1 // SPDX-License-Identifier: GPL-2.0 2 3 #define pr_fmt(fmt) "DMAR-IR: " fmt 4 5 #include <linux/interrupt.h> 6 #include <linux/dmar.h> 7 #include <linux/spinlock.h> 8 #include <linux/slab.h> 9 #include <linux/jiffies.h> 10 #include <linux/hpet.h> 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/acpi.h> 14 #include <linux/irqdomain.h> 15 #include <linux/crash_dump.h> 16 #include <asm/io_apic.h> 17 #include <asm/apic.h> 18 #include <asm/smp.h> 19 #include <asm/cpu.h> 20 #include <asm/irq_remapping.h> 21 #include <asm/pci-direct.h> 22 #include <asm/posted_intr.h> 23 24 #include "iommu.h" 25 #include "../irq_remapping.h" 26 #include "../iommu-pages.h" 27 #include "cap_audit.h" 28 29 enum irq_mode { 30 IRQ_REMAPPING, 31 IRQ_POSTING, 32 }; 33 34 struct ioapic_scope { 35 struct intel_iommu *iommu; 36 unsigned int id; 37 unsigned int bus; /* PCI bus number */ 38 unsigned int devfn; /* PCI devfn number */ 39 }; 40 41 struct hpet_scope { 42 struct intel_iommu *iommu; 43 u8 id; 44 unsigned int bus; 45 unsigned int devfn; 46 }; 47 48 struct irq_2_iommu { 49 struct intel_iommu *iommu; 50 u16 irte_index; 51 u16 sub_handle; 52 u8 irte_mask; 53 enum irq_mode mode; 54 bool posted_msi; 55 }; 56 57 struct intel_ir_data { 58 struct irq_2_iommu irq_2_iommu; 59 struct irte irte_entry; 60 union { 61 struct msi_msg msi_entry; 62 }; 63 }; 64 65 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) 66 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8) 67 68 static int __read_mostly eim_mode; 69 static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; 70 static struct hpet_scope ir_hpet[MAX_HPET_TBS]; 71 72 /* 73 * Lock ordering: 74 * ->dmar_global_lock 75 * ->irq_2_ir_lock 76 * ->qi->q_lock 77 * ->iommu->register_lock 78 * Note: 79 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called 80 * in single-threaded environment with interrupt disabled, so no need to tabke 81 * the dmar_global_lock. 82 */ 83 DEFINE_RAW_SPINLOCK(irq_2_ir_lock); 84 static const struct irq_domain_ops intel_ir_domain_ops; 85 86 static void iommu_disable_irq_remapping(struct intel_iommu *iommu); 87 static int __init parse_ioapics_under_ir(void); 88 static const struct msi_parent_ops dmar_msi_parent_ops, virt_dmar_msi_parent_ops; 89 90 static bool ir_pre_enabled(struct intel_iommu *iommu) 91 { 92 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED); 93 } 94 95 static void clear_ir_pre_enabled(struct intel_iommu *iommu) 96 { 97 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 98 } 99 100 static void init_ir_status(struct intel_iommu *iommu) 101 { 102 u32 gsts; 103 104 gsts = readl(iommu->reg + DMAR_GSTS_REG); 105 if (gsts & DMA_GSTS_IRES) 106 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 107 } 108 109 static int alloc_irte(struct intel_iommu *iommu, 110 struct irq_2_iommu *irq_iommu, u16 count) 111 { 112 struct ir_table *table = iommu->ir_table; 113 unsigned int mask = 0; 114 unsigned long flags; 115 int index; 116 117 if (!count || !irq_iommu) 118 return -1; 119 120 if (count > 1) { 121 count = __roundup_pow_of_two(count); 122 mask = ilog2(count); 123 } 124 125 if (mask > ecap_max_handle_mask(iommu->ecap)) { 126 pr_err("Requested mask %x exceeds the max invalidation handle" 127 " mask value %Lx\n", mask, 128 ecap_max_handle_mask(iommu->ecap)); 129 return -1; 130 } 131 132 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 133 index = bitmap_find_free_region(table->bitmap, 134 INTR_REMAP_TABLE_ENTRIES, mask); 135 if (index < 0) { 136 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); 137 } else { 138 irq_iommu->iommu = iommu; 139 irq_iommu->irte_index = index; 140 irq_iommu->sub_handle = 0; 141 irq_iommu->irte_mask = mask; 142 irq_iommu->mode = IRQ_REMAPPING; 143 } 144 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 145 146 return index; 147 } 148 149 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) 150 { 151 struct qi_desc desc; 152 153 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) 154 | QI_IEC_SELECTIVE; 155 desc.qw1 = 0; 156 desc.qw2 = 0; 157 desc.qw3 = 0; 158 159 return qi_submit_sync(iommu, &desc, 1, 0); 160 } 161 162 static int modify_irte(struct irq_2_iommu *irq_iommu, 163 struct irte *irte_modified) 164 { 165 struct intel_iommu *iommu; 166 unsigned long flags; 167 struct irte *irte; 168 int rc, index; 169 170 if (!irq_iommu) 171 return -1; 172 173 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 174 175 iommu = irq_iommu->iommu; 176 177 index = irq_iommu->irte_index + irq_iommu->sub_handle; 178 irte = &iommu->ir_table->base[index]; 179 180 if ((irte->pst == 1) || (irte_modified->pst == 1)) { 181 /* 182 * We use cmpxchg16 to atomically update the 128-bit IRTE, 183 * and it cannot be updated by the hardware or other processors 184 * behind us, so the return value of cmpxchg16 should be the 185 * same as the old value. 