1 // SPDX-License-Identifier: GPL-2.0 2 3 #define pr_fmt(fmt) "DMAR-IR: " fmt 4 5 #include <linux/interrupt.h> 6 #include <linux/dmar.h> 7 #include <linux/spinlock.h> 8 #include <linux/slab.h> 9 #include <linux/jiffies.h> 10 #include <linux/hpet.h> 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/acpi.h> 14 #include <linux/irqdomain.h> 15 #include <linux/crash_dump.h> 16 #include <asm/io_apic.h> 17 #include <asm/apic.h> 18 #include <asm/smp.h> 19 #include <asm/cpu.h> 20 #include <asm/irq_remapping.h> 21 #include <asm/pci-direct.h> 22 23 #include "iommu.h" 24 #include "../irq_remapping.h" 25 #include "cap_audit.h" 26 27 enum irq_mode { 28 IRQ_REMAPPING, 29 IRQ_POSTING, 30 }; 31 32 struct ioapic_scope { 33 struct intel_iommu *iommu; 34 unsigned int id; 35 unsigned int bus; /* PCI bus number */ 36 unsigned int devfn; /* PCI devfn number */ 37 }; 38 39 struct hpet_scope { 40 struct intel_iommu *iommu; 41 u8 id; 42 unsigned int bus; 43 unsigned int devfn; 44 }; 45 46 struct irq_2_iommu { 47 struct intel_iommu *iommu; 48 u16 irte_index; 49 u16 sub_handle; 50 u8 irte_mask; 51 enum irq_mode mode; 52 }; 53 54 struct intel_ir_data { 55 struct irq_2_iommu irq_2_iommu; 56 struct irte irte_entry; 57 union { 58 struct msi_msg msi_entry; 59 }; 60 }; 61 62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) 63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8) 64 65 static int __read_mostly eim_mode; 66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; 67 static struct hpet_scope ir_hpet[MAX_HPET_TBS]; 68 69 /* 70 * Lock ordering: 71 * ->dmar_global_lock 72 * ->irq_2_ir_lock 73 * ->qi->q_lock 74 * ->iommu->register_lock 75 * Note: 76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called 77 * in single-threaded environment with interrupt disabled, so no need to tabke 78 * the dmar_global_lock. 79 */ 80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock); 81 static const struct irq_domain_ops intel_ir_domain_ops; 82 83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu); 84 static int __init parse_ioapics_under_ir(void); 85 static const struct msi_parent_ops dmar_msi_parent_ops, virt_dmar_msi_parent_ops; 86 87 static bool ir_pre_enabled(struct intel_iommu *iommu) 88 { 89 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED); 90 } 91 92 static void clear_ir_pre_enabled(struct intel_iommu *iommu) 93 { 94 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 95 } 96 97 static void init_ir_status(struct intel_iommu *iommu) 98 { 99 u32 gsts; 100 101 gsts = readl(iommu->reg + DMAR_GSTS_REG); 102 if (gsts & DMA_GSTS_IRES) 103 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 104 } 105 106 static int alloc_irte(struct intel_iommu *iommu, 107 struct irq_2_iommu *irq_iommu, u16 count) 108 { 109 struct ir_table *table = iommu->ir_table; 110 unsigned int mask = 0; 111 unsigned long flags; 112 int index; 113 114 if (!count || !irq_iommu) 115 return -1; 116 117 if (count > 1) { 118 count = __roundup_pow_of_two(count); 119 mask = ilog2(count); 120 } 121 122 if (mask > ecap_max_handle_mask(iommu->ecap)) { 123 pr_err("Requested mask %x exceeds the max invalidation handle" 124 " mask value %Lx\n", mask, 125 ecap_max_handle_mask(iommu->ecap)); 126 return -1; 127 } 128 129 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 130 index = bitmap_find_free_region(table->bitmap, 131 INTR_REMAP_TABLE_ENTRIES, mask); 132 if (index < 0) { 133 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); 134 } else { 135 irq_iommu->iommu = iommu; 136 irq_iommu->irte_index = index; 137 irq_iommu->sub_handle = 0; 138 irq_iommu->irte_mask = mask; 139 irq_iommu->mode = IRQ_REMAPPING; 140 } 141 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 142 143 return index; 144 } 145 146 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) 147 { 148 struct qi_desc desc; 149 150 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) 151 | QI_IEC_SELECTIVE; 152 desc.qw1 = 0; 153 desc.qw2 = 0; 154 desc.qw3 = 0; 155 156 return qi_submit_sync(iommu, &desc, 1, 0); 157 } 158 159 static int modify_irte(struct irq_2_iommu *irq_iommu, 160 struct irte *irte_modified) 161 { 162 struct intel_iommu *iommu; 163 unsigned long flags; 164 struct irte *irte; 165 int rc, index; 166 167 if (!irq_iommu) 168 return -1; 169 170 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 171 172 iommu = irq_iommu->iommu; 173 174 index = irq_iommu->irte_index + irq_iommu->sub_handle; 175 irte = &iommu->ir_table->base[index]; 176 177 if ((irte->pst == 1) || (irte_modified->pst == 1)) { 178 /* 179 * We use cmpxchg16 to atomically update the 128-bit IRTE, 180 * and it cannot be updated by the hardware or other processors 181 * behind us, so the return value of cmpxchg16 should be the 182 * same as the old value. 