xref: /linux/drivers/iommu/intel/svm.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2015 Intel Corporation.
4  *
5  * Authors: David Woodhouse <dwmw2@infradead.org>
6  */
7 
8 #include <linux/mmu_notifier.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/slab.h>
12 #include <linux/intel-svm.h>
13 #include <linux/rculist.h>
14 #include <linux/pci.h>
15 #include <linux/pci-ats.h>
16 #include <linux/dmar.h>
17 #include <linux/interrupt.h>
18 #include <linux/mm_types.h>
19 #include <linux/xarray.h>
20 #include <linux/ioasid.h>
21 #include <asm/page.h>
22 #include <asm/fpu/api.h>
23 
24 #include "iommu.h"
25 #include "pasid.h"
26 #include "perf.h"
27 #include "../iommu-sva-lib.h"
28 #include "trace.h"
29 
30 static irqreturn_t prq_event_thread(int irq, void *d);
31 static void intel_svm_drain_prq(struct device *dev, u32 pasid);
32 #define to_intel_svm_dev(handle) container_of(handle, struct intel_svm_dev, sva)
33 
34 static DEFINE_XARRAY_ALLOC(pasid_private_array);
35 static int pasid_private_add(ioasid_t pasid, void *priv)
36 {
37 	return xa_alloc(&pasid_private_array, &pasid, priv,
38 			XA_LIMIT(pasid, pasid), GFP_ATOMIC);
39 }
40 
41 static void pasid_private_remove(ioasid_t pasid)
42 {
43 	xa_erase(&pasid_private_array, pasid);
44 }
45 
46 static void *pasid_private_find(ioasid_t pasid)
47 {
48 	return xa_load(&pasid_private_array, pasid);
49 }
50 
51 static struct intel_svm_dev *
52 svm_lookup_device_by_sid(struct intel_svm *svm, u16 sid)
53 {
54 	struct intel_svm_dev *sdev = NULL, *t;
55 
56 	rcu_read_lock();
57 	list_for_each_entry_rcu(t, &svm->devs, list) {
58 		if (t->sid == sid) {
59 			sdev = t;
60 			break;
61 		}
62 	}
63 	rcu_read_unlock();
64 
65 	return sdev;
66 }
67 
68 static struct intel_svm_dev *
69 svm_lookup_device_by_dev(struct intel_svm *svm, struct device *dev)
70 {
71 	struct intel_svm_dev *sdev = NULL, *t;
72 
73 	rcu_read_lock();
74 	list_for_each_entry_rcu(t, &svm->devs, list) {
75 		if (t->dev == dev) {
76 			sdev = t;
77 			break;
78 		}
79 	}
80 	rcu_read_unlock();
81 
82 	return sdev;
83 }
84 
85 int intel_svm_enable_prq(struct intel_iommu *iommu)
86 {
87 	struct iopf_queue *iopfq;
88 	struct page *pages;
89 	int irq, ret;
90 
91 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, PRQ_ORDER);
92 	if (!pages) {
93 		pr_warn("IOMMU: %s: Failed to allocate page request queue\n",
94 			iommu->name);
95 		return -ENOMEM;
96 	}
97 	iommu->prq = page_address(pages);
98 
99 	irq = dmar_alloc_hwirq(DMAR_UNITS_SUPPORTED + iommu->seq_id, iommu->node, iommu);
100 	if (irq <= 0) {
101 		pr_err("IOMMU: %s: Failed to create IRQ vector for page request queue\n",
102 		       iommu->name);
103 		ret = -EINVAL;
104 		goto free_prq;
105 	}
106 	iommu->pr_irq = irq;
107 
108 	snprintf(iommu->iopfq_name, sizeof(iommu->iopfq_name),
109 		 "dmar%d-iopfq", iommu->seq_id);
110 	iopfq = iopf_queue_alloc(iommu->iopfq_name);
111 	if (!iopfq) {
112 		pr_err("IOMMU: %s: Failed to allocate iopf queue\n", iommu->name);
113 		ret = -ENOMEM;
114 		goto free_hwirq;
115 	}
116 	iommu->iopf_queue = iopfq;
117 
118 	snprintf(iommu->prq_name, sizeof(iommu->prq_name), "dmar%d-prq", iommu->seq_id);
119 
120 	ret = request_threaded_irq(irq, NULL, prq_event_thread, IRQF_ONESHOT,
121 				   iommu->prq_name, iommu);
122 	if (ret) {
123 		pr_err("IOMMU: %s: Failed to request IRQ for page request queue\n",
124 		       iommu->name);
125 		goto free_iopfq;
126 	}
127 	dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
128 	dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
129 	dmar_writeq(iommu->reg + DMAR_PQA_REG, virt_to_phys(iommu->prq) | PRQ_ORDER);
130 
131 	init_completion(&iommu->prq_complete);
132 
133 	return 0;
134 
135 free_iopfq:
136 	iopf_queue_free(iommu->iopf_queue);
137 	iommu->iopf_queue = NULL;
138 free_hwirq:
