xref: /linux/drivers/iommu/iommu.c (revision ce5cfb0fa20dc6454da039612e34325b7b4a8243)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/iommufd.h>
22 #include <linux/idr.h>
23 #include <linux/err.h>
24 #include <linux/pci.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitops.h>
27 #include <linux/platform_device.h>
28 #include <linux/property.h>
29 #include <linux/fsl/mc.h>
30 #include <linux/module.h>
31 #include <linux/cc_platform.h>
32 #include <linux/cdx/cdx_bus.h>
33 #include <trace/events/iommu.h>
34 #include <linux/sched/mm.h>
35 #include <linux/msi.h>
36 #include <uapi/linux/iommufd.h>
37 
38 #include "dma-iommu.h"
39 #include "iommu-priv.h"
40 
41 static struct kset *iommu_group_kset;
42 static DEFINE_IDA(iommu_group_ida);
43 static DEFINE_IDA(iommu_global_pasid_ida);
44 
45 static unsigned int iommu_def_domain_type __read_mostly;
46 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
47 static u32 iommu_cmd_line __read_mostly;
48 
49 /* Tags used with xa_tag_pointer() in group->pasid_array */
50 enum { IOMMU_PASID_ARRAY_DOMAIN = 0, IOMMU_PASID_ARRAY_HANDLE = 1 };
51 
52 struct iommu_group {
53 	struct kobject kobj;
54 	struct kobject *devices_kobj;
55 	struct list_head devices;
56 	struct xarray pasid_array;
57 	struct mutex mutex;
58 	void *iommu_data;
59 	void (*iommu_data_release)(void *iommu_data);
60 	char *name;
61 	int id;
62 	struct iommu_domain *default_domain;
63 	struct iommu_domain *blocking_domain;
64 	struct iommu_domain *domain;
65 	struct list_head entry;
66 	unsigned int owner_cnt;
67 	void *owner;
68 };
69 
70 struct group_device {
71 	struct list_head list;
72 	struct device *dev;
73 	char *name;
74 };
75 
76 /* Iterate over each struct group_device in a struct iommu_group */
77 #define for_each_group_device(group, pos) \
78 	list_for_each_entry(pos, &(group)->devices, list)
79 
80 struct iommu_group_attribute {
81 	struct attribute attr;
82 	ssize_t (*show)(struct iommu_group *group, char *buf);
83 	ssize_t (*store)(struct iommu_group *group,
84 			 const char *buf, size_t count);
85 };
86 
87 static const char * const iommu_group_resv_type_string[] = {
88 	[IOMMU_RESV_DIRECT]			= "direct",
89 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
90 	[IOMMU_RESV_RESERVED]			= "reserved",
91 	[IOMMU_RESV_MSI]			= "msi",
92 	[IOMMU_RESV_SW_MSI]			= "msi",
93 };
94 
95 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
96 #define IOMMU_CMD_LINE_STRICT		BIT(1)
97 
98 static int bus_iommu_probe(const struct bus_type *bus);
99 static int iommu_bus_notifier(struct notifier_block *nb,
100 			      unsigned long action, void *data);
101 static void iommu_release_device(struct device *dev);
102 static int __iommu_attach_device(struct iommu_domain *domain,
103 				 struct device *dev, struct iommu_domain *old);
104 static int __iommu_attach_group(struct iommu_domain *domain,
105 				struct iommu_group *group);
106 static struct iommu_domain *__iommu_paging_domain_alloc_flags(struct device *dev,
107 						       unsigned int type,
108 						       unsigned int flags);
109 
110 enum {
111 	IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
112 };
113 
114 static int __iommu_device_set_domain(struct iommu_group *group,
115 				     struct device *dev,
116 				     struct iommu_domain *new_domain,
117 				     struct iommu_domain *old_domain,
118 				     unsigned int flags);
119 static int __iommu_group_set_domain_internal(struct iommu_group *group,
120 					     struct iommu_domain *new_domain,
121 					     unsigned int flags);
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)122 static int __iommu_group_set_domain(struct iommu_group *group,
123 				    struct iommu_domain *new_domain)
124 {
125 	return __iommu_group_set_domain_internal(group, new_domain, 0);
126 }
__iommu_group_set_domain_nofail(struct iommu_group * group,struct iommu_domain * new_domain)127 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
128 					    struct iommu_domain *new_domain)
129 {
130 	WARN_ON(__iommu_group_set_domain_internal(
131 		group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
132 }
133 
134 static int iommu_setup_default_domain(struct iommu_group *group,
135 				      int target_type);
136 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
137 					       struct device *dev);
138 static ssize_t iommu_group_store_type(struct iommu_group *group,
139 				      const char *buf, size_t count);
140 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
141 						     struct device *dev);
142 static void __iommu_group_free_device(struct iommu_group *group,
143 				      struct group_device *grp_dev);
144 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
145 			      const struct iommu_ops *ops);
146 
147 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
148 struct iommu_group_attribute iommu_group_attr_##_name =		\
149 	__ATTR(_name, _mode, _show, _store)
150 
151 #define to_iommu_group_attr(_attr)	\
152 	container_of(_attr, struct iommu_group_attribute, attr)
153 #define to_iommu_group(_kobj)		\
154 	container_of(_kobj, struct iommu_group, kobj)
155 
156 static LIST_HEAD(iommu_device_list);
157 static DEFINE_SPINLOCK(iommu_device_lock);
158 
159 static const struct bus_type * const iommu_buses[] = {
160 	&platform_bus_type,
161 #ifdef CONFIG_PCI
162 	&pci_bus_type,
163 #endif
164 #ifdef CONFIG_ARM_AMBA
165 	&amba_bustype,
166 #endif
167 #ifdef CONFIG_FSL_MC_BUS
168 	&fsl_mc_bus_type,
169 #endif
170 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
171 	&host1x_context_device_bus_type,
172 #endif
173 #ifdef CONFIG_CDX_BUS
174 	&cdx_bus_type,
175 #endif
176 };
177 
178 /*
179  * Use a function instead of an array here because the domain-type is a
180  * bit-field, so an array would waste memory.
181  */
iommu_domain_type_str(unsigned int t)182 static const char *iommu_domain_type_str(unsigned int t)
183 {
184 	switch (t) {
185 	case IOMMU_DOMAIN_BLOCKED:
186 		return "Blocked";
187 	case IOMMU_DOMAIN_IDENTITY:
188 		return "Passthrough";
189 	case IOMMU_DOMAIN_UNMANAGED:
190 		return "Unmanaged";
191 	case IOMMU_DOMAIN_DMA:
192 	case IOMMU_DOMAIN_DMA_FQ:
193 		return "Translated";
194 	case IOMMU_DOMAIN_PLATFORM:
195 		return "Platform";
196 	default:
197 		return "Unknown";
198 	}
199 }
200 
iommu_subsys_init(void)201 static int __init iommu_subsys_init(void)
202 {
203 	struct notifier_block *nb;
204 
205 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
206 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
207 			iommu_set_default_passthrough(false);
208 		else
209 			iommu_set_default_translated(false);
210 
211 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
212 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
213 			iommu_set_default_translated(false);
214 		}
215 	}
216 
217 	if (!iommu_default_passthrough() && !iommu_dma_strict)
218 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
219 
220 	pr_info("Default domain type: %s%s\n",
221 		iommu_domain_type_str(iommu_def_domain_type),
222 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
223 			" (set via kernel command line)" : "");
224 
225 	if (!iommu_default_passthrough())
226 		pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
227 			iommu_dma_strict ? "strict" : "lazy",
228 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
229 				" (set via kernel command line)" : "");
230 
231 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
232 	if (!nb)
233 		return -ENOMEM;
234 
235 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
236 		nb[i].notifier_call = iommu_bus_notifier;
237 		bus_register_notifier(iommu_buses[i], &nb[i]);
238 	}
239 
240 	return 0;
241 }
242 subsys_initcall(iommu_subsys_init);
243 
remove_iommu_group(struct device * dev,void * data)244 static int remove_iommu_group(struct device *dev, void *data)
245 {
246 	if (dev->iommu && dev->iommu->iommu_dev == data)
247 		iommu_release_device(dev);
248 
249 	return 0;
250 }
251 
252 /**
253  * iommu_device_register() - Register an IOMMU hardware instance
254  * @iommu: IOMMU handle for the instance
255  * @ops:   IOMMU ops to associate with the instance
256  * @hwdev: (optional) actual instance device, used for fwnode lookup
257  *
258  * Return: 0 on success, or an error.
259  */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)260 int iommu_device_register(struct iommu_device *iommu,
261 			  const struct iommu_ops *ops, struct device *hwdev)
262 {
263 	int err = 0;
264 
265 	/* We need to be able to take module references appropriately */
266 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
267 		return -EINVAL;
268 
269 	iommu->ops = ops;
270 	if (hwdev)
271 		iommu->fwnode = dev_fwnode(hwdev);
272 
273 	spin_lock(&iommu_device_lock);
274 	list_add_tail(&iommu->list, &iommu_device_list);
275 	spin_unlock(&iommu_device_lock);
276 
277 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++)
278 		err = bus_iommu_probe(iommu_buses[i]);
279 	if (err)
280 		iommu_device_unregister(iommu);
281 	else
282 		WRITE_ONCE(iommu->ready, true);
283 	return err;
284 }
285 EXPORT_SYMBOL_GPL(iommu_device_register);
286 
iommu_device_unregister(struct iommu_device * iommu)287 void iommu_device_unregister(struct iommu_device *iommu)
288 {
289 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
290 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
291 
292 	spin_lock(&iommu_device_lock);
293 	list_del(&iommu->list);
294 	spin_unlock(&iommu_device_lock);
295 
296 	/* Pairs with the alloc in generic_single_device_group() */
297 	iommu_group_put(iommu->singleton_group);
298 	iommu->singleton_group = NULL;
299 }
300 EXPORT_SYMBOL_GPL(iommu_device_unregister);
301 
302 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
iommu_device_unregister_bus(struct iommu_device * iommu,const struct bus_type * bus,struct notifier_block * nb)303 void iommu_device_unregister_bus(struct iommu_device *iommu,
304 				 const struct bus_type *bus,
305 				 struct notifier_block *nb)
306 {
307 	bus_unregister_notifier(bus, nb);
308 	fwnode_remove_software_node(iommu->fwnode);
309 	iommu_device_unregister(iommu);
310 }
311 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
312 
313 /*
314  * Register an iommu driver against a single bus. This is only used by iommufd
315  * selftest to create a mock iommu driver. The caller must provide
316  * some memory to hold a notifier_block.
317  */
iommu_device_register_bus(struct iommu_device * iommu,const struct iommu_ops * ops,const struct bus_type * bus,struct notifier_block * nb)318 int iommu_device_register_bus(struct iommu_device *iommu,
319 			      const struct iommu_ops *ops,
320 			      const struct bus_type *bus,
321 			      struct notifier_block *nb)
322 {
323 	int err;
324 
325 	iommu->ops = ops;
326 	nb->notifier_call = iommu_bus_notifier;
327 	err = bus_register_notifier(bus, nb);
328 	if (err)
329 		return err;
330 
331 	iommu->fwnode = fwnode_create_software_node(NULL, NULL);
332 	if (IS_ERR(iommu->fwnode)) {
333 		bus_unregister_notifier(bus, nb);
334 		return PTR_ERR(iommu->fwnode);
335 	}
336 
337 	spin_lock(&iommu_device_lock);
338 	list_add_tail(&iommu->list, &iommu_device_list);
339 	spin_unlock(&iommu_device_lock);
340 
341 	err = bus_iommu_probe(bus);
342 	if (err) {
343 		iommu_device_unregister_bus(iommu, bus, nb);
344 		return err;
345 	}
346 	WRITE_ONCE(iommu->ready, true);
347 	return 0;
348 }
349 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
350 
iommu_mock_device_add(struct device * dev,struct iommu_device * iommu)351 int iommu_mock_device_add(struct device *dev, struct iommu_device *iommu)
352 {
353 	int rc;
354 
355 	mutex_lock(&iommu_probe_device_lock);
356 	rc = iommu_fwspec_init(dev, iommu->fwnode);
357 	mutex_unlock(&iommu_probe_device_lock);
358 
359 	if (rc)
360 		return rc;
361 
362 	rc = device_add(dev);
363 	if (rc)
364 		iommu_fwspec_free(dev);
365 	return rc;
366 }
367 EXPORT_SYMBOL_GPL(iommu_mock_device_add);
368 #endif
369 
dev_iommu_get(struct device * dev)370 static struct dev_iommu *dev_iommu_get(struct device *dev)
371 {
372 	struct dev_iommu *param = dev->iommu;
373 
374 	lockdep_assert_held(&iommu_probe_device_lock);
375 
376 	if (param)
377 		return param;
378 
379 	param = kzalloc(sizeof(*param), GFP_KERNEL);
380 	if (!param)
381 		return NULL;
382 
383 	mutex_init(&param->lock);
384 	dev->iommu = param;
385 	return param;
386 }
387 
dev_iommu_free(struct device * dev)388 void dev_iommu_free(struct device *dev)
389 {
390 	struct dev_iommu *param = dev->iommu;
391 
392 	dev->iommu = NULL;
393 	if (param->fwspec) {
394 		fwnode_handle_put(param->fwspec->iommu_fwnode);
395 		kfree(param->fwspec);
396 	}
397 	kfree(param);
398 }
399 
400 /*
401  * Internal equivalent of device_iommu_mapped() for when we care that a device
402  * actually has API ops, and don't want false positives from VFIO-only groups.
403  */
dev_has_iommu(struct device * dev)404 static bool dev_has_iommu(struct device *dev)
405 {
406 	return dev->iommu && dev->iommu->iommu_dev;
407 }
408 
dev_iommu_get_max_pasids(struct device * dev)409 static u32 dev_iommu_get_max_pasids(struct device *dev)
410 {
411 	u32 max_pasids = 0, bits = 0;
412 	int ret;
413 
414 	if (dev_is_pci(dev)) {
415 		ret = pci_max_pasids(to_pci_dev(dev));
416 		if (ret > 0)
417 			max_pasids = ret;
418 	} else {
419 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
420 		if (!ret)
421 			max_pasids = 1UL << bits;
422 	}
423 
424 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
425 }
426 
dev_iommu_priv_set(struct device * dev,void * priv)427 void dev_iommu_priv_set(struct device *dev, void *priv)
428 {
429 	/* FSL_PAMU does something weird */
430 	if (!IS_ENABLED(CONFIG_FSL_PAMU))
431 		lockdep_assert_held(&iommu_probe_device_lock);
432 	dev->iommu->priv = priv;
433 }
434 EXPORT_SYMBOL_GPL(dev_iommu_priv_set);
435 
436 /*
437  * Init the dev->iommu and dev->iommu_group in the struct device and get the
438  * driver probed
439  */
iommu_init_device(struct device * dev)440 static int iommu_init_device(struct device *dev)
441 {
442 	const struct iommu_ops *ops;
443 	struct iommu_device *iommu_dev;
444 	struct iommu_group *group;
445 	int ret;
446 
447 	if (!dev_iommu_get(dev))
448 		return -ENOMEM;
449 	/*
450 	 * For FDT-based systems and ACPI IORT/VIOT, the common firmware parsing
451 	 * is buried in the bus dma_configure path. Properly unpicking that is
452 	 * still a big job, so for now just invoke the whole thing. The device
453 	 * already having a driver bound means dma_configure has already run and
454 	 * found no IOMMU to wait for, so there's no point calling it again.
455 	 */
456 	if (!dev->iommu->fwspec && !dev->driver && dev->bus->dma_configure) {
457 		mutex_unlock(&iommu_probe_device_lock);
458 		dev->bus->dma_configure(dev);
459 		mutex_lock(&iommu_probe_device_lock);
460 		/* If another instance finished the job for us, skip it */
461 		if (!dev->iommu || dev->iommu_group)
462 			return -ENODEV;
463 	}
464 	/*
465 	 * At this point, relevant devices either now have a fwspec which will
466 	 * match ops registered with a non-NULL fwnode, or we can reasonably
467 	 * assume that only one of Intel, AMD, s390, PAMU or legacy SMMUv2 can
468 	 * be present, and that any of their registered instances has suitable
469 	 * ops for probing, and thus cheekily co-opt the same mechanism.
