xref: /linux/drivers/iommu/intel/irq_remapping.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
4 
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/intel-iommu.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
18 #include <asm/apic.h>
19 #include <asm/smp.h>
20 #include <asm/cpu.h>
21 #include <asm/irq_remapping.h>
22 #include <asm/pci-direct.h>
23 
24 #include "../irq_remapping.h"
25 
26 enum irq_mode {
27 	IRQ_REMAPPING,
28 	IRQ_POSTING,
29 };
30 
31 struct ioapic_scope {
32 	struct intel_iommu *iommu;
33 	unsigned int id;
34 	unsigned int bus;	/* PCI bus number */
35 	unsigned int devfn;	/* PCI devfn number */
36 };
37 
38 struct hpet_scope {
39 	struct intel_iommu *iommu;
40 	u8 id;
41 	unsigned int bus;
42 	unsigned int devfn;
43 };
44 
45 struct irq_2_iommu {
46 	struct intel_iommu *iommu;
47 	u16 irte_index;
48 	u16 sub_handle;
49 	u8  irte_mask;
50 	enum irq_mode mode;
51 };
52 
53 struct intel_ir_data {
54 	struct irq_2_iommu			irq_2_iommu;
55 	struct irte				irte_entry;
56 	union {
57 		struct msi_msg			msi_entry;
58 	};
59 };
60 
61 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
62 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
63 
64 static int __read_mostly eim_mode;
65 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
66 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
67 
68 /*
69  * Lock ordering:
70  * ->dmar_global_lock
71  *	->irq_2_ir_lock
72  *		->qi->q_lock
73  *	->iommu->register_lock
74  * Note:
75  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
76  * in single-threaded environment with interrupt disabled, so no need to tabke
77  * the dmar_global_lock.
78  */
79 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
80 static const struct irq_domain_ops intel_ir_domain_ops;
81 
82 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
83 static int __init parse_ioapics_under_ir(void);
84 
85 static bool ir_pre_enabled(struct intel_iommu *iommu)
86 {
87 	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
88 }
89 
90 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
91 {
92 	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
93 }
94 
95 static void init_ir_status(struct intel_iommu *iommu)
96 {
97 	u32 gsts;
98 
99 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
100 	if (gsts & DMA_GSTS_IRES)
101 		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
102 }
103 
104 static int alloc_irte(struct intel_iommu *iommu,
105 		      struct irq_2_iommu *irq_iommu, u16 count)
106 {
107 	struct ir_table *table = iommu->ir_table;
108 	unsigned int mask = 0;
109 	unsigned long flags;
110 	int index;
111 
112 	if (!count || !irq_iommu)
113 		return -1;
114 
115 	if (count > 1) {
116 		count = __roundup_pow_of_two(count);
117 		mask = ilog2(count);
118 	}
119 
120 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
121 		pr_err("Requested mask %x exceeds the max invalidation handle"
122 		       " mask value %Lx\n", mask,
123 		       ecap_max_handle_mask(iommu->ecap));
124 		return -1;
125 	}
126 
127 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
128 	index = bitmap_find_free_region(table->bitmap,
129 					INTR_REMAP_TABLE_ENTRIES, mask);
130 	if (index < 0) {
131 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
132 	} else {
133 		irq_iommu->iommu = iommu;
134 		irq_iommu->irte_index =  index;
135 		irq_iommu->sub_handle = 0;
136 		irq_iommu->irte_mask = mask;
137 		irq_iommu->mode = IRQ_REMAPPING;
138 	}
139 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
140 
141 	return index;
142 }
143 
144 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
145 {
146 	struct qi_desc desc;
147 
148 	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
149 		   | QI_IEC_SELECTIVE;
150 	desc.qw1 = 0;
151 	desc.qw2 = 0;
152 	desc.qw3 = 0;
153 
154 	return qi_submit_sync(iommu, &desc, 1, 0);
155 }
156 
157 static int modify_irte(struct irq_2_iommu *irq_iommu,
158 		       struct irte *irte_modified)
159 {
160 	struct intel_iommu *iommu;
161 	unsigned long flags;
162 	struct irte *irte;
163 	int rc, index;
164 
165 	if (!irq_iommu)
166 		return -1;
167 
168 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
169 
170 	iommu = irq_iommu->iommu;
171 
172 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
173 	irte = &iommu->ir_table->base[index];
174 
175 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
176 	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
177 		bool ret;
178 
179 		ret = cmpxchg_double(&irte->low, &irte->high,
180 				     irte->low, irte->high,
181 				     irte_modified->low, irte_modified->high);
182 		/*
183 		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
184 		 * and it cannot be updated by the hardware or other processors
185 		 * behind us, so the return value of cmpxchg16 should be the
186 		 * same as the old value.