183 */ 184 u128 old = irte->irte; 185 WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte)); 186 } else { 187 WRITE_ONCE(irte->low, irte_modified->low); 188 WRITE_ONCE(irte->high, irte_modified->high); 189 } 190 __iommu_flush_cache(iommu, irte, sizeof(*irte)); 191 192 rc = qi_flush_iec(iommu, index, 0); 193 194 /* Update iommu mode according to the IRTE mode */ 195 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING; 196 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 197 198 return rc; 199 } 200 201 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id) 202 { 203 int i; 204 205 for (i = 0; i < MAX_HPET_TBS; i++) { 206 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu) 207 return ir_hpet[i].iommu; 208 } 209 return NULL; 210 } 211 212 static struct intel_iommu *map_ioapic_to_iommu(int apic) 213 { 214 int i; 215 216 for (i = 0; i < MAX_IO_APICS; i++) { 217 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu) 218 return ir_ioapic[i].iommu; 219 } 220 return NULL; 221 } 222 223 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev) 224 { 225 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev); 226 227 return drhd ? drhd->iommu->ir_domain : NULL; 228 } 229 230 static int clear_entries(struct irq_2_iommu *irq_iommu) 231 { 232 struct irte *start, *entry, *end; 233 struct intel_iommu *iommu; 234 int index; 235 236 if (irq_iommu->sub_handle) 237 return 0; 238 239 iommu = irq_iommu->iommu; 240 index = irq_iommu->irte_index; 241 242 start = iommu->ir_table->base + index; 243 end = start + (1 << irq_iommu->irte_mask); 244 245 for (entry = start; entry < end; entry++) { 246 WRITE_ONCE(entry->low, 0); 247 WRITE_ONCE(entry->high, 0); 248 } 249 bitmap_release_region(iommu->ir_table->bitmap, index, 250 irq_iommu->irte_mask); 251 252 return qi_flush_iec(iommu, index, irq_iommu->irte_mask); 253 } 254 255 /* 256 * source validation type 257 */ 258 #define SVT_NO_VERIFY 0x0 /* no verification is required */ 259 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ 260 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ 261 262 /* 263 * source-id qualifier 264 */ 265 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ 266 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore 267 * the third least significant bit 268 */ 269 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore 270 * the second and third least significant bits 271 */ 272 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore 273 * the least three significant bits 274 */ 275 276 /* 277 * set SVT, SQ and SID fields of irte to verify 278 * source ids of interrupt requests 279 */ 280 static void set_irte_sid(struct irte *irte, unsigned int svt, 281 unsigned int sq, unsigned int sid) 282 { 283 if (disable_sourceid_checking) 284 svt = SVT_NO_VERIFY; 285 irte->svt = svt; 286 irte->sq = sq; 287 irte->sid = sid; 288 } 289 290 /* 291 * Set an IRTE to match only the bus number. Interrupt requests that reference 292 * this IRTE must have a requester-id whose bus number is between or equal 293 * to the start_bus and end_bus arguments. 294 */ 295 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus, 296 unsigned int end_bus) 297 { 298 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, 299 (start_bus << 8) | end_bus); 300 } 301 302 static int set_ioapic_sid(struct irte *irte, int apic) 303 { 304 int i; 305 u16 sid = 0; 306 307 if (!irte) 308 return -1; 309 310 for (i = 0; i < MAX_IO_APICS; i++) { 311 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) { 312 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; 313 break; 314 } 315 } 316 317 if (sid == 0) { 318 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic); 319 return -1; 320 } 321 322 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); 323 324 return 0; 325 } 326 327 static int set_hpet_sid(struct irte *irte, u8 id) 328 { 329 int i; 330 u16 sid = 0; 331 332 if (!irte) 333 return -1; 334 335 for (i = 0; i < MAX_HPET_TBS; i++) { 336 if (ir_hpet[i].iommu && ir_hpet[i].id == id) { 337 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; 338 break; 339 } 340 } 341 342 if (sid == 0) { 343 pr_warn("Failed to set source-id of HPET block (%d)\n", id); 344 return -1; 345 } 346 347 /* 348 * Should really use SQ_ALL_16. Some platforms are broken. 