1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2015 Intel Corporation. 4 * 5 * Authors: David Woodhouse <dwmw2@infradead.org> 6 */ 7 8 #include <linux/mmu_notifier.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/slab.h> 12 #include <linux/rculist.h> 13 #include <linux/pci.h> 14 #include <linux/pci-ats.h> 15 #include <linux/dmar.h> 16 #include <linux/interrupt.h> 17 #include <linux/mm_types.h> 18 #include <linux/xarray.h> 19 #include <asm/page.h> 20 #include <asm/fpu/api.h> 21 22 #include "iommu.h" 23 #include "pasid.h" 24 #include "perf.h" 25 #include "trace.h" 26 27 static irqreturn_t prq_event_thread(int irq, void *d); 28 29 static DEFINE_XARRAY_ALLOC(pasid_private_array); 30 static int pasid_private_add(ioasid_t pasid, void *priv) 31 { 32 return xa_alloc(&pasid_private_array, &pasid, priv, 33 XA_LIMIT(pasid, pasid), GFP_ATOMIC); 34 } 35 36 static void pasid_private_remove(ioasid_t pasid) 37 { 38 xa_erase(&pasid_private_array, pasid); 39 } 40 41 static void *pasid_private_find(ioasid_t pasid) 42 { 43 return xa_load(&pasid_private_array, pasid); 44 } 45 46 static struct intel_svm_dev * 47 svm_lookup_device_by_dev(struct intel_svm *svm, struct device *dev) 48 { 49 struct intel_svm_dev *sdev = NULL, *t; 50 51 rcu_read_lock(); 52 list_for_each_entry_rcu(t, &svm->devs, list) { 53 if (t->dev == dev) { 54 sdev = t; 55 break; 56 } 57 } 58 rcu_read_unlock(); 59 60 return sdev; 61 } 62 63 int intel_svm_enable_prq(struct intel_iommu *iommu) 64 { 65 struct iopf_queue *iopfq; 66 struct page *pages; 67 int irq, ret; 68 69 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, PRQ_ORDER); 70 if (!pages) { 71 pr_warn("IOMMU: %s: Failed to allocate page request queue\n", 72 iommu->name); 73 return -ENOMEM; 74 } 75 iommu->prq = page_address(pages); 76 77 irq = dmar_alloc_hwirq(IOMMU_IRQ_ID_OFFSET_PRQ + iommu->seq_id, iommu->node, iommu); 78 if (irq <= 0) { 79 pr_err("IOMMU: %s: Failed to create IRQ vector for page request queue\n", 80 iommu->name); 81 ret = -EINVAL; 82 goto free_prq; 83 } 84 iommu->pr_irq = irq; 85 86 snprintf(iommu->iopfq_name, sizeof(iommu->iopfq_name), 87 "dmar%d-iopfq", iommu->seq_id); 88 iopfq = iopf_queue_alloc(iommu->iopfq_name); 89 if (!iopfq) { 90 pr_err("IOMMU: %s: Failed to allocate iopf queue\n", iommu->name); 91 ret = -ENOMEM; 92 goto free_hwirq; 93 } 94 iommu->iopf_queue = iopfq; 95 96 snprintf(iommu->prq_name, sizeof(iommu->prq_name), "dmar%d-prq", iommu->seq_id); 97 98 ret = request_threaded_irq(irq, NULL, prq_event_thread, IRQF_ONESHOT, 99 iommu->prq_name, iommu); 100 if (ret) { 101 pr_err("IOMMU: %s: Failed to request IRQ for page request queue\n", 102 iommu->name); 103 goto free_iopfq; 104 } 105 dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL); 106 dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL); 107 dmar_writeq(iommu->reg + DMAR_PQA_REG, virt_to_phys(iommu->prq) | PRQ_ORDER); 108 109 init_completion(&iommu->prq_complete); 110 111 return 0; 112 113 free_iopfq: 114 iopf_queue_free(iommu->iopf_queue); 115 iommu->iopf_queue = NULL; 116 free_hwirq: 117 dmar_free_hwirq(irq); 118 iommu->pr_irq = 0; 119 free_prq: 120 free_pages((unsigned long)iommu->prq, PRQ_ORDER); 121 iommu->prq = NULL; 122 123 return ret; 124 } 125 126 int intel_svm_finish_prq(struct