int iommu_group_do_attach_device(struct device *dev, void *data)
2296 {
2297 	struct iommu_domain *domain = data;
2298 
2299 	return __iommu_attach_device(domain, dev);
2300 }
2301 
2302 static int __iommu_attach_group(struct iommu_domain *domain,
2303 				struct iommu_group *group)
2304 {
2305 	int ret;
2306 
2307 	if (group->default_domain && group->domain != group->default_domain)
2308 		return -EBUSY;
2309 
2310 	ret = __iommu_group_for_each_dev(group, domain,
2311 					 iommu_group_do_attach_device);
2312 	if (ret == 0)
2313 		group->domain = domain;
2314 
2315 	return ret;
2316 }
2317 
2318 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2319 {
2320 	int ret;
2321 
2322 	mutex_lock(&group->mutex);
2323 	ret = __iommu_attach_group(domain, group);
2324 	mutex_unlock(&group->mutex);
2325 
2326 	return ret;
2327 }
2328 EXPORT_SYMBOL_GPL(iommu_attach_group);
2329 
2330 static int iommu_group_do_detach_device(struct device *dev, void *data)
2331 {
2332 	struct iommu_domain *domain = data;
2333 
2334 	__iommu_detach_device(domain, dev);
2335 
2336 	return 0;
2337 }
2338 
2339 static void __iommu_detach_group(struct iommu_domain *domain,
2340 				 struct iommu_group *group)
2341 {
2342 	int ret;
2343 
2344 	if (!group->default_domain) {
2345 		__iommu_group_for_each_dev(group, domain,
2346 					   iommu_group_do_detach_device);
2347 		group->domain = NULL;
2348 		return;
2349 	}
2350 
2351 	if (group->domain == group->default_domain)
2352 		return;
2353 
2354 	/* Detach by re-attaching to the default domain */
2355 	ret = __iommu_group_for_each_dev(group, group->default_domain,
2356 					 iommu_group_do_attach_device);
2357 	if (ret != 0)
2358 		WARN_ON(1);
2359 	else
2360 		group->domain = group->default_domain;
2361 }
2362 
2363 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2364 {
2365 	mutex_lock(&group->mutex);
2366 	__iommu_detach_group(domain, group);
2367 	mutex_unlock(&group->mutex);
2368 }
2369 EXPORT_SYMBOL_GPL(iommu_detach_group);
2370 
2371 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2372 {
2373 	if (unlikely(domain->ops->iova_to_phys == NULL))
2374 		return 0;
2375 
2376 	return domain->ops->iova_to_phys(domain, iova);
2377 }
2378 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2379 
2380 static size_t iommu_pgsize(struct iommu_domain *domain,
2381 			   unsigned long addr_merge, size_t size)
2382 {
2383 	unsigned int pgsize_idx;
2384 	size_t pgsize;
2385 
2386 	/* Max page size that still fits into 'size' */
2387 	pgsize_idx = __fls(size);
2388 
2389 	/* need to consider alignment requirements ? */
2390 	if (likely(addr_merge)) {
2391 		/* Max page size allowed by address */
2392 		unsigned int align_pgsize_idx = __ffs(addr_merge);
2393 		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
2394 	}
2395 
2396 	/* build a mask of acceptable page sizes */
2397 	pgsize = (1UL << (pgsize_idx + 1)) - 1;
2398 
2399 	/* throw away page sizes not supported by the hardware */
2400 	pgsize &= domain->pgsize_bitmap;
2401 
2402 	/* make sure we're still sane */
2403 	BUG_ON(!pgsize);
2404 
2405 	/* pick the biggest page */
2406 	pgsize_idx = __fls(pgsize);
2407 	pgsize = 1UL << pgsize_idx;
2408 
2409 	return pgsize;
2410 }
2411 
2412 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2413 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2414 {
2415 	const struct iommu_ops *ops = domain->ops;
2416 	unsigned long orig_iova = iova;
2417 	unsigned int min_pagesz;
2418 	size_t orig_size = size;
2419 	phys_addr_t orig_paddr = paddr;
2420 	int ret = 0;
2421 
2422 	if (unlikely(ops->map == NULL ||
2423 		     domain->pgsize_bitmap == 0UL))
2424 		return -ENODEV;
2425 
2426 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2427 		return -EINVAL;
2428 
2429 	/* find out the minimum page size supported */
2430 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2431 
2432 	/*
2433 	 * both the virtual address and the physical one, as well as
2434 	 * the size of the mapping, must be aligned (at least) to the
2435 	 * size of the smallest page supported by the hardware
2436 	 */
2437 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2438 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2439 		       iova, &paddr, size, min_pagesz);
2440 		return -EINVAL;
2441 	}
2442 
2443 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2444 
2445 	while (size) {
2446 		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