139 	dmar_free_hwirq(irq);
140 	iommu->pr_irq = 0;
141 free_prq:
142 	free_pages((unsigned long)iommu->prq, PRQ_ORDER);
143 	iommu->prq = NULL;
144 
145 	return ret;
146 }
147 
148 int intel_svm_finish_prq(struct intel_iommu *iommu)
149 {
150 	dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
151 	dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
152 	dmar_writeq(iommu->reg + DMAR_PQA_REG, 0ULL);
153 
154 	if (iommu->pr_irq) {
155 		free_irq(iommu->pr_irq, iommu);
156 		dmar_free_hwirq(iommu->pr_irq);
157 		iommu->pr_irq = 0;
158 	}
159 
160 	if (iommu->iopf_queue) {
161 		iopf_queue_free(iommu->iopf_queue);
162 		iommu->iopf_queue = NULL;
163 	}
164 
165 	free_pages((unsigned long)iommu->prq, PRQ_ORDER);
166 	iommu->prq = NULL;
167 
168 	return 0;
169 }
170 
171 void intel_svm_check(struct intel_iommu *iommu)
172 {
173 	if (!pasid_supported(iommu))
174 		return;
175 
176 	if (cpu_feature_enabled(X86_FEATURE_GBPAGES) &&
177 	    !cap_fl1gp_support(iommu->cap)) {
178 		pr_err("%s SVM disabled, incompatible 1GB page capability\n",
179 		       iommu->name);
180 		return;
181 	}
182 
183 	if (cpu_feature_enabled(X86_FEATURE_LA57) &&
184 	    !cap_5lp_support(iommu->cap)) {
185 		pr_err("%s SVM disabled, incompatible paging mode\n",
186 		       iommu->name);
187 		return;
188 	}
189 
190 	iommu->flags |= VTD_FLAG_SVM_CAPABLE;
191 }
192 
193 static void __flush_svm_range_dev(struct intel_svm *svm,
194 				  struct intel_svm_dev *sdev,
195 				  unsigned long address,
196 				  unsigned long pages, int ih)
197 {
198 	struct device_domain_info *info = dev_iommu_priv_get(sdev->dev);
199 
200 	if (WARN_ON(!pages))
201 		return;
202 
203 	qi_flush_piotlb(sdev->iommu, sdev->did, svm->pasid, address, pages, ih);
204 	if (info->ats_enabled)
205 		qi_flush_dev_iotlb_pasid(sdev->iommu, sdev->sid, info->pfsid,
206 					 svm->pasid, sdev->qdep, address,
207 					 order_base_2(pages));
208 }
209 
210 static void intel_flush_svm_range_dev(struct intel_svm *svm,
211 				      struct intel_svm_dev *sdev,
212 				      unsigned long address,
213 				      unsigned long pages, int ih)
214 {
215 	unsigned long shift = ilog2(__roundup_pow_of_two(pages));
216 	unsigned long align = (1ULL << (VTD_PAGE_SHIFT + shift));
217 	unsigned long start = ALIGN_DOWN(address, align);
218 	unsigned long end = ALIGN(address + (pages << VTD_PAGE_SHIFT), align);
219 
220 	while (start < end) {
221 		__flush_svm_range_dev(svm, sdev, start, align >> VTD_PAGE_SHIFT, ih);
222 		start += align;
223 	}
224 }
225 
226 static void intel_flush_svm_range(struct intel_svm *svm, unsigned long address,
227 				unsigned long pages, int ih)
228 {
229 	struct intel_svm_dev *sdev;
230 
231 	rcu_read_lock();
232 	list_for_each_entry_rcu(sdev, &svm->devs, list)
233 		intel_flush_svm_range_dev(svm, sdev, address, pages, ih);
234 	rcu_read_unlock();
235 }
236 
237 /* Pages have been freed at this point */
238 static void intel_invalidate_range(struct mmu_notifier *mn,
239 				   struct mm_struct *mm,
240 				   unsigned long start, unsigned long end)
241 {
242 	struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
243 
244 	intel_flush_svm_range(svm, start,
245 			      (end - start + PAGE_SIZE - 1) >> VTD_PAGE_SHIFT, 0);
246 }
247 
248 static void intel_mm_release(struct mmu_notifier *mn, struct mm_struct *mm)
249 {
250 	struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
251 	struct intel_svm_dev *sdev;
252 
253 	/* This might end up being called from exit_mmap(), *before* the page
254 	 * tables are cleared. And __mmu_notifier_release() will delete us from
255 	 * the list of notifiers so that our invalidate_range() callback doesn't
256 	 * get called when the page tables are cleared. So we need to protect
257 	 * against hardware accessing those page tables.