187 		 */
188 		WARN_ON(!ret);
189 	} else
190 #endif
191 	{
192 		set_64bit(&irte->low, irte_modified->low);
193 		set_64bit(&irte->high, irte_modified->high);
194 	}
195 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
196 
197 	rc = qi_flush_iec(iommu, index, 0);
198 
199 	/* Update iommu mode according to the IRTE mode */
200 	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
201 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
202 
203 	return rc;
204 }
205 
206 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
207 {
208 	int i;
209 
210 	for (i = 0; i < MAX_HPET_TBS; i++) {
211 		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
212 			return ir_hpet[i].iommu;
213 	}
214 	return NULL;
215 }
216 
217 static struct intel_iommu *map_ioapic_to_iommu(int apic)
218 {
219 	int i;
220 
221 	for (i = 0; i < MAX_IO_APICS; i++) {
222 		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
223 			return ir_ioapic[i].iommu;
224 	}
225 	return NULL;
226 }
227 
228 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
229 {
230 	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
231 
232 	return drhd ? drhd->iommu->ir_msi_domain : NULL;
233 }
234 
235 static int clear_entries(struct irq_2_iommu *irq_iommu)
236 {
237 	struct irte *start, *entry, *end;
238 	struct intel_iommu *iommu;
239 	int index;
240 
241 	if (irq_iommu->sub_handle)
242 		return 0;
243 
244 	iommu = irq_iommu->iommu;
245 	index = irq_iommu->irte_index;
246 
247 	start = iommu->ir_table->base + index;
248 	end = start + (1 << irq_iommu->irte_mask);
249 
250 	for (entry = start; entry < end; entry++) {
251 		set_64bit(&entry->low, 0);
252 		set_64bit(&entry->high, 0);
253 	}
254 	bitmap_release_region(iommu->ir_table->bitmap, index,
255 			      irq_iommu->irte_mask);
256 
257 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
258 }
259 
260 /*
261  * source validation type
262  */
263 #define SVT_NO_VERIFY		0x0  /* no verification is required */
264 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
265 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
266 
267 /*
268  * source-id qualifier
269  */
270 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
271 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
272 			      * the third least significant bit
273 			      */
274 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
275 			      * the second and third least significant bits
276 			      */
277 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
278 			      * the least three significant bits
279 			      */
280 
281 /*
282  * set SVT, SQ and SID fields of irte to verify
283  * source ids of interrupt requests
284  */
285 static void set_irte_sid(struct irte *irte, unsigned int svt,
286 			 unsigned int sq, unsigned int sid)
287 {
288 	if (disable_sourceid_checking)
289 		svt = SVT_NO_VERIFY;
290 	irte->svt = svt;
291 	irte->sq = sq;
292 	irte->sid = sid;
293 }
294 
295 /*
296  * Set an IRTE to match only the bus number. Interrupt requests that reference
297  * this IRTE must have a requester-id whose bus number is between or equal
298  * to the start_bus and end_bus arguments.
299  */
300 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
301 				unsigned int end_bus)
302 {
303 	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
304 		     (start_bus << 8) | end_bus);
305 }
306 
307 static int set_ioapic_sid(struct irte *irte, int apic)
308 {
309 	int i;
310 	u16 sid = 0;
311 
312 	if (!irte)
313 		return -1;
314 
315 	down_read(&dmar_global_lock);
316 	for (i = 0; i < MAX_IO_APICS; i++) {
317 		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
318 			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
319 			break;
320 		}
321 	}
322 	up_read(&dmar_global_lock);
323 
324 	if (sid == 0) {
325 		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
326 		return -1;
327 	}
328 
329 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
330 
331 	return 0;
332 }
333 
334 static int set_hpet_sid(struct irte *irte, u8 id)
335 {
336 	int i;
337 	u16 sid = 0;
338 
339 	if (!irte)
340 		return -1;
341 
342 	down_read(&dmar_global_lock);
343 	for (i = 0; i < MAX_HPET_TBS; i++) {
344 		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
345 			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
346 			break;
347 		}
348 	}
349 	up_read(&dmar_global_lock);
350 
351 	if (sid == 0) {
352 		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
353 		return -1;
354 	}
355 
356 	/*
357 	 * Should really use SQ_ALL_16. Some platforms are broken.
358 	 * While we figure out the right quirks for these broken platforms, use
359 	 * SQ_13_IGNORE_3 for now.
360 	 */
361 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
362 
363 	return 0;
364 }
365 
366 struct set_msi_sid_data {
367 	struct pci_dev *pdev;
368 	u16 alias;
369 	int count;
370 	int busmatch_count;
371 };
372 
373 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
374 {
375 	struct set_msi_sid_data *data = opaque;
376 
377 	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
378 		data->busmatch_count++;
379 
380 	data->pdev = pdev;
381 	data->alias = alias;
382 	data->count++;
383 
384 	return 0;
385 }
386 
387 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
388 {
389 	struct set_msi_sid_data data;
390 
391 	if (!irte || !dev)
392 		return -1;
393 
394 	data.count = 0;
395 	data.busmatch_count = 0;
396 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
397 
398 	/*
399 	 * DMA alias provides us with a PCI device and alias.  The only case
400 	 * where the it will return an alias on a different bus than the
401 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
402 	 * the subordinate bus.  In this case we can only verify the bus.
403 	 *
404 	 * If there are multiple aliases, all with the same bus number,
405 	 * then all we can do is verify the bus. This is typical in NTB
406 	 * hardware which use proxy IDs where the device will generate traffic
407 	 * from multiple devfn numbers on the same bus.
408 	 *
409 	 * If the alias device is on a different bus than our source device
410 	 * then we have a topology based alias, use it.
411 	 *
412 	 * Otherwise, the alias is for a device DMA quirk and we cannot
413 	 * assume that MSI uses the same requester ID.  Therefore use the
414 	 * original device.