intel_iommu *iommu) 127 { 128 dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL); 129 dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL); 130 dmar_writeq(iommu->reg + DMAR_PQA_REG, 0ULL); 131 132 if (iommu->pr_irq) { 133 free_irq(iommu->pr_irq, iommu); 134 dmar_free_hwirq(iommu->pr_irq); 135 iommu->pr_irq = 0; 136 } 137 138 if (iommu->iopf_queue) { 139 iopf_queue_free(iommu->iopf_queue); 140 iommu->iopf_queue = NULL; 141 } 142 143 free_pages((unsigned long)iommu->prq, PRQ_ORDER); 144 iommu->prq = NULL; 145 146 return 0; 147 } 148 149 void intel_svm_check(struct intel_iommu *iommu) 150 { 151 if (!pasid_supported(iommu)) 152 return; 153 154 if (cpu_feature_enabled(X86_FEATURE_GBPAGES) && 155 !cap_fl1gp_support(iommu->cap)) { 156 pr_err("%s SVM disabled, incompatible 1GB page capability\n", 157 iommu->name); 158 return; 159 } 160 161 if (cpu_feature_enabled(X86_FEATURE_LA57) && 162 !cap_fl5lp_support(iommu->cap)) { 163 pr_err("%s SVM disabled, incompatible paging mode\n", 164 iommu->name); 165 return; 166 } 167 168 iommu->flags |= VTD_FLAG_SVM_CAPABLE; 169 } 170 171 static void __flush_svm_range_dev(struct intel_svm *svm, 172 struct intel_svm_dev *sdev, 173 unsigned long address, 174 unsigned long pages, int ih) 175 { 176 struct device_domain_info *info = dev_iommu_priv_get(sdev->dev); 177 178 if (WARN_ON(!pages)) 179 return; 180 181 qi_flush_piotlb(sdev->iommu, sdev->did, svm->pasid, address, pages, ih); 182 if (info->ats_enabled) { 183 qi_flush_dev_iotlb_pasid(sdev->iommu, sdev->sid, info->pfsid, 184 svm->pasid, sdev->qdep, address, 185 order_base_2(pages)); 186 quirk_extra_dev_tlb_flush(info, address, order_base_2(pages), 187 svm->pasid, sdev->qdep); 188 } 189 } 190 191 static void intel_flush_svm_range_dev(struct intel_svm *svm, 192 struct intel_svm_dev *sdev, 193 unsigned long address, 194 unsigned long pages, int ih) 195 { 196 unsigned long shift = ilog2(__roundup_pow_of_two(pages)); 197 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + shift)); 198 unsigned long start = ALIGN_DOWN(address, align); 199 unsigned long end = ALIGN(address + (pages << VTD_PAGE_SHIFT), align); 200 201 while (start < end) { 202 __flush_svm_range_dev(svm, sdev, start, align >> VTD_PAGE_SHIFT, ih); 203 start += align; 204 } 205 } 206 207 static void intel_flush_svm_range(struct intel_svm *svm, unsigned long address, 208 unsigned long pages, int ih) 209 { 210 struct intel_svm_dev *sdev; 211 212 rcu_read_lock(); 213 list_for_each_entry_rcu(sdev, &svm->devs, list) 214 intel_flush_svm_range_dev(svm, sdev, address, pages, ih); 215 rcu_read_unlock(); 216 } 217 218 static void intel_flush_svm_all(struct intel_svm *svm) 219 { 220 struct device_domain_info *info; 221 struct intel_svm_dev *sdev; 222 223 rcu_read_lock(); 224 list_for_each_entry_rcu(sdev, &svm->devs, list) { 225 info = dev_iommu_priv_get(sdev->dev); 226 227 qi_flush_piotlb(sdev->iommu, sdev->did, svm->pasid, 0, -1UL, 0); 228 if (info->ats_enabled) { 229 qi_flush_dev_iotlb_pasid(sdev->iommu, sdev->sid, info->pfsid, 230 svm->pasid, sdev->qdep, 231 0, 64 - VTD_PAGE_SHIFT); 232 quirk_extra_dev_tlb_flush(info, 0, 64 - VTD_PAGE_SHIFT, 233 svm->pasid, sdev->qdep); 234 } 235 } 236 rcu_read_unlock(); 237 } 238 239 /* Pages have been freed at this point */ 240 