258 	 *
259 	 * We do it by clearing the entry in the PASID table and then flushing
260 	 * the IOTLB and the PASID table caches. This might upset hardware;
261 	 * perhaps we'll want to point the PASID to a dummy PGD (like the zero
262 	 * page) so that we end up taking a fault that the hardware really
263 	 * *has* to handle gracefully without affecting other processes.
264 	 */
265 	rcu_read_lock();
266 	list_for_each_entry_rcu(sdev, &svm->devs, list)
267 		intel_pasid_tear_down_entry(sdev->iommu, sdev->dev,
268 					    svm->pasid, true);
269 	rcu_read_unlock();
270 
271 }
272 
273 static const struct mmu_notifier_ops intel_mmuops = {
274 	.release = intel_mm_release,
275 	.invalidate_range = intel_invalidate_range,
276 };
277 
278 static DEFINE_MUTEX(pasid_mutex);
279 
280 static int pasid_to_svm_sdev(struct device *dev, unsigned int pasid,
281 			     struct intel_svm **rsvm,
282 			     struct intel_svm_dev **rsdev)
283 {
284 	struct intel_svm_dev *sdev = NULL;
285 	struct intel_svm *svm;
286 
287 	/* The caller should hold the pasid_mutex lock */
288 	if (WARN_ON(!mutex_is_locked(&pasid_mutex)))
289 		return -EINVAL;
290 
291 	if (pasid == INVALID_IOASID || pasid >= PASID_MAX)
292 		return -EINVAL;
293 
294 	svm = pasid_private_find(pasid);
295 	if (IS_ERR(svm))
296 		return PTR_ERR(svm);
297 
298 	if (!svm)
299 		goto out;
300 
301 	/*
302 	 * If we found svm for the PASID, there must be at least one device
303 	 * bond.
304 	 */
305 	if (WARN_ON(list_empty(&svm->devs)))
306 		return -EINVAL;
307 	sdev = svm_lookup_device_by_dev(svm, dev);
308 
309 out:
310 	*rsvm = svm;
311 	*rsdev = sdev;
312 
313 	return 0;
314 }
315 
316 static int intel_svm_alloc_pasid(struct device *dev, struct mm_struct *mm,
317 				 unsigned int flags)
318 {
319 	ioasid_t max_pasid = dev_is_pci(dev) ?
320 			pci_max_pasids(to_pci_dev(dev)) : intel_pasid_max_id;
321 
322 	return iommu_sva_alloc_pasid(mm, PASID_MIN, max_pasid - 1);
323 }
324 
325 static struct iommu_sva *intel_svm_bind_mm(struct intel_iommu *iommu,
326 					   struct device *dev,
327 					   struct mm_struct *mm,
328 					   unsigned int flags)
329 {
330 	struct device_domain_info *info = dev_iommu_priv_get(dev);
331 	struct intel_svm_dev *sdev;
332 	struct intel_svm *svm;
333 	unsigned long sflags;
334 	int ret = 0;
335 
336 	svm = pasid_private_find(mm->pasid);
337 	if (!svm) {
338 		svm = kzalloc(sizeof(*svm), GFP_KERNEL);
339 		if (!svm)
340 			return ERR_PTR(-ENOMEM);
341 
342 		svm->pasid = mm->pasid;
343 		svm->mm = mm;
344 		svm->flags = flags;
345 		INIT_LIST_HEAD_RCU(&svm->devs);
346 
347 		if (!(flags & SVM_FLAG_SUPERVISOR_MODE)) {
348 			svm->notifier.ops = &intel_mmuops;
349 			ret = mmu_notifier_register(&svm->notifier, mm);
350 			if (ret) {
351 				kfree(svm);
352 				return ERR_PTR(ret);
353 			}
354 		}
355 
356 		ret = pasid_private_add(svm->pasid, svm);
357 		if (ret) {
358 			if (svm->notifier.ops)
359 				mmu_notifier_unregister(&svm->notifier, mm);
360 			kfree(svm);
361 			return ERR_PTR(ret);
362 		}
363 	}
364 
365 	/* Find the matching device in svm list */
366 	sdev = svm_lookup_device_by_dev(svm, dev);
367 	if (sdev) {
368 		sdev->users++;
369 		goto success;
370 	}
371 
372 	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
373 	if (!sdev) {
374 		ret = -ENOMEM;
375 		goto free_svm;
376 	}
377 
378 	sdev->dev = dev;
379 	sdev->iommu = iommu;
380 	sdev->did = FLPT_DEFAULT_DID;
381 	sdev->sid = PCI_DEVID(info->bus, info->devfn);
382 	sdev->users = 1;
383 	sdev->pasid = svm->pasid;
384 	sdev->sva.dev = dev;
385 	init_rcu_head(&sdev->rcu);
386 	if (info->ats_enabled) {
387 		sdev->dev_iotlb = 1;
388 		sdev->qdep = info->ats_qdep;
389 		if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
390 			sdev->qdep = 0;
391 	}
392 
393 	/* Setup the pasid table: */
394 	sflags = (flags & SVM_FLAG_SUPERVISOR_MODE) ?