415 	 */
416 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
417 		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
418 				    dev->bus->number);
419 	else if (data.count >= 2 && data.busmatch_count == data.count)
420 		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
421 	else if (data.pdev->bus->number != dev->bus->number)
422 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
423 	else
424 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
425 			     pci_dev_id(dev));
426 
427 	return 0;
428 }
429 
430 static int iommu_load_old_irte(struct intel_iommu *iommu)
431 {
432 	struct irte *old_ir_table;
433 	phys_addr_t irt_phys;
434 	unsigned int i;
435 	size_t size;
436 	u64 irta;
437 
438 	/* Check whether the old ir-table has the same size as ours */
439 	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
440 	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
441 	     != INTR_REMAP_TABLE_REG_SIZE)
442 		return -EINVAL;
443 
444 	irt_phys = irta & VTD_PAGE_MASK;
445 	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
446 
447 	/* Map the old IR table */
448 	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
449 	if (!old_ir_table)
450 		return -ENOMEM;
451 
452 	/* Copy data over */
453 	memcpy(iommu->ir_table->base, old_ir_table, size);
454 
455 	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
456 
457 	/*
458 	 * Now check the table for used entries and mark those as
459 	 * allocated in the bitmap
460 	 */
461 	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
462 		if (iommu->ir_table->base[i].present)
463 			bitmap_set(iommu->ir_table->bitmap, i, 1);
464 	}
465 
466 	memunmap(old_ir_table);
467 
468 	return 0;
469 }
470 
471 
472 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
473 {
474 	unsigned long flags;
475 	u64 addr;
476 	u32 sts;
477 
478 	addr = virt_to_phys((void *)iommu->ir_table->base);
479 
480 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
481 
482 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
483 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
484 
485 	/* Set interrupt-remapping table pointer */
486 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
487 
488 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
489 		      readl, (sts & DMA_GSTS_IRTPS), sts);
490 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
491 
492 	/*
493 	 * Global invalidation of interrupt entry cache to make sure the
494 	 * hardware uses the new irq remapping table.
495 	 */
496 	qi_global_iec(iommu);
497 }
498 
499 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
500 {
501 	unsigned long flags;
502 	u32 sts;
503 
504 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
505 
506 	/* Enable interrupt-remapping */
507 	iommu->gcmd |= DMA_GCMD_IRE;
508 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
509 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
510 		      readl, (sts & DMA_GSTS_IRES), sts);
511 
512 	/* Block compatibility-format MSIs */
513 	if (sts & DMA_GSTS_CFIS) {
514 		iommu->gcmd &= ~DMA_GCMD_CFI;
515 		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
516 		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
517 			      readl, !(sts & DMA_GSTS_CFIS), sts);
518 	}
519 
520 	/*
521 	 * With CFI clear in the Global Command register, we should be
522 	 * protected from dangerous (i.e. compatibility) interrupts
523 	 * regardless of x2apic status.  Check just to be sure.
524 	 */
525 	if (sts & DMA_GSTS_CFIS)
526 		WARN(1, KERN_WARNING
527 			"Compatibility-format IRQs enabled despite intr remapping;\n"
528 			"you are vulnerable to IRQ injection.\n");
529 
530 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
531 }
532 
533 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
534 {
535 	struct ir_table *ir_table;
536 	struct fwnode_handle *fn;
537 	unsigned long *bitmap;
538 	struct page *pages;
539 
540 	if (iommu->ir_table)
541 		return 0;
542 
543 	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
544 	if (!ir_table)
545 		return -ENOMEM;
546 
547 	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
548 				 INTR_REMAP_PAGE_ORDER);
549 	if (!pages) {
550 		pr_err("IR%d: failed to allocate pages of order %d\n",
551 		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
552 		goto out_free_table;
553 	}
554 
555 	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
556 	if (bitmap == NULL) {
557 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
558 		goto out_free_pages;
559 	}
560 
561 	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
562 	if (!fn)
563 		goto out_free_bitmap;
564 
565 	iommu->ir_domain =
566 		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
567 					    0, INTR_REMAP_TABLE_ENTRIES,
568 					    fn, &intel_ir_domain_ops,
569 					    iommu);
570 	if (!iommu->ir_domain) {
571 		irq_domain_free_fwnode(fn);
572 		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
573 		goto out_free_bitmap;
574 	}
575 	iommu->ir_msi_domain =
576 		arch_create_remap_msi_irq_domain(iommu->ir_domain,
577 						 "INTEL-IR-MSI",
578 						 iommu->seq_id);
579 
580 	ir_table->base = page_address(pages);
581 	ir_table->bitmap = bitmap;
582 	iommu->ir_table = ir_table;
583 
584 	/*
585 	 * If the queued invalidation is already initialized,
586 	 * shouldn't disable it.
587 	 */
588 	if (!iommu->qi) {
589 		/*
590 		 * Clear previous faults.
