1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2015 Intel Corporation. 4 * 5 * Authors: David Woodhouse <dwmw2@infradead.org> 6 */ 7 8 #include <linux/mmu_notifier.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/slab.h> 12 #include <linux/rculist.h> 13 #include <linux/pci.h> 14 #include <linux/pci-ats.h> 15 #include <linux/dmar.h> 16 #include <linux/interrupt.h> 17 #include <linux/mm_types.h> 18 #include <linux/xarray.h> 19 #include <asm/page.h> 20 #include <asm/fpu/api.h> 21 22 #include "iommu.h" 23 #include "pasid.h" 24 #include "perf.h" 25 #include "../iommu-sva.h" 26 #include "trace.h" 27 28 static irqreturn_t prq_event_thread(int irq, void *d); 29 30 static DEFINE_XARRAY_ALLOC(pasid_private_array); 31 static int pasid_private_add(ioasid_t pasid, void *priv) 32 { 33 return xa_alloc(&pasid_private_array, &pasid, priv, 34 XA_LIMIT(pasid, pasid), GFP_ATOMIC); 35 } 36 37 static void pasid_private_remove(ioasid_t pasid) 38 { 39 xa_erase(&pasid_private_array, pasid); 40 } 41 42 static void *pasid_private_find(ioasid_t pasid) 43 { 44 return xa_load(&pasid_private_array, pasid); 45 } 46 47 static struct intel_svm_dev * 48 svm_lookup_device_by_dev(struct intel_svm *svm, struct device *dev) 49 { 50 struct intel_svm_dev *sdev = NULL, *t; 51 52 rcu_read_lock(); 53 list_for_each_entry_rcu(t, &svm->devs, list) { 54 if (t->dev == dev) { 55 sdev = t; 56 break; 57 } 58 } 59 rcu_read_unlock(); 60 61 return sdev; 62 } 63 64 int intel_svm_enable_prq(struct intel_iommu *iommu) 65 { 66 struct iopf_queue *iopfq; 67 struct page *pages; 68 int irq, ret; 69 70 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, PRQ_ORDER); 71 if (!pages) { 72 pr_warn("IOMMU: %s: Failed to allocate page request queue\n", 73 iommu->name); 74 return -ENOMEM; 75 } 76 iommu->prq = page_address(pages); 77 78 irq = dmar_alloc_hwirq(IOMMU_IRQ_ID_OFFSET_PRQ + iommu->seq_id, iommu->node, iommu); 79 if (irq <= 0) { 80 pr_err("IOMMU: %s: Failed to create IRQ vector for page request queue\n", 81 iommu->name); 82 ret = -EINVAL; 83 goto free_prq; 84 } 85 iommu->pr_irq = irq; 86 87 snprintf(iommu->iopfq_name, sizeof(iommu->iopfq_name), 88 "dmar%d-iopfq", iommu->seq_id); 89 iopfq = iopf_queue_alloc(iommu->iopfq_name); 90 if (!iopfq) { 91 pr_err("IOMMU: %s: Failed to allocate iopf queue\n", iommu->name); 92 ret = -ENOMEM; 93 goto free_hwirq; 94 } 95 iommu->iopf_queue = iopfq; 96 97 snprintf(iommu->prq_name, sizeof(iommu->prq_name), "dmar%d-prq", iommu->seq_id); 98 99 ret = request_threaded_irq(irq, NULL, prq_event_thread, IRQF_ONESHOT, 100 iommu->prq_name, iommu); 101 if (ret) { 102 pr_err("IOMMU: %s: Failed to request IRQ for page request queue\n", 103 iommu->name); 104 goto free_iopfq; 105 } 106 dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL); 107 dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL); 108 dmar_writeq(iommu->reg + DMAR_PQA_REG, virt_to_phys(iommu->prq) | PRQ_ORDER); 109 110 init_completion(&iommu->prq_complete); 111 112 return 0; 113 114 free_iopfq: 115 iopf_queue_free(iommu->iopf_queue); 116 iommu->iopf_queue = NULL; 117 free_hwirq: 118 dmar_free_hwirq(irq); 119 iommu->pr_irq = 0; 120 free_prq: 121 free_pages((unsigned long)iommu->prq, PRQ_ORDER); 122 iommu->prq = NULL; 123 124 return ret; 125 } 126 127 int intel_svm_finish_prq(struct intel_iommu *iommu) 128 { 129 dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL); 130 dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL); 131 dmar_writeq(iommu->reg + DMAR_PQA_REG, 0ULL); 132 133 if (iommu->pr_irq) { 134 free_irq(iommu->pr_irq, iommu); 135 dmar_free_hwirq(iommu->pr_irq); 136 iommu->pr_irq = 0; 137 } 138 139 if (iommu->iopf_queue) { 140 iopf_queue_free(iommu->iopf_queue); 141 iommu->iopf_queue = NULL; 142 } 143 144 free_pages((unsigned long)iommu->prq, PRQ_ORDER); 145 iommu->prq = NULL; 146 147 return 0; 148 } 149 150 void intel_svm_check(struct intel_iommu *iommu) 151 { 152 if (!pasid_supported(iommu)) 153 return; 154 155 if (cpu_feature_enabled(X86_FEATURE_GBPAGES) && 156 !cap_fl1gp_support(iommu->cap)) { 157 pr_err("%s SVM disabled, incompatible 1GB page capability\n", 158 iommu->name); 159 return; 160 } 161 162 if (cpu_feature_enabled(X86_FEATURE_LA57) && 163 !cap_fl5lp_support(iommu->cap)) { 164 pr_err("%s SVM disabled, incompatible paging mode\n", 165 iommu->name); 166 return; 167 } 168 169 iommu->flags |= VTD_FLAG_SVM_CAPABLE; 170 } 171 172 static void __flush_svm_range_dev(struct intel_svm *svm, 173 struct intel_svm_dev *sdev, 174 unsigned long address, 175 unsigned long pages, int ih) 176 { 177 struct device_domain_info *info = dev_iommu_priv_get(sdev->dev); 178 179 if (WARN_ON(!pages)) 180 return; 181 182 qi_flush_piotlb(sdev->iommu, sdev->did, svm->pasid, address, pages, ih); 183 if (info->ats_enabled) { 184 qi_flush_dev_iotlb_pasid(sdev->iommu, sdev->sid, info->pfsid, 185 svm->pasid, sdev->qdep, address, 186 order_base_2(pages)); 187 quirk_extra_dev_tlb_flush(info, address, order_base_2(pages), 188 svm->pasid, sdev->qdep); 189 } 190 } 191 192 static void intel_flush_svm_range_dev(struct intel_svm *svm, 193 struct intel_svm_dev *sdev, 194 unsigned long address, 195 unsigned long pages, int ih) 196 { 197 unsigned long shift = ilog2(__roundup_pow_of_two(pages)); 198 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + shift)); 199 unsigned long start = ALIGN_DOWN(address, align); 200 unsigned long end = ALIGN(address + (pages << VTD_PAGE_SHIFT), align); 201 202 while (start < end) { 203 __flush_svm_range_dev(svm, sdev, start, align >> VTD_PAGE_SHIFT, ih); 204 start += align; 205 } 206 } 207 208 static void intel_flush_svm_range(struct intel_svm *svm, unsigned long address, 209 unsigned long pages, int ih) 210 { 211 struct intel_svm_dev *sdev; 212 213 rcu_read_lock(); 214 list_for_each_entry_rcu(sdev, &svm->devs, list) 215 intel_flush_svm_range_dev(svm, sdev, address, pages, ih); 216 rcu_read_unlock(); 217 } 218 219 static void intel_flush_svm_all(struct intel_svm *svm) 220 { 221 struct device_domain_info *info; 222 struct intel_svm_dev *sdev; 223 224 rcu_read_lock(); 225 list_for_each_entry_rcu(sdev, &svm->devs, list) { 226 info = dev_iommu_priv_get(sdev->dev); 227 228 qi_flush_piotlb(sdev->iommu, sdev->did, svm->pasid, 0, -1UL, 0); 229 if (info->ats_enabled) { 230 qi_flush_dev_iotlb_pasid(sdev->iommu, sdev->sid, info->pfsid, 231 svm->pasid, sdev->qdep, 232 0, 64 - VTD_PAGE_SHIFT); 233 quirk_extra_dev_tlb_flush(info, 0, 64 - VTD_PAGE_SHIFT, 234 svm->pasid, sdev->qdep); 235 } 236 } 237 rcu_read_unlock(); 238 } 239 240 /* Pages have been freed at this point */ 241 static void intel_arch_invalidate_secondary_tlbs(struct mmu_notifier *mn, 242 struct mm_struct *mm, 243 unsigned long start, unsigned long end) 244 { 245 struct intel_svm *svm = container_of(mn, struct intel_svm, notifier); 246 247 if (start == 