395 			PASID_FLAG_SUPERVISOR_MODE : 0;
396 	sflags |= cpu_feature_enabled(X86_FEATURE_LA57) ? PASID_FLAG_FL5LP : 0;
397 	ret = intel_pasid_setup_first_level(iommu, dev, mm->pgd, mm->pasid,
398 					    FLPT_DEFAULT_DID, sflags);
399 	if (ret)
400 		goto free_sdev;
401 
402 	list_add_rcu(&sdev->list, &svm->devs);
403 success:
404 	return &sdev->sva;
405 
406 free_sdev:
407 	kfree(sdev);
408 free_svm:
409 	if (list_empty(&svm->devs)) {
410 		if (svm->notifier.ops)
411 			mmu_notifier_unregister(&svm->notifier, mm);
412 		pasid_private_remove(mm->pasid);
413 		kfree(svm);
414 	}
415 
416 	return ERR_PTR(ret);
417 }
418 
419 /* Caller must hold pasid_mutex */
420 static int intel_svm_unbind_mm(struct device *dev, u32 pasid)
421 {
422 	struct intel_svm_dev *sdev;
423 	struct intel_iommu *iommu;
424 	struct intel_svm *svm;
425 	struct mm_struct *mm;
426 	int ret = -EINVAL;
427 
428 	iommu = device_to_iommu(dev, NULL, NULL);
429 	if (!iommu)
430 		goto out;
431 
432 	ret = pasid_to_svm_sdev(dev, pasid, &svm, &sdev);
433 	if (ret)
434 		goto out;
435 	mm = svm->mm;
436 
437 	if (sdev) {
438 		sdev->users--;
439 		if (!sdev->users) {
440 			list_del_rcu(&sdev->list);
441 			/* Flush the PASID cache and IOTLB for this device.
442 			 * Note that we do depend on the hardware *not* using
443 			 * the PASID any more. Just as we depend on other
444 			 * devices never using PASIDs that they have no right
445 			 * to use. We have a *shared* PASID table, because it's
446 			 * large and has to be physically contiguous. So it's
447 			 * hard to be as defensive as we might like. */
448 			intel_pasid_tear_down_entry(iommu, dev,
449 						    svm->pasid, false);
450 			intel_svm_drain_prq(dev, svm->pasid);
451 			kfree_rcu(sdev, rcu);
452 
453 			if (list_empty(&svm->devs)) {
454 				if (svm->notifier.ops)
455 					mmu_notifier_unregister(&svm->notifier, mm);
456 				pasid_private_remove(svm->pasid);
457 				/* We mandate that no page faults may be outstanding
458 				 * for the PASID when intel_svm_unbind_mm() is called.
459 				 * If that is not obeyed, subtle errors will happen.