186 */ 187 u128 old = irte->irte; 188 WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte)); 189 } else { 190 WRITE_ONCE(irte->low, irte_modified->low); 191 WRITE_ONCE(irte->high, irte_modified->high); 192 } 193 __iommu_flush_cache(iommu, irte, sizeof(*irte)); 194 195 rc = qi_flush_iec(iommu, index, 0); 196 197 /* Update iommu mode according to the IRTE mode */ 198 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING; 199 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 200 201 return rc; 202 } 203 204 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id) 205 { 206 int i; 207 208 for (i = 0; i < MAX_HPET_TBS; i++) { 209 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu) 210 return ir_hpet[i].iommu; 211 } 212 return NULL; 213 } 214 215 static struct intel_iommu *map_ioapic_to_iommu(int apic) 216 { 217 int i; 218 219 for (i = 0; i < MAX_IO_APICS; i++) { 220 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu) 221 return ir_ioapic[i].iommu; 222 } 223 return NULL; 224 } 225 226 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev) 227 { 228 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev); 229 230 return drhd ? drhd->iommu->ir_domain : NULL; 231 } 232 233 static int clear_entries(struct irq_2_iommu *irq_iommu) 234 { 235 struct irte *start, *entry, *end; 236 struct intel_iommu *iommu; 237 int index; 238 239 if (irq_iommu->sub_handle) 240 return 0; 241 242 iommu = irq_iommu->iommu; 243 index = irq_iommu->irte_index; 244 245 start = iommu->ir_table->base + index; 246 end = start + (1 << irq_iommu->irte_mask); 247 248 for (entry = start; entry < end; entry++) { 249 WRITE_ONCE(entry->low, 0); 250 WRITE_ONCE(entry->high, 0); 251 } 252 bitmap_release_region(iommu->ir_table->bitmap, index, 253 irq_iommu->irte_mask); 254 255 return qi_flush_iec(iommu, index, irq_iommu->irte_mask); 256 } 257 258 /* 259 * source validation type 260 */ 261 #define SVT_NO_VERIFY 0x0 /* no verification is required */ 262 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ 263 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ 264 265 /* 266 * source-id qualifier 267 */ 268 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ 269 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore 270 * the third least significant bit 271 */ 272 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore 273 * the second and third least significant bits 274 */ 275 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore 276 * the least three significant bits 277 */ 278 279 /* 280 * set SVT, SQ and SID fields of irte to verify 281 * source ids of interrupt requests 282 */ 283 static void set_irte_sid(struct irte *irte, unsigned int svt, 284 unsigned int sq, unsigned int sid) 285 { 286 if (disable_sourceid_checking) 287 svt = SVT_NO_VERIFY; 288 irte->svt = svt; 289 irte->sq = sq; 290 irte->sid = sid; 291 } 292 293 /* 294 * Set an IRTE to match only the bus number. Interrupt requests that reference 295 * this IRTE must have a requester-id whose bus number is between or equal 296 * to the start_bus and end_bus arguments. 297 */ 298 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus, 299 unsigned int end_bus) 300 { 301 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, 302 (start_bus << 8) | end_bus); 303 } 304 305 static int set_ioapic_sid(struct irte *irte, int apic) 306 { 307 int i; 308 u16 sid = 0; 309 310 if (!irte) 311 return -1; 312 313 for (i = 0; i < MAX_IO_APICS; i++) { 314 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) { 315 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; 316 break; 317 } 318 } 319 320 if (sid == 0) { 321 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic); 322 return -1; 323 } 324 325 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); 326 327 return 0; 328 } 329 330 static int set_hpet_sid(struct irte *irte, u8 id) 331 { 332 int i; 333 u16 sid = 0; 334 335 if (!irte) 336 return -1; 337 338 for (i = 0; i < MAX_HPET_TBS; i++) { 339 if (ir_hpet[i].iommu && ir_hpet[i].id == id) { 340 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; 341 break; 342 } 343 } 344 345 if (sid == 0) { 346 pr_warn("Failed to set source-id of HPET block (%d)\n", id); 347 return -1; 348 } 349 350 /* 351 * Should really use SQ_ALL_16. Some platforms are broken. 352 * While we figure out the right quirks for these broken platforms, use 353 * SQ_13_IGNORE_3 for now. 354 */ 355 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); 356 357 return 0; 358 } 359 360 struct set_msi_sid_data { 361 struct pci_dev *pdev; 362 u16 alias; 363 int count; 364 int busmatch_count; 365 }; 366 367 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) 368 { 369 struct set_msi_sid_data *data = opaque; 370 371 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias)) 372 data->busmatch_count++; 373 374 data->pdev = pdev; 375 data->alias = alias; 376 data->count++; 377 378 return 0; 379 } 380 381 static int set_msi_sid(struct irte *irte, struct pci_dev *dev) 382 { 383 struct set_msi_sid_data data; 384 385 if (!irte || !dev) 386 return -1; 387 388 data.count = 0; 389 data.busmatch_count = 0; 390 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); 391 392 /* 393 * DMA alias provides us with a PCI device and alias. The only case 394 * where the it will return an alias on a different bus than the 395 * device is the case of a PCIe-to-PCI bridge, where the alias is for 396 * the subordinate bus. In this case we can only verify the bus. 397 * 398 * If there are multiple aliases, all with the same bus number, 399 * then all we can do is verify the bus. This is typical in NTB 400 * hardware which use proxy IDs where the device will generate traffic 401 * from multiple devfn numbers on the same bus. 402 * 403 * If the alias device is on a different bus than our source device 404 * then we have a topology based alias, use it. 405 * 406 * Otherwise, the alias is for a device DMA quirk and we cannot 407 * assume that MSI uses the same requester ID. Therefore use the 408 * original device. 