0 && end == -1UL) { 248 intel_flush_svm_all(svm); 249 return; 250 } 251 252 intel_flush_svm_range(svm, start, 253 (end - start + PAGE_SIZE - 1) >> VTD_PAGE_SHIFT, 0); 254 } 255 256 static void intel_mm_release(struct mmu_notifier *mn, struct mm_struct *mm) 257 { 258 struct intel_svm *svm = container_of(mn, struct intel_svm, notifier); 259 struct intel_svm_dev *sdev; 260 261 /* This might end up being called from exit_mmap(), *before* the page 262 * tables are cleared. And __mmu_notifier_release() will delete us from 263 * the list of notifiers so that our invalidate_range() callback doesn't 264 * get called when the page tables are cleared. So we need to protect 265 * against hardware accessing those page tables. 266 * 267 * We do it by clearing the entry in the PASID table and then flushing 268 * the IOTLB and the PASID table caches. This might upset hardware; 269 * perhaps we'll want to point the PASID to a dummy PGD (like the zero 270 * page) so that we end up taking a fault that the hardware really 271 * *has* to handle gracefully without affecting other processes. 272 */ 273 rcu_read_lock(); 274 list_for_each_entry_rcu(sdev, &svm->devs, list) 275 intel_pasid_tear_down_entry(sdev->iommu, sdev->dev, 276 svm->pasid, true); 277 rcu_read_unlock(); 278 279 } 280 281 static const struct mmu_notifier_ops intel_mmuops = { 282 .release = intel_mm_release, 283 .arch_invalidate_secondary_tlbs = intel_arch_invalidate_secondary_tlbs, 284 }; 285 286 static int pasid_to_svm_sdev(struct device *dev, unsigned int pasid, 287 struct intel_svm **rsvm, 288 struct intel_svm_dev **rsdev) 289 { 290 struct intel_svm_dev *sdev = NULL; 291 struct intel_svm *svm; 292 293 if (pasid == IOMMU_PASID_INVALID || pasid >= PASID_MAX) 294 return -EINVAL; 295 296 svm = pasid_private_find(pasid); 297 if (IS_ERR(svm)) 298 return PTR_ERR(svm); 299 300 if (!svm) 301 goto out; 302 303 /* 304 * If we found svm for the PASID, there must be at least one device 305 * bond. 306 */ 307 if (WARN_ON(list_empty(&svm->devs))) 308 return -EINVAL; 309 sdev = svm_lookup_device_by_dev(svm, dev); 310 311 out: 312 *rsvm = svm; 313 *rsdev = sdev; 314 315 return 0; 316 } 317 318 static int intel_svm_bind_mm(struct intel_iommu *iommu, struct device *dev, 319 struct iommu_domain *domain, ioasid_t pasid) 320 { 321 struct device_domain_info *info = dev_iommu_priv_get(dev); 322 struct mm_struct *mm = domain->mm; 323 struct intel_svm_dev *sdev; 324 struct intel_svm *svm; 325 unsigned long sflags; 326 int ret = 0; 327 328 svm = pasid_private_find(pasid); 329 if (!svm) { 330 svm = kzalloc(sizeof(*svm), GFP_KERNEL); 331 if (!svm) 332 return -ENOMEM; 333 334 svm->pasid = pasid; 335 svm->mm = mm; 336 INIT_LIST_HEAD_RCU(&svm->devs); 337 338 svm->notifier.ops = &intel_mmuops; 339 ret = mmu_notifier_register(&svm->notifier, mm); 340 if (ret) { 341 kfree(svm); 342 return ret; 343 } 344 345 ret = pasid_private_add(svm->pasid, svm); 346 if (ret) { 347 mmu_notifier_unregister(&svm->notifier, mm); 348 kfree(svm); 349 return ret; 350 } 351 } 352 353 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); 354 if (!sdev) { 355 ret = -ENOMEM; 356 goto free_svm; 357 } 358 359 sdev->dev = dev; 360 sdev->iommu = iommu; 361 sdev->did = FLPT_DEFAULT_DID; 362 sdev->sid = PCI_DEVID(info->bus, info->devfn); 363 init_rcu_head(&sdev->rcu); 364 if (info->ats_enabled) { 365 sdev->qdep = info->ats_qdep; 366 