460 				 * Let's make them less subtle... */
461 				memset(svm, 0x6b, sizeof(*svm));
462 				kfree(svm);
463 			}
464 		}
465 	}
466 out:
467 	return ret;
468 }
469 
470 /* Page request queue descriptor */
471 struct page_req_dsc {
472 	union {
473 		struct {
474 			u64 type:8;
475 			u64 pasid_present:1;
476 			u64 priv_data_present:1;
477 			u64 rsvd:6;
478 			u64 rid:16;
479 			u64 pasid:20;
480 			u64 exe_req:1;
481 			u64 pm_req:1;
482 			u64 rsvd2:10;
483 		};
484 		u64 qw_0;
485 	};
486 	union {
487 		struct {
488 			u64 rd_req:1;
489 			u64 wr_req:1;
490 			u64 lpig:1;
491 			u64 prg_index:9;
492 			u64 addr:52;
493 		};
494 		u64 qw_1;
495 	};
496 	u64 priv_data[2];
497 };
498 
499 static bool is_canonical_address(u64 addr)
500 {
501 	int shift = 64 - (__VIRTUAL_MASK_SHIFT + 1);
502 	long saddr = (long) addr;
503 
504 	return (((saddr << shift) >> shift) == saddr);
505 }
506 
507 /**
508  * intel_svm_drain_prq - Drain page requests and responses for a pasid
509  * @dev: target device
510  * @pasid: pasid for draining
511  *
512  * Drain all pending page requests and responses related to @pasid in both
513  * software and hardware. This is supposed to be called after the device
514  * driver has stopped DMA, the pasid entry has been cleared, and both IOTLB
515  * and DevTLB have been invalidated.
516  *
517  * It waits until all pending page requests for @pasid in the page fault
518  * queue are completed by the prq handling thread. Then follow the steps
519  * described in VT-d spec CH7.10 to drain all page requests and page
520  * responses pending in the hardware.
521  */
522 static void intel_svm_drain_prq(struct device *dev, u32 pasid)
523 {
524 	struct device_domain_info *info;
525 	struct dmar_domain *domain;
526 	struct intel_iommu *iommu;
527 	struct qi_desc desc[3];
528 	struct pci_dev *pdev;
529 	int head, tail;
530 	u16 sid, did;
531 	int qdep;
532 
533 	info = dev_iommu_priv_get(dev);
534 	if (WARN_ON(!info || !dev_is_pci(dev)))
535 		return;
536 
537 	if (!info->pri_enabled)
538 		return;
539 
540 	iommu = info->iommu;
541 	domain = info->domain;
542 	pdev = to_pci_dev(dev);
543 	sid = PCI_DEVID(info->bus, info->devfn);
544 	did = domain_id_iommu(domain, iommu);
545 	qdep = pci_ats_queue_depth(pdev);
546 
547 	/*
548 	 * Check and wait until all pending page requests in the queue are
549 	 * handled by the prq handling thread.
550 	 */
551 prq_retry:
552 	reinit_completion(&iommu->prq_complete);
553 	tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
554 	head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
555 	while (head != tail) {
556 		struct page_req_dsc *req;
557 
558 		req = &iommu->prq[head / sizeof(*req)];
559 		if (!req->pasid_present || req->pasid != pasid) {
560 			head = (head + sizeof(*req)) & PRQ_RING_MASK;
561 			continue;
562 		}
563 
564 		wait_for_completion(&iommu->prq_complete);
565 		goto prq_retry;
566 	}
567 
568 	/*
569 	 * A work in IO page fault workqueue may try to lock pasid_mutex now.
570 	 * Holding pasid_mutex while waiting in iopf_queue_flush_dev() for
571 	 * all works in the workqueue to finish may cause deadlock.
572 	 *
573 	 * It's unnecessary to hold pasid_mutex in iopf_queue_flush_dev().
574 	 * Unlock it to allow the works to be handled while waiting for
575 	 * them to finish.
576 	 */
577 	lockdep_assert_held(&pasid_mutex);
578 	mutex_unlock(&pasid_mutex);
579 	iopf_queue_flush_dev(dev);
580 	mutex_lock(&pasid_mutex);
581 
582 	/*
583 	 * Perform steps described in VT-d spec CH7.10 to drain page
584 	 * requests and responses in hardware.