static void intel_arch_invalidate_secondary_tlbs(struct mmu_notifier *mn, 241 struct mm_struct *mm, 242 unsigned long start, unsigned long end) 243 { 244 struct intel_svm *svm = container_of(mn, struct intel_svm, notifier); 245 246 if (start == 0 && end == -1UL) { 247 intel_flush_svm_all(svm); 248 return; 249 } 250 251 intel_flush_svm_range(svm, start, 252 (end - start + PAGE_SIZE - 1) >> VTD_PAGE_SHIFT, 0); 253 } 254 255 static void intel_mm_release(struct mmu_notifier *mn, struct mm_struct *mm) 256 { 257 struct intel_svm *svm = container_of(mn, struct intel_svm, notifier); 258 struct intel_svm_dev *sdev; 259 260 /* This might end up being called from exit_mmap(), *before* the page 261 * tables are cleared. And __mmu_notifier_release() will delete us from 262 * the list of notifiers so that our invalidate_range() callback doesn't 263 * get called when the page tables are cleared. So we need to protect 264 * against hardware accessing those page tables. 265 * 266 * We do it by clearing the entry in the PASID table and then flushing 267 * the IOTLB and the PASID table caches. This might upset hardware; 268 * perhaps we'll want to point the PASID to a dummy PGD (like the zero 269 * page) so that we end up taking a fault that the hardware really 270 * *has* to handle gracefully without affecting other processes. 271 */ 272 rcu_read_lock(); 273 list_for_each_entry_rcu(sdev, &svm->devs, list) 274 intel_pasid_tear_down_entry(sdev->iommu, sdev->dev, 275 svm->pasid, true); 276 rcu_read_unlock(); 277 278 } 279 280 static const struct mmu_notifier_ops intel_mmuops = { 281 .release = intel_mm_release, 282 .arch_invalidate_secondary_tlbs = intel_arch_invalidate_secondary_tlbs, 283 }; 284 285 static int pasid_to_svm_sdev(struct device *dev, unsigned int pasid, 286 struct intel_svm **rsvm, 287 struct intel_svm_dev **rsdev) 288 { 289 struct intel_svm_dev *sdev = NULL; 290 struct intel_svm *svm; 291 292 if (pasid == IOMMU_PASID_INVALID || pasid >= PASID_MAX) 293 return -EINVAL; 294 295 svm = pasid_private_find(pasid); 296 if (IS_ERR(svm)) 297 return PTR_ERR(svm); 298 299 if (!svm) 300 goto out; 301 302 /* 303 * If we found svm for the PASID, there must be at least one device 304 * bond. 305 */ 306 if (WARN_ON(list_empty(&svm->devs))) 307 return -EINVAL; 308 sdev = svm_lookup_device_by_dev(svm, dev); 309 310 out: 311 *rsvm = svm; 312 *rsdev = sdev; 313 314 return 0; 315 } 316 317 static int intel_svm_set_dev_pasid(struct iommu_domain *domain, 318 struct device *dev, ioasid_t pasid) 319 { 320 struct device_domain_info *info = dev_iommu_priv_get(dev); 321 struct intel_iommu *iommu = info->iommu; 322 struct mm_struct *mm = domain->mm; 323 struct intel_svm_dev *sdev; 324 struct intel_svm *svm; 325 unsigned long sflags; 326 int ret = 0; 327 328 svm = pasid_private_find(pasid); 329 if (!svm) { 330 svm = kzalloc(sizeof(*svm), GFP_KERNEL); 331 if (!svm) 332 return -ENOMEM; 333 334 svm->pasid = pasid; 335 svm->mm = mm; 336 INIT_LIST_HEAD_RCU(&svm->devs); 337 338 svm->notifier.ops = &intel_mmuops; 339 ret = mmu_notifier_register(&svm->notifier, mm); 340 if (ret) { 341 kfree(svm); 342 return ret; 343 } 344 345 ret = pasid_private_add(svm->pasid, svm); 346 if (ret) { 347 mmu_notifier_unregister(&svm->notifier, mm); 348 