349 * While we figure out the right quirks for these broken platforms, use 350 * SQ_13_IGNORE_3 for now. 351 */ 352 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); 353 354 return 0; 355 } 356 357 struct set_msi_sid_data { 358 struct pci_dev *pdev; 359 u16 alias; 360 int count; 361 int busmatch_count; 362 }; 363 364 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) 365 { 366 struct set_msi_sid_data *data = opaque; 367 368 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias)) 369 data->busmatch_count++; 370 371 data->pdev = pdev; 372 data->alias = alias; 373 data->count++; 374 375 return 0; 376 } 377 378 static int set_msi_sid(struct irte *irte, struct pci_dev *dev) 379 { 380 struct set_msi_sid_data data; 381 382 if (!irte || !dev) 383 return -1; 384 385 data.count = 0; 386 data.busmatch_count = 0; 387 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); 388 389 /* 390 * DMA alias provides us with a PCI device and alias. The only case 391 * where the it will return an alias on a different bus than the 392 * device is the case of a PCIe-to-PCI bridge, where the alias is for 393 * the subordinate bus. In this case we can only verify the bus. 394 * 395 * If there are multiple aliases, all with the same bus number, 396 * then all we can do is verify the bus. This is typical in NTB 397 * hardware which use proxy IDs where the device will generate traffic 398 * from multiple devfn numbers on the same bus. 399 * 400 * If the alias device is on a different bus than our source device 401 * then we have a topology based alias, use it. 402 * 403 * Otherwise, the alias is for a device DMA quirk and we cannot 404 * assume that MSI uses the same requester ID. Therefore use the 405 * original device. 406 */ 407 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) 408 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias), 409 dev->bus->number); 410 else if (data.count >= 2 && data.busmatch_count == data.count) 411 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number); 412 else if (data.pdev->bus->number != dev->bus->number) 413 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); 414 else 415 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, 416 pci_dev_id(dev)); 417 418 return 0; 419 } 420 421 static int iommu_load_old_irte(struct intel_iommu *iommu) 422 { 423 struct irte *old_ir_table; 424 phys_addr_t irt_phys; 425 unsigned int i; 426 size_t size; 427 u64 irta; 428 429 /* Check whether the old ir-table has the same size as ours */ 430 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG); 431 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK) 432 != INTR_REMAP_TABLE_REG_SIZE) 433 return -EINVAL; 434 435 irt_phys = irta & VTD_PAGE_MASK; 436 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte); 437 438 /* Map the old IR table */ 439 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB); 440 if (!old_ir_table) 441 return -ENOMEM; 442 443 /* Copy data over */ 444 memcpy(iommu->ir_table->base, old_ir_table, size); 445 446 __iommu_flush_cache(iommu, iommu->ir_table->base, size); 447 448 /* 449 * Now check the table for used entries and mark those as 450 * allocated in the bitmap 451 */ 452 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) { 453 if (iommu->ir_table->base[i].present) 454 bitmap_set(iommu->ir_table->bitmap, i, 1); 455 } 456 457 memunmap(old_ir_table); 458 459 return 0; 460 } 461 462 463 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) 464 { 465 unsigned long flags; 466 u64 addr; 467 u32 sts; 468 469 addr = virt_to_phys((void *)iommu->ir_table->base); 470 471 raw_spin_lock_irqsave(&iommu->register_lock, flags); 472 473 dmar_writeq(iommu->reg + DMAR_IRTA_REG, 474 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); 475 476 /* Set interrupt-remapping table pointer */ 477 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); 478 479 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 480 readl, (sts & DMA_GSTS_IRTPS), sts); 481 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 482 483 /* 484 * Global invalidation of interrupt entry cache to make sure the 485 * hardware uses the new irq remapping table. 