585 	 */
586 	memset(desc, 0, sizeof(desc));
587 	desc[0].qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
588 			QI_IWD_FENCE |
589 			QI_IWD_TYPE;
590 	desc[1].qw0 = QI_EIOTLB_PASID(pasid) |
591 			QI_EIOTLB_DID(did) |
592 			QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
593 			QI_EIOTLB_TYPE;
594 	desc[2].qw0 = QI_DEV_EIOTLB_PASID(pasid) |
595 			QI_DEV_EIOTLB_SID(sid) |
596 			QI_DEV_EIOTLB_QDEP(qdep) |
597 			QI_DEIOTLB_TYPE |
598 			QI_DEV_IOTLB_PFSID(info->pfsid);
599 qi_retry:
600 	reinit_completion(&iommu->prq_complete);
601 	qi_submit_sync(iommu, desc, 3, QI_OPT_WAIT_DRAIN);
602 	if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) {
603 		wait_for_completion(&iommu->prq_complete);
604 		goto qi_retry;
605 	}
606 }
607 
608 static int prq_to_iommu_prot(struct page_req_dsc *req)
609 {
610 	int prot = 0;
611 
612 	if (req->rd_req)
613 		prot |= IOMMU_FAULT_PERM_READ;
614 	if (req->wr_req)
615 		prot |= IOMMU_FAULT_PERM_WRITE;
616 	if (req->exe_req)
617 		prot |= IOMMU_FAULT_PERM_EXEC;
618 	if (req->pm_req)
619 		prot |= IOMMU_FAULT_PERM_PRIV;
620 
621 	return prot;
622 }
623 
624 static int intel_svm_prq_report(struct intel_iommu *iommu, struct device *dev,
625 				struct page_req_dsc *desc)
626 {
627 	struct iommu_fault_event event;
628 
629 	if (!dev || !dev_is_pci(dev))
630 		return -ENODEV;
631 
632 	/* Fill in event data for device specific processing */
633 	memset(&event, 0, sizeof(struct iommu_fault_event));
634 	event.fault.type = IOMMU_FAULT_PAGE_REQ;
635 	event.fault.prm.addr = (u64)desc->addr << VTD_PAGE_SHIFT;
636 	event.fault.prm.pasid = desc->pasid;
637 	event.fault.prm.grpid = desc->prg_index;
638 	event.fault.prm.perm = prq_to_iommu_prot(desc);
639 
640 	if (desc->lpig)
641 		event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
642 	if (desc->pasid_present) {
643 		event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
644 		event.fault.prm.flags |= IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
645 	}
646 	if (desc->priv_data_present) {
647 		/*
648 		 * Set last page in group bit if private data is present,
649 		 * page response is required as it does for LPIG.
650 		 * iommu_report_device_fault() doesn't understand this vendor
651 		 * specific requirement thus we set last_page as a workaround.
652 		 */
653 		event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
654 		event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA;
655 		event.fault.prm.private_data[0] = desc->priv_data[0];
656 		event.fault.prm.private_data[1] = desc->priv_data[1];
657 	} else if (dmar_latency_enabled(iommu, DMAR_LATENCY_PRQ)) {
658 		/*
659 		 * If the private data fields are not used by hardware, use it
660 		 * to monitor the prq handle latency.
661 		 */
662 		event.fault.prm.private_data[0] = ktime_to_ns(ktime_get());
663 	}
664 
665 	return iommu_report_device_fault(dev, &event);
666 }
667 
668 static void handle_bad_prq_event(struct intel_iommu *iommu,
669 				 struct page_req_dsc *req, int result)
670 {
671 	struct qi_desc desc;
672 
673 	pr_err("%s: Invalid page request: %08llx %08llx\n",
674 	       iommu->name, ((unsigned long long *)req)[0],
675 	       ((unsigned long long *)req)[1]);
676 
677 	/*
678 	 * Per VT-d spec. v3.0 ch7.7, system software must
679 	 * respond with page group response if private data
680 	 * is present (PDP) or last page in group (LPIG) bit
681 	 * is set. This is an additional VT-d feature beyond
682 	 * PCI ATS spec.
683 	 */
684 	if (!req->lpig && !req->priv_data_present)
685 		return;
686 
687 	desc.qw0 = QI_PGRP_PASID(req->pasid) |
688 			QI_PGRP_DID(req->rid) |
689 			QI_PGRP_PASID_P(req->pasid_present) |
690 			QI_PGRP_PDP(req->priv_data_present) |
691 			QI_PGRP_RESP_CODE(result) |
692 			QI_PGRP_RESP_TYPE;
693 	desc.qw1 = QI_PGRP_IDX(req->prg_index) |
694 			QI_PGRP_LPIG(req->lpig);
695 
696 	if (req->priv_data_present) {
697 		desc.qw2 = req->priv_data[0];
698 		desc.qw3 = req->priv_data[1];
699 	} else {
700 		desc.qw2 = 0;
701 		desc.qw3 = 0;
702 	}
703 
704 	qi_submit_sync(iommu, &desc, 1, 0);
705 }
706 
707 static irqreturn_t prq_event_thread(int irq, void *d)
708 {
709 	struct intel_svm_dev *sdev = NULL;
710 	struct intel_iommu *iommu = d;
711 	struct intel_svm *svm = NULL;
712 	struct page_req_dsc *req;
713 	int head, tail, handled;
714 	u64 address;
715 
716 	/*
717 	 * Clear PPR bit before reading head/tail registers, to ensure that
718 	 * we get a new interrupt if needed.