591 		 */
592 		dmar_fault(-1, iommu);
593 		dmar_disable_qi(iommu);
594 
595 		if (dmar_enable_qi(iommu)) {
596 			pr_err("Failed to enable queued invalidation\n");
597 			goto out_free_bitmap;
598 		}
599 	}
600 
601 	init_ir_status(iommu);
602 
603 	if (ir_pre_enabled(iommu)) {
604 		if (!is_kdump_kernel()) {
605 			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
606 				iommu->name);
607 			clear_ir_pre_enabled(iommu);
608 			iommu_disable_irq_remapping(iommu);
609 		} else if (iommu_load_old_irte(iommu))
610 			pr_err("Failed to copy IR table for %s from previous kernel\n",
611 			       iommu->name);
612 		else
613 			pr_info("Copied IR table for %s from previous kernel\n",
614 				iommu->name);
615 	}
616 
617 	iommu_set_irq_remapping(iommu, eim_mode);
618 
619 	return 0;
620 
621 out_free_bitmap:
622 	bitmap_free(bitmap);
623 out_free_pages:
624 	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
625 out_free_table:
626 	kfree(ir_table);
627 
628 	iommu->ir_table  = NULL;
629 
630 	return -ENOMEM;
631 }
632 
633 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
634 {
635 	struct fwnode_handle *fn;
636 
637 	if (iommu && iommu->ir_table) {
638 		if (iommu->ir_msi_domain) {
639 			fn = iommu->ir_msi_domain->fwnode;
640 
641 			irq_domain_remove(iommu->ir_msi_domain);
642 			irq_domain_free_fwnode(fn);
643 			iommu->ir_msi_domain = NULL;
644 		}
645 		if (iommu->ir_domain) {
646 			fn = iommu->ir_domain->fwnode;
647 
648 			irq_domain_remove(iommu->ir_domain);
649 			irq_domain_free_fwnode(fn);
650 			iommu->ir_domain = NULL;
651 		}
652 		free_pages((unsigned long)iommu->ir_table->base,
653 			   INTR_REMAP_PAGE_ORDER);
654 		bitmap_free(iommu->ir_table->bitmap);
655 		kfree(iommu->ir_table);
656 		iommu->ir_table = NULL;
657 	}
658 }
659 
660 /*
661  * Disable Interrupt Remapping.
662  */
663 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
664 {
665 	unsigned long flags;
666 	u32 sts;
667 
668 	if (!ecap_ir_support(iommu->ecap))
669 		return;
670 
671 	/*
672 	 * global invalidation of interrupt entry cache before disabling
673 	 * interrupt-remapping.
674 	 */
675 	qi_global_iec(iommu);
676 
677 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
678 
679 	sts = readl(iommu->reg + DMAR_GSTS_REG);
680 	if (!(sts & DMA_GSTS_IRES))
681 		goto end;
682 
683 	iommu->gcmd &= ~DMA_GCMD_IRE;
684 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
685 
686 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
687 		      readl, !(sts & DMA_GSTS_IRES), sts);
688 
689 end:
690 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
691 }
692 
693 static int __init dmar_x2apic_optout(void)
694 {
695 	struct acpi_table_dmar *dmar;
696 	dmar = (struct acpi_table_dmar *)dmar_tbl;
697 	if (!dmar || no_x2apic_optout)
698 		return 0;
699 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
700 }
701 
702 static void __init intel_cleanup_irq_remapping(void)
703 {
704 	struct dmar_drhd_unit *drhd;
705 	struct intel_iommu *iommu;
706 
707 	for_each_iommu(iommu, drhd) {
708 		if (ecap_ir_support(iommu->ecap)) {
709 			iommu_disable_irq_remapping(iommu);
710 			intel_teardown_irq_remapping(iommu);
711 		}
712 	}
713 
714 	if (x2apic_supported())
715 		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
716 }
717 
718 static int __init intel_prepare_irq_remapping(void)
719 {
720 	struct dmar_drhd_unit *drhd;
721 	struct intel_iommu *iommu;
722 	int eim = 0;
723 
724 	if (irq_remap_broken) {
725 		pr_warn("This system BIOS has enabled interrupt remapping\n"
726 			"on a chipset that contains an erratum making that\n"
727 			"feature unstable.  To maintain system stability\n"
728 			"interrupt remapping is being disabled.  Please\n"
729 			"contact your BIOS vendor for an update\n");
730 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
731 		return -ENODEV;
732 	}
733 
734 	if (dmar_table_init() < 0)
735 		return -ENODEV;
736 
737 	if (!dmar_ir_support())
738 		return -ENODEV;
739 
740 	if (parse_ioapics_under_ir()) {
741 		pr_info("Not enabling interrupt remapping\n");
742 		goto error;
743 	}
744 
745 	/* First make sure all IOMMUs support IRQ remapping */
746 	for_each_iommu(iommu, drhd)
747 		if (!ecap_ir_support(iommu->ecap))
748 			goto error;
749 
750 	/* Detect remapping mode: lapic or x2apic */
751 	if (x2apic_supported()) {
752 		eim = !dmar_x2apic_optout();
753 		if (!eim) {
754 			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
755 			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
756 		}
757 	}
758 
759 	for_each_iommu(iommu, drhd) {
760 		if (eim && !ecap_eim_support(iommu->ecap)) {
761 			pr_info("%s does not support EIM\n", iommu->name);
762 			eim = 0;
763 		}
764 	}
765 
766 	eim_mode = eim;
767 	if (eim)
768 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
769 
770 	/* Do the initializations early */
771 	for_each_iommu(iommu, drhd) {
772 		if (intel_setup_irq_remapping(iommu)) {
773 			pr_err("Failed to setup irq remapping for %s\n",
774 			       iommu->name);
775 			goto error;
776 		}
777 	}
778 
779 	return 0;
780 
781 error:
782 	intel_cleanup_irq_remapping();
783 	return -ENODEV;
784 }
785 
786 /*
787  * Set Posted-Interrupts capability.
788  */
789 static inline void set_irq_posting_cap(void)
790 {
791 	struct dmar_drhd_unit *drhd;
792 	struct intel_iommu *iommu;
793 
794 	if (!disable_irq_post) {
795 		/*
796 		 * If IRTE is in posted format, the 'pda' field goes across the
797 		 * 64-bit boundary, we need use cmpxchg16b to atomically update
798 		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
799 		 * is supported. Actually, hardware platforms supporting PI
800 		 * should have X86_FEATURE_CX16 support, this has been confirmed
801 		 * with Intel hardware guys.