470 	 */
471 	ops = iommu_fwspec_ops(dev->iommu->fwspec);
472 	if (!ops) {
473 		ret = -ENODEV;
474 		goto err_free;
475 	}
476 
477 	if (!try_module_get(ops->owner)) {
478 		ret = -EINVAL;
479 		goto err_free;
480 	}
481 
482 	iommu_dev = ops->probe_device(dev);
483 	if (IS_ERR(iommu_dev)) {
484 		ret = PTR_ERR(iommu_dev);
485 		goto err_module_put;
486 	}
487 	dev->iommu->iommu_dev = iommu_dev;
488 
489 	ret = iommu_device_link(iommu_dev, dev);
490 	if (ret)
491 		goto err_release;
492 
493 	group = ops->device_group(dev);
494 	if (WARN_ON_ONCE(group == NULL))
495 		group = ERR_PTR(-EINVAL);
496 	if (IS_ERR(group)) {
497 		ret = PTR_ERR(group);
498 		goto err_unlink;
499 	}
500 	dev->iommu_group = group;
501 
502 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
503 	if (ops->is_attach_deferred)
504 		dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
505 	return 0;
506 
507 err_unlink:
508 	iommu_device_unlink(iommu_dev, dev);
509 err_release:
510 	if (ops->release_device)
511 		ops->release_device(dev);
512 err_module_put:
513 	module_put(ops->owner);
514 err_free:
515 	dev->iommu->iommu_dev = NULL;
516 	dev_iommu_free(dev);
517 	return ret;
518 }
519 
iommu_deinit_device(struct device * dev)520 static void iommu_deinit_device(struct device *dev)
521 {
522 	struct iommu_group *group = dev->iommu_group;
523 	const struct iommu_ops *ops = dev_iommu_ops(dev);
524 
525 	lockdep_assert_held(&group->mutex);
526 
527 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
528 
529 	/*
530 	 * release_device() must stop using any attached domain on the device.
531 	 * If there are still other devices in the group, they are not affected
532 	 * by this callback.
533 	 *
534 	 * If the iommu driver provides release_domain, the core code ensures
535 	 * that domain is attached prior to calling release_device. Drivers can
536 	 * use this to enforce a translation on the idle iommu. Typically, the
537 	 * global static blocked_domain is a good choice.
538 	 *
539 	 * Otherwise, the iommu driver must set the device to either an identity
540 	 * or a blocking translation in release_device() and stop using any
541 	 * domain pointer, as it is going to be freed.
542 	 *
543 	 * Regardless, if a delayed attach never occurred, then the release
544 	 * should still avoid touching any hardware configuration either.
545 	 */
546 	if (!dev->iommu->attach_deferred && ops->release_domain) {
547 		struct iommu_domain *release_domain = ops->release_domain;
548 
549 		/*
550 		 * If the device requires direct mappings then it should not
551 		 * be parked on a BLOCKED domain during release as that would
552 		 * break the direct mappings.
553 		 */
554 		if (dev->iommu->require_direct && ops->identity_domain &&
555 		    release_domain == ops->blocked_domain)
556 			release_domain = ops->identity_domain;
557 
558 		release_domain->ops->attach_dev(release_domain, dev,
559 						group->domain);
560 	}
561 
562 	if (ops->release_device)
563 		ops->release_device(dev);
564 
565 	/*
566 	 * If this is the last driver to use the group then we must free the
567 	 * domains before we do the module_put().
568 	 */
569 	if (list_empty(&group->devices)) {
570 		if (group->default_domain) {
571 			iommu_domain_free(group->default_domain);
572 			group->default_domain = NULL;
573 		}
574 		if (group->blocking_domain) {
575 			iommu_domain_free(group->blocking_domain);
576 			group->blocking_domain = NULL;
577 		}
578 		group->domain = NULL;
579 	}
580 
581 	/* Caller must put iommu_group */
582 	dev->iommu_group = NULL;
583 	module_put(ops->owner);
584 	dev_iommu_free(dev);
585 #ifdef CONFIG_IOMMU_DMA
586 	dev->dma_iommu = false;
587 #endif
588 }
589 
pasid_array_entry_to_domain(void * entry)590 static struct iommu_domain *pasid_array_entry_to_domain(void *entry)
591 {
592 	if (xa_pointer_tag(entry) == IOMMU_PASID_ARRAY_DOMAIN)
593 		return xa_untag_pointer(entry);
594 	return ((struct iommu_attach_handle *)xa_untag_pointer(entry))->domain;
595 }
596 
597 DEFINE_MUTEX(iommu_probe_device_lock);
598 
__iommu_probe_device(struct device * dev,struct list_head * group_list)599 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
600 {
601 	struct iommu_group *group;
602 	struct group_device *gdev;
603 	int ret;
604 
605 	/*
606 	 * Serialise to avoid races between IOMMU drivers registering in
607 	 * parallel and/or the "replay" calls from ACPI/OF code via client
608 	 * driver probe. Once the latter have been cleaned up we should
609 	 * probably be able to use device_lock() here to minimise the scope,
610 	 * but for now enforcing a simple global ordering is fine.
611 	 */
612 	lockdep_assert_held(&iommu_probe_device_lock);
613 
614 	/* Device is probed already if in a group */
615 	if (dev->iommu_group)
616 		return 0;
617 
618 	ret = iommu_init_device(dev);
619 	if (ret)
620 		return ret;
621 	/*
622 	 * And if we do now see any replay calls, they would indicate someone
623 	 * misusing the dma_configure path outside bus code.
624 	 */
625 	if (dev->driver)
626 		dev_WARN(dev, "late IOMMU probe at driver bind, something fishy here!\n");
627 
628 	group = dev->iommu_group;
629 	gdev = iommu_group_alloc_device(group, dev);
630 	mutex_lock(&group->mutex);
631 	if (IS_ERR(gdev)) {
632 		ret = PTR_ERR(gdev);
633 		goto err_put_group;
634 	}
635 
636 	/*
637 	 * The gdev must be in the list before calling
638 	 * iommu_setup_default_domain()
639 	 */
640 	list_add_tail(&gdev->list, &group->devices);
641 	WARN_ON(group->default_domain && !group->domain);
642 	if (group->default_domain)
643 		iommu_create_device_direct_mappings(group->default_domain, dev);
644 	if (group->domain) {
645 		ret = __iommu_device_set_domain(group, dev, group->domain, NULL,
646 						0);
647 		if (ret)
648 			goto err_remove_gdev;
649 	} else if (!group->default_domain && !group_list) {
650 		ret = iommu_setup_default_domain(group, 0);
651 		if (ret)
652 			goto err_remove_gdev;
653 	} else if (!group->default_domain) {
654 		/*
655 		 * With a group_list argument we defer the default_domain setup
656 		 * to the caller by providing a de-duplicated list of groups
657 		 * that need further setup.
658 		 */
659 		if (list_empty(&group->entry))
660 			list_add_tail(&group->entry, group_list);
661 	}
662 
663 	if (group->default_domain)
664 		iommu_setup_dma_ops(dev);
665 
666 	mutex_unlock(&group->mutex);
667 
668 	return 0;
669 
670 err_remove_gdev:
671 	list_del(&gdev->list);
672 	__iommu_group_free_device(group, gdev);
673 err_put_group:
674 	iommu_deinit_device(dev);
675 	mutex_unlock(&group->mutex);
676 	iommu_group_put(group);
677 
678 	return ret;
679 }
680 
iommu_probe_device(struct device * dev)681 int iommu_probe_device(struct device *dev)
682 {
683 	const struct iommu_ops *ops;
684 	int ret;
685 
686 	mutex_lock(&iommu_probe_device_lock);
687 	ret = __iommu_probe_device(dev, NULL);
688 	mutex_unlock(&iommu_probe_device_lock);
689 	if (ret)
690 		return ret;
691 
692 	ops = dev_iommu_ops(dev);
693 	if (ops->probe_finalize)
694 		ops->probe_finalize(dev);
695 
696 	return 0;
697 }
698 
__iommu_group_free_device(struct iommu_group * group,struct group_device * grp_dev)699 static void __iommu_group_free_device(struct iommu_group *group,
700 				      struct group_device *grp_dev)
701 {
702 	struct device *dev = grp_dev->dev;
703 
704 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
705 	sysfs_remove_link(&dev->kobj, "iommu_group");
706 
707 	trace_remove_device_from_group(group->id, dev);
708 
709 	/*
710 	 * If the group has become empty then ownership must have been
711 	 * released, and the current domain must be set back to NULL or
712 	 * the default domain.
713 	 */
714 	if (list_empty(&group->devices))
715 		WARN_ON(group->owner_cnt ||
716 			group->domain != group->default_domain);
717 
718 	kfree(grp_dev->name);
719 	kfree(grp_dev);
720 }
721 
722 /* Remove the iommu_group from the struct device. */
__iommu_group_remove_device(struct device * dev)723 static void __iommu_group_remove_device(struct device *dev)
724 {
725 	struct iommu_group *group = dev->iommu_group;
726 	struct group_device *device;
727 
728 	mutex_lock(&group->mutex);
729 	for_each_group_device(group, device) {
730 		if (device->dev != dev)
731 			continue;
732 
733 		list_del(&device->list);
734 		__iommu_group_free_device(group, device);
735 		if (dev_has_iommu(dev))
736 			iommu_deinit_device(dev);
737 		else
738 			dev->iommu_group = NULL;
739 		break;
740 	}
741 	mutex_unlock(&group->mutex);
742 
743 	/*
744 	 * Pairs with the get in iommu_init_device() or
745 	 * iommu_group_add_device()
746 	 */
747 	iommu_group_put(group);
748 }
749 
iommu_release_device(struct device * dev)750 static void iommu_release_device(struct device *dev)
751 {
752 	struct iommu_group *group = dev->iommu_group;
753 
754 	if (group)
755 		__iommu_group_remove_device(dev);
756 
757 	/* Free any fwspec if no iommu_driver was ever attached */
758 	if (dev->iommu)
759 		dev_iommu_free(dev);
760 }
761 
iommu_set_def_domain_type(char * str)762 static int __init iommu_set_def_domain_type(char *str)
763 {
764 	bool pt;
765 	int ret;
766 
767 	ret = kstrtobool(str, &pt);
768 	if (ret)
769 		return ret;
770 
771 	if (pt)
772 		iommu_set_default_passthrough(true);
773 	else
774 		iommu_set_default_translated(true);
775 
776 	return 0;
777 }
778 early_param("iommu.passthrough", iommu_set_def_domain_type);
779 
iommu_dma_setup(char * str)780 static int __init iommu_dma_setup(char *str)
781 {
782 	int ret = kstrtobool(str, &iommu_dma_strict);
783 
784 	if (!ret)
785 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
786 	return ret;
787 }
788 early_param("iommu.strict", iommu_dma_setup);
789 
iommu_set_dma_strict(void)790 void iommu_set_dma_strict(void)
791 {
792 	iommu_dma_strict = true;
793 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
794 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
795 }
796 
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)797 static ssize_t iommu_group_attr_show(struct kobject *kobj,
798 				     struct attribute *__attr, char *buf)
799 {
800 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
801 	struct iommu_group *group = to_iommu_group(kobj);
802 	ssize_t ret = -EIO;
803 
804 	if (attr->show)
805 		ret = attr->show(group, buf);
806 	return ret;
807 }
808 
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)809 static ssize_t iommu_group_attr_store(struct kobject *kobj,
810 				      struct attribute *__attr,
811 				      const char *buf, size_t count)
812 {
813 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
814 	struct iommu_group *group = to_iommu_group(kobj);
815 	ssize_t ret = -EIO;
816 
817 	if (attr->store)
818 		ret = attr->store(group, buf, count);
819 	return ret;
820 }
821 
822 static const struct sysfs_ops iommu_group_sysfs_ops = {
823 	.show = iommu_group_attr_show,
824 	.store = iommu_group_attr_store,
825 };
826 
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)827 static int iommu_group_create_file(struct iommu_group *group,
828 				   struct iommu_group_attribute *attr)
829 {
830 	return sysfs_create_file(&group->kobj, &attr->attr);
831 }
832 
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)833 static void iommu_group_remove_file(struct iommu_group *group,
834 				    struct iommu_group_attribute *attr)
835 {
836 	sysfs_remove_file(&group->kobj, &attr->attr);
837 }
838 
iommu_group_show_name(struct iommu_group * group,char * buf)839 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
840 {
841 	return sysfs_emit(buf, "%s\n", group->name);
842 }
843 
844 /**
845  * iommu_insert_resv_region - Insert a new region in the
846  * list of reserved regions.
847  * @new: new region to insert
848  * @regions: list of regions
849  *
850  * Elements are sorted by start address and overlapping segments
851  * of the same type are merged.
852  */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)853 static int iommu_insert_resv_region(struct iommu_resv_region *new,
854 				    struct list_head *regions)
855 {
856 	struct iommu_resv_region *iter, *tmp, *nr, *top;
857 	LIST_HEAD(stack);
858 
859 	nr = iommu_alloc_resv_region(new->start, new->length,
860 				     new->prot, new->type, GFP_KERNEL);
861 	if (!nr)
862 		return -ENOMEM;
863 
864 	/* First add the new element based on start address sorting */
865 	list_for_each_entry(iter, regions, list) {
866 		if (nr->start < iter->start ||
867 		    (nr->start == iter->start && nr->type <= iter->type))
868 			break;
869 	}
870 	list_add_tail(&nr->list, &iter->list);
871 
872 	/* Merge overlapping segments of type nr->type in @regions, if any */
873 	list_for_each_entry_safe(iter, tmp, regions, list) {
874 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
875 
876 		/* no merge needed on elements of different types than @new */
877 		if (iter->type != new->type) {
878 			list_move_tail(&iter->list, &stack);
879 			continue;
880 		}
881 
882 		/* look for the last stack element of same type as @iter */
883 		list_for_each_entry_reverse(top, &stack, list)
884 			if (top->type == iter->type)
885 				goto check_overlap;
886 
887 		list_move_tail(&iter->list, &stack);
888 		continue;
889 
890 check_overlap:
891 		top_end = top->start + top->length - 1;
892 
893 		if (iter->start > top_end + 1) {
894 			list_move_tail(&iter->list, &stack);
895 		} else {
896 			top->length = max(top_end, iter_end) - top->start + 1;
897 			list_del(&iter->list);
898 			kfree(iter);
899 		}
900 	}
901 	list_splice(&stack, regions);
902 	return 0;
903 }
904 
905 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)906 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
907 				 struct list_head *group_resv_regions)
908 {
909 	struct iommu_resv_region *entry;
910 	int ret = 0;
911 
912 	list_for_each_entry(entry, dev_resv_regions, list) {
913 		ret = iommu_insert_resv_region(entry, group_resv_regions);
914 		if (ret)
915 			break;
916 	}
917 	return ret;
918 }
919 
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)920 int iommu_get_group_resv_regions(struct iommu_group *group,
921 				 struct list_head *head)
922 {
923 	struct group_device *device;
924 	int ret = 0;
925 
926 	mutex_lock(&group->mutex);
927 	for_each_group_device(group, device) {
928 		struct list_head dev_resv_regions;
929 
930 		/*
931 		 * Non-API groups still expose reserved_regions in sysfs,
932 		 * so filter out calls that get here that way.
933 		 */
934 		if (!dev_has_iommu(device->dev))
935 			break;
936 
937 		INIT_LIST_HEAD(&dev_resv_regions);
938 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
939 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
940 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
941 		if (ret)
942 			break;
943 	}
944 	mutex_unlock(&group->mutex);
945 	return ret;
946 }
947 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
948 
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)949 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
950 					     char *buf)
951 {
952 	struct iommu_resv_region *region, *next;
953 	struct list_head group_resv_regions;
954 	int offset = 0;
955 
956 	INIT_LIST_HEAD(&group_resv_regions);
957 	iommu_get_group_resv_regions(group, &group_resv_regions);
958 
959 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
960 		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
961 					(long long)region->start,
962 					(long long)(region->start +
963 						    region->length - 1),
964 					iommu_group_resv_type_string[region->type]);
965 		kfree(region);
966 	}
967 
968 	return offset;
969 }
970 
iommu_group_show_type(struct iommu_group * group,char * buf)971 static ssize_t iommu_group_show_type(struct iommu_group *group,
972 				     char *buf)
973 {
974 	char *type = "unknown";
975 
976 	mutex_lock(&group->mutex);
977 	if (group->default_domain) {
978 		switch (group->default_domain->type) {
979 		case IOMMU_DOMAIN_BLOCKED:
980 			type = "blocked";
981 			break;
982 		case IOMMU_DOMAIN_IDENTITY:
983 			type = "identity";
984 			break;
985 		case IOMMU_DOMAIN_UNMANAGED:
986 			type = "unmanaged";
987 			break;
988 		case IOMMU_DOMAIN_DMA:
989 			type = "DMA";
990 			break;
991 		case IOMMU_DOMAIN_DMA_FQ:
992 			type = "DMA-FQ";
993 			break;
994 		}
995 	}
996 	mutex_unlock(&group->mutex);
997 
998 	return sysfs_emit(buf, "%s\n", type);
999 }
1000 
1001 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
1002 
1003 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
1004 			iommu_group_show_resv_regions, NULL);
1005 
1006 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
1007 			iommu_group_store_type);
1008 
iommu_group_release(struct kobject * kobj)1009 static void iommu_group_release(struct kobject *kobj)
1010 {
1011 	struct iommu_group *group = to_iommu_group(kobj);
1012 
1013 	pr_debug("Releasing group %d\n", group->id);
1014 
1015 	if (group->iommu_data_release)
1016 		group->iommu_data_release(group->iommu_data);
1017 
1018 	ida_free(&iommu_group_ida, group->id);
1019 
1020 	/* Domains are free'd by iommu_deinit_device() */
1021 	WARN_ON(group->default_domain);
1022 	WARN_ON(group->blocking_domain);
1023 
1024 	kfree(group->name);
1025 	kfree(group);
1026 }
1027 
1028 static const struct kobj_type iommu_group_ktype = {
1029 	.sysfs_ops = &iommu_group_sysfs_ops,
1030 	.release = iommu_group_release,
1031 };
1032 
1033 /**
1034  * iommu_group_alloc - Allocate a new group
1035  *
1036  * This function is called by an iommu driver to allocate a new iommu
1037  * group.  The iommu group represents the minimum granularity of the iommu.