486 */ 487 if (!cap_esirtps(iommu->cap)) 488 qi_global_iec(iommu); 489 } 490 491 static void iommu_enable_irq_remapping(struct intel_iommu *iommu) 492 { 493 unsigned long flags; 494 u32 sts; 495 496 raw_spin_lock_irqsave(&iommu->register_lock, flags); 497 498 /* Enable interrupt-remapping */ 499 iommu->gcmd |= DMA_GCMD_IRE; 500 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 501 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 502 readl, (sts & DMA_GSTS_IRES), sts); 503 504 /* Block compatibility-format MSIs */ 505 if (sts & DMA_GSTS_CFIS) { 506 iommu->gcmd &= ~DMA_GCMD_CFI; 507 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 508 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 509 readl, !(sts & DMA_GSTS_CFIS), sts); 510 } 511 512 /* 513 * With CFI clear in the Global Command register, we should be 514 * protected from dangerous (i.e. compatibility) interrupts 515 * regardless of x2apic status. Check just to be sure. 516 */ 517 if (sts & DMA_GSTS_CFIS) 518 WARN(1, KERN_WARNING 519 "Compatibility-format IRQs enabled despite intr remapping;\n" 520 "you are vulnerable to IRQ injection.\n"); 521 522 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 523 } 524 525 static int intel_setup_irq_remapping(struct intel_iommu *iommu) 526 { 527 struct ir_table *ir_table; 528 struct fwnode_handle *fn; 529 unsigned long *bitmap; 530 struct page *pages; 531 532 if (iommu->ir_table) 533 return 0; 534 535 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); 536 if (!ir_table) 537 return -ENOMEM; 538 539 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO, 540 INTR_REMAP_PAGE_ORDER); 541 if (!pages) { 542 pr_err("IR%d: failed to allocate pages of order %d\n", 543 iommu->seq_id, INTR_REMAP_PAGE_ORDER); 544 goto out_free_table; 545 } 546 547 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL); 548 if (bitmap == NULL) { 549 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); 550 goto out_free_pages; 551 } 552 553 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id); 554 if (!fn) 555 goto out_free_bitmap; 556 557 iommu->ir_domain = 558 irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 559 0, INTR_REMAP_TABLE_ENTRIES, 560 fn, &intel_ir_domain_ops, 561 iommu); 562 if (!iommu->ir_domain) { 563 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id); 564 goto out_free_fwnode; 565 } 566 567 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_DMAR); 568 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT | 569 IRQ_DOMAIN_FLAG_ISOLATED_MSI; 570 571 if (cap_caching_mode(iommu->cap)) 572 iommu->ir_domain->msi_parent_ops = &virt_dmar_msi_parent_ops; 573 else 574 iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops; 575 576 ir_table->base = page_address(pages); 577 ir_table->bitmap = bitmap; 578 iommu->ir_table = ir_table; 579 580 /* 581 * If the queued invalidation is already initialized, 582 * shouldn't disable it. 583 */ 584 if (!iommu->qi) { 585 /* 586 * Clear previous faults. 587 */ 588 dmar_fault(-1, iommu); 589 dmar_disable_qi(iommu); 590 591 if (dmar_enable_qi(iommu)) { 592 pr_err("Failed to enable queued invalidation\n"); 593 goto out_free_ir_domain; 594 } 595 } 596 597 init_ir_status(iommu); 598 599 if (ir_pre_enabled(iommu)) { 600 if (!is_kdump_kernel()) { 601 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n", 602 iommu->name); 603 clear_ir_pre_enabled(iommu); 604 iommu_disable_irq_remapping(iommu); 605 } else if (iommu_load_old_irte(iommu)) 606 pr_err("Failed to copy IR table for %s from previous kernel\n", 607 iommu->name); 608 else 609 pr_info("Copied IR table for %s from previous kernel\n", 610 iommu->name); 611 } 612 613 iommu_set_irq_remapping(iommu, eim_mode); 614 615 return 0; 616 617 out_free_ir_domain: 618 irq_domain_remove(iommu->ir_domain); 619 iommu->ir_domain = NULL; 620 out_free_fwnode: 621 irq_domain_free_fwnode(fn); 622 out_free_bitmap: 623 bitmap_free(bitmap); 624 out_free_pages: 625 __free_pages(pages, INTR_REMAP_PAGE_ORDER); 626 out_free_table: 627 kfree(ir_table); 628 629 iommu->ir_table = NULL; 630 631 return -ENOMEM; 632 } 633 634 static void intel_teardown_irq_remapping(struct intel_iommu *iommu) 635 { 636 struct fwnode_handle *fn; 637 638 if (iommu && iommu->ir_table) { 639 if (iommu->ir_domain) { 640 fn = iommu->ir_domain->fwnode; 641 642 irq_domain_remove(iommu->ir_domain); 643 irq_domain_free_fwnode(fn); 644 iommu->ir_domain = NULL; 645 } 646 free_pages((unsigned long)iommu->ir_table->base, 647 INTR_REMAP_PAGE_ORDER); 648 bitmap_free(iommu->ir_table->bitmap); 649 kfree(iommu->ir_table); 650 iommu->ir_table = NULL; 651 } 652 } 653 654 /* 655 * Disable Interrupt Remapping. 656 */ 657 static void iommu_disable_irq_remapping(struct intel_iommu *iommu) 658 { 659 unsigned long flags; 660 u32 sts; 661 662 if (!ecap_ir_support(iommu->ecap)) 663 return; 664 665 /* 666 * global invalidation of interrupt entry cache before disabling 667 * interrupt-remapping. 