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS) 367 sdev->qdep = 0; 368 } 369 370 /* Setup the pasid table: */ 371 sflags = cpu_feature_enabled(X86_FEATURE_LA57) ? PASID_FLAG_FL5LP : 0; 372 ret = intel_pasid_setup_first_level(iommu, dev, mm->pgd, pasid, 373 FLPT_DEFAULT_DID, sflags); 374 if (ret) 375 goto free_sdev; 376 377 list_add_rcu(&sdev->list, &svm->devs); 378 379 return 0; 380 381 free_sdev: 382 kfree(sdev); 383 free_svm: 384 if (list_empty(&svm->devs)) { 385 mmu_notifier_unregister(&svm->notifier, mm); 386 pasid_private_remove(pasid); 387 kfree(svm); 388 } 389 390 return ret; 391 } 392 393 void intel_svm_remove_dev_pasid(struct device *dev, u32 pasid) 394 { 395 struct intel_svm_dev *sdev; 396 struct intel_svm *svm; 397 struct mm_struct *mm; 398 399 if (pasid_to_svm_sdev(dev, pasid, &svm, &sdev)) 400 return; 401 mm = svm->mm; 402 403 if (sdev) { 404 list_del_rcu(&sdev->list); 405 kfree_rcu(sdev, rcu); 406 407 if (list_empty(&svm->devs)) { 408 if (svm->notifier.ops) 409 mmu_notifier_unregister(&svm->notifier, mm); 410 pasid_private_remove(svm->pasid); 411 /* 412 * We mandate that no page faults may be outstanding 413 * for the PASID when intel_svm_unbind_mm() is called. 414 * If that is not obeyed, subtle errors will happen. 415 * Let's make them less subtle... 416 */ 417 memset(svm, 0x6b, sizeof(*svm)); 418 kfree(svm); 419 } 420 } 421 } 422 423 /* Page request queue descriptor */ 424 struct page_req_dsc { 425 union { 426 struct { 427 u64 type:8; 428 u64 pasid_present:1; 429 u64 priv_data_present:1; 430 u64 rsvd:6; 431 u64 rid:16; 432 u64 pasid:20; 433 u64 exe_req:1; 434 u64 pm_req:1; 435 u64 rsvd2:10; 436 }; 437 u64 qw_0; 438 }; 439 union { 440 struct { 441 u64 rd_req:1; 442 u64 wr_req:1; 443 u64 lpig:1; 444 u64 prg_index:9; 445 u64 addr:52; 446 }; 447 u64 qw_1; 448 }; 449 u64 priv_data[2]; 450 }; 451 452 static bool is_canonical_address(u64 addr) 453 { 454 int shift = 64 - (__VIRTUAL_MASK_SHIFT + 1); 455 long saddr = (long) addr; 456 457 return (((saddr << shift) >> shift) == saddr); 458 } 459 460 /** 461 * intel_drain_pasid_prq - Drain page requests and responses for a pasid 462 * @dev: target device 463 * @pasid: pasid for draining 464 * 465 * Drain all pending page requests and responses related to @pasid in both 466 * software and hardware. This is supposed to be called after the device 467 * driver has stopped DMA, the pasid entry has been cleared, and both IOTLB 468 * and DevTLB have been invalidated. 469 * 470 * It waits until all pending page requests for @pasid in the page fault 471 * queue are completed by the prq handling thread. Then follow the steps 472 * described in VT-d spec CH7.10 to drain all page requests and page 473 * responses pending in the hardware. 474 */ 475 void intel_drain_pasid_prq(struct device *dev, u32 pasid) 476 { 477 struct device_domain_info *info; 478 struct dmar_domain *domain; 479 struct intel_iommu *iommu; 480 struct qi_desc desc[3]; 481 struct pci_dev *pdev; 482 int head, tail; 483 u16 sid, did; 484 int qdep; 485 486 info = dev_iommu_priv_get(dev); 487 if (WARN_ON(!info || !dev_is_pci(dev))) 488 return; 489 490 if (!info->pri_enabled) 491 return; 492 493 iommu = info->iommu; 494 domain = info->domain; 495 pdev = to_pci_dev(dev); 496 sid = PCI_DEVID(info->bus, info->devfn); 497 did = domain_id_iommu(domain, iommu); 498 qdep = pci_ats_queue_depth(pdev); 499 500 /* 501 * Check and wait until all pending page requests in the queue are 502 * handled by the prq handling thread. 