1038  * Upon successful return, the caller holds a reference to the supplied
1039  * group in order to hold the group until devices are added.  Use
1040  * iommu_group_put() to release this extra reference count, allowing the
1041  * group to be automatically reclaimed once it has no devices or external
1042  * references.
1043  */
iommu_group_alloc(void)1044 struct iommu_group *iommu_group_alloc(void)
1045 {
1046 	struct iommu_group *group;
1047 	int ret;
1048 
1049 	group = kzalloc(sizeof(*group), GFP_KERNEL);
1050 	if (!group)
1051 		return ERR_PTR(-ENOMEM);
1052 
1053 	group->kobj.kset = iommu_group_kset;
1054 	mutex_init(&group->mutex);
1055 	INIT_LIST_HEAD(&group->devices);
1056 	INIT_LIST_HEAD(&group->entry);
1057 	xa_init(&group->pasid_array);
1058 
1059 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
1060 	if (ret < 0) {
1061 		kfree(group);
1062 		return ERR_PTR(ret);
1063 	}
1064 	group->id = ret;
1065 
1066 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
1067 				   NULL, "%d", group->id);
1068 	if (ret) {
1069 		kobject_put(&group->kobj);
1070 		return ERR_PTR(ret);
1071 	}
1072 
1073 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
1074 	if (!group->devices_kobj) {
1075 		kobject_put(&group->kobj); /* triggers .release & free */
1076 		return ERR_PTR(-ENOMEM);
1077 	}
1078 
1079 	/*
1080 	 * The devices_kobj holds a reference on the group kobject, so
1081 	 * as long as that exists so will the group.  We can therefore
1082 	 * use the devices_kobj for reference counting.
1083 	 */
1084 	kobject_put(&group->kobj);
1085 
1086 	ret = iommu_group_create_file(group,
1087 				      &iommu_group_attr_reserved_regions);
1088 	if (ret) {
1089 		kobject_put(group->devices_kobj);
1090 		return ERR_PTR(ret);
1091 	}
1092 
1093 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
1094 	if (ret) {
1095 		kobject_put(group->devices_kobj);
1096 		return ERR_PTR(ret);
1097 	}
1098 
1099 	pr_debug("Allocated group %d\n", group->id);
1100 
1101 	return group;
1102 }
1103 EXPORT_SYMBOL_GPL(iommu_group_alloc);
1104 
1105 /**
1106  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
1107  * @group: the group
1108  *
1109  * iommu drivers can store data in the group for use when doing iommu
1110  * operations.  This function provides a way to retrieve it.  Caller
1111  * should hold a group reference.
1112  */
iommu_group_get_iommudata(struct iommu_group * group)1113 void *iommu_group_get_iommudata(struct iommu_group *group)
1114 {
1115 	return group->iommu_data;
1116 }
1117 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1118 
1119 /**
1120  * iommu_group_set_iommudata - set iommu_data for a group
1121  * @group: the group
1122  * @iommu_data: new data
1123  * @release: release function for iommu_data
1124  *
1125  * iommu drivers can store data in the group for use when doing iommu
1126  * operations.  This function provides a way to set the data after
1127  * the group has been allocated.  Caller should hold a group reference.
1128  */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))1129 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1130 			       void (*release)(void *iommu_data))
1131 {
1132 	group->iommu_data = iommu_data;
1133 	group->iommu_data_release = release;
1134 }
1135 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1136 
1137 /**
1138  * iommu_group_set_name - set name for a group
1139  * @group: the group
1140  * @name: name
1141  *
1142  * Allow iommu driver to set a name for a group.  When set it will
1143  * appear in a name attribute file under the group in sysfs.
1144  */
iommu_group_set_name(struct iommu_group * group,const char * name)1145 int iommu_group_set_name(struct iommu_group *group, const char *name)
1146 {
1147 	int ret;
1148 
1149 	if (group->name) {
1150 		iommu_group_remove_file(group, &iommu_group_attr_name);
1151 		kfree(group->name);
1152 		group->name = NULL;
1153 		if (!name)
1154 			return 0;
1155 	}
1156 
1157 	group->name = kstrdup(name, GFP_KERNEL);
1158 	if (!group->name)
1159 		return -ENOMEM;
1160 
1161 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
1162 	if (ret) {
1163 		kfree(group->name);
1164 		group->name = NULL;
1165 		return ret;
1166 	}
1167 
1168 	return 0;
1169 }
1170 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1171 
iommu_create_device_direct_mappings(struct iommu_domain * domain,struct device * dev)1172 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1173 					       struct device *dev)
1174 {
1175 	struct iommu_resv_region *entry;
1176 	struct list_head mappings;
1177 	unsigned long pg_size;
1178 	int ret = 0;
1179 
1180 	pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1181 	INIT_LIST_HEAD(&mappings);
1182 
1183 	if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1184 		return -EINVAL;
1185 
1186 	iommu_get_resv_regions(dev, &mappings);
1187 
1188 	/* We need to consider overlapping regions for different devices */
1189 	list_for_each_entry(entry, &mappings, list) {
1190 		dma_addr_t start, end, addr;
1191 		size_t map_size = 0;
1192 
1193 		if (entry->type == IOMMU_RESV_DIRECT)
1194 			dev->iommu->require_direct = 1;
1195 
1196 		if ((entry->type != IOMMU_RESV_DIRECT &&
1197 		     entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1198 		    !iommu_is_dma_domain(domain))
1199 			continue;
1200 
1201 		start = ALIGN(entry->start, pg_size);
1202 		end   = ALIGN(entry->start + entry->length, pg_size);
1203 
1204 		for (addr = start; addr <= end; addr += pg_size) {
1205 			phys_addr_t phys_addr;
1206 
1207 			if (addr == end)
1208 				goto map_end;
1209 
1210 			phys_addr = iommu_iova_to_phys(domain, addr);
1211 			if (!phys_addr) {
1212 				map_size += pg_size;
1213 				continue;
1214 			}
1215 
1216 map_end:
1217 			if (map_size) {
1218 				ret = iommu_map(domain, addr - map_size,
1219 						addr - map_size, map_size,
1220 						entry->prot, GFP_KERNEL);
1221 				if (ret)
1222 					goto out;
1223 				map_size = 0;
1224 			}
1225 		}
1226 
1227 	}
1228 out:
1229 	iommu_put_resv_regions(dev, &mappings);
1230 
1231 	return ret;
1232 }
1233 
1234 /* This is undone by __iommu_group_free_device() */
iommu_group_alloc_device(struct iommu_group * group,struct device * dev)1235 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1236 						     struct device *dev)
1237 {
1238 	int ret, i = 0;
1239 	struct group_device *device;
1240 
1241 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1242 	if (!device)
1243 		return ERR_PTR(-ENOMEM);
1244 
1245 	device->dev = dev;
1246 
1247 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1248 	if (ret)
1249 		goto err_free_device;
1250 
1251 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1252 rename:
1253 	if (!device->name) {
1254 		ret = -ENOMEM;
1255 		goto err_remove_link;
1256 	}
1257 
1258 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1259 				       &dev->kobj, device->name);
1260 	if (ret) {
1261 		if (ret == -EEXIST && i >= 0) {
1262 			/*
1263 			 * Account for the slim chance of collision
1264 			 * and append an instance to the name.
1265 			 */
1266 			kfree(device->name);
1267 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1268 						 kobject_name(&dev->kobj), i++);
1269 			goto rename;
1270 		}
1271 		goto err_free_name;
1272 	}
1273 
1274 	trace_add_device_to_group(group->id, dev);
1275 
1276 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1277 
1278 	return device;
1279 
1280 err_free_name:
1281 	kfree(device->name);
1282 err_remove_link:
1283 	sysfs_remove_link(&dev->kobj, "iommu_group");
1284 err_free_device:
1285 	kfree(device);
1286 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1287 	return ERR_PTR(ret);
1288 }
1289 
1290 /**
1291  * iommu_group_add_device - add a device to an iommu group
1292  * @group: the group into which to add the device (reference should be held)
1293  * @dev: the device
1294  *
1295  * This function is called by an iommu driver to add a device into a
1296  * group.  Adding a device increments the group reference count.
1297  */
iommu_group_add_device(struct iommu_group * group,struct device * dev)1298 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1299 {
1300 	struct group_device *gdev;
1301 
1302 	gdev = iommu_group_alloc_device(group, dev);
1303 	if (IS_ERR(gdev))
1304 		return PTR_ERR(gdev);
1305 
1306 	iommu_group_ref_get(group);
1307 	dev->iommu_group = group;
1308 
1309 	mutex_lock(&group->mutex);
1310 	list_add_tail(&gdev->list, &group->devices);
1311 	mutex_unlock(&group->mutex);
1312 	return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1315 
1316 /**
1317  * iommu_group_remove_device - remove a device from it's current group
1318  * @dev: device to be removed
1319  *
1320  * This function is called by an iommu driver to remove the device from
1321  * it's current group.  This decrements the iommu group reference count.
1322  */
iommu_group_remove_device(struct device * dev)1323 void iommu_group_remove_device(struct device *dev)
1324 {
1325 	struct iommu_group *group = dev->iommu_group;
1326 
1327 	if (!group)
1328 		return;
1329 
1330 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1331 
1332 	__iommu_group_remove_device(dev);
1333 }
1334 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1335 
1336 #if IS_ENABLED(CONFIG_LOCKDEP) && IS_ENABLED(CONFIG_IOMMU_API)
1337 /**
1338  * iommu_group_mutex_assert - Check device group mutex lock
1339  * @dev: the device that has group param set
1340  *
1341  * This function is called by an iommu driver to check whether it holds
1342  * group mutex lock for the given device or not.
1343  *
1344  * Note that this function must be called after device group param is set.
1345  */
iommu_group_mutex_assert(struct device * dev)1346 void iommu_group_mutex_assert(struct device *dev)
1347 {
1348 	struct iommu_group *group = dev->iommu_group;
1349 
1350 	lockdep_assert_held(&group->mutex);
1351 }
1352 EXPORT_SYMBOL_GPL(iommu_group_mutex_assert);
1353 #endif
1354 
iommu_group_first_dev(struct iommu_group * group)1355 static struct device *iommu_group_first_dev(struct iommu_group *group)
1356 {
1357 	lockdep_assert_held(&group->mutex);
1358 	return list_first_entry(&group->devices, struct group_device, list)->dev;
1359 }
1360 
1361 /**
1362  * iommu_group_for_each_dev - iterate over each device in the group
1363  * @group: the group
1364  * @data: caller opaque data to be passed to callback function
1365  * @fn: caller supplied callback function
1366  *
1367  * This function is called by group users to iterate over group devices.
1368  * Callers should hold a reference count to the group during callback.
1369  * The group->mutex is held across callbacks, which will block calls to
1370  * iommu_group_add/remove_device.
1371  */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1372 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1373 			     int (*fn)(struct device *, void *))
1374 {
1375 	struct group_device *device;
1376 	int ret = 0;
1377 
1378 	mutex_lock(&group->mutex);
1379 	for_each_group_device(group, device) {
1380 		ret = fn(device->dev, data);
1381 		if (ret)
1382 			break;
1383 	}
1384 	mutex_unlock(&group->mutex);
1385 
1386 	return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1389 
1390 /**
1391  * iommu_group_get - Return the group for a device and increment reference
1392  * @dev: get the group that this device belongs to
1393  *
1394  * This function is called by iommu drivers and users to get the group
1395  * for the specified device.  If found, the group is returned and the group
1396  * reference in incremented, else NULL.
1397  */
iommu_group_get(struct device * dev)1398 struct iommu_group *iommu_group_get(struct device *dev)
1399 {
1400 	struct iommu_group *group = dev->iommu_group;
1401 
1402 	if (group)
1403 		kobject_get(group->devices_kobj);
1404 
1405 	return group;
1406 }
1407 EXPORT_SYMBOL_GPL(iommu_group_get);
1408 
1409 /**
1410  * iommu_group_ref_get - Increment reference on a group
1411  * @group: the group to use, must not be NULL
1412  *
1413  * This function is called by iommu drivers to take additional references on an
1414  * existing group.  Returns the given group for convenience.
1415  */
iommu_group_ref_get(struct iommu_group * group)1416 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1417 {
1418 	kobject_get(group->devices_kobj);
1419 	return group;
1420 }
1421 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1422 
1423 /**
1424  * iommu_group_put - Decrement group reference
1425  * @group: the group to use
1426  *
1427  * This function is called by iommu drivers and users to release the
1428  * iommu group.  Once the reference count is zero, the group is released.
1429  */
iommu_group_put(struct iommu_group * group)1430 void iommu_group_put(struct iommu_group *group)
1431 {
1432 	if (group)
1433 		kobject_put(group->devices_kobj);
1434 }
1435 EXPORT_SYMBOL_GPL(iommu_group_put);
1436 
1437 /**
1438  * iommu_group_id - Return ID for a group
1439  * @group: the group to ID
1440  *
1441  * Return the unique ID for the group matching the sysfs group number.
1442  */
iommu_group_id(struct iommu_group * group)1443 int iommu_group_id(struct iommu_group *group)
1444 {
1445 	return group->id;
1446 }
1447 EXPORT_SYMBOL_GPL(iommu_group_id);
1448 
1449 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1450 					       unsigned long *devfns);
1451 
1452 /*
1453  * To consider a PCI device isolated, we require ACS to support Source
1454  * Validation, Request Redirection, Completer Redirection, and Upstream
1455  * Forwarding.  This effectively means that devices cannot spoof their
1456  * requester ID, requests and completions cannot be redirected, and all
1457  * transactions are forwarded upstream, even as it passes through a
1458  * bridge where the target device is downstream.
1459  */
1460 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1461 
1462 /*
1463  * For multifunction devices which are not isolated from each other, find
1464  * all the other non-isolated functions and look for existing groups.  For
1465  * each function, we also need to look for aliases to or from other devices
1466  * that may already have a group.
1467  */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1468 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1469 							unsigned long *devfns)
1470 {
1471 	struct pci_dev *tmp = NULL;
1472 	struct iommu_group *group;
1473 
1474 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1475 		return NULL;
1476 
1477 	for_each_pci_dev(tmp) {
1478 		if (tmp == pdev || tmp->bus != pdev->bus ||
1479 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1480 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1481 			continue;
1482 
1483 		group = get_pci_alias_group(tmp, devfns);
1484 		if (group) {
1485 			pci_dev_put(tmp);
1486 			return group;
1487 		}
1488 	}
1489 
1490 	return NULL;
1491 }
1492 
1493 /*
1494  * Look for aliases to or from the given device for existing groups. DMA
1495  * aliases are only supported on the same bus, therefore the search
1496  * space is quite small (especially since we're really only looking at pcie
1497  * device, and therefore only expect multiple slots on the root complex or
1498  * downstream switch ports).  It's conceivable though that a pair of
1499  * multifunction devices could have aliases between them that would cause a
1500  * loop.  To prevent this, we use a bitmap to track where we've been.