719 	 */
720 	writel(DMA_PRS_PPR, iommu->reg + DMAR_PRS_REG);
721 
722 	tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
723 	head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
724 	handled = (head != tail);
725 	while (head != tail) {
726 		req = &iommu->prq[head / sizeof(*req)];
727 		address = (u64)req->addr << VTD_PAGE_SHIFT;
728 
729 		if (unlikely(!req->pasid_present)) {
730 			pr_err("IOMMU: %s: Page request without PASID\n",
731 			       iommu->name);
732 bad_req:
733 			svm = NULL;
734 			sdev = NULL;
735 			handle_bad_prq_event(iommu, req, QI_RESP_INVALID);
736 			goto prq_advance;
737 		}
738 
739 		if (unlikely(!is_canonical_address(address))) {
740 			pr_err("IOMMU: %s: Address is not canonical\n",
741 			       iommu->name);
742 			goto bad_req;
743 		}
744 
745 		if (unlikely(req->pm_req && (req->rd_req | req->wr_req))) {
746 			pr_err("IOMMU: %s: Page request in Privilege Mode\n",
747 			       iommu->name);
748 			goto bad_req;
749 		}
750 
751 		if (unlikely(req->exe_req && req->rd_req)) {
752 			pr_err("IOMMU: %s: Execution request not supported\n",
753 			       iommu->name);
754 			goto bad_req;
755 		}
756 
757 		/* Drop Stop Marker message. No need for a response. */
758 		if (unlikely(req->lpig && !req->rd_req && !req->wr_req))
759 			goto prq_advance;
760 
761 		if (!svm || svm->pasid != req->pasid) {
762 			/*
763 			 * It can't go away, because the driver is not permitted
764 			 * to unbind the mm while any page faults are outstanding.
765 			 */
766 			svm = pasid_private_find(req->pasid);
767 			if (IS_ERR_OR_NULL(svm) || (svm->flags & SVM_FLAG_SUPERVISOR_MODE))
768 				goto bad_req;
769 		}
770 
771 		if (!sdev || sdev->sid != req->rid) {
772 			sdev = svm_lookup_device_by_sid(svm, req->rid);
773 			if (!sdev)
774 				goto bad_req;
775 		}
776 
777 		sdev->prq_seq_number++;
778 
779 		/*
780 		 * If prq is to be handled outside iommu driver via receiver of
781 		 * the fault notifiers, we skip the page response here.
782 		 */
783 		if (intel_svm_prq_report(iommu, sdev->dev, req))
784 			handle_bad_prq_event(iommu, req, QI_RESP_INVALID);
785 
786 		trace_prq_report(iommu, sdev->dev, req->qw_0, req->qw_1,
787 				 req->priv_data[0], req->priv_data[1],
788 				 sdev->prq_seq_number);
789 prq_advance:
790 		head = (head + sizeof(*req)) & PRQ_RING_MASK;
791 	}
792 
793 	dmar_writeq(iommu->reg + DMAR_PQH_REG, tail);
794 
795 	/*
796 	 * Clear the page request overflow bit and wake up all threads that
797 	 * are waiting for the completion of this handling.
798 	 */
799 	if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) {
800 		pr_info_ratelimited("IOMMU: %s: PRQ overflow detected\n",
801 				    iommu->name);
802 		head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
803 		tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
804 		if (head == tail) {
805 			iopf_queue_discard_partial(iommu->iopf_queue);
806 			writel(DMA_PRS_PRO, iommu->reg + DMAR_PRS_REG);
807 			pr_info_ratelimited("IOMMU: %s: PRQ overflow cleared",
808 					    iommu->name);
809 		}
810 	}
811 
812 	if (!completion_done(&iommu->prq_complete))
813 		complete(&iommu->prq_complete);
814 
815 	return IRQ_RETVAL(handled);
816 }
817 
818 struct iommu_sva *intel_svm_bind(struct device *dev, struct mm_struct *mm, void *drvdata)
819 {
820 	struct intel_iommu *iommu = device_to_iommu(dev, NULL, NULL);
821 	unsigned int flags = 0;
822 	struct iommu_sva *sva;
823 	int ret;
824 
825 	if (drvdata)
826 		flags = *(unsigned int *)drvdata;