668 */ 669 if (!cap_esirtps(iommu->cap)) 670 qi_global_iec(iommu); 671 672 raw_spin_lock_irqsave(&iommu->register_lock, flags); 673 674 sts = readl(iommu->reg + DMAR_GSTS_REG); 675 if (!(sts & DMA_GSTS_IRES)) 676 goto end; 677 678 iommu->gcmd &= ~DMA_GCMD_IRE; 679 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 680 681 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 682 readl, !(sts & DMA_GSTS_IRES), sts); 683 684 end: 685 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 686 } 687 688 static int __init dmar_x2apic_optout(void) 689 { 690 struct acpi_table_dmar *dmar; 691 dmar = (struct acpi_table_dmar *)dmar_tbl; 692 if (!dmar || no_x2apic_optout) 693 return 0; 694 return dmar->flags & DMAR_X2APIC_OPT_OUT; 695 } 696 697 static void __init intel_cleanup_irq_remapping(void) 698 { 699 struct dmar_drhd_unit *drhd; 700 struct intel_iommu *iommu; 701 702 for_each_iommu(iommu, drhd) { 703 if (ecap_ir_support(iommu->ecap)) { 704 iommu_disable_irq_remapping(iommu); 705 intel_teardown_irq_remapping(iommu); 706 } 707 } 708 709 if (x2apic_supported()) 710 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); 711 } 712 713 static int __init intel_prepare_irq_remapping(void) 714 { 715 struct dmar_drhd_unit *drhd; 716 struct intel_iommu *iommu; 717 int eim = 0; 718 719 if (irq_remap_broken) { 720 pr_warn("This system BIOS has enabled interrupt remapping\n" 721 "on a chipset that contains an erratum making that\n" 722 "feature unstable. To maintain system stability\n" 723 "interrupt remapping is being disabled. Please\n" 724 "contact your BIOS vendor for an update\n"); 725 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 726 return -ENODEV; 727 } 728 729 if (dmar_table_init() < 0) 730 return -ENODEV; 731 732 if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL)) 733 return -ENODEV; 734 735 if (!dmar_ir_support()) 736 return -ENODEV; 737 738 if (parse_ioapics_under_ir()) { 739 pr_info("Not enabling interrupt remapping\n"); 740 goto error; 741 } 742 743 /* First make sure all IOMMUs support IRQ remapping */ 744 for_each_iommu(iommu, drhd) 745 if (!ecap_ir_support(iommu->ecap)) 746 goto error; 747 748 /* Detect remapping mode: lapic or x2apic */ 749 if (x2apic_supported()) { 750 eim = !dmar_x2apic_optout(); 751 if (!eim) { 752 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit."); 753 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n"); 754 } 755 } 756 757 for_each_iommu(iommu, drhd) { 758 if (eim && !ecap_eim_support(iommu->ecap)) { 759 pr_info("%s does not support EIM\n", iommu->name); 760 eim = 0; 761 } 762 } 763 764 eim_mode = eim; 765 if (eim) 766 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); 767 768 /* Do the initializations early */ 769 for_each_iommu(iommu, drhd) { 770 if (intel_setup_irq_remapping(iommu)) { 771 pr_err("Failed to setup irq remapping for %s\n", 772 iommu->name); 773 goto error; 774 } 775 } 776 777 return 0; 778 779 error: 780 intel_cleanup_irq_remapping(); 781 return -ENODEV; 782 } 783 784 /* 785 * Set Posted-Interrupts capability. 786 */ 787 static inline void set_irq_posting_cap(void) 788 { 789 struct dmar_drhd_unit *drhd; 790 struct intel_iommu *iommu; 791 792 if (!disable_irq_post) { 793 /* 794 * If IRTE is in posted format, the 'pda' field goes across the 795 * 64-bit boundary, we need use cmpxchg16b to atomically update 796 * it. We only expose posted-interrupt when X86_FEATURE_CX16 797 * is supported. Actually, hardware platforms supporting PI 798 * should have X86_FEATURE_CX16 support, this has been confirmed 799 * with Intel hardware guys. 800 */ 801 if (boot_cpu_has(X86_FEATURE_CX16)) 802 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP; 803 804 for_each_iommu(iommu, drhd) 805 if (!cap_pi_support(iommu->cap)) { 806 intel_irq_remap_ops.capability &= 807 ~(1 << IRQ_POSTING_CAP); 808 break; 809 } 810 } 811 } 812 813 static int __init intel_enable_irq_remapping(void) 814 { 815 struct dmar_drhd_unit *drhd; 816 struct intel_iommu *iommu; 817 bool setup = false; 818 819 /* 820 * Setup Interrupt-remapping for all the DRHD's now. 821 */ 822 for_each_iommu(iommu, drhd) { 823 if (!ir_pre_enabled(iommu)) 824 iommu_enable_irq_remapping(iommu); 825 setup = true; 826 } 827 828 if (!setup) 829 goto error; 830 831 irq_remapping_enabled = 1; 832 833 set_irq_posting_cap(); 834 835 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic"); 836 837 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; 838 839 error: 840 