1501  */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1502 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1503 					       unsigned long *devfns)
1504 {
1505 	struct pci_dev *tmp = NULL;
1506 	struct iommu_group *group;
1507 
1508 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1509 		return NULL;
1510 
1511 	group = iommu_group_get(&pdev->dev);
1512 	if (group)
1513 		return group;
1514 
1515 	for_each_pci_dev(tmp) {
1516 		if (tmp == pdev || tmp->bus != pdev->bus)
1517 			continue;
1518 
1519 		/* We alias them or they alias us */
1520 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1521 			group = get_pci_alias_group(tmp, devfns);
1522 			if (group) {
1523 				pci_dev_put(tmp);
1524 				return group;
1525 			}
1526 
1527 			group = get_pci_function_alias_group(tmp, devfns);
1528 			if (group) {
1529 				pci_dev_put(tmp);
1530 				return group;
1531 			}
1532 		}
1533 	}
1534 
1535 	return NULL;
1536 }
1537 
1538 struct group_for_pci_data {
1539 	struct pci_dev *pdev;
1540 	struct iommu_group *group;
1541 };
1542 
1543 /*
1544  * DMA alias iterator callback, return the last seen device.  Stop and return
1545  * the IOMMU group if we find one along the way.
1546  */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1547 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1548 {
1549 	struct group_for_pci_data *data = opaque;
1550 
1551 	data->pdev = pdev;
1552 	data->group = iommu_group_get(&pdev->dev);
1553 
1554 	return data->group != NULL;
1555 }
1556 
1557 /*
1558  * Generic device_group call-back function. It just allocates one
1559  * iommu-group per device.
1560  */
generic_device_group(struct device * dev)1561 struct iommu_group *generic_device_group(struct device *dev)
1562 {
1563 	return iommu_group_alloc();
1564 }
1565 EXPORT_SYMBOL_GPL(generic_device_group);
1566 
1567 /*
1568  * Generic device_group call-back function. It just allocates one
1569  * iommu-group per iommu driver instance shared by every device
1570  * probed by that iommu driver.
1571  */
generic_single_device_group(struct device * dev)1572 struct iommu_group *generic_single_device_group(struct device *dev)
1573 {
1574 	struct iommu_device *iommu = dev->iommu->iommu_dev;
1575 
1576 	if (!iommu->singleton_group) {
1577 		struct iommu_group *group;
1578 
1579 		group = iommu_group_alloc();
1580 		if (IS_ERR(group))
1581 			return group;
1582 		iommu->singleton_group = group;
1583 	}
1584 	return iommu_group_ref_get(iommu->singleton_group);
1585 }
1586 EXPORT_SYMBOL_GPL(generic_single_device_group);
1587 
1588 /*
1589  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1590  * to find or create an IOMMU group for a device.
1591  */
pci_device_group(struct device * dev)1592 struct iommu_group *pci_device_group(struct device *dev)
1593 {
1594 	struct pci_dev *pdev = to_pci_dev(dev);
1595 	struct group_for_pci_data data;
1596 	struct pci_bus *bus;
1597 	struct iommu_group *group = NULL;
1598 	u64 devfns[4] = { 0 };
1599 
1600 	if (WARN_ON(!dev_is_pci(dev)))
1601 		return ERR_PTR(-EINVAL);
1602 
1603 	/*
1604 	 * Find the upstream DMA alias for the device.  A device must not
1605 	 * be aliased due to topology in order to have its own IOMMU group.
1606 	 * If we find an alias along the way that already belongs to a
1607 	 * group, use it.
1608 	 */
1609 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1610 		return data.group;
1611 
1612 	pdev = data.pdev;
1613 
1614 	/*
1615 	 * Continue upstream from the point of minimum IOMMU granularity
1616 	 * due to aliases to the point where devices are protected from
1617 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1618 	 * group, use it.
1619 	 */
1620 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1621 		if (!bus->self)
1622 			continue;
1623 
1624 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1625 			break;
1626 
1627 		pdev = bus->self;
1628 
1629 		group = iommu_group_get(&pdev->dev);
1630 		if (group)
1631 			return group;
1632 	}
1633 
1634 	/*
1635 	 * Look for existing groups on device aliases.  If we alias another
1636 	 * device or another device aliases us, use the same group.
1637 	 */
1638 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1639 	if (group)
1640 		return group;
1641 
1642 	/*
1643 	 * Look for existing groups on non-isolated functions on the same
1644 	 * slot and aliases of those funcions, if any.  No need to clear
1645 	 * the search bitmap, the tested devfns are still valid.
1646 	 */
1647 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1648 	if (group)
1649 		return group;
1650 
1651 	/* No shared group found, allocate new */
1652 	return iommu_group_alloc();
1653 }
1654 EXPORT_SYMBOL_GPL(pci_device_group);
1655 
1656 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1657 struct iommu_group *fsl_mc_device_group(struct device *dev)
1658 {
1659 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1660 	struct iommu_group *group;
1661 
1662 	group = iommu_group_get(cont_dev);
1663 	if (!group)
1664 		group = iommu_group_alloc();
1665 	return group;
1666 }
1667 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1668 
__iommu_alloc_identity_domain(struct device * dev)1669 static struct iommu_domain *__iommu_alloc_identity_domain(struct device *dev)
1670 {
1671 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1672 	struct iommu_domain *domain;
1673 
1674 	if (ops->identity_domain)
1675 		return ops->identity_domain;
1676 
1677 	if (ops->domain_alloc_identity) {
1678 		domain = ops->domain_alloc_identity(dev);
1679 		if (IS_ERR(domain))
1680 			return domain;
1681 	} else {
1682 		return ERR_PTR(-EOPNOTSUPP);
1683 	}
1684 
1685 	iommu_domain_init(domain, IOMMU_DOMAIN_IDENTITY, ops);
1686 	return domain;
1687 }
1688 
1689 static struct iommu_domain *
__iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1690 __iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1691 {
1692 	struct device *dev = iommu_group_first_dev(group);
1693 	struct iommu_domain *dom;
1694 
1695 	if (group->default_domain && group->default_domain->type == req_type)
1696 		return group->default_domain;
1697 
1698 	/*
1699 	 * When allocating the DMA API domain assume that the driver is going to
1700 	 * use PASID and make sure the RID's domain is PASID compatible.
1701 	 */
1702 	if (req_type & __IOMMU_DOMAIN_PAGING) {
1703 		dom = __iommu_paging_domain_alloc_flags(dev, req_type,
1704 			   dev->iommu->max_pasids ? IOMMU_HWPT_ALLOC_PASID : 0);
1705 
1706 		/*
1707 		 * If driver does not support PASID feature then
1708 		 * try to allocate non-PASID domain
1709 		 */
1710 		if (PTR_ERR(dom) == -EOPNOTSUPP)
1711 			dom = __iommu_paging_domain_alloc_flags(dev, req_type, 0);
1712 
1713 		return dom;
1714 	}
1715 
1716 	if (req_type == IOMMU_DOMAIN_IDENTITY)
1717 		return __iommu_alloc_identity_domain(dev);
1718 
1719 	return ERR_PTR(-EINVAL);
1720 }
1721 
1722 /*
1723  * req_type of 0 means "auto" which means to select a domain based on
1724  * iommu_def_domain_type or what the driver actually supports.
1725  */
1726 static struct iommu_domain *
iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1727 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1728 {
1729 	const struct iommu_ops *ops = dev_iommu_ops(iommu_group_first_dev(group));
1730 	struct iommu_domain *dom;
1731 
1732 	lockdep_assert_held(&group->mutex);
1733 
1734 	/*
1735 	 * Allow legacy drivers to specify the domain that will be the default
1736 	 * domain. This should always be either an IDENTITY/BLOCKED/PLATFORM
1737 	 * domain. Do not use in new drivers.
1738 	 */
1739 	if (ops->default_domain) {
1740 		if (req_type != ops->default_domain->type)
1741 			return ERR_PTR(-EINVAL);
1742 		return ops->default_domain;
1743 	}
1744 
1745 	if (req_type)
1746 		return __iommu_group_alloc_default_domain(group, req_type);
1747 
1748 	/* The driver gave no guidance on what type to use, try the default */
1749 	dom = __iommu_group_alloc_default_domain(group, iommu_def_domain_type);
1750 	if (!IS_ERR(dom))
1751 		return dom;
1752 
1753 	/* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1754 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1755 		return ERR_PTR(-EINVAL);
1756 	dom = __iommu_group_alloc_default_domain(group, IOMMU_DOMAIN_DMA);
1757 	if (IS_ERR(dom))
1758 		return dom;
1759 
1760 	pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1761 		iommu_def_domain_type, group->name);
1762 	return dom;
1763 }
1764 
iommu_group_default_domain(struct iommu_group * group)1765 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1766 {
1767 	return group->default_domain;
1768 }
1769 
probe_iommu_group(struct device * dev,void * data)1770 static int probe_iommu_group(struct device *dev, void *data)
1771 {
1772 	struct list_head *group_list = data;
1773 	int ret;
1774 
1775 	mutex_lock(&iommu_probe_device_lock);
1776 	ret = __iommu_probe_device(dev, group_list);
1777 	mutex_unlock(&iommu_probe_device_lock);
1778 	if (ret == -ENODEV)
1779 		ret = 0;
1780 
1781 	return ret;
1782 }
1783 
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1784 static int iommu_bus_notifier(struct notifier_block *nb,
1785 			      unsigned long action, void *data)
1786 {
1787 	struct device *dev = data;
1788 
1789 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1790 		int ret;
1791 
1792 		ret = iommu_probe_device(dev);
1793 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1794 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1795 		iommu_release_device(dev);
1796 		return NOTIFY_OK;
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 /*
1803  * Combine the driver's chosen def_domain_type across all the devices in a
1804  * group. Drivers must give a consistent result.
1805  */
iommu_get_def_domain_type(struct iommu_group * group,struct device * dev,int cur_type)1806 static int iommu_get_def_domain_type(struct iommu_group *group,
1807 				     struct device *dev, int cur_type)
1808 {
1809 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1810 	int type;
1811 
1812 	if (ops->default_domain) {
1813 		/*
1814 		 * Drivers that declare a global static default_domain will
1815 		 * always choose that.
1816 		 */
1817 		type = ops->default_domain->type;
1818 	} else {
1819 		if (ops->def_domain_type)
1820 			type = ops->def_domain_type(dev);
1821 		else
1822 			return cur_type;
1823 	}
1824 	if (!type || cur_type == type)
1825 		return cur_type;
1826 	if (!cur_type)
1827 		return type;
1828 
1829 	dev_err_ratelimited(
1830 		dev,
1831 		"IOMMU driver error, requesting conflicting def_domain_type, %s and %s, for devices in group %u.\n",
1832 		iommu_domain_type_str(cur_type), iommu_domain_type_str(type),
1833 		group->id);
1834 
1835 	/*
1836 	 * Try to recover, drivers are allowed to force IDENTITY or DMA, IDENTITY
1837 	 * takes precedence.
1838 	 */
1839 	if (type == IOMMU_DOMAIN_IDENTITY)
1840 		return type;
1841 	return cur_type;
1842 }
1843 
1844 /*
1845  * A target_type of 0 will select the best domain type. 0 can be returned in
1846  * this case meaning the global default should be used.
1847  */
iommu_get_default_domain_type(struct iommu_group * group,int target_type)1848 static int iommu_get_default_domain_type(struct iommu_group *group,
1849 					 int target_type)
1850 {
1851 	struct device *untrusted = NULL;
1852 	struct group_device *gdev;
1853 	int driver_type = 0;
1854 
1855 	lockdep_assert_held(&group->mutex);
1856 
1857 	/*
1858 	 * ARM32 drivers supporting CONFIG_ARM_DMA_USE_IOMMU can declare an
1859 	 * identity_domain and it will automatically become their default
1860 	 * domain. Later on ARM_DMA_USE_IOMMU will install its UNMANAGED domain.
1861 	 * Override the selection to IDENTITY.
1862 	 */
1863 	if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
1864 		static_assert(!(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU) &&
1865 				IS_ENABLED(CONFIG_IOMMU_DMA)));
1866 		driver_type = IOMMU_DOMAIN_IDENTITY;
1867 	}
1868 
1869 	for_each_group_device(group, gdev) {
1870 		driver_type = iommu_get_def_domain_type(group, gdev->dev,
1871 							driver_type);
1872 
1873 		if (dev_is_pci(gdev->dev) && to_pci_dev(gdev->dev)->untrusted) {
1874 			/*
1875 			 * No ARM32 using systems will set untrusted, it cannot
1876 			 * work.
1877 			 */
1878 			if (WARN_ON(IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)))
1879 				return -1;
1880 			untrusted = gdev->dev;
1881 		}
1882 	}
1883 
1884 	/*
1885 	 * If the common dma ops are not selected in kconfig then we cannot use
1886 	 * IOMMU_DOMAIN_DMA at all. Force IDENTITY if nothing else has been
1887 	 * selected.
1888 	 */
1889 	if (!IS_ENABLED(CONFIG_IOMMU_DMA)) {
1890 		if (WARN_ON(driver_type == IOMMU_DOMAIN_DMA))
1891 			return -1;
1892 		if (!driver_type)
1893 			driver_type = IOMMU_DOMAIN_IDENTITY;
1894 	}
1895 
1896 	if (untrusted) {
1897 		if (driver_type && driver_type != IOMMU_DOMAIN_DMA) {
1898 			dev_err_ratelimited(
1899 				untrusted,
1900 				"Device is not trusted, but driver is overriding group %u to %s, refusing to probe.\n",
1901 				group->id, iommu_domain_type_str(driver_type));
1902 			return -1;
1903 		}
1904 		driver_type = IOMMU_DOMAIN_DMA;
1905 	}
1906 
1907 	if (target_type) {
1908 		if (driver_type && target_type != driver_type)
1909 			return -1;
1910 		return target_type;
1911 	}
1912 	return driver_type;
1913 }
1914 
iommu_group_do_probe_finalize(struct device * dev)1915 static void iommu_group_do_probe_finalize(struct device *dev)
1916 {
1917 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1918 
1919 	if (ops->probe_finalize)
1920 		ops->probe_finalize(dev);
1921 }
1922 
bus_iommu_probe(const struct bus_type * bus)1923 static int bus_iommu_probe(const struct bus_type *bus)
1924 {
1925 	struct iommu_group *group, *next;
1926 	LIST_HEAD(group_list);
1927 	int ret;
1928 
1929 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1930 	if (ret)
1931 		return ret;
1932 
1933 	list_for_each_entry_safe(group, next, &group_list, entry) {
1934 		struct group_device *gdev;
1935 
1936 		mutex_lock(&group->mutex);
1937 
1938 		/* Remove item from the list */
1939 		list_del_init(&group->entry);
1940 
1941 		/*
1942 		 * We go to the trouble of deferred default domain creation so
1943 		 * that the cross-group default domain type and the setup of the
1944 		 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1945 		 */
1946 		ret = iommu_setup_default_domain(group, 0);
1947 		if (ret) {
1948 			mutex_unlock(&group->mutex);
1949 			return ret;
1950 		}
1951 		for_each_group_device(group, gdev)
1952 			iommu_setup_dma_ops(gdev->dev);
1953 		mutex_unlock(&group->mutex);
1954 
1955 		/*
1956 		 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1957 		 * of some IOMMU drivers calls arm_iommu_attach_device() which
1958 		 * in-turn might call back into IOMMU core code, where it tries
1959 		 * to take group->mutex, resulting in a deadlock.
1960 		 */
1961 		for_each_group_device(group, gdev)
1962 			iommu_group_do_probe_finalize(gdev->dev);
1963 	}
1964 
1965 	return 0;
1966 }
1967 
1968 /**
1969  * device_iommu_capable() - check for a general IOMMU capability
1970  * @dev: device to which the capability would be relevant, if available
1971  * @cap: IOMMU capability
1972  *
1973  * Return: true if an IOMMU is present and supports the given capability
1974  * for the given device, otherwise false.
1975  */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1976 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1977 {
1978 	const struct iommu_ops *ops;
1979 
1980 	if (!dev_has_iommu(dev))
1981 		return false;
1982 
1983 	ops = dev_iommu_ops(dev);
1984 	if (!ops->capable)
1985 		return false;
1986 
1987 	return ops->capable(dev, cap);
1988 }
1989 EXPORT_SYMBOL_GPL(device_iommu_capable);
1990 
1991 /**
1992  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1993  *       for a group
1994  * @group: Group to query
1995  *
1996  * IOMMU groups should not have differing values of
1997  * msi_device_has_isolated_msi() for devices in a group. However nothing
1998  * directly prevents this, so ensure mistakes don't result in isolation failures
1999  * by checking that all the devices are the same.