409 */ 410 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) 411 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias), 412 dev->bus->number); 413 else if (data.count >= 2 && data.busmatch_count == data.count) 414 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number); 415 else if (data.pdev->bus->number != dev->bus->number) 416 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); 417 else 418 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, 419 pci_dev_id(dev)); 420 421 return 0; 422 } 423 424 static int iommu_load_old_irte(struct intel_iommu *iommu) 425 { 426 struct irte *old_ir_table; 427 phys_addr_t irt_phys; 428 unsigned int i; 429 size_t size; 430 u64 irta; 431 432 /* Check whether the old ir-table has the same size as ours */ 433 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG); 434 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK) 435 != INTR_REMAP_TABLE_REG_SIZE) 436 return -EINVAL; 437 438 irt_phys = irta & VTD_PAGE_MASK; 439 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte); 440 441 /* Map the old IR table */ 442 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB); 443 if (!old_ir_table) 444 return -ENOMEM; 445 446 /* Copy data over */ 447 memcpy(iommu->ir_table->base, old_ir_table, size); 448 449 __iommu_flush_cache(iommu, iommu->ir_table->base, size); 450 451 /* 452 * Now check the table for used entries and mark those as 453 * allocated in the bitmap 454 */ 455 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) { 456 if (iommu->ir_table->base[i].present) 457 bitmap_set(iommu->ir_table->bitmap, i, 1); 458 } 459 460 memunmap(old_ir_table); 461 462 return 0; 463 } 464 465 466 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) 467 { 468 unsigned long flags; 469 u64 addr; 470 u32 sts; 471 472 addr = virt_to_phys((void *)iommu->ir_table->base); 473 474 raw_spin_lock_irqsave(&iommu->register_lock, flags); 475 476 dmar_writeq(iommu->reg + DMAR_IRTA_REG, 477 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); 478 479 /* Set interrupt-remapping table pointer */ 480 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); 481 482 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 483 readl, (sts & DMA_GSTS_IRTPS), sts); 484 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 485 486 /* 487 * Global invalidation of interrupt entry cache to make sure the 488 * hardware uses the new irq remapping table. 489 */ 490 if (!cap_esirtps(iommu->cap)) 491 qi_global_iec(iommu); 492 } 493 494 static void iommu_enable_irq_remapping(struct intel_iommu *iommu) 495 { 496 unsigned long flags; 497 u32 sts; 498 499 raw_spin_lock_irqsave(&iommu->register_lock, flags); 500 501 /* Enable interrupt-remapping */ 502 iommu->gcmd |= DMA_GCMD_IRE; 503 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 504 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 505 readl, (sts & DMA_GSTS_IRES), sts); 506 507 /* Block compatibility-format MSIs */ 508 if (sts & DMA_GSTS_CFIS) { 509 iommu->gcmd &= ~DMA_GCMD_CFI; 510 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 511 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 512 readl, !(sts & DMA_GSTS_CFIS), sts); 513 } 514 515 /* 516 * With CFI clear in the Global Command register, we should be 517 * protected from dangerous (i.e. compatibility) interrupts 518 * regardless of x2apic status. Check just to be sure. 519 */ 520 if (sts & DMA_GSTS_CFIS) 521 WARN(1, KERN_WARNING 522 "Compatibility-format IRQs enabled despite intr remapping;\n" 523 "you are vulnerable to IRQ injection.\n"); 524 525 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 526 } 527 528 static int intel_setup_irq_remapping(struct intel_iommu *iommu) 529 { 530 struct ir_table *ir_table; 531 struct fwnode_handle *fn; 532 unsigned long *bitmap; 533 void *ir_table_base; 534 535 if (iommu->ir_table) 536 return 0; 537 538 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); 539 if (!ir_table) 540 return -ENOMEM; 541 542 ir_table_base = iommu_alloc_pages_node(iommu->node, GFP_KERNEL, 543 INTR_REMAP_PAGE_ORDER); 544 if (!ir_table_base) { 545 pr_err("IR%d: failed to allocate pages of order %d\n", 546 iommu->seq_id, INTR_REMAP_PAGE_ORDER); 547 goto out_free_table; 548 } 549 550 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL); 551 if (bitmap == NULL) { 552 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); 553 goto out_free_pages; 554 } 555 556 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id); 557 if (!fn) 558 goto out_free_bitmap; 559 560 iommu->ir_domain = 561 irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 562 0, INTR_REMAP_TABLE_ENTRIES, 563 fn, &intel_ir_domain_ops, 564 iommu); 565 if (!iommu->ir_domain) { 566 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id); 567 goto out_free_fwnode; 568 } 569 570 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_DMAR); 571 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT | 572 IRQ_DOMAIN_FLAG_ISOLATED_MSI; 573 574 if (cap_caching_mode(iommu->cap)) 575 iommu->ir_domain->msi_parent_ops = &virt_dmar_msi_parent_ops; 576 else 577 iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops; 578 579 ir_table->base = ir_table_base; 580 ir_table->bitmap = bitmap; 581 iommu->ir_table = ir_table; 582 583 /* 584 * If the queued invalidation is already initialized, 585 * shouldn't disable it. 586 */ 587 if (!iommu->qi) { 588 /* 589 * Clear previous faults. 