2447 
2448 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
2449 			 iova, &paddr, pgsize);
2450 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2451 
2452 		if (ret)
2453 			break;
2454 
2455 		iova += pgsize;
2456 		paddr += pgsize;
2457 		size -= pgsize;
2458 	}
2459 
2460 	/* unroll mapping in case something went wrong */
2461 	if (ret)
2462 		iommu_unmap(domain, orig_iova, orig_size - size);
2463 	else
2464 		trace_map(orig_iova, orig_paddr, orig_size);
2465 
2466 	return ret;
2467 }
2468 
2469 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2470 		      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2471 {
2472 	const struct iommu_ops *ops = domain->ops;
2473 	int ret;
2474 
2475 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2476 	if (ret == 0 && ops->iotlb_sync_map)
2477 		ops->iotlb_sync_map(domain, iova, size);
2478 
2479 	return ret;
2480 }
2481 
2482 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2483 	      phys_addr_t paddr, size_t size, int prot)
2484 {
2485 	might_sleep();
2486 	return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2487 }
2488 EXPORT_SYMBOL_GPL(iommu_map);
2489 
2490 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2491 	      phys_addr_t paddr, size_t size, int prot)
2492 {
2493 	return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2494 }
2495 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2496 
2497 static size_t __iommu_unmap(struct iommu_domain *domain,
2498 			    unsigned long iova, size_t size,
2499 			    struct iommu_iotlb_gather *iotlb_gather)
2500 {
2501 	const struct iommu_ops *ops = domain->ops;
2502 	size_t unmapped_page, unmapped = 0;
2503 	unsigned long orig_iova = iova;
2504 	unsigned int min_pagesz;
2505 
2506 	if (unlikely(ops->unmap == NULL ||
2507 		     domain->pgsize_bitmap == 0UL))
2508 		return 0;
2509 
2510 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2511 		return 0;
2512 
2513 	/* find out the minimum page size supported */
2514 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2515 
2516 	/*
2517 	 * The virtual address, as well as the size of the mapping, must be
2518 	 * aligned (at least) to the size of the smallest page supported
2519 	 * by the hardware
2520 	 */
2521 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2522 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2523 		       iova, size, min_pagesz);
2524 		return 0;
2525 	}
2526 
2527 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2528 
2529 	/*
2530 	 * Keep iterating until we either unmap 'size' bytes (or more)
2531 	 * or we hit an area that isn't mapped.
2532 	 */
2533 	while (unmapped < size) {
2534 		size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
2535 
2536 		unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather);
2537 		if (!unmapped_page)
2538 			break;
2539 
2540 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2541 			 iova, unmapped_page);
2542 
2543 		iova += unmapped_page;
2544 		unmapped += unmapped_page;
2545 	}
2546 
2547 	trace_unmap(orig_iova, size, unmapped);
2548 	return unmapped;
2549 }
2550 
2551 size_t iommu_unmap(struct iommu_domain *domain,
2552 		   unsigned long iova, size_t size)
2553 {
2554 	struct iommu_iotlb_gather iotlb_gather;
2555 	size_t ret;
2556 
2557 	iommu_iotlb_gather_init(&iotlb_gather);
2558 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2559 	iommu_iotlb_sync(domain, &iotlb_gather);
2560 
2561 	return ret;
2562 }
2563 EXPORT_SYMBOL_GPL(iommu_unmap);
2564 
2565 size_t iommu_unmap_fast(struct iommu_domain *domain,
2566 			unsigned long iova, size_t size,
2567 			struct iommu_iotlb_gather *iotlb_gather)
2568 {
2569 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2570 }
2571 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2572 
2573 static size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2574 			     struct scatterlist *sg, unsigned int nents, int prot,
2575 			     gfp_t gfp)
2576 {
2577 	const struct iommu_ops *ops = domain->ops;
2578 	size_t len = 0, mapped = 0;
2579 	phys_addr_t start;
2580 	unsigned int i = 0;
2581 	int ret;
2582 
2583 	while (i <= nents) {
2584 		phys_addr_t s_phys = sg_phys(sg);
2585 
2586 		if (len && s_phys != start + len) {
2587 			ret = __iommu_map(domain, iova + mapped, start,
2588 					len, prot, gfp);
2589 
2590 			if (ret)
2591 				goto out_err;
2592 
2593 			mapped += len;
2594 			len = 0;
2595 		}
2596 
2597 		if (len) {