intel_cleanup_irq_remapping(); 841 return -1; 842 } 843 844 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, 845 struct intel_iommu *iommu, 846 struct acpi_dmar_hardware_unit *drhd) 847 { 848 struct acpi_dmar_pci_path *path; 849 u8 bus; 850 int count, free = -1; 851 852 bus = scope->bus; 853 path = (struct acpi_dmar_pci_path *)(scope + 1); 854 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 855 / sizeof(struct acpi_dmar_pci_path); 856 857 while (--count > 0) { 858 /* 859 * Access PCI directly due to the PCI 860 * subsystem isn't initialized yet. 861 */ 862 bus = read_pci_config_byte(bus, path->device, path->function, 863 PCI_SECONDARY_BUS); 864 path++; 865 } 866 867 for (count = 0; count < MAX_HPET_TBS; count++) { 868 if (ir_hpet[count].iommu == iommu && 869 ir_hpet[count].id == scope->enumeration_id) 870 return 0; 871 else if (ir_hpet[count].iommu == NULL && free == -1) 872 free = count; 873 } 874 if (free == -1) { 875 pr_warn("Exceeded Max HPET blocks\n"); 876 return -ENOSPC; 877 } 878 879 ir_hpet[free].iommu = iommu; 880 ir_hpet[free].id = scope->enumeration_id; 881 ir_hpet[free].bus = bus; 882 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function); 883 pr_info("HPET id %d under DRHD base 0x%Lx\n", 884 scope->enumeration_id, drhd->address); 885 886 return 0; 887 } 888 889 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, 890 struct intel_iommu *iommu, 891 struct acpi_dmar_hardware_unit *drhd) 892 { 893 struct acpi_dmar_pci_path *path; 894 u8 bus; 895 int count, free = -1; 896 897 bus = scope->bus; 898 path = (struct acpi_dmar_pci_path *)(scope + 1); 899 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 900 / sizeof(struct acpi_dmar_pci_path); 901 902 while (--count > 0) { 903 /* 904 * Access PCI directly due to the PCI 905 * subsystem isn't initialized yet. 906 */ 907 bus = read_pci_config_byte(bus, path->device, path->function, 908 PCI_SECONDARY_BUS); 909 path++; 910 } 911 912 for (count = 0; count < MAX_IO_APICS; count++) { 913 if (ir_ioapic[count].iommu == iommu && 914 ir_ioapic[count].id == scope->enumeration_id) 915 return 0; 916 else if (ir_ioapic[count].iommu == NULL && free == -1) 917 free = count; 918 } 919 if (free == -1) { 920 pr_warn("Exceeded Max IO APICS\n"); 921 return -ENOSPC; 922 } 923 924 ir_ioapic[free].bus = bus; 925 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function); 926 ir_ioapic[free].iommu = iommu; 927 ir_ioapic[free].id = scope->enumeration_id; 928 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n", 929 scope->enumeration_id, drhd->address, iommu->seq_id); 930 931 return 0; 932 } 933 934 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, 935 struct intel_iommu *iommu) 936 { 937 int ret = 0; 938 struct acpi_dmar_hardware_unit *drhd; 939 struct acpi_dmar_device_scope *scope; 940 void *start, *end; 941 942 drhd = (struct acpi_dmar_hardware_unit *)header; 943 start = (void *)(drhd + 1); 944 end = ((void *)drhd) + header->length; 945 946 while (start < end && ret == 0) { 947 scope = start; 948 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) 949 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd); 950 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) 951 ret = ir_parse_one_hpet_scope(scope, iommu, drhd); 952 start += scope->length; 953 } 954 955 return ret; 956 } 957 958 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu) 959 { 960 int i; 961 962 for (i = 0; i < MAX_HPET_TBS; i++) 963 if (ir_hpet[i].iommu == iommu) 964 ir_hpet[i].iommu = NULL; 965 966 for (i = 0; i < MAX_IO_APICS; i++) 967 if (ir_ioapic[i].iommu == iommu) 968 ir_ioapic[i].iommu = NULL; 969 } 970 971 /* 972 * Finds the assocaition between IOAPIC's and its Interrupt-remapping 973 * hardware unit. 974 */ 975 static int __init parse_ioapics_under_ir(void) 976 { 977 struct dmar_drhd_unit *drhd; 978 struct intel_iommu *iommu; 979 bool ir_supported = false; 980 int ioapic_idx; 981 982 for_each_iommu(iommu, drhd) { 983 int ret; 984 985 if (!ecap_ir_support(iommu->ecap)) 986 continue; 987 988 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu); 989 if (ret) 990 return ret; 991 992 ir_supported = true; 993 } 994 995 if (!ir_supported) 996 return -ENODEV; 997 998 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { 999 int ioapic_id = mpc_ioapic_id(ioapic_idx); 1000 if (!map_ioapic_to_iommu(ioapic_id)) { 1001 pr_err(FW_BUG "ioapic %d has no mapping iommu, " 1002 "interrupt remapping will be disabled\n", 1003 ioapic_id); 1004 return -1; 1005 } 1006 } 1007 1008 return 