kfree(svm); 349 return ret; 350 } 351 } 352 353 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); 354 if (!sdev) { 355 ret = -ENOMEM; 356 goto free_svm; 357 } 358 359 sdev->dev = dev; 360 sdev->iommu = iommu; 361 sdev->did = FLPT_DEFAULT_DID; 362 sdev->sid = PCI_DEVID(info->bus, info->devfn); 363 if (info->ats_enabled) { 364 sdev->qdep = info->ats_qdep; 365 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS) 366 sdev->qdep = 0; 367 } 368 369 /* Setup the pasid table: */ 370 sflags = cpu_feature_enabled(X86_FEATURE_LA57) ? PASID_FLAG_FL5LP : 0; 371 ret = intel_pasid_setup_first_level(iommu, dev, mm->pgd, pasid, 372 FLPT_DEFAULT_DID, sflags); 373 if (ret) 374 goto free_sdev; 375 376 list_add_rcu(&sdev->list, &svm->devs); 377 378 return 0; 379 380 free_sdev: 381 kfree(sdev); 382 free_svm: 383 if (list_empty(&svm->devs)) { 384 mmu_notifier_unregister(&svm->notifier, mm); 385 pasid_private_remove(pasid); 386 kfree(svm); 387 } 388 389 return ret; 390 } 391 392 void intel_svm_remove_dev_pasid(struct device *dev, u32 pasid) 393 { 394 struct intel_svm_dev *sdev; 395 struct intel_svm *svm; 396 struct mm_struct *mm; 397 398 if (pasid_to_svm_sdev(dev, pasid, &svm, &sdev)) 399 return; 400 mm = svm->mm; 401 402 if (sdev) { 403 list_del_rcu(&sdev->list); 404 kfree_rcu(sdev, rcu); 405 406 if (list_empty(&svm->devs)) { 407 if (svm->notifier.ops) 408 mmu_notifier_unregister(&svm->notifier, mm); 409 pasid_private_remove(svm->pasid); 410 kfree(svm); 411 } 412 } 413 } 414 415 /* Page request queue descriptor */ 416 struct page_req_dsc { 417 union { 418 struct { 419 u64 type:8; 420 u64 pasid_present:1; 421 u64 priv_data_present:1; 422 u64 rsvd:6; 423 u64 rid:16; 424 u64 pasid:20; 425 u64 exe_req:1; 426 u64 pm_req:1; 427 u64 rsvd2:10; 428 }; 429 u64 qw_0; 430 }; 431 union { 432 struct { 433 u64 rd_req:1; 434 u64 wr_req:1; 435 u64 lpig:1; 436 u64 prg_index:9; 437 u64 addr:52; 438 }; 439 u64 qw_1; 440 }; 441 u64 priv_data[2]; 442 }; 443 444 static bool is_canonical_address(u64 addr) 445 { 446 int shift = 64 - (__VIRTUAL_MASK_SHIFT + 1); 447 long saddr = (long) addr; 448 449 return (((saddr << shift) >> shift) == saddr); 450 } 451 452 /** 453 * intel_drain_pasid_prq - Drain page requests and responses for a pasid 454 * @dev: target device 455 * @pasid: pasid for draining 456 * 457 * Drain all pending page requests and responses related to @pasid in both 458 * software and hardware. This is supposed to be called after the device 459 * driver has stopped DMA, the pasid entry has been cleared, and both IOTLB 460 * and DevTLB have been invalidated. 461 * 462 * It waits until all pending page requests for @pasid in the page fault 463 * queue are completed by the prq handling thread. Then follow the steps 464 * described in VT-d spec CH7.10 to drain all page requests and page 465 * responses pending in the hardware. 466 */ 467 void intel_drain_pasid_prq(struct device *dev, u32 pasid) 468 { 469 struct device_domain_info *info; 470 struct dmar_domain *domain; 471 struct intel_iommu *iommu; 472 struct qi_desc desc[3]; 473 struct pci_dev *pdev; 474 int head, tail; 475 u16 sid, did; 476 int qdep; 477 478 info = dev_iommu_priv_get(dev); 479 if (WARN_ON(!info || !dev_is_pci(dev))) 480 return; 481 482 if (!info->pri_enabled) 483 return; 484 485 iommu = info->iommu; 486 domain = info->domain; 487 pdev = to_pci_dev(dev); 488 sid = PCI_DEVID(info->bus, info->devfn); 489 did = domain_id_iommu(domain, iommu); 490 qdep = pci_ats_queue_depth(pdev); 491 492 /* 493 * Check and wait until all pending page requests in the queue are 494 * handled by the prq handling thread. 