827 
828 	if (flags & SVM_FLAG_SUPERVISOR_MODE) {
829 		if (!ecap_srs(iommu->ecap)) {
830 			dev_err(dev, "%s: Supervisor PASID not supported\n",
831 				iommu->name);
832 			return ERR_PTR(-EOPNOTSUPP);
833 		}
834 
835 		if (mm) {
836 			dev_err(dev, "%s: Supervisor PASID with user provided mm\n",
837 				iommu->name);
838 			return ERR_PTR(-EINVAL);
839 		}
840 
841 		mm = &init_mm;
842 	}
843 
844 	mutex_lock(&pasid_mutex);
845 	ret = intel_svm_alloc_pasid(dev, mm, flags);
846 	if (ret) {
847 		mutex_unlock(&pasid_mutex);
848 		return ERR_PTR(ret);
849 	}
850 
851 	sva = intel_svm_bind_mm(iommu, dev, mm, flags);
852 	mutex_unlock(&pasid_mutex);
853 
854 	return sva;
855 }
856 
857 void intel_svm_unbind(struct iommu_sva *sva)
858 {
859 	struct intel_svm_dev *sdev = to_intel_svm_dev(sva);
860 
861 	mutex_lock(&pasid_mutex);
862 	intel_svm_unbind_mm(sdev->dev, sdev->pasid);
863 	mutex_unlock(&pasid_mutex);
864 }
865 
866 u32 intel_svm_get_pasid(struct iommu_sva *sva)
867 {
868 	struct intel_svm_dev *sdev;
869 	u32 pasid;
870 
871 	mutex_lock(&pasid_mutex);
872 	sdev = to_intel_svm_dev(sva);
873 	pasid = sdev->pasid;
874 	mutex_unlock(&pasid_mutex);
875 
876 	return pasid;
877 }
878 
879 int intel_svm_page_response(struct device *dev,
880 			    struct iommu_fault_event *evt,
881 			    struct iommu_page_response *msg)
882 {
883 	struct iommu_fault_page_request *prm;
884 	struct intel_svm_dev *sdev = NULL;
885 	struct intel_svm *svm = NULL;
886 	struct intel_iommu *iommu;
887 	bool private_present;
888 	bool pasid_present;
889 	bool last_page;
890 	u8 bus, devfn;
891 	int ret = 0;
892 	u16 sid;
893 
894 	if (!dev || !dev_is_pci(dev))
895 		return -ENODEV;
896 
897 	iommu = device_to_iommu(dev, &bus, &devfn);
898 	if (!iommu)
899 		return -ENODEV;
900 
901 	if (!msg || !evt)
902 		return -EINVAL;
903 
904 	mutex_lock(&pasid_mutex);
905 
906 	prm = &evt->fault.prm;
907 	sid = PCI_DEVID(bus, devfn);
908 	pasid_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
909 	private_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA;
910 	last_page = prm->flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE;
911 
912 	if (!pasid_present) {
913 		ret = -EINVAL;
914 		goto out;
915 	}
916 
917 	if (prm->pasid == 0 || prm->pasid >= PASID_MAX) {
918 		ret = -EINVAL;
919 		goto out;
920 	}
921 
922 	ret = pasid_to_svm_sdev(dev, prm->pasid, &svm, &sdev);
923 	if (ret || !sdev) {
924 		ret = -ENODEV;
925 		goto out;
926 	}
927 
928 	/*
929 	 * Per VT-d spec. v3.0 ch7.7, system software must respond
930 	 * with page group response if private data is present (PDP)
931 	 * or last page in group (LPIG) bit is set. This is an
932 	 * additional VT-d requirement beyond PCI ATS spec.
933 	 */
934 	if (last_page || private_present) {
935 		struct qi_desc desc;
936 
937 		desc.qw0 = QI_PGRP_PASID(prm->pasid) | QI_PGRP_DID(sid) |
938 				QI_PGRP_PASID_P(pasid_present) |
939 				QI_PGRP_PDP(private_present) |
940 				QI_PGRP_RESP_CODE(msg->code) |
941 				QI_PGRP_RESP_TYPE;
942 		desc.qw1 = QI_PGRP_IDX(prm->grpid) | QI_PGRP_LPIG(last_page);
943 		desc.qw2 = 0;
944 		desc.qw3 = 0;
945 
946 		if (private_present) {
947 			desc.qw2 = prm->private_data[0];
948 			desc.qw3 = prm->private_data[1];
949 		} else if (prm->private_data[0]) {
950 			dmar_latency_update(iommu, DMAR_LATENCY_PRQ,
951 				ktime_to_ns(ktime_get()) - prm->private_data[0]);
952 		}
953 
954 		qi_submit_sync(iommu, &desc, 1, 0);
955 	}
956 out:
957 	mutex_unlock(&pasid_mutex);
958 	return ret;
959 }
960