802 		 */
803 		if (boot_cpu_has(X86_FEATURE_CX16))
804 			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
805 
806 		for_each_iommu(iommu, drhd)
807 			if (!cap_pi_support(iommu->cap)) {
808 				intel_irq_remap_ops.capability &=
809 						~(1 << IRQ_POSTING_CAP);
810 				break;
811 			}
812 	}
813 }
814 
815 static int __init intel_enable_irq_remapping(void)
816 {
817 	struct dmar_drhd_unit *drhd;
818 	struct intel_iommu *iommu;
819 	bool setup = false;
820 
821 	/*
822 	 * Setup Interrupt-remapping for all the DRHD's now.
823 	 */
824 	for_each_iommu(iommu, drhd) {
825 		if (!ir_pre_enabled(iommu))
826 			iommu_enable_irq_remapping(iommu);
827 		setup = true;
828 	}
829 
830 	if (!setup)
831 		goto error;
832 
833 	irq_remapping_enabled = 1;
834 
835 	set_irq_posting_cap();
836 
837 	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
838 
839 	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
840 
841 error:
842 	intel_cleanup_irq_remapping();
843 	return -1;
844 }
845 
846 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
847 				   struct intel_iommu *iommu,
848 				   struct acpi_dmar_hardware_unit *drhd)
849 {
850 	struct acpi_dmar_pci_path *path;
851 	u8 bus;
852 	int count, free = -1;
853 
854 	bus = scope->bus;
855 	path = (struct acpi_dmar_pci_path *)(scope + 1);
856 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
857 		/ sizeof(struct acpi_dmar_pci_path);
858 
859 	while (--count > 0) {
860 		/*
861 		 * Access PCI directly due to the PCI
862 		 * subsystem isn't initialized yet.
863 		 */
864 		bus = read_pci_config_byte(bus, path->device, path->function,
865 					   PCI_SECONDARY_BUS);
866 		path++;
867 	}
868 
869 	for (count = 0; count < MAX_HPET_TBS; count++) {
870 		if (ir_hpet[count].iommu == iommu &&
871 		    ir_hpet[count].id == scope->enumeration_id)
872 			return 0;
873 		else if (ir_hpet[count].iommu == NULL && free == -1)
874 			free = count;
875 	}
876 	if (free == -1) {
877 		pr_warn("Exceeded Max HPET blocks\n");
878 		return -ENOSPC;
879 	}
880 
881 	ir_hpet[free].iommu = iommu;
882 	ir_hpet[free].id    = scope->enumeration_id;
883 	ir_hpet[free].bus   = bus;
884 	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
885 	pr_info("HPET id %d under DRHD base 0x%Lx\n",
886 		scope->enumeration_id, drhd->address);
887 
888 	return 0;
889 }
890 
891 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
892 				     struct intel_iommu *iommu,
893 				     struct acpi_dmar_hardware_unit *drhd)
894 {
895 	struct acpi_dmar_pci_path *path;
896 	u8 bus;
897 	int count, free = -1;
898 
899 	bus = scope->bus;
900 	path = (struct acpi_dmar_pci_path *)(scope + 1);
901 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
902 		/ sizeof(struct acpi_dmar_pci_path);
903 
904 	while (--count > 0) {
905 		/*
906 		 * Access PCI directly due to the PCI
907 		 * subsystem isn't initialized yet.
908 		 */
909 		bus = read_pci_config_byte(bus, path->device, path->function,
910 					   PCI_SECONDARY_BUS);
911 		path++;
912 	}
913 
914 	for (count = 0; count < MAX_IO_APICS; count++) {
915 		if (ir_ioapic[count].iommu == iommu &&
916 		    ir_ioapic[count].id == scope->enumeration_id)
917 			return 0;
918 		else if (ir_ioapic[count].iommu == NULL && free == -1)
919 			free = count;
920 	}
921 	if (free == -1) {
922 		pr_warn("Exceeded Max IO APICS\n");
923 		return -ENOSPC;
924 	}
925 
926 	ir_ioapic[free].bus   = bus;
927 	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
928 	ir_ioapic[free].iommu = iommu;
929 	ir_ioapic[free].id    = scope->enumeration_id;
930 	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
931 		scope->enumeration_id, drhd->address, iommu->seq_id);
932 
933 	return 0;
934 }
935 
936 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
937 				      struct intel_iommu *iommu)
938 {
939 	int ret = 0;
940 	struct acpi_dmar_hardware_unit *drhd;
941 	struct acpi_dmar_device_scope *scope;
942 	void *start, *end;
943 
944 	drhd = (struct acpi_dmar_hardware_unit *)header;
945 	start = (void *)(drhd + 1);
946 	end = ((void *)drhd) + header->length;
947 
948 	while (start < end && ret == 0) {
949 		scope = start;
950 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
951 			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
952 		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
953 			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
954 		start += scope->length;
955 	}
956 
957 	return ret;
958 }
959 
960 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
961 {
962 	int i;
963 
964 	for (i = 0; i < MAX_HPET_TBS; i++)
965 		if (ir_hpet[i].iommu == iommu)
966 			ir_hpet[i].iommu = NULL;
967 
968 	for (i = 0; i < MAX_IO_APICS; i++)
969 		if (ir_ioapic[i].iommu == iommu)
970 			ir_ioapic[i].iommu = NULL;
971 }
972 
973 /*
974  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
975  * hardware unit.