2000  */
iommu_group_has_isolated_msi(struct iommu_group * group)2001 bool iommu_group_has_isolated_msi(struct iommu_group *group)
2002 {
2003 	struct group_device *group_dev;
2004 	bool ret = true;
2005 
2006 	mutex_lock(&group->mutex);
2007 	for_each_group_device(group, group_dev)
2008 		ret &= msi_device_has_isolated_msi(group_dev->dev);
2009 	mutex_unlock(&group->mutex);
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
2013 
2014 /**
2015  * iommu_set_fault_handler() - set a fault handler for an iommu domain
2016  * @domain: iommu domain
2017  * @handler: fault handler
2018  * @token: user data, will be passed back to the fault handler
2019  *
2020  * This function should be used by IOMMU users which want to be notified
2021  * whenever an IOMMU fault happens.
2022  *
2023  * The fault handler itself should return 0 on success, and an appropriate
2024  * error code otherwise.
2025  */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)2026 void iommu_set_fault_handler(struct iommu_domain *domain,
2027 					iommu_fault_handler_t handler,
2028 					void *token)
2029 {
2030 	if (WARN_ON(!domain || domain->cookie_type != IOMMU_COOKIE_NONE))
2031 		return;
2032 
2033 	domain->cookie_type = IOMMU_COOKIE_FAULT_HANDLER;
2034 	domain->handler = handler;
2035 	domain->handler_token = token;
2036 }
2037 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
2038 
iommu_domain_init(struct iommu_domain * domain,unsigned int type,const struct iommu_ops * ops)2039 static void iommu_domain_init(struct iommu_domain *domain, unsigned int type,
2040 			      const struct iommu_ops *ops)
2041 {
2042 	domain->type = type;
2043 	domain->owner = ops;
2044 	if (!domain->ops)
2045 		domain->ops = ops->default_domain_ops;
2046 }
2047 
2048 static struct iommu_domain *
__iommu_paging_domain_alloc_flags(struct device * dev,unsigned int type,unsigned int flags)2049 __iommu_paging_domain_alloc_flags(struct device *dev, unsigned int type,
2050 				  unsigned int flags)
2051 {
2052 	const struct iommu_ops *ops;
2053 	struct iommu_domain *domain;
2054 
2055 	if (!dev_has_iommu(dev))
2056 		return ERR_PTR(-ENODEV);
2057 
2058 	ops = dev_iommu_ops(dev);
2059 
2060 	if (ops->domain_alloc_paging && !flags)
2061 		domain = ops->domain_alloc_paging(dev);
2062 	else if (ops->domain_alloc_paging_flags)
2063 		domain = ops->domain_alloc_paging_flags(dev, flags, NULL);
2064 #if IS_ENABLED(CONFIG_FSL_PAMU)
2065 	else if (ops->domain_alloc && !flags)
2066 		domain = ops->domain_alloc(IOMMU_DOMAIN_UNMANAGED);
2067 #endif
2068 	else
2069 		return ERR_PTR(-EOPNOTSUPP);
2070 
2071 	if (IS_ERR(domain))
2072 		return domain;
2073 	if (!domain)
2074 		return ERR_PTR(-ENOMEM);
2075 
2076 	iommu_domain_init(domain, type, ops);
2077 	return domain;
2078 }
2079 
2080 /**
2081  * iommu_paging_domain_alloc_flags() - Allocate a paging domain
2082  * @dev: device for which the domain is allocated
2083  * @flags: Bitmap of iommufd_hwpt_alloc_flags
2084  *
2085  * Allocate a paging domain which will be managed by a kernel driver. Return
2086  * allocated domain if successful, or an ERR pointer for failure.
2087  */
iommu_paging_domain_alloc_flags(struct device * dev,unsigned int flags)2088 struct iommu_domain *iommu_paging_domain_alloc_flags(struct device *dev,
2089 						     unsigned int flags)
2090 {
2091 	return __iommu_paging_domain_alloc_flags(dev,
2092 					 IOMMU_DOMAIN_UNMANAGED, flags);
2093 }
2094 EXPORT_SYMBOL_GPL(iommu_paging_domain_alloc_flags);
2095 
iommu_domain_free(struct iommu_domain * domain)2096 void iommu_domain_free(struct iommu_domain *domain)
2097 {
2098 	switch (domain->cookie_type) {
2099 	case IOMMU_COOKIE_DMA_IOVA:
2100 		iommu_put_dma_cookie(domain);
2101 		break;
2102 	case IOMMU_COOKIE_DMA_MSI:
2103 		iommu_put_msi_cookie(domain);
2104 		break;
2105 	case IOMMU_COOKIE_SVA:
2106 		mmdrop(domain->mm);
2107 		break;
2108 	default:
2109 		break;
2110 	}
2111 	if (domain->ops->free)
2112 		domain->ops->free(domain);
2113 }
2114 EXPORT_SYMBOL_GPL(iommu_domain_free);
2115 
2116 /*
2117  * Put the group's domain back to the appropriate core-owned domain - either the
2118  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2119  */
__iommu_group_set_core_domain(struct iommu_group * group)2120 static void __iommu_group_set_core_domain(struct iommu_group *group)
2121 {
2122 	struct iommu_domain *new_domain;
2123 
2124 	if (group->owner)
2125 		new_domain = group->blocking_domain;
2126 	else
2127 		new_domain = group->default_domain;
2128 
2129 	__iommu_group_set_domain_nofail(group, new_domain);
2130 }
2131 
__iommu_attach_device(struct iommu_domain * domain,struct device * dev,struct iommu_domain * old)2132 static int __iommu_attach_device(struct iommu_domain *domain,
2133 				 struct device *dev, struct iommu_domain *old)
2134 {
2135 	int ret;
2136 
2137 	if (unlikely(domain->ops->attach_dev == NULL))
2138 		return -ENODEV;
2139 
2140 	ret = domain->ops->attach_dev(domain, dev, old);
2141 	if (ret)
2142 		return ret;
2143 	dev->iommu->attach_deferred = 0;
2144 	trace_attach_device_to_domain(dev);
2145 	return 0;
2146 }
2147 
2148 /**
2149  * iommu_attach_device - Attach an IOMMU domain to a device
2150  * @domain: IOMMU domain to attach
2151  * @dev: Device that will be attached
2152  *
2153  * Returns 0 on success and error code on failure
2154  *
2155  * Note that EINVAL can be treated as a soft failure, indicating
2156  * that certain configuration of the domain is incompatible with
2157  * the device. In this case attaching a different domain to the
2158  * device may succeed.
2159  */
iommu_attach_device(struct iommu_domain * domain,struct device * dev)2160 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2161 {
2162 	/* Caller must be a probed driver on dev */
2163 	struct iommu_group *group = dev->iommu_group;
2164 	int ret;
2165 
2166 	if (!group)
2167 		return -ENODEV;
2168 
2169 	/*
2170 	 * Lock the group to make sure the device-count doesn't
2171 	 * change while we are attaching
2172 	 */
2173 	mutex_lock(&group->mutex);
2174 	ret = -EINVAL;
2175 	if (list_count_nodes(&group->devices) != 1)
2176 		goto out_unlock;
2177 
2178 	ret = __iommu_attach_group(domain, group);
2179 
2180 out_unlock:
2181 	mutex_unlock(&group->mutex);
2182 	return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(iommu_attach_device);
2185 
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2186 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2187 {
2188 	if (dev->iommu && dev->iommu->attach_deferred)
2189 		return __iommu_attach_device(domain, dev, NULL);
2190 
2191 	return 0;
2192 }
2193 
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2194 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2195 {
2196 	/* Caller must be a probed driver on dev */
2197 	struct iommu_group *group = dev->iommu_group;
2198 
2199 	if (!group)
2200 		return;
2201 
2202 	mutex_lock(&group->mutex);
2203 	if (WARN_ON(domain != group->domain) ||
2204 	    WARN_ON(list_count_nodes(&group->devices) != 1))
2205 		goto out_unlock;
2206 	__iommu_group_set_core_domain(group);
2207 
2208 out_unlock:
2209 	mutex_unlock(&group->mutex);
2210 }
2211 EXPORT_SYMBOL_GPL(iommu_detach_device);
2212 
iommu_get_domain_for_dev(struct device * dev)2213 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2214 {
2215 	/* Caller must be a probed driver on dev */
2216 	struct iommu_group *group = dev->iommu_group;
2217 
2218 	if (!group)
2219 		return NULL;
2220 
2221 	return group->domain;
2222 }
2223 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2224 
2225 /*
2226  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2227  * guarantees that the group and its default domain are valid and correct.
2228  */
iommu_get_dma_domain(struct device * dev)2229 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2230 {
2231 	return dev->iommu_group->default_domain;
2232 }
2233 
iommu_make_pasid_array_entry(struct iommu_domain * domain,struct iommu_attach_handle * handle)2234 static void *iommu_make_pasid_array_entry(struct iommu_domain *domain,
2235 					  struct iommu_attach_handle *handle)
2236 {
2237 	if (handle) {
2238 		handle->domain = domain;
2239 		return xa_tag_pointer(handle, IOMMU_PASID_ARRAY_HANDLE);
2240 	}
2241 
2242 	return xa_tag_pointer(domain, IOMMU_PASID_ARRAY_DOMAIN);
2243 }
2244 
domain_iommu_ops_compatible(const struct iommu_ops * ops,struct iommu_domain * domain)2245 static bool domain_iommu_ops_compatible(const struct iommu_ops *ops,
2246 					struct iommu_domain *domain)
2247 {
2248 	if (domain->owner == ops)
2249 		return true;
2250 
2251 	/* For static domains, owner isn't set. */
2252 	if (domain == ops->blocked_domain || domain == ops->identity_domain)
2253 		return true;
2254 
2255 	return false;
2256 }
2257 
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2258 static int __iommu_attach_group(struct iommu_domain *domain,
2259 				struct iommu_group *group)
2260 {
2261 	struct device *dev;
2262 
2263 	if (group->domain && group->domain != group->default_domain &&
2264 	    group->domain != group->blocking_domain)
2265 		return -EBUSY;
2266 
2267 	dev = iommu_group_first_dev(group);
2268 	if (!dev_has_iommu(dev) ||
2269 	    !domain_iommu_ops_compatible(dev_iommu_ops(dev), domain))
2270 		return -EINVAL;
2271 
2272 	return __iommu_group_set_domain(group, domain);
2273 }
2274 
2275 /**
2276  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2277  * @domain: IOMMU domain to attach
2278  * @group: IOMMU group that will be attached
2279  *
2280  * Returns 0 on success and error code on failure
2281  *
2282  * Note that EINVAL can be treated as a soft failure, indicating
2283  * that certain configuration of the domain is incompatible with
2284  * the group. In this case attaching a different domain to the
2285  * group may succeed.
2286  */
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2287 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2288 {
2289 	int ret;
2290 
2291 	mutex_lock(&group->mutex);
2292 	ret = __iommu_attach_group(domain, group);
2293 	mutex_unlock(&group->mutex);
2294 
2295 	return ret;
2296 }
2297 EXPORT_SYMBOL_GPL(iommu_attach_group);
2298 
__iommu_device_set_domain(struct iommu_group * group,struct device * dev,struct iommu_domain * new_domain,struct iommu_domain * old_domain,unsigned int flags)2299 static int __iommu_device_set_domain(struct iommu_group *group,
2300 				     struct device *dev,
2301 				     struct iommu_domain *new_domain,
2302 				     struct iommu_domain *old_domain,
2303 				     unsigned int flags)
2304 {
2305 	int ret;
2306 
2307 	/*
2308 	 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2309 	 * the blocking domain to be attached as it does not contain the
2310 	 * required 1:1 mapping. This test effectively excludes the device
2311 	 * being used with iommu_group_claim_dma_owner() which will block
2312 	 * vfio and iommufd as well.
2313 	 */
2314 	if (dev->iommu->require_direct &&
2315 	    (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2316 	     new_domain == group->blocking_domain)) {
2317 		dev_warn(dev,
2318 			 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2319 		return -EINVAL;
2320 	}
2321 
2322 	if (dev->iommu->attach_deferred) {
2323 		if (new_domain == group->default_domain)
2324 			return 0;
2325 		dev->iommu->attach_deferred = 0;
2326 	}
2327 
2328 	ret = __iommu_attach_device(new_domain, dev, old_domain);
2329 	if (ret) {
2330 		/*
2331 		 * If we have a blocking domain then try to attach that in hopes
2332 		 * of avoiding a UAF. Modern drivers should implement blocking
2333 		 * domains as global statics that cannot fail.
2334 		 */
2335 		if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2336 		    group->blocking_domain &&
2337 		    group->blocking_domain != new_domain)
2338 			__iommu_attach_device(group->blocking_domain, dev,
2339 					      old_domain);
2340 		return ret;
2341 	}
2342 	return 0;
2343 }
2344 
2345 /*
2346  * If 0 is returned the group's domain is new_domain. If an error is returned
2347  * then the group's domain will be set back to the existing domain unless
2348  * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2349  * domains is left inconsistent. This is a driver bug to fail attach with a
2350  * previously good domain. We try to avoid a kernel UAF because of this.
2351  *
2352  * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2353  * API works on domains and devices.  Bridge that gap by iterating over the
2354  * devices in a group.  Ideally we'd have a single device which represents the
2355  * requestor ID of the group, but we also allow IOMMU drivers to create policy
2356  * defined minimum sets, where the physical hardware may be able to distiguish
2357  * members, but we wish to group them at a higher level (ex. untrusted
2358  * multi-function PCI devices).  Thus we attach each device.
2359  */
__iommu_group_set_domain_internal(struct iommu_group * group,struct iommu_domain * new_domain,unsigned int flags)2360 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2361 					     struct iommu_domain *new_domain,
2362 					     unsigned int flags)
2363 {
2364 	struct group_device *last_gdev;
2365 	struct group_device *gdev;
2366 	int result;
2367 	int ret;
2368 
2369 	lockdep_assert_held(&group->mutex);
2370 
2371 	if (group->domain == new_domain)
2372 		return 0;
2373 
2374 	if (WARN_ON(!new_domain))
2375 		return -EINVAL;
2376 
2377 	/*
2378 	 * Changing the domain is done by calling attach_dev() on the new
2379 	 * domain. This switch does not have to be atomic and DMA can be
2380 	 * discarded during the transition. DMA must only be able to access
2381 	 * either new_domain or group->domain, never something else.
2382 	 */
2383 	result = 0;
2384 	for_each_group_device(group, gdev) {
2385 		ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2386 						group->domain, flags);
2387 		if (ret) {
2388 			result = ret;
2389 			/*
2390 			 * Keep trying the other devices in the group. If a
2391 			 * driver fails attach to an otherwise good domain, and
2392 			 * does not support blocking domains, it should at least
2393 			 * drop its reference on the current domain so we don't
2394 			 * UAF.
2395 			 */
2396 			if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2397 				continue;
2398 			goto err_revert;
2399 		}
2400 	}
2401 	group->domain = new_domain;
2402 	return result;
2403 
2404 err_revert:
2405 	/*
2406 	 * This is called in error unwind paths. A well behaved driver should
2407 	 * always allow us to attach to a domain that was already attached.
2408 	 */
2409 	last_gdev = gdev;
2410 	for_each_group_device(group, gdev) {
2411 		/* No need to revert the last gdev that failed to set domain */
2412 		if (gdev == last_gdev)
2413 			break;
2414 		/*
2415 		 * A NULL domain can happen only for first probe, in which case
2416 		 * we leave group->domain as NULL and let release clean
2417 		 * everything up.
2418 		 */
2419 		if (group->domain)
2420 			WARN_ON(__iommu_device_set_domain(
2421 				group, gdev->dev, group->domain, new_domain,
2422 				IOMMU_SET_DOMAIN_MUST_SUCCEED));
2423 	}
2424 	return ret;
2425 }
2426 
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2427 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2428 {
2429 	mutex_lock(&group->mutex);
2430 	__iommu_group_set_core_domain(group);
2431 	mutex_unlock(&group->mutex);
2432 }
2433 EXPORT_SYMBOL_GPL(iommu_detach_group);
2434 
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2435 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2436 {
2437 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2438 		return iova;
2439 
2440 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2441 		return 0;
2442 
2443 	return domain->ops->iova_to_phys(domain, iova);
2444 }
2445 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2446 
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2447 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2448 			   phys_addr_t paddr, size_t size, size_t *count)
2449 {
2450 	unsigned int pgsize_idx, pgsize_idx_next;
2451 	unsigned long pgsizes;
2452 	size_t offset, pgsize, pgsize_next;
2453 	size_t offset_end;
2454 	unsigned long addr_merge = paddr | iova;
2455 
2456 	/* Page sizes supported by the hardware and small enough for @size */
2457 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2458 
2459 	/* Constrain the page sizes further based on the maximum alignment */
2460 	if (likely(addr_merge))
2461 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2462 
2463 	/* Make sure we have at least one suitable page size */
2464 	BUG_ON(!pgsizes);
2465 
2466 	/* Pick the biggest page size remaining */
2467 	pgsize_idx = __fls(pgsizes);
2468 	pgsize = BIT(pgsize_idx);
2469 	if (!count)
2470 		return pgsize;
2471 
2472 	/* Find the next biggest support page size, if it exists */
2473 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2474 	if (!pgsizes)
2475 		goto out_set_count;
2476 
2477 	pgsize_idx_next = __ffs(pgsizes);
2478 	pgsize_next = BIT(pgsize_idx_next);
2479 
2480 	/*
2481 	 * There's no point trying a bigger page size unless the virtual
2482 	 * and physical addresses are similarly offset within the larger page.