0; 1009 } 1010 1011 static int __init ir_dev_scope_init(void) 1012 { 1013 int ret; 1014 1015 if (!irq_remapping_enabled) 1016 return 0; 1017 1018 down_write(&dmar_global_lock); 1019 ret = dmar_dev_scope_init(); 1020 up_write(&dmar_global_lock); 1021 1022 return ret; 1023 } 1024 rootfs_initcall(ir_dev_scope_init); 1025 1026 static void disable_irq_remapping(void) 1027 { 1028 struct dmar_drhd_unit *drhd; 1029 struct intel_iommu *iommu = NULL; 1030 1031 /* 1032 * Disable Interrupt-remapping for all the DRHD's now. 1033 */ 1034 for_each_iommu(iommu, drhd) { 1035 if (!ecap_ir_support(iommu->ecap)) 1036 continue; 1037 1038 iommu_disable_irq_remapping(iommu); 1039 } 1040 1041 /* 1042 * Clear Posted-Interrupts capability. 1043 */ 1044 if (!disable_irq_post) 1045 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); 1046 } 1047 1048 static int reenable_irq_remapping(int eim) 1049 { 1050 struct dmar_drhd_unit *drhd; 1051 bool setup = false; 1052 struct intel_iommu *iommu = NULL; 1053 1054 for_each_iommu(iommu, drhd) 1055 if (iommu->qi) 1056 dmar_reenable_qi(iommu); 1057 1058 /* 1059 * Setup Interrupt-remapping for all the DRHD's now. 1060 */ 1061 for_each_iommu(iommu, drhd) { 1062 if (!ecap_ir_support(iommu->ecap)) 1063 continue; 1064 1065 /* Set up interrupt remapping for iommu.*/ 1066 iommu_set_irq_remapping(iommu, eim); 1067 iommu_enable_irq_remapping(iommu); 1068 setup = true; 1069 } 1070 1071 if (!setup) 1072 goto error; 1073 1074 set_irq_posting_cap(); 1075 1076 return 0; 1077 1078 error: 1079 /* 1080 * handle error condition gracefully here! 1081 */ 1082 return -1; 1083 } 1084 1085 /* 1086 * Store the MSI remapping domain pointer in the device if enabled. 1087 * 1088 * This is called from dmar_pci_bus_add_dev() so it works even when DMA 1089 * remapping is disabled. Only update the pointer if the device is not 1090 * already handled by a non default PCI/MSI interrupt domain. This protects 1091 * e.g. VMD devices. 1092 */ 1093 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info) 1094 { 1095 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev)) 1096 return; 1097 1098 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev)); 1099 } 1100 1101 static void prepare_irte(struct irte *irte, int vector, unsigned int dest) 1102 { 1103 memset(irte, 0, sizeof(*irte)); 1104 1105 irte->present = 1; 1106 irte->dst_mode = apic->dest_mode_logical; 1107 /* 1108 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the 1109 * actual level or edge trigger will be setup in the IO-APIC 1110 * RTE. This will help simplify level triggered irq migration. 1111 * For more details, see the comments (in io_apic.c) explainig IO-APIC 1112 * irq migration in the presence of interrupt-remapping. 1113 */ 1114 irte->trigger_mode = 0; 1115 irte->dlvry_mode = APIC_DELIVERY_MODE_FIXED; 1116 irte->vector = vector; 1117 irte->dest_id = IRTE_DEST(dest); 1118 irte->redir_hint = 1; 1119 } 1120 1121 struct irq_remap_ops intel_irq_remap_ops = { 1122 .prepare = intel_prepare_irq_remapping, 1123 .enable = intel_enable_irq_remapping, 1124 .disable = disable_irq_remapping, 1125 .reenable = reenable_irq_remapping, 1126 .enable_faulting = enable_drhd_fault_handling, 1127 }; 1128 1129 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force) 1130 { 1131 struct intel_ir_data *ir_data = irqd->chip_data; 1132 struct irte *irte = &ir_data->irte_entry; 1133 struct irq_cfg *cfg = irqd_cfg(irqd); 1134 1135 /* 1136 * Atomically updates the IRTE with the new destination, vector 1137 * and flushes the interrupt entry cache. 1138 */ 1139 irte->vector = cfg->vector; 1140 irte->dest_id = IRTE_DEST(cfg->dest_apicid); 1141 1142 /* Update the hardware only if the interrupt is in remapped mode. */ 1143 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING) 1144 modify_irte(&ir_data->irq_2_iommu, irte); 1145 } 1146 1147 /* 1148 * Migrate the IO-APIC irq in the presence of intr-remapping. 1149 * 1150 * For both level and edge triggered, irq migration is a simple atomic 1151 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 1152 * 1153 * For level triggered, we eliminate the io-apic RTE modification (with the 1154 * updated vector information), by using a virtual vector (io-apic pin number). 1155 * Real vector that is used for interrupting cpu will be coming from 1156 * the interrupt-remapping table entry. 1157 * 1158 * As the migration is a simple atomic update of IRTE, the same mechanism 1159 * is used to migrate MSI irq's in the presence of interrupt-remapping. 