495 */ 496 prq_retry: 497 reinit_completion(&iommu->prq_complete); 498 tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; 499 head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; 500 while (head != tail) { 501 struct page_req_dsc *req; 502 503 req = &iommu->prq[head / sizeof(*req)]; 504 if (!req->pasid_present || req->pasid != pasid) { 505 head = (head + sizeof(*req)) & PRQ_RING_MASK; 506 continue; 507 } 508 509 wait_for_completion(&iommu->prq_complete); 510 goto prq_retry; 511 } 512 513 iopf_queue_flush_dev(dev); 514 515 /* 516 * Perform steps described in VT-d spec CH7.10 to drain page 517 * requests and responses in hardware. 518 */ 519 memset(desc, 0, sizeof(desc)); 520 desc[0].qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 521 QI_IWD_FENCE | 522 QI_IWD_TYPE; 523 desc[1].qw0 = QI_EIOTLB_PASID(pasid) | 524 QI_EIOTLB_DID(did) | 525 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 526 QI_EIOTLB_TYPE; 527 desc[2].qw0 = QI_DEV_EIOTLB_PASID(pasid) | 528 QI_DEV_EIOTLB_SID(sid) | 529 QI_DEV_EIOTLB_QDEP(qdep) | 530 QI_DEIOTLB_TYPE | 531 QI_DEV_IOTLB_PFSID(info->pfsid); 532 qi_retry: 533 reinit_completion(&iommu->prq_complete); 534 qi_submit_sync(iommu, desc, 3, QI_OPT_WAIT_DRAIN); 535 if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) { 536 wait_for_completion(&iommu->prq_complete); 537 goto qi_retry; 538 } 539 } 540 541 static int prq_to_iommu_prot(struct page_req_dsc *req) 542 { 543 int prot = 0; 544 545 if (req->rd_req) 546 prot |= IOMMU_FAULT_PERM_READ; 547 if (req->wr_req) 548 prot |= IOMMU_FAULT_PERM_WRITE; 549 if (req->exe_req) 550 prot |= IOMMU_FAULT_PERM_EXEC; 551 if (req->pm_req) 552 prot |= IOMMU_FAULT_PERM_PRIV; 553 554 return prot; 555 } 556 557 static void intel_svm_prq_report(struct intel_iommu *iommu, struct device *dev, 558 struct page_req_dsc *desc) 559 { 560 struct iopf_fault event = { }; 561 562 /* Fill in event data for device specific processing */ 563 event.fault.type = IOMMU_FAULT_PAGE_REQ; 564 event.fault.prm.addr = (u64)desc->addr << VTD_PAGE_SHIFT; 565 event.fault.prm.pasid = desc->pasid; 566 event.fault.prm.grpid = desc->prg_index; 567 event.fault.prm.perm = prq_to_iommu_prot(desc); 568 569 if (desc->lpig) 570 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; 571 if (desc->pasid_present) { 572 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 573 event.fault.prm.flags |= IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 574 } 575 if (desc->priv_data_present) { 576 /* 577 * Set last page in group bit if private data is present, 578 * page response is required as it does for LPIG. 579 * iommu_report_device_fault() doesn't understand this vendor 580 * specific requirement thus we set last_page as a workaround. 