503 */ 504 prq_retry: 505 reinit_completion(&iommu->prq_complete); 506 tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; 507 head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; 508 while (head != tail) { 509 struct page_req_dsc *req; 510 511 req = &iommu->prq[head / sizeof(*req)]; 512 if (!req->pasid_present || req->pasid != pasid) { 513 head = (head + sizeof(*req)) & PRQ_RING_MASK; 514 continue; 515 } 516 517 wait_for_completion(&iommu->prq_complete); 518 goto prq_retry; 519 } 520 521 iopf_queue_flush_dev(dev); 522 523 /* 524 * Perform steps described in VT-d spec CH7.10 to drain page 525 * requests and responses in hardware. 526 */ 527 memset(desc, 0, sizeof(desc)); 528 desc[0].qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 529 QI_IWD_FENCE | 530 QI_IWD_TYPE; 531 desc[1].qw0 = QI_EIOTLB_PASID(pasid) | 532 QI_EIOTLB_DID(did) | 533 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 534 QI_EIOTLB_TYPE; 535 desc[2].qw0 = QI_DEV_EIOTLB_PASID(pasid) | 536 QI_DEV_EIOTLB_SID(sid) | 537 QI_DEV_EIOTLB_QDEP(qdep) | 538 QI_DEIOTLB_TYPE | 539 QI_DEV_IOTLB_PFSID(info->pfsid); 540 qi_retry: 541 reinit_completion(&iommu->prq_complete); 542 qi_submit_sync(iommu, desc, 3, QI_OPT_WAIT_DRAIN); 543 if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) { 544 wait_for_completion(&iommu->prq_complete); 545 goto qi_retry; 546 } 547 } 548 549 static int prq_to_iommu_prot(struct page_req_dsc *req) 550 { 551 int prot = 0; 552 553 if (req->rd_req) 554 prot |= IOMMU_FAULT_PERM_READ; 555 if (req->wr_req) 556 prot |= IOMMU_FAULT_PERM_WRITE; 557 if (req->exe_req) 558 prot |= IOMMU_FAULT_PERM_EXEC; 559 if (req->pm_req) 560 prot |= IOMMU_FAULT_PERM_PRIV; 561 562 return prot; 563 } 564 565 static int intel_svm_prq_report(struct intel_iommu *iommu, struct device *dev, 566 struct page_req_dsc *desc) 567 { 568 struct iommu_fault_event event; 569 570 if (!dev || !dev_is_pci(dev)) 571 return -ENODEV; 572 573 /* Fill in event data for device specific processing */ 574 memset(&event, 0, sizeof(struct iommu_fault_event)); 575 event.fault.type = IOMMU_FAULT_PAGE_REQ; 576 event.fault.prm.addr = (u64)desc->addr << VTD_PAGE_SHIFT; 577 event.fault.prm.pasid = desc->pasid; 578 event.fault.prm.grpid = desc->prg_index; 579 event.fault.prm.perm = prq_to_iommu_prot(desc); 580 581 if (desc->lpig) 582 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; 583 if (desc->pasid_present) { 584 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 585 event.fault.prm.flags |= IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 586 } 587 if (desc->priv_data_present) { 588 /* 589 * Set last page in group bit if private data is present, 590 * page response is required as it does for LPIG. 591 * iommu_report_device_fault() doesn't understand this vendor 592 * specific requirement thus we set last_page as a workaround. 593 */ 594 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; 595 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA; 596 event.fault.prm.private_data[0] = desc->priv_data[0]; 597 event.fault.prm.private_data[1] = desc->priv_data[1]; 598 } else if (dmar_latency_enabled(iommu, DMAR_LATENCY_PRQ)) { 599 /* 600 * If the private data fields are not used by hardware, use it 601 * to monitor the prq handle latency. 