2483 	 */
2484 	if ((iova ^ paddr) & (pgsize_next - 1))
2485 		goto out_set_count;
2486 
2487 	/* Calculate the offset to the next page size alignment boundary */
2488 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2489 
2490 	/*
2491 	 * If size is big enough to accommodate the larger page, reduce
2492 	 * the number of smaller pages.
2493 	 */
2494 	if (!check_add_overflow(offset, pgsize_next, &offset_end) &&
2495 	    offset_end <= size)
2496 		size = offset;
2497 
2498 out_set_count:
2499 	*count = size >> pgsize_idx;
2500 	return pgsize;
2501 }
2502 
iommu_map_nosync(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2503 int iommu_map_nosync(struct iommu_domain *domain, unsigned long iova,
2504 		phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2505 {
2506 	const struct iommu_domain_ops *ops = domain->ops;
2507 	unsigned long orig_iova = iova;
2508 	unsigned int min_pagesz;
2509 	size_t orig_size = size;
2510 	phys_addr_t orig_paddr = paddr;
2511 	int ret = 0;
2512 
2513 	might_sleep_if(gfpflags_allow_blocking(gfp));
2514 
2515 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2516 		return -EINVAL;
2517 
2518 	if (WARN_ON(!ops->map_pages || domain->pgsize_bitmap == 0UL))
2519 		return -ENODEV;
2520 
2521 	/* Discourage passing strange GFP flags */
2522 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2523 				__GFP_HIGHMEM)))
2524 		return -EINVAL;
2525 
2526 	/* find out the minimum page size supported */
2527 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2528 
2529 	/*
2530 	 * both the virtual address and the physical one, as well as
2531 	 * the size of the mapping, must be aligned (at least) to the
2532 	 * size of the smallest page supported by the hardware
2533 	 */
2534 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2535 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2536 		       iova, &paddr, size, min_pagesz);
2537 		return -EINVAL;
2538 	}
2539 
2540 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2541 
2542 	while (size) {
2543 		size_t pgsize, count, mapped = 0;
2544 
2545 		pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2546 
2547 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2548 			 iova, &paddr, pgsize, count);
2549 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2550 				     gfp, &mapped);
2551 		/*
2552 		 * Some pages may have been mapped, even if an error occurred,
2553 		 * so we should account for those so they can be unmapped.
2554 		 */
2555 		size -= mapped;
2556 
2557 		if (ret)
2558 			break;
2559 
2560 		iova += mapped;
2561 		paddr += mapped;
2562 	}
2563 
2564 	/* unroll mapping in case something went wrong */
2565 	if (ret)
2566 		iommu_unmap(domain, orig_iova, orig_size - size);
2567 	else
2568 		trace_map(orig_iova, orig_paddr, orig_size);
2569 
2570 	return ret;
2571 }
2572 
iommu_sync_map(struct iommu_domain * domain,unsigned long iova,size_t size)2573 int iommu_sync_map(struct iommu_domain *domain, unsigned long iova, size_t size)
2574 {
2575 	const struct iommu_domain_ops *ops = domain->ops;
2576 
2577 	if (!ops->iotlb_sync_map)
2578 		return 0;
2579 	return ops->iotlb_sync_map(domain, iova, size);
2580 }
2581 
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2582 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2583 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2584 {
2585 	int ret;
2586 
2587 	ret = iommu_map_nosync(domain, iova, paddr, size, prot, gfp);
2588 	if (ret)
2589 		return ret;
2590 
2591 	ret = iommu_sync_map(domain, iova, size);
2592 	if (ret)
2593 		iommu_unmap(domain, iova, size);
2594 
2595 	return ret;
2596 }
2597 EXPORT_SYMBOL_GPL(iommu_map);
2598 
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2599 static size_t __iommu_unmap(struct iommu_domain *domain,
2600 			    unsigned long iova, size_t size,
2601 			    struct iommu_iotlb_gather *iotlb_gather)
2602 {
2603 	const struct iommu_domain_ops *ops = domain->ops;
2604 	size_t unmapped_page, unmapped = 0;
2605 	unsigned long orig_iova = iova;
2606 	unsigned int min_pagesz;
2607 
2608 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2609 		return 0;
2610 
2611 	if (WARN_ON(!ops->unmap_pages || domain->pgsize_bitmap == 0UL))
2612 		return 0;
2613 
2614 	/* find out the minimum page size supported */
2615 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2616 
2617 	/*
2618 	 * The virtual address, as well as the size of the mapping, must be
2619 	 * aligned (at least) to the size of the smallest page supported
2620 	 * by the hardware
2621 	 */
2622 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2623 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2624 		       iova, size, min_pagesz);
2625 		return 0;
2626 	}
2627 
2628 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2629 
2630 	/*
2631 	 * Keep iterating until we either unmap 'size' bytes (or more)
2632 	 * or we hit an area that isn't mapped.
2633 	 */
2634 	while (unmapped < size) {
2635 		size_t pgsize, count;
2636 
2637 		pgsize = iommu_pgsize(domain, iova, iova, size - unmapped, &count);
2638 		unmapped_page = ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather);
2639 		if (!unmapped_page)
2640 			break;
2641 
2642 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2643 			 iova, unmapped_page);
2644 
2645 		iova += unmapped_page;
2646 		unmapped += unmapped_page;
2647 	}
2648 
2649 	trace_unmap(orig_iova, size, unmapped);
2650 	return unmapped;
2651 }
2652 
2653 /**
2654  * iommu_unmap() - Remove mappings from a range of IOVA
2655  * @domain: Domain to manipulate
2656  * @iova: IO virtual address to start
2657  * @size: Length of the range starting from @iova
2658  *
2659  * iommu_unmap() will remove a translation created by iommu_map(). It cannot
2660  * subdivide a mapping created by iommu_map(), so it should be called with IOVA
2661  * ranges that match what was passed to iommu_map(). The range can aggregate
2662  * contiguous iommu_map() calls so long as no individual range is split.
2663  *
2664  * Returns: Number of bytes of IOVA unmapped. iova + res will be the point
2665  * unmapping stopped.
2666  */
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2667 size_t iommu_unmap(struct iommu_domain *domain,
2668 		   unsigned long iova, size_t size)
2669 {
2670 	struct iommu_iotlb_gather iotlb_gather;
2671 	size_t ret;
2672 
2673 	iommu_iotlb_gather_init(&iotlb_gather);
2674 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2675 	iommu_iotlb_sync(domain, &iotlb_gather);
2676 
2677 	return ret;
2678 }
2679 EXPORT_SYMBOL_GPL(iommu_unmap);
2680 
2681 /**
2682  * iommu_unmap_fast() - Remove mappings from a range of IOVA without IOTLB sync
2683  * @domain: Domain to manipulate
2684  * @iova: IO virtual address to start
2685  * @size: Length of the range starting from @iova
2686  * @iotlb_gather: range information for a pending IOTLB flush
2687  *
2688  * iommu_unmap_fast() will remove a translation created by iommu_map().
2689  * It can't subdivide a mapping created by iommu_map(), so it should be
2690  * called with IOVA ranges that match what was passed to iommu_map(). The
2691  * range can aggregate contiguous iommu_map() calls so long as no individual
2692  * range is split.
2693  *
2694  * Basically iommu_unmap_fast() is the same as iommu_unmap() but for callers
2695  * which manage the IOTLB flushing externally to perform a batched sync.
2696  *
2697  * Returns: Number of bytes of IOVA unmapped. iova + res will be the point
2698  * unmapping stopped.
2699  */
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2700 size_t iommu_unmap_fast(struct iommu_domain *domain,
2701 			unsigned long iova, size_t size,
2702 			struct iommu_iotlb_gather *iotlb_gather)
2703 {
2704 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2705 }
2706 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2707 
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2708 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2709 		     struct scatterlist *sg, unsigned int nents, int prot,
2710 		     gfp_t gfp)
2711 {
2712 	size_t len = 0, mapped = 0;
2713 	phys_addr_t start;
2714 	unsigned int i = 0;
2715 	int ret;
2716 
2717 	while (i <= nents) {
2718 		phys_addr_t s_phys = sg_phys(sg);
2719 
2720 		if (len && s_phys != start + len) {
2721 			ret = iommu_map_nosync(domain, iova + mapped, start,
2722 					len, prot, gfp);
2723 			if (ret)
2724 				goto out_err;
2725 
2726 			mapped += len;
2727 			len = 0;
2728 		}
2729 
2730 		if (sg_dma_is_bus_address(sg))
2731 			goto next;
2732 
2733 		if (len) {
2734 			len += sg->length;
2735 		} else {
2736 			len = sg->length;
2737 			start = s_phys;
2738 		}
2739 
2740 next:
2741 		if (++i < nents)
2742 			sg = sg_next(sg);
2743 	}
2744 
2745 	ret = iommu_sync_map(domain, iova, mapped);
2746 	if (ret)
2747 		goto out_err;
2748 
2749 	return mapped;
2750 
2751 out_err:
2752 	/* undo mappings already done */
2753 	iommu_unmap(domain, iova, mapped);
2754 
2755 	return ret;
2756 }
2757 EXPORT_SYMBOL_GPL(iommu_map_sg);
2758 
2759 /**
2760  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2761  * @domain: the iommu domain where the fault has happened
2762  * @dev: the device where the fault has happened
2763  * @iova: the faulting address
2764  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2765  *
2766  * This function should be called by the low-level IOMMU implementations
2767  * whenever IOMMU faults happen, to allow high-level users, that are
2768  * interested in such events, to know about them.
2769  *
2770  * This event may be useful for several possible use cases:
2771  * - mere logging of the event
2772  * - dynamic TLB/PTE loading
2773  * - if restarting of the faulting device is required
2774  *
2775  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2776  * PTE/TLB loading will one day be supported, implementations will be able
2777  * to tell whether it succeeded or not according to this return value).
2778  *
2779  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2780  * (though fault handlers can also return -ENOSYS, in case they want to
2781  * elicit the default behavior of the IOMMU drivers).
2782  */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2783 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2784 		       unsigned long iova, int flags)
2785 {
2786 	int ret = -ENOSYS;
2787 
2788 	/*
2789 	 * if upper layers showed interest and installed a fault handler,
2790 	 * invoke it.
2791 	 */
2792 	if (domain->cookie_type == IOMMU_COOKIE_FAULT_HANDLER &&
2793 	    domain->handler)
2794 		ret = domain->handler(domain, dev, iova, flags,
2795 						domain->handler_token);
2796 
2797 	trace_io_page_fault(dev, iova, flags);
2798 	return ret;
2799 }
2800 EXPORT_SYMBOL_GPL(report_iommu_fault);
2801 
iommu_init(void)2802 static int __init iommu_init(void)
2803 {
2804 	iommu_group_kset = kset_create_and_add("iommu_groups",
2805 					       NULL, kernel_kobj);
2806 	BUG_ON(!iommu_group_kset);
2807 
2808 	iommu_debugfs_setup();
2809 
2810 	return 0;
2811 }
2812 core_initcall(iommu_init);
2813 
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2814 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2815 		unsigned long quirk)
2816 {
2817 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2818 		return -EINVAL;
2819 	if (!domain->ops->set_pgtable_quirks)
2820 		return -EINVAL;
2821 	return domain->ops->set_pgtable_quirks(domain, quirk);
2822 }
2823 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2824 
2825 /**
2826  * iommu_get_resv_regions - get reserved regions
2827  * @dev: device for which to get reserved regions
2828  * @list: reserved region list for device
2829  *
2830  * This returns a list of reserved IOVA regions specific to this device.
2831  * A domain user should not map IOVA in these ranges.
2832  */
iommu_get_resv_regions(struct device * dev,struct list_head * list)2833 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2834 {
2835 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2836 
2837 	if (ops->get_resv_regions)
2838 		ops->get_resv_regions(dev, list);
2839 }
2840 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2841 
2842 /**
2843  * iommu_put_resv_regions - release reserved regions
2844  * @dev: device for which to free reserved regions
2845  * @list: reserved region list for device
2846  *
2847  * This releases a reserved region list acquired by iommu_get_resv_regions().
2848  */
iommu_put_resv_regions(struct device * dev,struct list_head * list)2849 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2850 {
2851 	struct iommu_resv_region *entry, *next;
2852 
2853 	list_for_each_entry_safe(entry, next, list, list) {
2854 		if (entry->free)
2855 			entry->free(dev, entry);
2856 		else
2857 			kfree(entry);
2858 	}
2859 }
2860 EXPORT_SYMBOL(iommu_put_resv_regions);
2861 
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type,gfp_t gfp)2862 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2863 						  size_t length, int prot,
2864 						  enum iommu_resv_type type,
2865 						  gfp_t gfp)
2866 {
2867 	struct iommu_resv_region *region;
2868 
2869 	region = kzalloc(sizeof(*region), gfp);
2870 	if (!region)
2871 		return NULL;
2872 
2873 	INIT_LIST_HEAD(&region->list);
2874 	region->start = start;
2875 	region->length = length;
2876 	region->prot = prot;
2877 	region->type = type;
2878 	return region;
2879 }
2880 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2881 
iommu_set_default_passthrough(bool cmd_line)2882 void iommu_set_default_passthrough(bool cmd_line)
2883 {
2884 	if (cmd_line)
2885 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2886 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2887 }
2888 
iommu_set_default_translated(bool cmd_line)2889 void iommu_set_default_translated(bool cmd_line)
2890 {
2891 	if (cmd_line)
2892 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2893 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2894 }
2895 
iommu_default_passthrough(void)2896 bool iommu_default_passthrough(void)
2897 {
2898 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2899 }
2900 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2901 
iommu_from_fwnode(const struct fwnode_handle * fwnode)2902 static const struct iommu_device *iommu_from_fwnode(const struct fwnode_handle *fwnode)
2903 {
2904 	const struct iommu_device *iommu, *ret = NULL;
2905 
2906 	spin_lock(&iommu_device_lock);
2907 	list_for_each_entry(iommu, &iommu_device_list, list)
2908 		if (iommu->fwnode == fwnode) {
2909 			ret = iommu;
2910 			break;
2911 		}
2912 	spin_unlock(&iommu_device_lock);
2913 	return ret;
2914 }
2915 
iommu_ops_from_fwnode(const struct fwnode_handle * fwnode)2916 const struct iommu_ops *iommu_ops_from_fwnode(const struct fwnode_handle *fwnode)
2917 {
2918 	const struct iommu_device *iommu = iommu_from_fwnode(fwnode);
2919 
2920 	return iommu ? iommu->ops : NULL;
2921 }
2922 
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode)2923 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode)
2924 {
2925 	const struct iommu_device *iommu = iommu_from_fwnode(iommu_fwnode);
2926 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2927 
2928 	if (!iommu)
2929 		return driver_deferred_probe_check_state(dev);
2930 	if (!dev->iommu && !READ_ONCE(iommu->ready))
2931 		return -EPROBE_DEFER;
2932 
2933 	if (fwspec)
2934 		return iommu->ops == iommu_fwspec_ops(fwspec) ? 0 : -EINVAL;
2935 
2936 	if (!dev_iommu_get(dev))
2937 		return -ENOMEM;
2938 
2939 	/* Preallocate for the overwhelmingly common case of 1 ID */
2940 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2941 	if (!fwspec)
2942 		return -ENOMEM;
2943 
2944 	fwnode_handle_get(iommu_fwnode);
2945 	fwspec->iommu_fwnode = iommu_fwnode;
2946 	dev_iommu_fwspec_set(dev, fwspec);
2947 	return 0;
2948 }
2949 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2950 
iommu_fwspec_free(struct device * dev)2951 void iommu_fwspec_free(struct device *dev)
2952 {
2953 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2954 
2955 	if (fwspec) {
2956 		fwnode_handle_put(fwspec->iommu_fwnode);
2957 		kfree(fwspec);
2958 		dev_iommu_fwspec_set(dev, NULL);
2959 	}
2960 }
2961 
iommu_fwspec_add_ids(struct device * dev,const u32 * ids,int num_ids)2962 int iommu_fwspec_add_ids(struct device *dev, const u32 *ids, int num_ids)
2963 {
2964 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2965 	int i, new_num;
2966 
2967 	if (!fwspec)
2968 		return -EINVAL;
2969 
2970 	new_num = fwspec->num_ids + num_ids;
2971 	if (new_num > 1) {
2972 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2973 				  GFP_KERNEL);
2974 		if (!fwspec)
2975 			return -ENOMEM;
2976 
2977 		dev_iommu_fwspec_set(dev, fwspec);
2978 	}
2979 
2980 	for (i = 0; i < num_ids; i++)
2981 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2982 
2983 	fwspec->num_ids = new_num;
2984 	return 0;
2985 }
2986 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2987 
2988 /**
2989  * iommu_setup_default_domain - Set the default_domain for the group
2990  * @group: Group to change
2991  * @target_type: Domain type to set as the default_domain
2992  *
2993  * Allocate a default domain and set it as the current domain on the group. If
2994  * the group already has a default domain it will be changed to the target_type.