581 */ 582 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; 583 event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA; 584 event.fault.prm.private_data[0] = desc->priv_data[0]; 585 event.fault.prm.private_data[1] = desc->priv_data[1]; 586 } else if (dmar_latency_enabled(iommu, DMAR_LATENCY_PRQ)) { 587 /* 588 * If the private data fields are not used by hardware, use it 589 * to monitor the prq handle latency. 590 */ 591 event.fault.prm.private_data[0] = ktime_to_ns(ktime_get()); 592 } 593 594 iommu_report_device_fault(dev, &event); 595 } 596 597 static void handle_bad_prq_event(struct intel_iommu *iommu, 598 struct page_req_dsc *req, int result) 599 { 600 struct qi_desc desc; 601 602 pr_err("%s: Invalid page request: %08llx %08llx\n", 603 iommu->name, ((unsigned long long *)req)[0], 604 ((unsigned long long *)req)[1]); 605 606 /* 607 * Per VT-d spec. v3.0 ch7.7, system software must 608 * respond with page group response if private data 609 * is present (PDP) or last page in group (LPIG) bit 610 * is set. This is an additional VT-d feature beyond 611 * PCI ATS spec. 612 */ 613 if (!req->lpig && !req->priv_data_present) 614 return; 615 616 desc.qw0 = QI_PGRP_PASID(req->pasid) | 617 QI_PGRP_DID(req->rid) | 618 QI_PGRP_PASID_P(req->pasid_present) | 619 QI_PGRP_PDP(req->priv_data_present) | 620 QI_PGRP_RESP_CODE(result) | 621 QI_PGRP_RESP_TYPE; 622 desc.qw1 = QI_PGRP_IDX(req->prg_index) | 623 QI_PGRP_LPIG(req->lpig); 624 625 if (req->priv_data_present) { 626 desc.qw2 = req->priv_data[0]; 627 desc.qw3 = req->priv_data[1]; 628 } else { 629 desc.qw2 = 0; 630 desc.qw3 = 0; 631 } 632 633 qi_submit_sync(iommu, &desc, 1, 0); 634 } 635 636 static irqreturn_t prq_event_thread(int irq, void *d) 637 { 638 struct intel_iommu *iommu = d; 639 struct page_req_dsc *req; 640 int head, tail, handled; 641 struct device *dev; 642 u64 address; 643 644 /* 645 * Clear PPR bit before reading head/tail registers, to ensure that 646 * we get a new interrupt if needed. 647 */ 648 writel(DMA_PRS_PPR, iommu->reg + DMAR_PRS_REG); 649 650 tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; 651 head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; 652 handled = (head != tail); 653 while (head != tail) { 654 req = &iommu->prq[head / sizeof(*req)]; 655 address = (u64)req->addr << VTD_PAGE_SHIFT; 656 657 if (unlikely(!req->pasid_present)) { 658 pr_err("IOMMU: %s: Page request without PASID\n", 659 iommu->name); 660 bad_req: 661 handle_bad_prq_event(iommu, req, QI_RESP_INVALID); 662 goto prq_advance; 663 } 664 665 if (unlikely(!is_canonical_address(address))) { 666 pr_err("IOMMU: %s: Address is not canonical\n", 667 iommu->name); 668 goto bad_req; 669 } 670 671 if (unlikely(req->pm_req && (req->rd_req | req->wr_req))) { 672 pr_err("IOMMU: %s: Page request in Privilege Mode\n", 673 iommu->name); 674 goto bad_req; 675 } 676 677 if (unlikely(req->exe_req && req->rd_req)) { 678 pr_err("IOMMU: %s: Execution request not supported\n", 679 iommu->name); 680 goto bad_req; 681 } 682 683 /* Drop Stop Marker message. No need for a response. */ 684 if (unlikely(req->lpig && !req->rd_req && !req->wr_req)) 685 goto prq_advance; 686 687 /* 688 * If prq is to be handled outside iommu driver via receiver of 689 * the fault notifiers, we skip the page response here. 690 */ 691 mutex_lock(&iommu->iopf_lock); 692 dev = device_rbtree_find(iommu, req->rid); 693 if (!dev) { 694 mutex_unlock(&iommu->iopf_lock); 695 goto bad_req; 696 } 697 698 intel_svm_prq_report(iommu, dev, req); 699 trace_prq_report(iommu, dev, req->qw_0, req->qw_1, 700 req->priv_data[0], req->priv_data[1], 701 iommu->prq_seq_number++); 702 mutex_unlock(&iommu->iopf_lock); 703 prq_advance: 704 head = (head + sizeof(*req)) & PRQ_RING_MASK; 705 } 706 707 dmar_writeq(iommu->reg + DMAR_PQH_REG, tail); 708 709 /* 710 * Clear the page request overflow bit and wake up all threads that 711 * are waiting for the completion of this handling. 