590 */ 591 dmar_fault(-1, iommu); 592 dmar_disable_qi(iommu); 593 594 if (dmar_enable_qi(iommu)) { 595 pr_err("Failed to enable queued invalidation\n"); 596 goto out_free_ir_domain; 597 } 598 } 599 600 init_ir_status(iommu); 601 602 if (ir_pre_enabled(iommu)) { 603 if (!is_kdump_kernel()) { 604 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n", 605 iommu->name); 606 clear_ir_pre_enabled(iommu); 607 iommu_disable_irq_remapping(iommu); 608 } else if (iommu_load_old_irte(iommu)) 609 pr_err("Failed to copy IR table for %s from previous kernel\n", 610 iommu->name); 611 else 612 pr_info("Copied IR table for %s from previous kernel\n", 613 iommu->name); 614 } 615 616 iommu_set_irq_remapping(iommu, eim_mode); 617 618 return 0; 619 620 out_free_ir_domain: 621 irq_domain_remove(iommu->ir_domain); 622 iommu->ir_domain = NULL; 623 out_free_fwnode: 624 irq_domain_free_fwnode(fn); 625 out_free_bitmap: 626 bitmap_free(bitmap); 627 out_free_pages: 628 iommu_free_pages(ir_table_base, INTR_REMAP_PAGE_ORDER); 629 out_free_table: 630 kfree(ir_table); 631 632 iommu->ir_table = NULL; 633 634 return -ENOMEM; 635 } 636 637 static void intel_teardown_irq_remapping(struct intel_iommu *iommu) 638 { 639 struct fwnode_handle *fn; 640 641 if (iommu && iommu->ir_table) { 642 if (iommu->ir_domain) { 643 fn = iommu->ir_domain->fwnode; 644 645 irq_domain_remove(iommu->ir_domain); 646 irq_domain_free_fwnode(fn); 647 iommu->ir_domain = NULL; 648 } 649 iommu_free_pages(iommu->ir_table->base, INTR_REMAP_PAGE_ORDER); 650 bitmap_free(iommu->ir_table->bitmap); 651 kfree(iommu->ir_table); 652 iommu->ir_table = NULL; 653 } 654 } 655 656 /* 657 * Disable Interrupt Remapping. 658 */ 659 static void iommu_disable_irq_remapping(struct intel_iommu *iommu) 660 { 661 unsigned long flags; 662 u32 sts; 663 664 if (!ecap_ir_support(iommu->ecap)) 665 return; 666 667 /* 668 * global invalidation of interrupt entry cache before disabling 669 * interrupt-remapping. 670 */ 671 if (!cap_esirtps(iommu->cap)) 672 qi_global_iec(iommu); 673 674 raw_spin_lock_irqsave(&iommu->register_lock, flags); 675 676 sts = readl(iommu->reg + DMAR_GSTS_REG); 677 if (!(sts & DMA_GSTS_IRES)) 678 goto end; 679 680 iommu->gcmd &= ~DMA_GCMD_IRE; 681 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 682 683 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 684 readl, !(sts & DMA_GSTS_IRES), sts); 685 686 end: 687 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 688 } 689 690 static int __init dmar_x2apic_optout(void) 691 { 692 struct acpi_table_dmar *dmar; 693 dmar = (struct acpi_table_dmar *)dmar_tbl; 694 if (!dmar || no_x2apic_optout) 695 return 0; 696 return dmar->flags & DMAR_X2APIC_OPT_OUT; 697 } 698 699 static void __init intel_cleanup_irq_remapping(void) 700 { 701 struct dmar_drhd_unit *drhd; 702 struct intel_iommu *iommu; 703 704 for_each_iommu(iommu, drhd) { 705 if (ecap_ir_support(iommu->ecap)) { 706 iommu_disable_irq_remapping(iommu); 707 intel_teardown_irq_remapping(iommu); 708 } 709 } 710 711 if (x2apic_supported()) 712 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); 713 } 714 715 static int __init intel_prepare_irq_remapping(void) 716 { 717 struct dmar_drhd_unit *drhd; 718 struct intel_iommu *iommu; 719 int eim = 0; 720 721 if (irq_remap_broken) { 722 pr_warn("This system BIOS has enabled interrupt remapping\n" 723 "on a chipset that contains an erratum making that\n" 724 "feature unstable. To maintain system stability\n" 725 "interrupt remapping is being disabled. Please\n" 726 "contact your BIOS vendor for an update\n"); 727 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 728 return -ENODEV; 729 } 730 731 if (dmar_table_init() < 0) 732 return -ENODEV; 733 734 if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL)) 735 return -ENODEV; 736 737 if (!dmar_ir_support()) 738 return -ENODEV; 739 740 if (parse_ioapics_under_ir()) { 741 pr_info("Not enabling interrupt remapping\n"); 742 goto error; 743 } 744 745 /* First make sure all IOMMUs support IRQ remapping */ 746 for_each_iommu(iommu, drhd) 747 if (!ecap_ir_support(iommu->ecap)) 748 goto error; 749 750 /* Detect remapping mode: lapic or x2apic */ 751 if (x2apic_supported()) { 752 eim = !dmar_x2apic_optout(); 753 if (!eim) { 754 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit."); 755 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n"); 756 } 757 } 758 759 for_each_iommu(iommu, drhd) { 760 if (eim && !ecap_eim_support(iommu->ecap)) { 761 pr_info("%s does not support EIM\n", iommu->name); 762 eim = 0; 763 } 764 } 765 766 eim_mode = eim; 767 if (eim) 768 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); 769 770 /* Do the initializations early */ 771 for_each_iommu(iommu, drhd) { 772 if (intel_setup_irq_remapping(iommu)) { 773 pr_err("Failed to setup irq remapping for %s\n", 774 iommu->name); 775 goto error; 776 } 777 } 778 779 return 0; 780 781 error: 782 intel_cleanup_irq_remapping(); 783 return -ENODEV; 784 } 785 786 /* 787 * Set Posted-Interrupts capability. 788 */ 789 static inline void set_irq_posting_cap(void) 790 { 791 struct dmar_drhd_unit *drhd; 792 struct intel_iommu *iommu; 793 794 if (!disable_irq_post) { 795 /* 796 * If IRTE is in posted format, the 'pda' field goes across the 797 * 64-bit boundary, we need use cmpxchg16b to atomically update 798 * it. We only expose posted-interrupt when X86_FEATURE_CX16 799 * is supported. Actually, hardware platforms supporting PI 800 * should have X86_FEATURE_CX16 support, this has been confirmed 801 * with Intel hardware guys. 802 */ 803 if (boot_cpu_has(X86_FEATURE_CX16)) 804 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP; 805 806 for_each_iommu(iommu, drhd) 807 if (!cap_pi_support(iommu->cap)) { 808 intel_irq_remap_ops.capability &= 809 ~(1 << IRQ_POSTING_CAP); 810 break; 811 } 812 } 813 } 814 815 static int __init intel_enable_irq_remapping(void) 816 { 817 struct dmar_drhd_unit *drhd; 818 struct intel_iommu *iommu; 819 bool setup = false; 820 821 /* 822 * Setup Interrupt-remapping for all the DRHD's now. 823 */ 824 for_each_iommu(iommu, drhd) { 825 if (!ir_pre_enabled(iommu)) 826 iommu_enable_irq_remapping(iommu); 827 setup = true; 828 } 829 830 if (!setup) 831 goto error; 832 833 irq_remapping_enabled = 1; 834 835 set_irq_posting_cap(); 836 837 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic"); 838 839 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; 