2598 			len += sg->length;
2599 		} else {
2600 			len = sg->length;
2601 			start = s_phys;
2602 		}
2603 
2604 		if (++i < nents)
2605 			sg = sg_next(sg);
2606 	}
2607 
2608 	if (ops->iotlb_sync_map)
2609 		ops->iotlb_sync_map(domain, iova, mapped);
2610 	return mapped;
2611 
2612 out_err:
2613 	/* undo mappings already done */
2614 	iommu_unmap(domain, iova, mapped);
2615 
2616 	return 0;
2617 
2618 }
2619 
2620 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2621 		    struct scatterlist *sg, unsigned int nents, int prot)
2622 {
2623 	might_sleep();
2624 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2625 }
2626 EXPORT_SYMBOL_GPL(iommu_map_sg);
2627 
2628 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2629 		    struct scatterlist *sg, unsigned int nents, int prot)
2630 {
2631 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2632 }
2633 
2634 /**
2635  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2636  * @domain: the iommu domain where the fault has happened
2637  * @dev: the device where the fault has happened
2638  * @iova: the faulting address
2639  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2640  *
2641  * This function should be called by the low-level IOMMU implementations
2642  * whenever IOMMU faults happen, to allow high-level users, that are
2643  * interested in such events, to know about them.
2644  *
2645  * This event may be useful for several possible use cases:
2646  * - mere logging of the event
2647  * - dynamic TLB/PTE loading
2648  * - if restarting of the faulting device is required
2649  *
2650  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2651  * PTE/TLB loading will one day be supported, implementations will be able
2652  * to tell whether it succeeded or not according to this return value).
2653  *
2654  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2655  * (though fault handlers can also return -ENOSYS, in case they want to
2656  * elicit the default behavior of the IOMMU drivers).
2657  */
2658 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2659 		       unsigned long iova, int flags)
2660 {
2661 	int ret = -ENOSYS;
2662 
2663 	/*
2664 	 * if upper layers showed interest and installed a fault handler,
2665 	 * invoke it.
2666 	 */
2667 	if (domain->handler)
2668 		ret = domain->handler(domain, dev, iova, flags,
2669 						domain->handler_token);
2670 
2671 	trace_io_page_fault(dev, iova, flags);
2672 	return ret;
2673 }
2674 EXPORT_SYMBOL_GPL(report_iommu_fault);
2675 
2676 static int __init iommu_init(void)
2677 {
2678 	iommu_group_kset = kset_create_and_add("iommu_groups",
2679 					       NULL, kernel_kobj);
2680 	BUG_ON(!iommu_group_kset);
2681 
2682 	iommu_debugfs_setup();
2683 
2684 	return 0;
2685 }
2686 core_initcall(iommu_init);
2687 
2688 int iommu_enable_nesting(struct iommu_domain *domain)
2689 {
2690 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2691 		return -EINVAL;
2692 	if (!domain->ops->enable_nesting)
2693 		return -EINVAL;
2694 	return domain->ops->enable_nesting(domain);
2695 }
2696 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2697 
2698 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2699 		unsigned long quirk)
2700 {
2701 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2702 		return -EINVAL;
2703 	if (!domain->ops->set_pgtable_quirks)
2704 		return -EINVAL;
2705 	return domain->ops->set_pgtable_quirks(domain, quirk);
2706 }
2707 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2708 
2709 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2710 {
2711 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2712 
2713 	if (ops && ops->get_resv_regions)
2714 		ops->get_resv_regions(dev, list);
2715 }
2716 
2717 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2718 {
2719 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2720 
2721 	if (ops && ops->put_resv_regions)
2722 		ops->put_resv_regions(dev, list);
2723 }
2724 
2725 /**
2726  * generic_iommu_put_resv_regions - Reserved region driver helper
2727  * @dev: device for which to free reserved regions
2728  * @list: reserved region list for device
2729  *
2730  * IOMMU drivers can use this to implement their .put_resv_regions() callback
2731  * for simple reservations. Memory allocated for each reserved region will be
2732  * freed. If an IOMMU driver allocates additional resources per region, it is
2733  * going to have to implement a custom callback.