602 */ 603 event.fault.prm.private_data[0] = ktime_to_ns(ktime_get()); 604 } 605 606 return iommu_report_device_fault(dev, &event); 607 } 608 609 static void handle_bad_prq_event(struct intel_iommu *iommu, 610 struct page_req_dsc *req, int result) 611 { 612 struct qi_desc desc; 613 614 pr_err("%s: Invalid page request: %08llx %08llx\n", 615 iommu->name, ((unsigned long long *)req)[0], 616 ((unsigned long long *)req)[1]); 617 618 /* 619 * Per VT-d spec. v3.0 ch7.7, system software must 620 * respond with page group response if private data 621 * is present (PDP) or last page in group (LPIG) bit 622 * is set. This is an additional VT-d feature beyond 623 * PCI ATS spec. 624 */ 625 if (!req->lpig && !req->priv_data_present) 626 return; 627 628 desc.qw0 = QI_PGRP_PASID(req->pasid) | 629 QI_PGRP_DID(req->rid) | 630 QI_PGRP_PASID_P(req->pasid_present) | 631 QI_PGRP_PDP(req->priv_data_present) | 632 QI_PGRP_RESP_CODE(result) | 633 QI_PGRP_RESP_TYPE; 634 desc.qw1 = QI_PGRP_IDX(req->prg_index) | 635 QI_PGRP_LPIG(req->lpig); 636 637 if (req->priv_data_present) { 638 desc.qw2 = req->priv_data[0]; 639 desc.qw3 = req->priv_data[1]; 640 } else { 641 desc.qw2 = 0; 642 desc.qw3 = 0; 643 } 644 645 qi_submit_sync(iommu, &desc, 1, 0); 646 } 647 648 static irqreturn_t prq_event_thread(int irq, void *d) 649 { 650 struct intel_iommu *iommu = d; 651 struct page_req_dsc *req; 652 int head, tail, handled; 653 struct pci_dev *pdev; 654 u64 address; 655 656 /* 657 * Clear PPR bit before reading head/tail registers, to ensure that 658 * we get a new interrupt if needed. 659 */ 660 writel(DMA_PRS_PPR, iommu->reg + DMAR_PRS_REG); 661 662 tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; 663 head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; 664 handled = (head != tail); 665 while (head != tail) { 666 req = &iommu->prq[head / sizeof(*req)]; 667 address = (u64)req->addr << VTD_PAGE_SHIFT; 668 669 if (unlikely(!req->pasid_present)) { 670 pr_err("IOMMU: %s: Page request without PASID\n", 671 iommu->name); 672 bad_req: 673 handle_bad_prq_event(iommu, req, QI_RESP_INVALID); 674 goto prq_advance; 675 } 676 677 if (unlikely(!is_canonical_address(address))) { 678 pr_err("IOMMU: %s: Address is not canonical\n", 679 iommu->name); 680 goto bad_req; 681 } 682 683 if (unlikely(req->pm_req && (req->rd_req | req->wr_req))) { 684 pr_err("IOMMU: %s: Page request in Privilege Mode\n", 685 iommu->name); 686 goto bad_req; 687 } 688 689 if (unlikely(req->exe_req && req->rd_req)) { 690 pr_err("IOMMU: %s: Execution request not supported\n", 691 iommu->name); 692 goto bad_req; 693 } 694 695 /* Drop Stop Marker message. No need for a response. */ 696 if (unlikely(req->lpig && !req->rd_req && !req->wr_req)) 697 goto prq_advance; 698 699 pdev = pci_get_domain_bus_and_slot(iommu->segment, 700 PCI_BUS_NUM(req->rid), 701 req->rid & 0xff); 702 /* 703 * If prq is to be handled outside iommu driver via receiver of 704 * the fault notifiers, we skip the page response here. 705 */ 706 if (!pdev) 707 goto bad_req; 708 709 if (intel_svm_prq_report(iommu, &pdev->dev, req)) 710 handle_bad_prq_event(iommu, req, QI_RESP_INVALID); 711 else 712 trace_prq_report(iommu, &pdev->dev, req->qw_0, req->qw_1, 713 req->priv_data[0], req->priv_data[1], 714 iommu->prq_seq_number++); 715 pci_dev_put(pdev); 716 prq_advance: 717 head = (head + sizeof(*req)) & PRQ_RING_MASK; 718 } 719 720 dmar_writeq(iommu->reg + DMAR_PQH_REG, tail); 721 722 /* 723 * Clear the page request overflow bit and wake up all threads that 724 * are waiting for the completion of this handling. 