976  */
977 static int __init parse_ioapics_under_ir(void)
978 {
979 	struct dmar_drhd_unit *drhd;
980 	struct intel_iommu *iommu;
981 	bool ir_supported = false;
982 	int ioapic_idx;
983 
984 	for_each_iommu(iommu, drhd) {
985 		int ret;
986 
987 		if (!ecap_ir_support(iommu->ecap))
988 			continue;
989 
990 		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
991 		if (ret)
992 			return ret;
993 
994 		ir_supported = true;
995 	}
996 
997 	if (!ir_supported)
998 		return -ENODEV;
999 
1000 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1001 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
1002 		if (!map_ioapic_to_iommu(ioapic_id)) {
1003 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1004 			       "interrupt remapping will be disabled\n",
1005 			       ioapic_id);
1006 			return -1;
1007 		}
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 static int __init ir_dev_scope_init(void)
1014 {
1015 	int ret;
1016 
1017 	if (!irq_remapping_enabled)
1018 		return 0;
1019 
1020 	down_write(&dmar_global_lock);
1021 	ret = dmar_dev_scope_init();
1022 	up_write(&dmar_global_lock);
1023 
1024 	return ret;
1025 }
1026 rootfs_initcall(ir_dev_scope_init);
1027 
1028 static void disable_irq_remapping(void)
1029 {
1030 	struct dmar_drhd_unit *drhd;
1031 	struct intel_iommu *iommu = NULL;
1032 
1033 	/*
1034 	 * Disable Interrupt-remapping for all the DRHD's now.
1035 	 */
1036 	for_each_iommu(iommu, drhd) {
1037 		if (!ecap_ir_support(iommu->ecap))
1038 			continue;
1039 
1040 		iommu_disable_irq_remapping(iommu);
1041 	}
1042 
1043 	/*
1044 	 * Clear Posted-Interrupts capability.
1045 	 */
1046 	if (!disable_irq_post)
1047 		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1048 }
1049 
1050 static int reenable_irq_remapping(int eim)
1051 {
1052 	struct dmar_drhd_unit *drhd;
1053 	bool setup = false;
1054 	struct intel_iommu *iommu = NULL;
1055 
1056 	for_each_iommu(iommu, drhd)
1057 		if (iommu->qi)
1058 			dmar_reenable_qi(iommu);
1059 
1060 	/*
1061 	 * Setup Interrupt-remapping for all the DRHD's now.
1062 	 */
1063 	for_each_iommu(iommu, drhd) {
1064 		if (!ecap_ir_support(iommu->ecap))
1065 			continue;
1066 
1067 		/* Set up interrupt remapping for iommu.*/
1068 		iommu_set_irq_remapping(iommu, eim);
1069 		iommu_enable_irq_remapping(iommu);
1070 		setup = true;
1071 	}
1072 
1073 	if (!setup)
1074 		goto error;
1075 
1076 	set_irq_posting_cap();
1077 
1078 	return 0;
1079 
1080 error:
1081 	/*
1082 	 * handle error condition gracefully here!
1083 	 */
1084 	return -1;
1085 }
1086 
1087 /*
1088  * Store the MSI remapping domain pointer in the device if enabled.
1089  *
1090  * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1091  * remapping is disabled. Only update the pointer if the device is not
1092  * already handled by a non default PCI/MSI interrupt domain. This protects
1093  * e.g. VMD devices.
1094  */
1095 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1096 {
1097 	if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev))
1098 		return;
1099 
1100 	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1101 }
1102 
1103 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1104 {
1105 	memset(irte, 0, sizeof(*irte));
1106 
1107 	irte->present = 1;
1108 	irte->dst_mode = apic->dest_mode_logical;
1109 	/*
1110 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1111 	 * actual level or edge trigger will be setup in the IO-APIC
1112 	 * RTE. This will help simplify level triggered irq migration.
1113 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1114 	 * irq migration in the presence of interrupt-remapping.
1115 	*/
1116 	irte->trigger_mode = 0;
1117 	irte->dlvry_mode = apic->delivery_mode;
1118 	irte->vector = vector;
1119 	irte->dest_id = IRTE_DEST(dest);
1120 	irte->redir_hint = 1;
1121 }
1122 
1123 struct irq_remap_ops intel_irq_remap_ops = {
1124 	.prepare		= intel_prepare_irq_remapping,
1125 	.enable			= intel_enable_irq_remapping,
1126 	.disable		= disable_irq_remapping,
1127 	.reenable		= reenable_irq_remapping,
1128 	.enable_faulting	= enable_drhd_fault_handling,
1129 };
1130 
1131 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1132 {
1133 	struct intel_ir_data *ir_data = irqd->chip_data;
1134 	struct irte *irte = &ir_data->irte_entry;
1135 	struct irq_cfg *cfg = irqd_cfg(irqd);
1136 
1137 	/*
1138 	 * Atomically updates the IRTE with the new destination, vector
1139 	 * and flushes the interrupt entry cache.
1140 	 */
1141 	irte->vector = cfg->vector;
1142 	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1143 
1144 	/* Update the hardware only if the interrupt is in remapped mode. */
1145 	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1146 		modify_irte(&ir_data->irq_2_iommu, irte);
1147 }
1148 
1149 /*
1150  * Migrate the IO-APIC irq in the presence of intr-remapping.
1151  *
1152  * For both level and edge triggered, irq migration is a simple atomic
1153  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1154  *
1155  * For level triggered, we eliminate the io-apic RTE modification (with the
1156  * updated vector information), by using a virtual vector (io-apic pin number).
1157  * Real vector that is used for interrupting cpu will be coming from
1158  * the interrupt-remapping table entry.