840 841 error: 842 intel_cleanup_irq_remapping(); 843 return -1; 844 } 845 846 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, 847 struct intel_iommu *iommu, 848 struct acpi_dmar_hardware_unit *drhd) 849 { 850 struct acpi_dmar_pci_path *path; 851 u8 bus; 852 int count, free = -1; 853 854 bus = scope->bus; 855 path = (struct acpi_dmar_pci_path *)(scope + 1); 856 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 857 / sizeof(struct acpi_dmar_pci_path); 858 859 while (--count > 0) { 860 /* 861 * Access PCI directly due to the PCI 862 * subsystem isn't initialized yet. 863 */ 864 bus = read_pci_config_byte(bus, path->device, path->function, 865 PCI_SECONDARY_BUS); 866 path++; 867 } 868 869 for (count = 0; count < MAX_HPET_TBS; count++) { 870 if (ir_hpet[count].iommu == iommu && 871 ir_hpet[count].id == scope->enumeration_id) 872 return 0; 873 else if (ir_hpet[count].iommu == NULL && free == -1) 874 free = count; 875 } 876 if (free == -1) { 877 pr_warn("Exceeded Max HPET blocks\n"); 878 return -ENOSPC; 879 } 880 881 ir_hpet[free].iommu = iommu; 882 ir_hpet[free].id = scope->enumeration_id; 883 ir_hpet[free].bus = bus; 884 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function); 885 pr_info("HPET id %d under DRHD base 0x%Lx\n", 886 scope->enumeration_id, drhd->address); 887 888 return 0; 889 } 890 891 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, 892 struct intel_iommu *iommu, 893 struct acpi_dmar_hardware_unit *drhd) 894 { 895 struct acpi_dmar_pci_path *path; 896 u8 bus; 897 int count, free = -1; 898 899 bus = scope->bus; 900 path = (struct acpi_dmar_pci_path *)(scope + 1); 901 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 902 / sizeof(struct acpi_dmar_pci_path); 903 904 while (--count > 0) { 905 /* 906 * Access PCI directly due to the PCI 907 * subsystem isn't initialized yet. 908 */ 909 bus = read_pci_config_byte(bus, path->device, path->function, 910 PCI_SECONDARY_BUS); 911 path++; 912 } 913 914 for (count = 0; count < MAX_IO_APICS; count++) { 915 if (ir_ioapic[count].iommu == iommu && 916 ir_ioapic[count].id == scope->enumeration_id) 917 return 0; 918 else if (ir_ioapic[count].iommu == NULL && free == -1) 919 free = count; 920 } 921 if (free == -1) { 922 pr_warn("Exceeded Max IO APICS\n"); 923 return -ENOSPC; 924 } 925 926 ir_ioapic[free].bus = bus; 927 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function); 928 ir_ioapic[free].iommu = iommu; 929 ir_ioapic[free].id = scope->enumeration_id; 930 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n", 931 scope->enumeration_id, drhd->address, iommu->seq_id); 932 933 return 0; 934 } 935 936 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, 937 struct intel_iommu *iommu) 938 { 939 int ret = 0; 940 struct acpi_dmar_hardware_unit *drhd; 941 struct acpi_dmar_device_scope *scope; 942 void *start, *end; 943 944 drhd = (struct acpi_dmar_hardware_unit *)header; 945 start = (void *)(drhd + 1); 946 end = ((void *)drhd) + header->length; 947 948 while (start < end && ret == 0) { 949 scope = start; 950 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) 951 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd); 952 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) 953 ret = ir_parse_one_hpet_scope(scope, iommu, drhd); 954 start += scope->length; 955 } 956 957 return ret; 958 } 959 960 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu) 961 { 962 int i; 963 964 for (i = 0; i < MAX_HPET_TBS; i++) 965 if (ir_hpet[i].iommu == iommu) 966 ir_hpet[i].iommu = NULL; 967 968 for (i = 0; i < MAX_IO_APICS; i++) 969 if (ir_ioapic[i].iommu == iommu) 970 ir_ioapic[i].iommu = NULL; 971 } 972 973 /* 974 * Finds the assocaition between IOAPIC's and its Interrupt-remapping 975 * hardware unit. 976 */ 977 static int __init parse_ioapics_under_ir(void) 978 { 979 struct dmar_drhd_unit *drhd; 980 struct intel_iommu *iommu; 981 bool ir_supported = false; 982 int ioapic_idx; 983 984 for_each_iommu(iommu, drhd) { 985 int ret; 986 987 if (!ecap_ir_support(iommu->ecap)) 988 continue; 989 990 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu); 991 if (ret) 992 return ret; 993 994 ir_supported = true; 995 } 996 997 if (!ir_supported) 998 return -ENODEV; 999 1000 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { 1001 int ioapic_id = mpc_ioapic_id(ioapic_idx); 1002 if (!map_ioapic_to_iommu(ioapic_id)) { 1003 pr_err(FW_BUG "ioapic %d has no mapping iommu, " 1004 "interrupt remapping will be disabled\n", 1005 ioapic_id); 1006 return -1; 1007 } 1008 } 1009 1010 return 0; 1011 } 1012 1013 static int __init ir_dev_scope_init(void) 1014 { 1015 int ret; 1016 1017 if (!irq_remapping_enabled) 1018 return 0; 1019 1020 down_write(&dmar_global_lock); 1021 ret = dmar_dev_scope_init(); 1022 up_write(&dmar_global_lock); 1023 1024 return ret; 1025 } 1026 rootfs_initcall(ir_dev_scope_init); 1027 1028 static void disable_irq_remapping(void) 1029 { 1030 struct dmar_drhd_unit *drhd; 1031 struct intel_iommu *iommu = NULL; 1032 1033 /* 1034 * Disable Interrupt-remapping for all the DRHD's now. 1035 */ 1036 for_each_iommu(iommu, drhd) { 1037 if (!ecap_ir_support(iommu->ecap)) 1038 continue; 1039 1040 iommu_disable_irq_remapping(iommu); 1041 } 1042 1043 /* 1044 * Clear Posted-Interrupts capability. 1045 */ 1046 if (!disable_irq_post) 1047 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); 1048 } 1049 1050 static int reenable_irq_remapping(int eim) 1051 { 1052 struct dmar_drhd_unit *drhd; 1053 bool setup = false; 1054 struct intel_iommu *iommu = NULL; 1055 1056 for_each_iommu(iommu, drhd) 1057 if (iommu->qi) 1058 dmar_reenable_qi(iommu); 1059 1060 /* 1061 * Setup Interrupt-remapping for all the DRHD's now. 1062 */ 1063 for_each_iommu(iommu, drhd) { 1064 if (!ecap_ir_support(iommu->ecap)) 1065 continue; 1066 1067 /* Set up interrupt remapping for iommu.