725 */ 726 if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) { 727 pr_info_ratelimited("IOMMU: %s: PRQ overflow detected\n", 728 iommu->name); 729 head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; 730 tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; 731 if (head == tail) { 732 iopf_queue_discard_partial(iommu->iopf_queue); 733 writel(DMA_PRS_PRO, iommu->reg + DMAR_PRS_REG); 734 pr_info_ratelimited("IOMMU: %s: PRQ overflow cleared", 735 iommu->name); 736 } 737 } 738 739 if (!completion_done(&iommu->prq_complete)) 740 complete(&iommu->prq_complete); 741 742 return IRQ_RETVAL(handled); 743 } 744 745 int intel_svm_page_response(struct device *dev, 746 struct iommu_fault_event *evt, 747 struct iommu_page_response *msg) 748 { 749 struct device_domain_info *info = dev_iommu_priv_get(dev); 750 struct intel_iommu *iommu = info->iommu; 751 u8 bus = info->bus, devfn = info->devfn; 752 struct iommu_fault_page_request *prm; 753 bool private_present; 754 bool pasid_present; 755 bool last_page; 756 int ret = 0; 757 u16 sid; 758 759 prm = &evt->fault.prm; 760 sid = PCI_DEVID(bus, devfn); 761 pasid_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 762 private_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA; 763 last_page = prm->flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; 764 765 if (!pasid_present) { 766 ret = -EINVAL; 767 goto out; 768 } 769 770 if (prm->pasid == 0 || prm->pasid >= PASID_MAX) { 771 ret = -EINVAL; 772 goto out; 773 } 774 775 /* 776 * Per VT-d spec. v3.0 ch7.7, system software must respond 777 * with page group response if private data is present (PDP) 778 * or last page in group (LPIG) bit is set. This is an 779 * additional VT-d requirement beyond PCI ATS spec. 780 */ 781 if (last_page || private_present) { 782 struct qi_desc desc; 783 784 desc.qw0 = QI_PGRP_PASID(prm->pasid) | QI_PGRP_DID(sid) | 785 QI_PGRP_PASID_P(pasid_present) | 786 QI_PGRP_PDP(private_present) | 787 QI_PGRP_RESP_CODE(msg->code) | 788 QI_PGRP_RESP_TYPE; 789 desc.qw1 = QI_PGRP_IDX(prm->grpid) | QI_PGRP_LPIG(last_page); 790 desc.qw2 = 0; 791 desc.qw3 = 0; 792 793 if (private_present) { 794 desc.qw2 = prm->private_data[0]; 795 desc.qw3 = prm->private_data[1]; 796 } else if (prm->private_data[0]) { 797 dmar_latency_update(iommu, DMAR_LATENCY_PRQ, 798 ktime_to_ns(ktime_get()) - prm->private_data[0]); 799 } 800 801 qi_submit_sync(iommu, &desc, 1, 0); 802 } 803 out: 804 return ret; 805 } 806 807 static int intel_svm_set_dev_pasid(struct iommu_domain *domain, 808 struct device *dev, ioasid_t pasid) 809 { 810 struct device_domain_info *info = dev_iommu_priv_get(dev); 811 struct intel_iommu *iommu = info->iommu; 812 813 return intel_svm_bind_mm(iommu, dev, domain, pasid); 814 } 815 816 static void intel_svm_domain_free(struct iommu_domain *domain) 817 { 818 kfree(to_dmar_domain(domain)); 819 } 820 821 static const struct iommu_domain_ops intel_svm_domain_ops = { 822 .set_dev_pasid = intel_svm_set_dev_pasid, 823 .free = intel_svm_domain_free 824 }; 825 826 struct iommu_domain *intel_svm_domain_alloc(void) 827 { 828 struct dmar_domain *domain; 829 830 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 831 if (!domain) 832 return NULL; 833 domain->domain.ops = &intel_svm_domain_ops; 834 835 return &domain->domain; 836 } 837