2995  * When target_type is 0 the default domain is selected based on driver and
2996  * system preferences.
2997  */
iommu_setup_default_domain(struct iommu_group * group,int target_type)2998 static int iommu_setup_default_domain(struct iommu_group *group,
2999 				      int target_type)
3000 {
3001 	struct iommu_domain *old_dom = group->default_domain;
3002 	struct group_device *gdev;
3003 	struct iommu_domain *dom;
3004 	bool direct_failed;
3005 	int req_type;
3006 	int ret;
3007 
3008 	lockdep_assert_held(&group->mutex);
3009 
3010 	req_type = iommu_get_default_domain_type(group, target_type);
3011 	if (req_type < 0)
3012 		return -EINVAL;
3013 
3014 	dom = iommu_group_alloc_default_domain(group, req_type);
3015 	if (IS_ERR(dom))
3016 		return PTR_ERR(dom);
3017 
3018 	if (group->default_domain == dom)
3019 		return 0;
3020 
3021 	if (iommu_is_dma_domain(dom)) {
3022 		ret = iommu_get_dma_cookie(dom);
3023 		if (ret) {
3024 			iommu_domain_free(dom);
3025 			return ret;
3026 		}
3027 	}
3028 
3029 	/*
3030 	 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
3031 	 * mapped before their device is attached, in order to guarantee
3032 	 * continuity with any FW activity
3033 	 */
3034 	direct_failed = false;
3035 	for_each_group_device(group, gdev) {
3036 		if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
3037 			direct_failed = true;
3038 			dev_warn_once(
3039 				gdev->dev->iommu->iommu_dev->dev,
3040 				"IOMMU driver was not able to establish FW requested direct mapping.");
3041 		}
3042 	}
3043 
3044 	/* We must set default_domain early for __iommu_device_set_domain */
3045 	group->default_domain = dom;
3046 	if (!group->domain) {
3047 		/*
3048 		 * Drivers are not allowed to fail the first domain attach.
3049 		 * The only way to recover from this is to fail attaching the
3050 		 * iommu driver and call ops->release_device. Put the domain
3051 		 * in group->default_domain so it is freed after.
3052 		 */
3053 		ret = __iommu_group_set_domain_internal(
3054 			group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3055 		if (WARN_ON(ret))
3056 			goto out_free_old;
3057 	} else {
3058 		ret = __iommu_group_set_domain(group, dom);
3059 		if (ret)
3060 			goto err_restore_def_domain;
3061 	}
3062 
3063 	/*
3064 	 * Drivers are supposed to allow mappings to be installed in a domain
3065 	 * before device attachment, but some don't. Hack around this defect by
3066 	 * trying again after attaching. If this happens it means the device
3067 	 * will not continuously have the IOMMU_RESV_DIRECT map.
3068 	 */
3069 	if (direct_failed) {
3070 		for_each_group_device(group, gdev) {
3071 			ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3072 			if (ret)
3073 				goto err_restore_domain;
3074 		}
3075 	}
3076 
3077 out_free_old:
3078 	if (old_dom)
3079 		iommu_domain_free(old_dom);
3080 	return ret;
3081 
3082 err_restore_domain:
3083 	if (old_dom)
3084 		__iommu_group_set_domain_internal(
3085 			group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3086 err_restore_def_domain:
3087 	if (old_dom) {
3088 		iommu_domain_free(dom);
3089 		group->default_domain = old_dom;
3090 	}
3091 	return ret;
3092 }
3093 
3094 /*
3095  * Changing the default domain through sysfs requires the users to unbind the
3096  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3097  * transition. Return failure if this isn't met.
3098  *
3099  * We need to consider the race between this and the device release path.
3100  * group->mutex is used here to guarantee that the device release path
3101  * will not be entered at the same time.
3102  */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)3103 static ssize_t iommu_group_store_type(struct iommu_group *group,
3104 				      const char *buf, size_t count)
3105 {
3106 	struct group_device *gdev;
3107 	int ret, req_type;
3108 
3109 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3110 		return -EACCES;
3111 
3112 	if (WARN_ON(!group) || !group->default_domain)
3113 		return -EINVAL;
3114 
3115 	if (sysfs_streq(buf, "identity"))
3116 		req_type = IOMMU_DOMAIN_IDENTITY;
3117 	else if (sysfs_streq(buf, "DMA"))
3118 		req_type = IOMMU_DOMAIN_DMA;
3119 	else if (sysfs_streq(buf, "DMA-FQ"))
3120 		req_type = IOMMU_DOMAIN_DMA_FQ;
3121 	else if (sysfs_streq(buf, "auto"))
3122 		req_type = 0;
3123 	else
3124 		return -EINVAL;
3125 
3126 	mutex_lock(&group->mutex);
3127 	/* We can bring up a flush queue without tearing down the domain. */
3128 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3129 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
3130 		ret = iommu_dma_init_fq(group->default_domain);
3131 		if (ret)
3132 			goto out_unlock;
3133 
3134 		group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3135 		ret = count;
3136 		goto out_unlock;
3137 	}
3138 
3139 	/* Otherwise, ensure that device exists and no driver is bound. */
3140 	if (list_empty(&group->devices) || group->owner_cnt) {
3141 		ret = -EPERM;
3142 		goto out_unlock;
3143 	}
3144 
3145 	ret = iommu_setup_default_domain(group, req_type);
3146 	if (ret)
3147 		goto out_unlock;
3148 
3149 	/* Make sure dma_ops is appropriatley set */
3150 	for_each_group_device(group, gdev)
3151 		iommu_setup_dma_ops(gdev->dev);
3152 
3153 out_unlock:
3154 	mutex_unlock(&group->mutex);
3155 	return ret ?: count;
3156 }
3157 
3158 /**
3159  * iommu_device_use_default_domain() - Device driver wants to handle device
3160  *                                     DMA through the kernel DMA API.
3161  * @dev: The device.
3162  *
3163  * The device driver about to bind @dev wants to do DMA through the kernel
3164  * DMA API. Return 0 if it is allowed, otherwise an error.
3165  */
iommu_device_use_default_domain(struct device * dev)3166 int iommu_device_use_default_domain(struct device *dev)
3167 {
3168 	/* Caller is the driver core during the pre-probe path */
3169 	struct iommu_group *group = dev->iommu_group;
3170 	int ret = 0;
3171 
3172 	if (!group)
3173 		return 0;
3174 
3175 	mutex_lock(&group->mutex);
3176 	/* We may race against bus_iommu_probe() finalising groups here */
3177 	if (!group->default_domain) {
3178 		ret = -EPROBE_DEFER;
3179 		goto unlock_out;
3180 	}
3181 	if (group->owner_cnt) {
3182 		if (group->domain != group->default_domain || group->owner ||
3183 		    !xa_empty(&group->pasid_array)) {
3184 			ret = -EBUSY;
3185 			goto unlock_out;
3186 		}
3187 	}
3188 
3189 	group->owner_cnt++;
3190 
3191 unlock_out:
3192 	mutex_unlock(&group->mutex);
3193 	return ret;
3194 }
3195 
3196 /**
3197  * iommu_device_unuse_default_domain() - Device driver stops handling device
3198  *                                       DMA through the kernel DMA API.
3199  * @dev: The device.
3200  *
3201  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3202  * It must be called after iommu_device_use_default_domain().
3203  */
iommu_device_unuse_default_domain(struct device * dev)3204 void iommu_device_unuse_default_domain(struct device *dev)
3205 {
3206 	/* Caller is the driver core during the post-probe path */
3207 	struct iommu_group *group = dev->iommu_group;
3208 
3209 	if (!group)
3210 		return;
3211 
3212 	mutex_lock(&group->mutex);
3213 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3214 		group->owner_cnt--;
3215 
3216 	mutex_unlock(&group->mutex);
3217 }
3218 
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3219 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3220 {
3221 	struct device *dev = iommu_group_first_dev(group);
3222 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3223 	struct iommu_domain *domain;
3224 
3225 	if (group->blocking_domain)
3226 		return 0;
3227 
3228 	if (ops->blocked_domain) {
3229 		group->blocking_domain = ops->blocked_domain;
3230 		return 0;
3231 	}
3232 
3233 	/*
3234 	 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED create an
3235 	 * empty PAGING domain instead.
3236 	 */
3237 	domain = iommu_paging_domain_alloc(dev);
3238 	if (IS_ERR(domain))
3239 		return PTR_ERR(domain);
3240 	group->blocking_domain = domain;
3241 	return 0;
3242 }
3243 
__iommu_take_dma_ownership(struct iommu_group * group,void * owner)3244 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3245 {
3246 	int ret;
3247 
3248 	if ((group->domain && group->domain != group->default_domain) ||
3249 	    !xa_empty(&group->pasid_array))
3250 		return -EBUSY;
3251 
3252 	ret = __iommu_group_alloc_blocking_domain(group);
3253 	if (ret)
3254 		return ret;
3255 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3256 	if (ret)
3257 		return ret;
3258 
3259 	group->owner = owner;
3260 	group->owner_cnt++;
3261 	return 0;
3262 }
3263 
3264 /**
3265  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3266  * @group: The group.
3267  * @owner: Caller specified pointer. Used for exclusive ownership.
3268  *
3269  * This is to support backward compatibility for vfio which manages the dma
3270  * ownership in iommu_group level. New invocations on this interface should be
3271  * prohibited. Only a single owner may exist for a group.
3272  */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3273 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3274 {
3275 	int ret = 0;
3276 
3277 	if (WARN_ON(!owner))
3278 		return -EINVAL;
3279 
3280 	mutex_lock(&group->mutex);
3281 	if (group->owner_cnt) {
3282 		ret = -EPERM;
3283 		goto unlock_out;
3284 	}
3285 
3286 	ret = __iommu_take_dma_ownership(group, owner);
3287 unlock_out:
3288 	mutex_unlock(&group->mutex);
3289 
3290 	return ret;
3291 }
3292 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3293 
3294 /**
3295  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3296  * @dev: The device.
3297  * @owner: Caller specified pointer. Used for exclusive ownership.
3298  *
3299  * Claim the DMA ownership of a device. Multiple devices in the same group may
3300  * concurrently claim ownership if they present the same owner value. Returns 0
3301  * on success and error code on failure
3302  */
iommu_device_claim_dma_owner(struct device * dev,void * owner)3303 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3304 {
3305 	/* Caller must be a probed driver on dev */
3306 	struct iommu_group *group = dev->iommu_group;
3307 	int ret = 0;
3308 
3309 	if (WARN_ON(!owner))
3310 		return -EINVAL;
3311 
3312 	if (!group)
3313 		return -ENODEV;
3314 
3315 	mutex_lock(&group->mutex);
3316 	if (group->owner_cnt) {
3317 		if (group->owner != owner) {
3318 			ret = -EPERM;
3319 			goto unlock_out;
3320 		}
3321 		group->owner_cnt++;
3322 		goto unlock_out;
3323 	}
3324 
3325 	ret = __iommu_take_dma_ownership(group, owner);
3326 unlock_out:
3327 	mutex_unlock(&group->mutex);
3328 	return ret;
3329 }
3330 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3331 
__iommu_release_dma_ownership(struct iommu_group * group)3332 static void __iommu_release_dma_ownership(struct iommu_group *group)
3333 {
3334 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3335 		    !xa_empty(&group->pasid_array)))
3336 		return;
3337 
3338 	group->owner_cnt = 0;
3339 	group->owner = NULL;
3340 	__iommu_group_set_domain_nofail(group, group->default_domain);
3341 }
3342 
3343 /**
3344  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3345  * @group: The group
3346  *
3347  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3348  */
iommu_group_release_dma_owner(struct iommu_group * group)3349 void iommu_group_release_dma_owner(struct iommu_group *group)
3350 {
3351 	mutex_lock(&group->mutex);
3352 	__iommu_release_dma_ownership(group);
3353 	mutex_unlock(&group->mutex);
3354 }
3355 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3356 
3357 /**
3358  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3359  * @dev: The device.
3360  *
3361  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3362  */
iommu_device_release_dma_owner(struct device * dev)3363 void iommu_device_release_dma_owner(struct device *dev)
3364 {
3365 	/* Caller must be a probed driver on dev */
3366 	struct iommu_group *group = dev->iommu_group;
3367 
3368 	mutex_lock(&group->mutex);
3369 	if (group->owner_cnt > 1)
3370 		group->owner_cnt--;
3371 	else
3372 		__iommu_release_dma_ownership(group);
3373 	mutex_unlock(&group->mutex);
3374 }
3375 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3376 
3377 /**
3378  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3379  * @group: The group.
3380  *
3381  * This provides status query on a given group. It is racy and only for
3382  * non-binding status reporting.
3383  */
iommu_group_dma_owner_claimed(struct iommu_group * group)3384 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3385 {
3386 	unsigned int user;
3387 
3388 	mutex_lock(&group->mutex);
3389 	user = group->owner_cnt;
3390 	mutex_unlock(&group->mutex);
3391 
3392 	return user;
3393 }
3394 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3395 
iommu_remove_dev_pasid(struct device * dev,ioasid_t pasid,struct iommu_domain * domain)3396 static void iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid,
3397 				   struct iommu_domain *domain)
3398 {
3399 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3400 	struct iommu_domain *blocked_domain = ops->blocked_domain;
3401 
3402 	WARN_ON(blocked_domain->ops->set_dev_pasid(blocked_domain,
3403 						   dev, pasid, domain));
3404 }
3405 
__iommu_set_group_pasid(struct iommu_domain * domain,struct iommu_group * group,ioasid_t pasid,struct iommu_domain * old)3406 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3407 				   struct iommu_group *group, ioasid_t pasid,
3408 				   struct iommu_domain *old)
3409 {
3410 	struct group_device *device, *last_gdev;
3411 	int ret;
3412 
3413 	for_each_group_device(group, device) {
3414 		if (device->dev->iommu->max_pasids > 0) {
3415 			ret = domain->ops->set_dev_pasid(domain, device->dev,
3416 							 pasid, old);
3417 			if (ret)
3418 				goto err_revert;
3419 		}
3420 	}
3421 
3422 	return 0;
3423 
3424 err_revert:
3425 	last_gdev = device;
3426 	for_each_group_device(group, device) {
3427 		if (device == last_gdev)
3428 			break;
3429 		if (device->dev->iommu->max_pasids > 0) {
3430 			/*
3431 			 * If no old domain, undo the succeeded devices/pasid.
3432 			 * Otherwise, rollback the succeeded devices/pasid to
3433 			 * the old domain. And it is a driver bug to fail
3434 			 * attaching with a previously good domain.
3435 			 */
3436 			if (!old ||
3437 			    WARN_ON(old->ops->set_dev_pasid(old, device->dev,
3438 							    pasid, domain)))
3439 				iommu_remove_dev_pasid(device->dev, pasid, domain);
3440 		}
3441 	}
3442 	return ret;
3443 }
3444 
__iommu_remove_group_pasid(struct iommu_group * group,ioasid_t pasid,struct iommu_domain * domain)3445 static void __iommu_remove_group_pasid(struct iommu_group *group,
3446 				       ioasid_t pasid,
3447 				       struct iommu_domain *domain)
3448 {
3449 	struct group_device *device;
3450 
3451 	for_each_group_device(group, device) {
3452 		if (device->dev->iommu->max_pasids > 0)
3453 			iommu_remove_dev_pasid(device->dev, pasid, domain);
3454 	}
3455 }
3456 
3457 /*
3458  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3459  * @domain: the iommu domain.
3460  * @dev: the attached device.
3461  * @pasid: the pasid of the device.
3462  * @handle: the attach handle.