*/ 1068 iommu_set_irq_remapping(iommu, eim); 1069 iommu_enable_irq_remapping(iommu); 1070 setup = true; 1071 } 1072 1073 if (!setup) 1074 goto error; 1075 1076 set_irq_posting_cap(); 1077 1078 return 0; 1079 1080 error: 1081 /* 1082 * handle error condition gracefully here! 1083 */ 1084 return -1; 1085 } 1086 1087 /* 1088 * Store the MSI remapping domain pointer in the device if enabled. 1089 * 1090 * This is called from dmar_pci_bus_add_dev() so it works even when DMA 1091 * remapping is disabled. Only update the pointer if the device is not 1092 * already handled by a non default PCI/MSI interrupt domain. This protects 1093 * e.g. VMD devices. 1094 */ 1095 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info) 1096 { 1097 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev)) 1098 return; 1099 1100 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev)); 1101 } 1102 1103 static void prepare_irte(struct irte *irte, int vector, unsigned int dest) 1104 { 1105 memset(irte, 0, sizeof(*irte)); 1106 1107 irte->present = 1; 1108 irte->dst_mode = apic->dest_mode_logical; 1109 /* 1110 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the 1111 * actual level or edge trigger will be setup in the IO-APIC 1112 * RTE. This will help simplify level triggered irq migration. 1113 * For more details, see the comments (in io_apic.c) explainig IO-APIC 1114 * irq migration in the presence of interrupt-remapping. 1115 */ 1116 irte->trigger_mode = 0; 1117 irte->dlvry_mode = APIC_DELIVERY_MODE_FIXED; 1118 irte->vector = vector; 1119 irte->dest_id = IRTE_DEST(dest); 1120 irte->redir_hint = 1; 1121 } 1122 1123 static void prepare_irte_posted(struct irte *irte) 1124 { 1125 memset(irte, 0, sizeof(*irte)); 1126 1127 irte->present = 1; 1128 irte->p_pst = 1; 1129 } 1130 1131 struct irq_remap_ops intel_irq_remap_ops = { 1132 .prepare = intel_prepare_irq_remapping, 1133 .enable = intel_enable_irq_remapping, 1134 .disable = disable_irq_remapping, 1135 .reenable = reenable_irq_remapping, 1136 .enable_faulting = enable_drhd_fault_handling, 1137 }; 1138 1139 #ifdef CONFIG_X86_POSTED_MSI 1140 1141 static phys_addr_t get_pi_desc_addr(struct irq_data *irqd) 1142 { 1143 int cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd)); 1144 1145 if (WARN_ON(cpu >= nr_cpu_ids)) 1146 return 0; 1147 1148 return __pa(per_cpu_ptr(&posted_msi_pi_desc, cpu)); 1149 } 1150 1151 static void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) 1152 { 1153 struct intel_ir_data *ir_data = irqd->chip_data; 1154 struct irte *irte = &ir_data->irte_entry; 1155 struct irte irte_pi; 1156 u64 pid_addr; 1157 1158 pid_addr = get_pi_desc_addr(irqd); 1159 1160 if (!pid_addr) { 1161 pr_warn("Failed to setup IRQ %d for posted mode", irqd->irq); 1162 return; 1163 } 1164 1165 memset(&irte_pi, 0, sizeof(irte_pi)); 1166 1167 /* The shared IRTE already be set up as posted during alloc_irte */ 1168 dmar_copy_shared_irte(&irte_pi, irte); 1169 1170 irte_pi.pda_l = (pid_addr >> (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1171 irte_pi.pda_h = (pid_addr >> 32) & ~(-1UL << PDA_HIGH_BIT); 1172 1173 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1174 } 1175 1176 #else 1177 static inline void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) {} 1178 #endif 1179 1180 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force) 1181 { 1182 struct intel_ir_data *ir_data = irqd->chip_data; 1183 struct irte *irte = &ir_data->irte_entry; 1184 struct irq_cfg *cfg = irqd_cfg(irqd); 1185 1186 /* 1187 * Atomically updates the IRTE with the new destination, vector 1188 * and flushes the interrupt entry cache. 1189 */ 1190 irte->vector = cfg->vector; 1191 irte->dest_id = IRTE_DEST(cfg->dest_apicid); 1192 1193 if (ir_data->irq_2_iommu.posted_msi) 1194 intel_ir_reconfigure_irte_posted(irqd); 1195 else if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING) 1196 modify_irte(&ir_data->irq_2_iommu, irte); 1197 } 1198 1199 /* 1200 * Migrate the IO-APIC irq in the presence of intr-remapping. 1201 * 1202 * For both level and edge triggered, irq migration is a simple atomic 1203 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 1204 * 1205 * For level triggered, we eliminate the io-apic RTE modification (with the 1206 * updated vector information), by using a virtual vector (io-apic pin number). 1207 * Real vector that is used for interrupting cpu will be coming from 1208 * the interrupt-remapping table entry. 1209 * 1210 * As the migration is a simple atomic update of IRTE, the same mechanism 1211 * is used to migrate MSI irq's in the presence of interrupt-remapping. 1212 */ 1213 static int 1214 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, 1215 bool force) 1216 { 1217 struct irq_data *parent = data->parent_data; 1218 struct irq_cfg *cfg = irqd_cfg(data); 1219 int ret; 1220 1221 ret = parent->chip->irq_set_affinity(parent, mask, force); 1222 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 1223 return ret; 1224 1225 intel_ir_reconfigure_irte(data, false); 1226 /* 1227 * After this point, all the interrupts will start arriving 1228 * at the new destination. So, time to cleanup the previous 1229 * vector allocation. 