2734  */
2735 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2736 {
2737 	struct iommu_resv_region *entry, *next;
2738 
2739 	list_for_each_entry_safe(entry, next, list, list)
2740 		kfree(entry);
2741 }
2742 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2743 
2744 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2745 						  size_t length, int prot,
2746 						  enum iommu_resv_type type)
2747 {
2748 	struct iommu_resv_region *region;
2749 
2750 	region = kzalloc(sizeof(*region), GFP_KERNEL);
2751 	if (!region)
2752 		return NULL;
2753 
2754 	INIT_LIST_HEAD(&region->list);
2755 	region->start = start;
2756 	region->length = length;
2757 	region->prot = prot;
2758 	region->type = type;
2759 	return region;
2760 }
2761 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2762 
2763 void iommu_set_default_passthrough(bool cmd_line)
2764 {
2765 	if (cmd_line)
2766 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2767 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2768 }
2769 
2770 void iommu_set_default_translated(bool cmd_line)
2771 {
2772 	if (cmd_line)
2773 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2774 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2775 }
2776 
2777 bool iommu_default_passthrough(void)
2778 {
2779 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2780 }
2781 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2782 
2783 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2784 {
2785 	const struct iommu_ops *ops = NULL;
2786 	struct iommu_device *iommu;
2787 
2788 	spin_lock(&iommu_device_lock);
2789 	list_for_each_entry(iommu, &iommu_device_list, list)
2790 		if (iommu->fwnode == fwnode) {
2791 			ops = iommu->ops;
2792 			break;
2793 		}
2794 	spin_unlock(&iommu_device_lock);
2795 	return ops;
2796 }
2797 
2798 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2799 		      const struct iommu_ops *ops)
2800 {
2801 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2802 
2803 	if (fwspec)
2804 		return ops == fwspec->ops ? 0 : -EINVAL;
2805 
2806 	if (!dev_iommu_get(dev))
2807 		return -ENOMEM;
2808 
2809 	/* Preallocate for the overwhelmingly common case of 1 ID */
2810 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2811 	if (!fwspec)
2812 		return -ENOMEM;
2813 
2814 	of_node_get(to_of_node(iommu_fwnode));
2815 	fwspec->iommu_fwnode = iommu_fwnode;
2816 	fwspec->ops = ops;
2817 	dev_iommu_fwspec_set(dev, fwspec);
2818 	return 0;
2819 }
2820 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2821 
2822 void iommu_fwspec_free(struct device *dev)
2823 {
2824 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2825 
2826 	if (fwspec) {
2827 		fwnode_handle_put(fwspec->iommu_fwnode);
2828 		kfree(fwspec);
2829 		dev_iommu_fwspec_set(dev, NULL);
2830 	}
2831 }
2832 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2833 
2834 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2835 {
2836 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2837 	int i, new_num;
2838 
2839 	if (!fwspec)
2840 		return -EINVAL;
2841 
2842 	new_num = fwspec->num_ids + num_ids;
2843 	if (new_num > 1) {
2844 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2845 				  GFP_KERNEL);
2846 		if (!fwspec)
2847 			return -ENOMEM;
2848 
2849 		dev_iommu_fwspec_set(dev, fwspec);
2850 	}
2851 
2852 	for (i = 0; i < num_ids; i++)
2853 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2854 
2855 	fwspec->num_ids = new_num;
2856 	return 0;
2857 }
2858 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2859 
2860 /*
2861  * Per device IOMMU features.
2862  */
2863 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2864 {
2865 	if (dev->iommu && dev->iommu->iommu_dev) {
2866 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2867 
2868 		if (ops->dev_enable_feat)
2869 			return ops->dev_enable_feat(dev, feat);
2870 	}
2871 
2872 	return -ENODEV;
2873 }
2874 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2875 
2876 /*
2877  * The device drivers should do the necessary cleanups before calling this.
2878  * For example, before disabling the aux-domain feature, the device driver
2879  * should detach all aux-domains. Otherwise, this will return -EBUSY.