712 */ 713 if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) { 714 pr_info_ratelimited("IOMMU: %s: PRQ overflow detected\n", 715 iommu->name); 716 head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; 717 tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; 718 if (head == tail) { 719 iopf_queue_discard_partial(iommu->iopf_queue); 720 writel(DMA_PRS_PRO, iommu->reg + DMAR_PRS_REG); 721 pr_info_ratelimited("IOMMU: %s: PRQ overflow cleared", 722 iommu->name); 723 } 724 } 725 726 if (!completion_done(&iommu->prq_complete)) 727 complete(&iommu->prq_complete); 728 729 return IRQ_RETVAL(handled); 730 } 731 732 void intel_svm_page_response(struct device *dev, struct iopf_fault *evt, 733 struct iommu_page_response *msg) 734 { 735 struct device_domain_info *info = dev_iommu_priv_get(dev); 736 struct intel_iommu *iommu = info->iommu; 737 u8 bus = info->bus, devfn = info->devfn; 738 struct iommu_fault_page_request *prm; 739 bool private_present; 740 bool pasid_present; 741 bool last_page; 742 u16 sid; 743 744 prm = &evt->fault.prm; 745 sid = PCI_DEVID(bus, devfn); 746 pasid_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 747 private_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA; 748 last_page = prm->flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; 749 750 /* 751 * Per VT-d spec. v3.0 ch7.7, system software must respond 752 * with page group response if private data is present (PDP) 753 * or last page in group (LPIG) bit is set. This is an 754 * additional VT-d requirement beyond PCI ATS spec. 755 */ 756 if (last_page || private_present) { 757 struct qi_desc desc; 758 759 desc.qw0 = QI_PGRP_PASID(prm->pasid) | QI_PGRP_DID(sid) | 760 QI_PGRP_PASID_P(pasid_present) | 761 QI_PGRP_PDP(private_present) | 762 QI_PGRP_RESP_CODE(msg->code) | 763 QI_PGRP_RESP_TYPE; 764 desc.qw1 = QI_PGRP_IDX(prm->grpid) | QI_PGRP_LPIG(last_page); 765 desc.qw2 = 0; 766 desc.qw3 = 0; 767 768 if (private_present) { 769 desc.qw2 = prm->private_data[0]; 770 desc.qw3 = prm->private_data[1]; 771 } else if (prm->private_data[0]) { 772 dmar_latency_update(iommu, DMAR_LATENCY_PRQ, 773 ktime_to_ns(ktime_get()) - prm->private_data[0]); 774 } 775 776 qi_submit_sync(iommu, &desc, 1, 0); 777 } 778 } 779 780 static void intel_svm_domain_free(struct iommu_domain *domain) 781 { 782 kfree(to_dmar_domain(domain)); 783 } 784 785 static const struct iommu_domain_ops intel_svm_domain_ops = { 786 .set_dev_pasid = intel_svm_set_dev_pasid, 787 .free = intel_svm_domain_free 788 }; 789 790 struct iommu_domain *intel_svm_domain_alloc(void) 791 { 792 struct dmar_domain *domain; 793 794 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 795 if (!domain) 796 return NULL; 797 domain->domain.ops = &intel_svm_domain_ops; 798 799 return &domain->domain; 800 } 801