1230 */ 1231 vector_schedule_cleanup(cfg); 1232 1233 return IRQ_SET_MASK_OK_DONE; 1234 } 1235 1236 static void intel_ir_compose_msi_msg(struct irq_data *irq_data, 1237 struct msi_msg *msg) 1238 { 1239 struct intel_ir_data *ir_data = irq_data->chip_data; 1240 1241 *msg = ir_data->msi_entry; 1242 } 1243 1244 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info) 1245 { 1246 struct intel_ir_data *ir_data = data->chip_data; 1247 struct vcpu_data *vcpu_pi_info = info; 1248 1249 /* stop posting interrupts, back to the default mode */ 1250 if (!vcpu_pi_info) { 1251 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry); 1252 } else { 1253 struct irte irte_pi; 1254 1255 /* 1256 * We are not caching the posted interrupt entry. We 1257 * copy the data from the remapped entry and modify 1258 * the fields which are relevant for posted mode. The 1259 * cached remapped entry is used for switching back to 1260 * remapped mode. 1261 */ 1262 memset(&irte_pi, 0, sizeof(irte_pi)); 1263 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry); 1264 1265 /* Update the posted mode fields */ 1266 irte_pi.p_pst = 1; 1267 irte_pi.p_urgent = 0; 1268 irte_pi.p_vector = vcpu_pi_info->vector; 1269 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >> 1270 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1271 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) & 1272 ~(-1UL << PDA_HIGH_BIT); 1273 1274 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1275 } 1276 1277 return 0; 1278 } 1279 1280 static struct irq_chip intel_ir_chip = { 1281 .name = "INTEL-IR", 1282 .irq_ack = apic_ack_irq, 1283 .irq_set_affinity = intel_ir_set_affinity, 1284 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1285 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1286 }; 1287 1288 /* 1289 * With posted MSIs, all vectors are multiplexed into a single notification 1290 * vector. Devices MSIs are then dispatched in a demux loop where 1291 * EOIs can be coalesced as well. 1292 * 1293 * "INTEL-IR-POST" IRQ chip does not do EOI on ACK, thus the dummy irq_ack() 1294 * function. Instead EOI is performed by the posted interrupt notification 1295 * handler. 1296 * 1297 * For the example below, 3 MSIs are coalesced into one CPU notification. Only 1298 * one apic_eoi() is needed. 1299 * 1300 * __sysvec_posted_msi_notification() 1301 * irq_enter(); 1302 * handle_edge_irq() 1303 * irq_chip_ack_parent() 1304 * dummy(); // No EOI 1305 * handle_irq_event() 1306 * driver_handler() 1307 * handle_edge_irq() 1308 * irq_chip_ack_parent() 1309 * dummy(); // No EOI 1310 * handle_irq_event() 1311 * driver_handler() 1312 * handle_edge_irq() 1313 * irq_chip_ack_parent() 1314 * dummy(); // No EOI 1315 * handle_irq_event() 1316 * driver_handler() 1317 * apic_eoi() 1318 * irq_exit() 1319 */ 1320 1321 static void dummy_ack(struct irq_data *d) { } 1322 1323 static struct irq_chip intel_ir_chip_post_msi = { 1324 .name = "INTEL-IR-POST", 1325 .irq_ack = dummy_ack, 1326 .irq_set_affinity = intel_ir_set_affinity, 1327 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1328 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1329 }; 1330 1331 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle) 1332 { 1333 memset(msg, 0, sizeof(*msg)); 1334 1335 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW; 1336 msg->arch_addr_lo.dmar_subhandle_valid = true; 1337 msg->arch_addr_lo.dmar_format = true; 1338 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF; 1339 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000); 1340 1341 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 1342 1343 msg->arch_data.dmar_subhandle = subhandle; 1344 } 1345 1346 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data, 1347 struct irq_cfg *irq_cfg, 1348 struct irq_alloc_info *info, 1349 int index, int sub_handle) 1350 { 1351 struct irte *irte = &data->irte_entry; 1352 1353 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid); 1354 1355 switch (info->type) { 1356 case X86_IRQ_ALLOC_TYPE_IOAPIC: 1357 /* Set source-id of interrupt request */ 1358 set_ioapic_sid(irte, info->devid); 1359 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n", 1360 info->devid, irte->present, irte->fpd, 1361 irte->dst_mode, irte->redir_hint, 1362 irte->trigger_mode, irte->dlvry_mode, 1363 irte->avail, irte->vector, irte->dest_id, 1364 irte->sid, irte->sq, irte->svt); 1365 sub_handle = info->ioapic.pin; 1366 break; 1367 case X86_IRQ_ALLOC_TYPE_HPET: 1368 set_hpet_sid(irte, info->devid); 1369 break; 1370 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 1371 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 1372 if (posted_msi_supported()) { 1373 prepare_irte_posted(irte); 1374 data->irq_2_iommu.posted_msi = 1; 1375 } 1376 1377 set_msi_sid(irte, 1378 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc))); 1379 break; 1380 default: 1381 BUG_ON(1); 1382 break; 1383 } 1384 fill_msi_msg(&data->msi_entry, index, sub_handle); 1385 } 1386 1387 static void intel_free_irq_resources(struct irq_domain *domain, 1388 unsigned int virq, unsigned int nr_irqs) 1389 { 1390 struct irq_data *irq_data; 1391 struct intel_ir_data *data; 1392 struct irq_2_iommu *irq_iommu; 1393 unsigned long flags; 1394 int i; 1395 for (i = 0; i < nr_irqs; i++) { 1396 irq_data = irq_domain_get_irq_data(domain, virq + i); 1397 if (irq_data && irq_data->chip_data) { 1398 data = irq_data->chip_data; 1399 irq_iommu = &data->irq_2_iommu; 1400 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 1401 clear_entries(irq_iommu); 1402 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 1403 irq_domain_reset_irq_data(irq_data); 1404 kfree(data); 1405 } 1406 } 1407 } 1408 1409 static int intel_irq_remapping_alloc(struct irq_domain *domain, 1410 unsigned int virq, unsigned int nr_irqs, 1411 void *arg) 1412 { 1413 struct intel_iommu *iommu = domain->host_data; 1414 struct irq_alloc_info *info = arg; 1415 struct intel_ir_data *data, *ird; 1416 struct irq_data *irq_data; 1417 struct irq_cfg *irq_cfg; 1418 int i, ret, index; 1419 1420 if (!info || !iommu) 1421 return -EINVAL; 1422 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI) 1423 return -EINVAL; 1424 1425 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 1426 if (ret < 0) 1427 return ret; 1428 1429 ret = -ENOMEM; 1430 data = kzalloc(sizeof(*data), GFP_KERNEL); 1431 if (!data) 1432 goto out_free_parent; 1433 1434 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs); 1435 if (index < 0) { 1436 pr_warn("Failed to allocate IRTE\n"); 1437 kfree(data); 1438 goto out_free_parent; 1439 } 1440 1441 for (i = 0; i < nr_irqs; i++) { 1442 irq_data = irq_domain_get_irq_data(domain, virq + i); 1443 irq_cfg = irqd_cfg(irq_data); 1444 if (!irq_data || !irq_cfg) { 1445 if (!i) 1446 kfree(data); 1447 ret = -EINVAL; 1448 goto out_free_data; 1449 } 1450 1451 if (i > 0) { 1452 ird = kzalloc(sizeof(*ird), GFP_KERNEL); 1453 if (!ird) 1454 goto out_free_data; 1455 /* Initialize the common data */ 1456 ird->irq_2_iommu = data->irq_2_iommu; 1457 ird->irq_2_iommu.sub_handle = i; 1458 } else { 1459 ird = data; 1460 } 1461 1462 irq_data->hwirq = (index << 16) + i; 1463 irq_data->chip_data = ird; 1464 if (posted_msi_supported() && 1465 ((info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) || 1466 (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX))) 1467 irq_data->chip = &intel_ir_chip_post_msi; 1468 else 1469 irq_data->chip = &intel_ir_chip; 1470 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i); 1471 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 1472 } 1473 return 0; 1474 1475 out_free_data: 1476 intel_free_irq_resources(domain, virq, i); 1477 out_free_parent: 1478 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1479 return ret; 1480 } 1481 1482 static void intel_irq_remapping_free(struct irq_domain *domain, 1483 unsigned int virq, unsigned int nr_irqs) 1484 { 1485 intel_free_irq_resources(domain, virq, nr_irqs); 1486 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1487 } 1488 1489 static int intel_irq_remapping_activate(struct irq_domain *domain, 1490 struct irq_data *irq_data, bool reserve) 1491 { 1492 intel_ir_reconfigure_irte(irq_data, true); 1493 return 0; 1494 } 1495 1496 static void intel_irq_remapping_deactivate(struct irq_domain *domain, 1497 struct irq_data *irq_data) 1498 { 1499 struct intel_ir_data *data = irq_data->chip_data; 1500 struct irte entry; 1501 1502 memset(&entry, 0, sizeof(entry)); 1503 modify_irte(&data->irq_2_iommu, &entry); 1504 } 1505 1506 static int intel_irq_remapping_select(struct irq_domain *d, 1507 struct irq_fwspec *fwspec, 1508 enum irq_domain_bus_token bus_token) 1509 { 1510 struct intel_iommu *iommu = NULL; 1511 1512 if (x86_fwspec_is_ioapic(fwspec)) 1513 iommu = map_ioapic_to_iommu(fwspec->param[0]); 1514 else if (x86_fwspec_is_hpet(fwspec)) 1515 iommu = map_hpet_to_iommu(fwspec->param[0]); 1516 1517 return iommu && d == iommu->ir_domain; 1518 } 1519 1520 static const struct irq_domain_ops intel_ir_domain_ops = { 1521 .select = intel_irq_remapping_select, 1522 .alloc = intel_irq_remapping_alloc, 1523 .free = intel_irq_remapping_free, 1524 .activate = intel_irq_remapping_activate, 1525 .deactivate = intel_irq_remapping_deactivate, 1526 }; 1527 1528 static const struct msi_parent_ops dmar_msi_parent_ops = { 1529 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | 1530 MSI_FLAG_MULTI_PCI_MSI | 1531 MSI_FLAG_PCI_IMS, 1532 .prefix = "IR-", 1533 .init_dev_msi_info = msi_parent_init_dev_msi_info, 1534 }; 1535 1536 static const struct msi_parent_ops virt_dmar_msi_parent_ops = { 1537 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | 1538 MSI_FLAG_MULTI_PCI_MSI, 1539 .prefix = "vIR-", 1540 .init_dev_msi_info = msi_parent_init_dev_msi_info, 1541 }; 1542 1543 /* 1544 * Support of Interrupt Remapping Unit Hotplug 1545 */ 1546 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu) 1547 { 1548 int ret; 1549 int eim = x2apic_enabled(); 1550 1551 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu); 1552 if (ret) 1553 return ret; 1554 1555 if (eim && !ecap_eim_support(iommu->ecap)) { 1556 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n", 1557 iommu->reg_phys, iommu->ecap); 1558 return -ENODEV; 1559 } 1560 1561 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) { 1562 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n", 1563 iommu->reg_phys); 1564 return -ENODEV; 1565 } 1566 1567 /* TODO: check all IOAPICs are covered by IOMMU */ 1568 1569 /* Setup Interrupt-remapping now. */ 1570 ret = intel_setup_irq_remapping(iommu); 1571 if (ret) { 1572 pr_err("Failed to setup irq remapping for %s\n", 1573 iommu->name); 1574 intel_teardown_irq_remapping(iommu); 1575 ir_remove_ioapic_hpet_scope(iommu); 1576 } else { 1577 iommu_enable_irq_remapping(iommu); 1578 } 1579 1580 return ret; 1581 } 1582 1583 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 1584 { 1585 int ret = 0; 1586 struct intel_iommu *iommu = dmaru->iommu; 1587 1588 if (!irq_remapping_enabled) 1589 return 0; 1590 if (iommu == NULL) 1591 return -EINVAL; 1592 if (!ecap_ir_support(iommu->ecap)) 1593 return 0; 1594 if (irq_remapping_cap(IRQ_POSTING_CAP) && 1595 !cap_pi_support(iommu->cap)) 1596 return -EBUSY; 1597 1598 if (insert) { 1599 if (!iommu->ir_table) 1600 ret = dmar_ir_add(dmaru, iommu); 1601 } else { 1602 if (iommu->ir_table) { 1603 if (!bitmap_empty(iommu->ir_table->bitmap, 1604 INTR_REMAP_TABLE_ENTRIES)) { 1605 ret = -EBUSY; 1606 } else { 1607 iommu_disable_irq_remapping(iommu); 1608 intel_teardown_irq_remapping(iommu); 1609 ir_remove_ioapic_hpet_scope(iommu); 1610 } 1611 } 1612 } 1613 1614 return ret; 1615 } 1616