2880  */
2881 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2882 {
2883 	if (dev->iommu && dev->iommu->iommu_dev) {
2884 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2885 
2886 		if (ops->dev_disable_feat)
2887 			return ops->dev_disable_feat(dev, feat);
2888 	}
2889 
2890 	return -EBUSY;
2891 }
2892 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2893 
2894 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2895 {
2896 	if (dev->iommu && dev->iommu->iommu_dev) {
2897 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2898 
2899 		if (ops->dev_feat_enabled)
2900 			return ops->dev_feat_enabled(dev, feat);
2901 	}
2902 
2903 	return false;
2904 }
2905 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2906 
2907 /*
2908  * Aux-domain specific attach/detach.
2909  *
2910  * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2911  * true. Also, as long as domains are attached to a device through this
2912  * interface, any tries to call iommu_attach_device() should fail
2913  * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2914  * This should make us safe against a device being attached to a guest as a
2915  * whole while there are still pasid users on it (aux and sva).
2916  */
2917 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2918 {
2919 	int ret = -ENODEV;
2920 
2921 	if (domain->ops->aux_attach_dev)
2922 		ret = domain->ops->aux_attach_dev(domain, dev);
2923 
2924 	if (!ret)
2925 		trace_attach_device_to_domain(dev);
2926 
2927 	return ret;
2928 }
2929 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
2930 
2931 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
2932 {
2933 	if (domain->ops->aux_detach_dev) {
2934 		domain->ops->aux_detach_dev(domain, dev);
2935 		trace_detach_device_from_domain(dev);
2936 	}
2937 }
2938 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
2939 
2940 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
2941 {
2942 	int ret = -ENODEV;
2943 
2944 	if (domain->ops->aux_get_pasid)
2945 		ret = domain->ops->aux_get_pasid(domain, dev);
2946 
2947 	return ret;
2948 }
2949 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
2950 
2951 /**
2952  * iommu_sva_bind_device() - Bind a process address space to a device
2953  * @dev: the device
2954  * @mm: the mm to bind, caller must hold a reference to it
2955  *
2956  * Create a bond between device and address space, allowing the device to access
2957  * the mm using the returned PASID. If a bond already exists between @device and
2958  * @mm, it is returned and an additional reference is taken. Caller must call
2959  * iommu_sva_unbind_device() to release each reference.
2960  *
2961  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2962  * initialize the required SVA features.
2963  *
2964  * On error, returns an ERR_PTR value.
2965  */
2966 struct iommu_sva *
2967 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2968 {
2969 	struct iommu_group *group;
2970 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
2971 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2972 
2973 	if (!ops || !ops->sva_bind)
2974 		return ERR_PTR(-ENODEV);
2975 
2976 	group = iommu_group_get(dev);
2977 	if (!group)
2978 		return ERR_PTR(-ENODEV);
2979 
2980 	/* Ensure device count and domain don't change while we're binding */
2981 	mutex_lock(&group->mutex);
2982 
2983 	/*
2984 	 * To keep things simple, SVA currently doesn't support IOMMU groups
2985 	 * with more than one device. Existing SVA-capable systems are not
2986 	 * affected by the problems that required IOMMU groups (lack of ACS
2987 	 * isolation, device ID aliasing and other hardware issues).
2988 	 */
2989 	if (iommu_group_device_count(group) != 1)
2990 		goto out_unlock;
2991 
2992 	handle = ops->sva_bind(dev, mm, drvdata);
2993 
2994 out_unlock:
2995 	mutex_unlock(&group->mutex);
2996 	iommu_group_put(group);
2997 
2998 	return handle;
2999 }
3000 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
3001 
3002 /**
3003  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
3004  * @handle: the handle returned by iommu_sva_bind_device()
3005  *
3006  * Put reference to a bond between device and address space. The device should
3007  * not be issuing any more transaction for this PASID. All outstanding page
3008  * requests for this PASID must have been flushed to the IOMMU.