3463  *
3464  * Caller should always provide a new handle to avoid race with the paths
3465  * that have lockless reference to handle if it intends to pass a valid handle.
3466  *
3467  * Return: 0 on success, or an error.
3468  */
iommu_attach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3469 int iommu_attach_device_pasid(struct iommu_domain *domain,
3470 			      struct device *dev, ioasid_t pasid,
3471 			      struct iommu_attach_handle *handle)
3472 {
3473 	/* Caller must be a probed driver on dev */
3474 	struct iommu_group *group = dev->iommu_group;
3475 	struct group_device *device;
3476 	const struct iommu_ops *ops;
3477 	void *entry;
3478 	int ret;
3479 
3480 	if (!group)
3481 		return -ENODEV;
3482 
3483 	ops = dev_iommu_ops(dev);
3484 
3485 	if (!domain->ops->set_dev_pasid ||
3486 	    !ops->blocked_domain ||
3487 	    !ops->blocked_domain->ops->set_dev_pasid)
3488 		return -EOPNOTSUPP;
3489 
3490 	if (!domain_iommu_ops_compatible(ops, domain) ||
3491 	    pasid == IOMMU_NO_PASID)
3492 		return -EINVAL;
3493 
3494 	mutex_lock(&group->mutex);
3495 	for_each_group_device(group, device) {
3496 		/*
3497 		 * Skip PASID validation for devices without PASID support
3498 		 * (max_pasids = 0). These devices cannot issue transactions
3499 		 * with PASID, so they don't affect group's PASID usage.
3500 		 */
3501 		if ((device->dev->iommu->max_pasids > 0) &&
3502 		    (pasid >= device->dev->iommu->max_pasids)) {
3503 			ret = -EINVAL;
3504 			goto out_unlock;
3505 		}
3506 	}
3507 
3508 	entry = iommu_make_pasid_array_entry(domain, handle);
3509 
3510 	/*
3511 	 * Entry present is a failure case. Use xa_insert() instead of
3512 	 * xa_reserve().
3513 	 */
3514 	ret = xa_insert(&group->pasid_array, pasid, XA_ZERO_ENTRY, GFP_KERNEL);
3515 	if (ret)
3516 		goto out_unlock;
3517 
3518 	ret = __iommu_set_group_pasid(domain, group, pasid, NULL);
3519 	if (ret) {
3520 		xa_release(&group->pasid_array, pasid);
3521 		goto out_unlock;
3522 	}
3523 
3524 	/*
3525 	 * The xa_insert() above reserved the memory, and the group->mutex is
3526 	 * held, this cannot fail. The new domain cannot be visible until the
3527 	 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3528 	 * queued and then failing attach.
3529 	 */
3530 	WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3531 				   pasid, entry, GFP_KERNEL)));
3532 
3533 out_unlock:
3534 	mutex_unlock(&group->mutex);
3535 	return ret;
3536 }
3537 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3538 
3539 /**
3540  * iommu_replace_device_pasid - Replace the domain that a specific pasid
3541  *                              of the device is attached to
3542  * @domain: the new iommu domain
3543  * @dev: the attached device.
3544  * @pasid: the pasid of the device.
3545  * @handle: the attach handle.
3546  *
3547  * This API allows the pasid to switch domains. The @pasid should have been
3548  * attached. Otherwise, this fails. The pasid will keep the old configuration
3549  * if replacement failed.
3550  *
3551  * Caller should always provide a new handle to avoid race with the paths
3552  * that have lockless reference to handle if it intends to pass a valid handle.
3553  *
3554  * Return 0 on success, or an error.
3555  */
iommu_replace_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_attach_handle * handle)3556 int iommu_replace_device_pasid(struct iommu_domain *domain,
3557 			       struct device *dev, ioasid_t pasid,
3558 			       struct iommu_attach_handle *handle)
3559 {
3560 	/* Caller must be a probed driver on dev */
3561 	struct iommu_group *group = dev->iommu_group;
3562 	struct iommu_attach_handle *entry;
3563 	struct iommu_domain *curr_domain;
3564 	void *curr;
3565 	int ret;
3566 
3567 	if (!group)
3568 		return -ENODEV;
3569 
3570 	if (!domain->ops->set_dev_pasid)
3571 		return -EOPNOTSUPP;
3572 
3573 	if (!domain_iommu_ops_compatible(dev_iommu_ops(dev), domain) ||
3574 	    pasid == IOMMU_NO_PASID || !handle)
3575 		return -EINVAL;
3576 
3577 	mutex_lock(&group->mutex);
3578 	entry = iommu_make_pasid_array_entry(domain, handle);
3579 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL,
3580 			  XA_ZERO_ENTRY, GFP_KERNEL);
3581 	if (xa_is_err(curr)) {
3582 		ret = xa_err(curr);
3583 		goto out_unlock;
3584 	}
3585 
3586 	/*
3587 	 * No domain (with or without handle) attached, hence not
3588 	 * a replace case.
3589 	 */
3590 	if (!curr) {
3591 		xa_release(&group->pasid_array, pasid);
3592 		ret = -EINVAL;
3593 		goto out_unlock;
3594 	}
3595 
3596 	/*
3597 	 * Reusing handle is problematic as there are paths that refers
3598 	 * the handle without lock. To avoid race, reject the callers that
3599 	 * attempt it.
3600 	 */
3601 	if (curr == entry) {
3602 		WARN_ON(1);
3603 		ret = -EINVAL;
3604 		goto out_unlock;
3605 	}
3606 
3607 	curr_domain = pasid_array_entry_to_domain(curr);
3608 	ret = 0;
3609 
3610 	if (curr_domain != domain) {
3611 		ret = __iommu_set_group_pasid(domain, group,
3612 					      pasid, curr_domain);
3613 		if (ret)
3614 			goto out_unlock;
3615 	}
3616 
3617 	/*
3618 	 * The above xa_cmpxchg() reserved the memory, and the
3619 	 * group->mutex is held, this cannot fail.
3620 	 */
3621 	WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3622 				   pasid, entry, GFP_KERNEL)));
3623 
3624 out_unlock:
3625 	mutex_unlock(&group->mutex);
3626 	return ret;
3627 }
3628 EXPORT_SYMBOL_NS_GPL(iommu_replace_device_pasid, "IOMMUFD_INTERNAL");
3629 
3630 /*
3631  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3632  * @domain: the iommu domain.
3633  * @dev: the attached device.
3634  * @pasid: the pasid of the device.
3635  *
3636  * The @domain must have been attached to @pasid of the @dev with
3637  * iommu_attach_device_pasid().
3638  */
iommu_detach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3639 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3640 			       ioasid_t pasid)
3641 {
3642 	/* Caller must be a probed driver on dev */
3643 	struct iommu_group *group = dev->iommu_group;
3644 
3645 	mutex_lock(&group->mutex);
3646 	__iommu_remove_group_pasid(group, pasid, domain);
3647 	xa_erase(&group->pasid_array, pasid);
3648 	mutex_unlock(&group->mutex);
3649 }
3650 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3651 
iommu_alloc_global_pasid(struct device * dev)3652 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3653 {
3654 	int ret;
3655 
3656 	/* max_pasids == 0 means that the device does not support PASID */
3657 	if (!dev->iommu->max_pasids)
3658 		return IOMMU_PASID_INVALID;
3659 
3660 	/*
3661 	 * max_pasids is set up by vendor driver based on number of PASID bits
3662 	 * supported but the IDA allocation is inclusive.
3663 	 */
3664 	ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3665 			      dev->iommu->max_pasids - 1, GFP_KERNEL);
3666 	return ret < 0 ? IOMMU_PASID_INVALID : ret;
3667 }
3668 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3669 
iommu_free_global_pasid(ioasid_t pasid)3670 void iommu_free_global_pasid(ioasid_t pasid)
3671 {
3672 	if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3673 		return;
3674 
3675 	ida_free(&iommu_global_pasid_ida, pasid);
3676 }
3677 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3678 
3679 /**
3680  * iommu_attach_handle_get - Return the attach handle
3681  * @group: the iommu group that domain was attached to
3682  * @pasid: the pasid within the group
3683  * @type: matched domain type, 0 for any match
3684  *
3685  * Return handle or ERR_PTR(-ENOENT) on none, ERR_PTR(-EBUSY) on mismatch.
3686  *
3687  * Return the attach handle to the caller. The life cycle of an iommu attach
3688  * handle is from the time when the domain is attached to the time when the
3689  * domain is detached. Callers are required to synchronize the call of
3690  * iommu_attach_handle_get() with domain attachment and detachment. The attach
3691  * handle can only be used during its life cycle.
3692  */
3693 struct iommu_attach_handle *
iommu_attach_handle_get(struct iommu_group * group,ioasid_t pasid,unsigned int type)3694 iommu_attach_handle_get(struct iommu_group *group, ioasid_t pasid, unsigned int type)
3695 {
3696 	struct iommu_attach_handle *handle;
3697 	void *entry;
3698 
3699 	xa_lock(&group->pasid_array);
3700 	entry = xa_load(&group->pasid_array, pasid);
3701 	if (!entry || xa_pointer_tag(entry) != IOMMU_PASID_ARRAY_HANDLE) {
3702 		handle = ERR_PTR(-ENOENT);
3703 	} else {
3704 		handle = xa_untag_pointer(entry);
3705 		if (type && handle->domain->type != type)
3706 			handle = ERR_PTR(-EBUSY);
3707 	}
3708 	xa_unlock(&group->pasid_array);
3709 
3710 	return handle;
3711 }
3712 EXPORT_SYMBOL_NS_GPL(iommu_attach_handle_get, "IOMMUFD_INTERNAL");
3713 
3714 /**
3715  * iommu_attach_group_handle - Attach an IOMMU domain to an IOMMU group
3716  * @domain: IOMMU domain to attach
3717  * @group: IOMMU group that will be attached
3718  * @handle: attach handle
3719  *
3720  * Returns 0 on success and error code on failure.
3721  *
3722  * This is a variant of iommu_attach_group(). It allows the caller to provide
3723  * an attach handle and use it when the domain is attached. This is currently
3724  * used by IOMMUFD to deliver the I/O page faults.
3725  *
3726  * Caller should always provide a new handle to avoid race with the paths
3727  * that have lockless reference to handle.
3728  */
iommu_attach_group_handle(struct iommu_domain * domain,struct iommu_group * group,struct iommu_attach_handle * handle)3729 int iommu_attach_group_handle(struct iommu_domain *domain,
3730 			      struct iommu_group *group,
3731 			      struct iommu_attach_handle *handle)
3732 {
3733 	void *entry;
3734 	int ret;
3735 
3736 	if (!handle)
3737 		return -EINVAL;
3738 
3739 	mutex_lock(&group->mutex);
3740 	entry = iommu_make_pasid_array_entry(domain, handle);
3741 	ret = xa_insert(&group->pasid_array,
3742 			IOMMU_NO_PASID, XA_ZERO_ENTRY, GFP_KERNEL);
3743 	if (ret)
3744 		goto out_unlock;
3745 
3746 	ret = __iommu_attach_group(domain, group);
3747 	if (ret) {
3748 		xa_release(&group->pasid_array, IOMMU_NO_PASID);
3749 		goto out_unlock;
3750 	}
3751 
3752 	/*
3753 	 * The xa_insert() above reserved the memory, and the group->mutex is
3754 	 * held, this cannot fail. The new domain cannot be visible until the
3755 	 * operation succeeds as we cannot tolerate PRIs becoming concurrently
3756 	 * queued and then failing attach.
3757 	 */
3758 	WARN_ON(xa_is_err(xa_store(&group->pasid_array,
3759 				   IOMMU_NO_PASID, entry, GFP_KERNEL)));
3760 
3761 out_unlock:
3762 	mutex_unlock(&group->mutex);
3763 	return ret;
3764 }
3765 EXPORT_SYMBOL_NS_GPL(iommu_attach_group_handle, "IOMMUFD_INTERNAL");
3766 
3767 /**
3768  * iommu_detach_group_handle - Detach an IOMMU domain from an IOMMU group
3769  * @domain: IOMMU domain to attach
3770  * @group: IOMMU group that will be attached
3771  *
3772  * Detach the specified IOMMU domain from the specified IOMMU group.
3773  * It must be used in conjunction with iommu_attach_group_handle().
3774  */
iommu_detach_group_handle(struct iommu_domain * domain,struct iommu_group * group)3775 void iommu_detach_group_handle(struct iommu_domain *domain,
3776 			       struct iommu_group *group)
3777 {
3778 	mutex_lock(&group->mutex);
3779 	__iommu_group_set_core_domain(group);
3780 	xa_erase(&group->pasid_array, IOMMU_NO_PASID);
3781 	mutex_unlock(&group->mutex);
3782 }
3783 EXPORT_SYMBOL_NS_GPL(iommu_detach_group_handle, "IOMMUFD_INTERNAL");
3784 
3785 /**
3786  * iommu_replace_group_handle - replace the domain that a group is attached to
3787  * @group: IOMMU group that will be attached to the new domain
3788  * @new_domain: new IOMMU domain to replace with
3789  * @handle: attach handle
3790  *
3791  * This API allows the group to switch domains without being forced to go to
3792  * the blocking domain in-between. It allows the caller to provide an attach
3793  * handle for the new domain and use it when the domain is attached.
3794  *
3795  * If the currently attached domain is a core domain (e.g. a default_domain),
3796  * it will act just like the iommu_attach_group_handle().
3797  *
3798  * Caller should always provide a new handle to avoid race with the paths
3799  * that have lockless reference to handle.
3800  */
iommu_replace_group_handle(struct iommu_group * group,struct iommu_domain * new_domain,struct iommu_attach_handle * handle)3801 int iommu_replace_group_handle(struct iommu_group *group,
3802 			       struct iommu_domain *new_domain,
3803 			       struct iommu_attach_handle *handle)
3804 {
3805 	void *curr, *entry;
3806 	int ret;
3807 
3808 	if (!new_domain || !handle)
3809 		return -EINVAL;
3810 
3811 	mutex_lock(&group->mutex);
3812 	entry = iommu_make_pasid_array_entry(new_domain, handle);
3813 	ret = xa_reserve(&group->pasid_array, IOMMU_NO_PASID, GFP_KERNEL);
3814 	if (ret)
3815 		goto err_unlock;
3816 
3817 	ret = __iommu_group_set_domain(group, new_domain);
3818 	if (ret)
3819 		goto err_release;
3820 
3821 	curr = xa_store(&group->pasid_array, IOMMU_NO_PASID, entry, GFP_KERNEL);
3822 	WARN_ON(xa_is_err(curr));
3823 
3824 	mutex_unlock(&group->mutex);
3825 
3826 	return 0;
3827 err_release:
3828 	xa_release(&group->pasid_array, IOMMU_NO_PASID);
3829 err_unlock:
3830 	mutex_unlock(&group->mutex);
3831 	return ret;
3832 }
3833 EXPORT_SYMBOL_NS_GPL(iommu_replace_group_handle, "IOMMUFD_INTERNAL");
3834 
3835 #if IS_ENABLED(CONFIG_IRQ_MSI_IOMMU)
3836 /**
3837  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
3838  * @desc: MSI descriptor, will store the MSI page
3839  * @msi_addr: MSI target address to be mapped
3840  *
3841  * The implementation of sw_msi() should take msi_addr and map it to
3842  * an IOVA in the domain and call msi_desc_set_iommu_msi_iova() with the
3843  * mapping information.
3844  *
3845  * Return: 0 on success or negative error code if the mapping failed.
3846  */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)3847 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
3848 {
3849 	struct device *dev = msi_desc_to_dev(desc);
3850 	struct iommu_group *group = dev->iommu_group;
3851 	int ret = 0;
3852 
3853 	if (!group)
3854 		return 0;
3855 
3856 	mutex_lock(&group->mutex);
3857 	/* An IDENTITY domain must pass through */
3858 	if (group->domain && group->domain->type != IOMMU_DOMAIN_IDENTITY) {
3859 		switch (group->domain->cookie_type) {
3860 		case IOMMU_COOKIE_DMA_MSI:
3861 		case IOMMU_COOKIE_DMA_IOVA:
3862 			ret = iommu_dma_sw_msi(group->domain, desc, msi_addr);
3863 			break;
3864 		case IOMMU_COOKIE_IOMMUFD:
3865 			ret = iommufd_sw_msi(group->domain, desc, msi_addr);
3866 			break;
3867 		default:
3868 			ret = -EOPNOTSUPP;
3869 			break;
3870 		}
3871 	}
3872 	mutex_unlock(&group->mutex);
3873 	return ret;
3874 }
3875 #endif /* CONFIG_IRQ_MSI_IOMMU */
3876