1159  *
1160  * As the migration is a simple atomic update of IRTE, the same mechanism
1161  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1162  */
1163 static int
1164 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1165 		      bool force)
1166 {
1167 	struct irq_data *parent = data->parent_data;
1168 	struct irq_cfg *cfg = irqd_cfg(data);
1169 	int ret;
1170 
1171 	ret = parent->chip->irq_set_affinity(parent, mask, force);
1172 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1173 		return ret;
1174 
1175 	intel_ir_reconfigure_irte(data, false);
1176 	/*
1177 	 * After this point, all the interrupts will start arriving
1178 	 * at the new destination. So, time to cleanup the previous
1179 	 * vector allocation.
1180 	 */
1181 	send_cleanup_vector(cfg);
1182 
1183 	return IRQ_SET_MASK_OK_DONE;
1184 }
1185 
1186 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1187 				     struct msi_msg *msg)
1188 {
1189 	struct intel_ir_data *ir_data = irq_data->chip_data;
1190 
1191 	*msg = ir_data->msi_entry;
1192 }
1193 
1194 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1195 {
1196 	struct intel_ir_data *ir_data = data->chip_data;
1197 	struct vcpu_data *vcpu_pi_info = info;
1198 
1199 	/* stop posting interrupts, back to remapping mode */
1200 	if (!vcpu_pi_info) {
1201 		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1202 	} else {
1203 		struct irte irte_pi;
1204 
1205 		/*
1206 		 * We are not caching the posted interrupt entry. We
1207 		 * copy the data from the remapped entry and modify
1208 		 * the fields which are relevant for posted mode. The
1209 		 * cached remapped entry is used for switching back to
1210 		 * remapped mode.
1211 		 */
1212 		memset(&irte_pi, 0, sizeof(irte_pi));
1213 		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1214 
1215 		/* Update the posted mode fields */
1216 		irte_pi.p_pst = 1;
1217 		irte_pi.p_urgent = 0;
1218 		irte_pi.p_vector = vcpu_pi_info->vector;
1219 		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1220 				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1221 		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1222 				~(-1UL << PDA_HIGH_BIT);
1223 
1224 		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static struct irq_chip intel_ir_chip = {
1231 	.name			= "INTEL-IR",
1232 	.irq_ack		= apic_ack_irq,
1233 	.irq_set_affinity	= intel_ir_set_affinity,
1234 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1235 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1236 };
1237 
1238 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1239 {
1240 	memset(msg, 0, sizeof(*msg));
1241 
1242 	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1243 	msg->arch_addr_lo.dmar_subhandle_valid = true;
1244 	msg->arch_addr_lo.dmar_format = true;
1245 	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1246 	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1247 
1248 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1249 
1250 	msg->arch_data.dmar_subhandle = subhandle;
1251 }
1252 
1253 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1254 					     struct irq_cfg *irq_cfg,
1255 					     struct irq_alloc_info *info,
1256 					     int index, int sub_handle)
1257 {
1258 	struct irte *irte = &data->irte_entry;
1259 
1260 	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1261 
1262 	switch (info->type) {
1263 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1264 		/* Set source-id of interrupt request */
1265 		set_ioapic_sid(irte, info->devid);
1266 		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1267 			info->devid, irte->present, irte->fpd,
1268 			irte->dst_mode, irte->redir_hint,
1269 			irte->trigger_mode, irte->dlvry_mode,
1270 			irte->avail, irte->vector, irte->dest_id,
1271 			irte->sid, irte->sq, irte->svt);
1272 		sub_handle = info->ioapic.pin;
1273 		break;
1274 	case X86_IRQ_ALLOC_TYPE_HPET:
1275 		set_hpet_sid(irte, info->devid);
1276 		break;
1277 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1278 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1279 		set_msi_sid(irte, msi_desc_to_pci_dev(info->desc));
1280 		break;
1281 	default:
1282 		BUG_ON(1);
1283 		break;
1284 	}
1285 	fill_msi_msg(&data->msi_entry, index, sub_handle);
1286 }
1287 
1288 static void intel_free_irq_resources(struct irq_domain *domain,
1289 				     unsigned int virq, unsigned int nr_irqs)
1290 {
1291 	struct irq_data *irq_data;
1292 	struct intel_ir_data *data;
1293 	struct irq_2_iommu *irq_iommu;
1294 	unsigned long flags;
1295 	int i;
1296 	for (i = 0; i < nr_irqs; i++) {
1297 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1298 		if (irq_data && irq_data->chip_data) {
1299 			data = irq_data->chip_data;
1300 			irq_iommu = &data->irq_2_iommu;
1301 			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1302 			clear_entries(irq_iommu);
1303 			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1304 			irq_domain_reset_irq_data(irq_data);
1305 			kfree(data);
1306 		}
1307 	}
1308 }
1309 
1310 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1311 				     unsigned int virq, unsigned int nr_irqs,
1312 				     void *arg)
1313 {
1314 	struct intel_iommu *iommu = domain->host_data;
1315 	struct irq_alloc_info *info = arg;
1316 	struct intel_ir_data *data, *ird;
1317 	struct irq_data *irq_data;
1318 	struct irq_cfg *irq_cfg;
1319 	int i, ret, index;
1320 
1321 	if (!info || !iommu)
1322 		return -EINVAL;
1323 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
1324 	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
1325 		return -EINVAL;
1326 
1327 	/*
1328 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
1329 	 * to support multiple MSI interrupts.