3009  */
3010 void iommu_sva_unbind_device(struct iommu_sva *handle)
3011 {
3012 	struct iommu_group *group;
3013 	struct device *dev = handle->dev;
3014 	const struct iommu_ops *ops = dev->bus->iommu_ops;
3015 
3016 	if (!ops || !ops->sva_unbind)
3017 		return;
3018 
3019 	group = iommu_group_get(dev);
3020 	if (!group)
3021 		return;
3022 
3023 	mutex_lock(&group->mutex);
3024 	ops->sva_unbind(handle);
3025 	mutex_unlock(&group->mutex);
3026 
3027 	iommu_group_put(group);
3028 }
3029 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
3030 
3031 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
3032 {
3033 	const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
3034 
3035 	if (!ops || !ops->sva_get_pasid)
3036 		return IOMMU_PASID_INVALID;
3037 
3038 	return ops->sva_get_pasid(handle);
3039 }
3040 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
3041 
3042 /*
3043  * Changes the default domain of an iommu group that has *only* one device
3044  *
3045  * @group: The group for which the default domain should be changed
3046  * @prev_dev: The device in the group (this is used to make sure that the device
3047  *	 hasn't changed after the caller has called this function)
3048  * @type: The type of the new default domain that gets associated with the group
3049  *
3050  * Returns 0 on success and error code on failure
3051  *
3052  * Note:
3053  * 1. Presently, this function is called only when user requests to change the
3054  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
3055  *    Please take a closer look if intended to use for other purposes.
3056  */
3057 static int iommu_change_dev_def_domain(struct iommu_group *group,
3058 				       struct device *prev_dev, int type)
3059 {
3060 	struct iommu_domain *prev_dom;
3061 	struct group_device *grp_dev;
3062 	int ret, dev_def_dom;
3063 	struct device *dev;
3064 
3065 	mutex_lock(&group->mutex);
3066 
3067 	if (group->default_domain != group->domain) {
3068 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
3069 		ret = -EBUSY;
3070 		goto out;
3071 	}
3072 
3073 	/*
3074 	 * iommu group wasn't locked while acquiring device lock in
3075 	 * iommu_group_store_type(). So, make sure that the device count hasn't
3076 	 * changed while acquiring device lock.
3077 	 *
3078 	 * Changing default domain of an iommu group with two or more devices
3079 	 * isn't supported because there could be a potential deadlock. Consider
3080 	 * the following scenario. T1 is trying to acquire device locks of all
3081 	 * the devices in the group and before it could acquire all of them,
3082 	 * there could be another thread T2 (from different sub-system and use
3083 	 * case) that has already acquired some of the device locks and might be
3084 	 * waiting for T1 to release other device locks.
3085 	 */
3086 	if (iommu_group_device_count(group) != 1) {
3087 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
3088 		ret = -EINVAL;
3089 		goto out;
3090 	}
3091 
3092 	/* Since group has only one device */
3093 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3094 	dev = grp_dev->dev;
3095 
3096 	if (prev_dev != dev) {
3097 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
3098 		ret = -EBUSY;
3099 		goto out;
3100 	}
3101 
3102 	prev_dom = group->default_domain;
3103 	if (!prev_dom) {
3104 		ret = -EINVAL;
3105 		goto out;
3106 	}
3107 
3108 	dev_def_dom = iommu_get_def_domain_type(dev);
3109 	if (!type) {
3110 		/*
3111 		 * If the user hasn't requested any specific type of domain and
3112 		 * if the device supports both the domains, then default to the
3113 		 * domain the device was booted with
3114 		 */
3115 		type = dev_def_dom ? : iommu_def_domain_type;
3116 	} else if (dev_def_dom && type != dev_def_dom) {
3117 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
3118 				    iommu_domain_type_str(type));
3119 		ret = -EINVAL;
3120 		goto out;
3121 	}
3122 
3123 	/*
3124 	 * Switch to a new domain only if the requested domain type is different
3125 	 * from the existing default domain type
3126 	 */
3127 	if (prev_dom->type == type) {
3128 		ret = 0;
3129 		goto out;
3130 	}
3131 
3132 	/* Sets group->default_domain to the newly allocated domain */
3133 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
3134 	if (ret)
3135 		goto out;
3136 
3137 	ret = iommu_create_device_direct_mappings(group, dev);
3138 	if (ret)
3139 		goto free_new_domain;
3140 
3141 	ret = __iommu_attach_device(group->default_domain, dev);
3142 	if (ret)
3143 		goto free_new_domain;
3144 
3145 	group->domain = group->default_domain;
3146 
3147 	/*
3148 	 * Release the mutex here because ops->probe_finalize() call-back of
3149 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3150 	 * in-turn might call back into IOMMU core code, where it tries to take
3151 	 * group->mutex, resulting in a deadlock.
3152 	 */
3153 	mutex_unlock(&group->mutex);
3154 
3155 	/* Make sure dma_ops is appropriatley set */
3156 	iommu_group_do_probe_finalize(dev, group->default_domain);
3157 	iommu_domain_free(prev_dom);
3158 	return 0;
3159 
3160 free_new_domain:
3161 	iommu_domain_free(group->default_domain);
3162 	group->default_domain = prev_dom;
3163 	group->domain = prev_dom;
3164 
3165 out:
3166 	mutex_unlock(&group->mutex);
3167 
3168 	return ret;
3169 }
3170 
3171 /*
3172  * Changing the default domain through sysfs requires the users to ubind the
3173  * drivers from the devices in the iommu group. Return failure if this doesn't
3174  * meet.
3175  *
3176  * We need to consider the race between this and the device release path.
3177  * device_lock(dev) is used here to guarantee that the device release path
3178  * will not be entered at the same time.
3179  */
3180 static ssize_t iommu_group_store_type(struct iommu_group *group,
3181 				      const char *buf, size_t count)
3182 {
3183 	struct group_device *grp_dev;
3184 	struct device *dev;
3185 	int ret, req_type;
3186 
3187 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3188 		return -EACCES;
3189 
3190 	if (WARN_ON(!group))
3191 		return -EINVAL;
3192 
3193 	if (sysfs_streq(buf, "identity"))
3194 		req_type = IOMMU_DOMAIN_IDENTITY;
3195 	else if (sysfs_streq(buf, "DMA"))
3196 		req_type = IOMMU_DOMAIN_DMA;
3197 	else if (sysfs_streq(buf, "auto"))
3198 		req_type = 0;
3199 	else
3200 		return -EINVAL;
3201 
3202 	/*
3203 	 * Lock/Unlock the group mutex here before device lock to
3204 	 * 1. Make sure that the iommu group has only one device (this is a
3205 	 *    prerequisite for step 2)
3206 	 * 2. Get struct *dev which is needed to lock device
3207 	 */
3208 	mutex_lock(&group->mutex);
3209 	if (iommu_group_device_count(group) != 1) {
3210 		mutex_unlock(&group->mutex);
3211 		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3212 		return -EINVAL;
3213 	}
3214 
3215 	/* Since group has only one device */
3216 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3217 	dev = grp_dev->dev;
3218 	get_device(dev);
3219 
3220 	/*
3221 	 * Don't hold the group mutex because taking group mutex first and then
3222 	 * the device lock could potentially cause a deadlock as below. Assume
3223 	 * two threads T1 and T2. T1 is trying to change default domain of an
3224 	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3225 	 * of a PCIe device which is in the same iommu group. T1 takes group
3226 	 * mutex and before it could take device lock assume T2 has taken device
3227 	 * lock and is yet to take group mutex. Now, both the threads will be
3228 	 * waiting for the other thread to release lock. Below, lock order was
3229 	 * suggested.
3230 	 * device_lock(dev);
3231 	 *	mutex_lock(&group->mutex);
3232 	 *		iommu_change_dev_def_domain();
3233 	 *	mutex_unlock(&group->mutex);
3234 	 * device_unlock(dev);
3235 	 *
3236 	 * [1] Typical device release path
3237 	 * device_lock() from device/driver core code
3238 	 *  -> bus_notifier()
3239 	 *   -> iommu_bus_notifier()
3240 	 *    -> iommu_release_device()
3241 	 *     -> ops->release_device() vendor driver calls back iommu core code
3242 	 *      -> mutex_lock() from iommu core code
3243 	 */
3244 	mutex_unlock(&group->mutex);
3245 
3246 	/* Check if the device in the group still has a driver bound to it */
3247 	device_lock(dev);
3248 	if (device_is_bound(dev)) {
3249 		pr_err_ratelimited("Device is still bound to driver\n");
3250 		ret = -EBUSY;
3251 		goto out;
3252 	}
3253 
3254 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3255 	ret = ret ?: count;
3256 
3257 out:
3258 	device_unlock(dev);
3259 	put_device(dev);
3260 
3261 	return ret;
3262 }
3263