1330 	 */
1331 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1332 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1333 
1334 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1335 	if (ret < 0)
1336 		return ret;
1337 
1338 	ret = -ENOMEM;
1339 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1340 	if (!data)
1341 		goto out_free_parent;
1342 
1343 	down_read(&dmar_global_lock);
1344 	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1345 	up_read(&dmar_global_lock);
1346 	if (index < 0) {
1347 		pr_warn("Failed to allocate IRTE\n");
1348 		kfree(data);
1349 		goto out_free_parent;
1350 	}
1351 
1352 	for (i = 0; i < nr_irqs; i++) {
1353 		irq_data = irq_domain_get_irq_data(domain, virq + i);
1354 		irq_cfg = irqd_cfg(irq_data);
1355 		if (!irq_data || !irq_cfg) {
1356 			if (!i)
1357 				kfree(data);
1358 			ret = -EINVAL;
1359 			goto out_free_data;
1360 		}
1361 
1362 		if (i > 0) {
1363 			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1364 			if (!ird)
1365 				goto out_free_data;
1366 			/* Initialize the common data */
1367 			ird->irq_2_iommu = data->irq_2_iommu;
1368 			ird->irq_2_iommu.sub_handle = i;
1369 		} else {
1370 			ird = data;
1371 		}
1372 
1373 		irq_data->hwirq = (index << 16) + i;
1374 		irq_data->chip_data = ird;
1375 		irq_data->chip = &intel_ir_chip;
1376 		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1377 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1378 	}
1379 	return 0;
1380 
1381 out_free_data:
1382 	intel_free_irq_resources(domain, virq, i);
1383 out_free_parent:
1384 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1385 	return ret;
1386 }
1387 
1388 static void intel_irq_remapping_free(struct irq_domain *domain,
1389 				     unsigned int virq, unsigned int nr_irqs)
1390 {
1391 	intel_free_irq_resources(domain, virq, nr_irqs);
1392 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1393 }
1394 
1395 static int intel_irq_remapping_activate(struct irq_domain *domain,
1396 					struct irq_data *irq_data, bool reserve)
1397 {
1398 	intel_ir_reconfigure_irte(irq_data, true);
1399 	return 0;
1400 }
1401 
1402 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1403 					   struct irq_data *irq_data)
1404 {
1405 	struct intel_ir_data *data = irq_data->chip_data;
1406 	struct irte entry;
1407 
1408 	memset(&entry, 0, sizeof(entry));
1409 	modify_irte(&data->irq_2_iommu, &entry);
1410 }
1411 
1412 static int intel_irq_remapping_select(struct irq_domain *d,
1413 				      struct irq_fwspec *fwspec,
1414 				      enum irq_domain_bus_token bus_token)
1415 {
1416 	struct intel_iommu *iommu = NULL;
1417 
1418 	if (x86_fwspec_is_ioapic(fwspec))
1419 		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1420 	else if (x86_fwspec_is_hpet(fwspec))
1421 		iommu = map_hpet_to_iommu(fwspec->param[0]);
1422 
1423 	return iommu && d == iommu->ir_domain;
1424 }
1425 
1426 static const struct irq_domain_ops intel_ir_domain_ops = {
1427 	.select = intel_irq_remapping_select,
1428 	.alloc = intel_irq_remapping_alloc,
1429 	.free = intel_irq_remapping_free,
1430 	.activate = intel_irq_remapping_activate,
1431 	.deactivate = intel_irq_remapping_deactivate,
1432 };
1433 
1434 /*
1435  * Support of Interrupt Remapping Unit Hotplug
1436  */
1437 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1438 {
1439 	int ret;
1440 	int eim = x2apic_enabled();
1441 
1442 	if (eim && !ecap_eim_support(iommu->ecap)) {
1443 		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1444 			iommu->reg_phys, iommu->ecap);
1445 		return -ENODEV;
1446 	}
1447 
1448 	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1449 		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1450 			iommu->reg_phys);
1451 		return -ENODEV;
1452 	}
1453 
1454 	/* TODO: check all IOAPICs are covered by IOMMU */
1455 
1456 	/* Setup Interrupt-remapping now. */
1457 	ret = intel_setup_irq_remapping(iommu);
1458 	if (ret) {
1459 		pr_err("Failed to setup irq remapping for %s\n",
1460 		       iommu->name);
1461 		intel_teardown_irq_remapping(iommu);
1462 		ir_remove_ioapic_hpet_scope(iommu);
1463 	} else {
1464 		iommu_enable_irq_remapping(iommu);
1465 	}
1466 
1467 	return ret;
1468 }
1469 
1470 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1471 {
1472 	int ret = 0;
1473 	struct intel_iommu *iommu = dmaru->iommu;
1474 
1475 	if (!irq_remapping_enabled)
1476 		return 0;
1477 	if (iommu == NULL)
1478 		return -EINVAL;
1479 	if (!ecap_ir_support(iommu->ecap))
1480 		return 0;
1481 	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1482 	    !cap_pi_support(iommu->cap))
1483 		return -EBUSY;
1484 
1485 	if (insert) {
1486 		if (!iommu->ir_table)
1487 			ret = dmar_ir_add(dmaru, iommu);
1488 	} else {
1489 		if (iommu->ir_table) {
1490 			if (!bitmap_empty(iommu->ir_table->bitmap,
1491 					  INTR_REMAP_TABLE_ENTRIES)) {
1492 				ret = -EBUSY;
1493 			} else {
1494 				iommu_disable_irq_remapping(iommu);
1495 				intel_teardown_irq_remapping(iommu);
1496 				ir_remove_ioapic_hpet_scope(iommu);
1497 			}
1498 		}
1499 	}
1500 
1501 	return ret;
1502 }
1503