1160 */ 1161 static int 1162 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, 1163 bool force) 1164 { 1165 struct irq_data *parent = data->parent_data; 1166 struct irq_cfg *cfg = irqd_cfg(data); 1167 int ret; 1168 1169 ret = parent->chip->irq_set_affinity(parent, mask, force); 1170 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 1171 return ret; 1172 1173 intel_ir_reconfigure_irte(data, false); 1174 /* 1175 * After this point, all the interrupts will start arriving 1176 * at the new destination. So, time to cleanup the previous 1177 * vector allocation. 1178 */ 1179 vector_schedule_cleanup(cfg); 1180 1181 return IRQ_SET_MASK_OK_DONE; 1182 } 1183 1184 static void intel_ir_compose_msi_msg(struct irq_data *irq_data, 1185 struct msi_msg *msg) 1186 { 1187 struct intel_ir_data *ir_data = irq_data->chip_data; 1188 1189 *msg = ir_data->msi_entry; 1190 } 1191 1192 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info) 1193 { 1194 struct intel_ir_data *ir_data = data->chip_data; 1195 struct vcpu_data *vcpu_pi_info = info; 1196 1197 /* stop posting interrupts, back to remapping mode */ 1198 if (!vcpu_pi_info) { 1199 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry); 1200 } else { 1201 struct irte irte_pi; 1202 1203 /* 1204 * We are not caching the posted interrupt entry. We 1205 * copy the data from the remapped entry and modify 1206 * the fields which are relevant for posted mode. The 1207 * cached remapped entry is used for switching back to 1208 * remapped mode. 1209 */ 1210 memset(&irte_pi, 0, sizeof(irte_pi)); 1211 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry); 1212 1213 /* Update the posted mode fields */ 1214 irte_pi.p_pst = 1; 1215 irte_pi.p_urgent = 0; 1216 irte_pi.p_vector = vcpu_pi_info->vector; 1217 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >> 1218 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1219 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) & 1220 ~(-1UL << PDA_HIGH_BIT); 1221 1222 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1223 } 1224 1225 return 0; 1226 } 1227 1228 static struct irq_chip intel_ir_chip = { 1229 .name = "INTEL-IR", 1230 .irq_ack = apic_ack_irq, 1231 .irq_set_affinity = intel_ir_set_affinity, 1232 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1233 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1234 }; 1235 1236 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle) 1237 { 1238 memset(msg, 0, sizeof(*msg)); 1239 1240 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW; 1241 msg->arch_addr_lo.dmar_subhandle_valid = true; 1242 msg->arch_addr_lo.dmar_format = true; 1243 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF; 1244 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000); 1245 1246 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 1247 1248 msg->arch_data.dmar_subhandle = subhandle; 1249 } 1250 1251 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data, 1252 struct irq_cfg *irq_cfg, 1253 struct irq_alloc_info *info, 1254 int index, int sub_handle) 1255 { 1256 struct irte *irte = &data->irte_entry; 1257 1258 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid); 1259 1260 switch (info->type) { 1261 case X86_IRQ_ALLOC_TYPE_IOAPIC: 1262 /* Set source-id of interrupt request */ 1263 set_ioapic_sid(irte, info->devid); 1264 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n", 1265 info->devid, irte->present, irte->fpd, 1266 irte->dst_mode, irte->redir_hint, 1267 irte->trigger_mode, irte->dlvry_mode, 1268 irte->avail, irte->vector, irte->dest_id, 1269 irte->sid, irte->sq, irte->svt); 1270 sub_handle = info->ioapic.pin; 1271 break; 1272 case X86_IRQ_ALLOC_TYPE_HPET: 1273 set_hpet_sid(irte, info->devid); 1274 break; 1275 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 1276 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 1277 set_msi_sid(irte, 1278 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc))); 1279 break; 1280 default: 1281 BUG_ON(1); 1282 break; 1283 } 1284 fill_msi_msg(&data->msi_entry, index, sub_handle); 1285 } 1286 1287 static void intel_free_irq_resources(struct irq_domain *domain, 1288 unsigned int virq, unsigned int nr_irqs) 1289 { 1290 struct irq_data *irq_data; 1291 struct intel_ir_data *data; 1292 struct irq_2_iommu *irq_iommu; 1293 unsigned long flags; 1294 int i; 1295 for (i = 0; i < nr_irqs; i++) { 1296 irq_data = irq_domain_get_irq_data(domain, virq + i); 1297 if (irq_data && irq_data->chip_data) { 1298 data = irq_data->chip_data; 1299 irq_iommu = &data->irq_2_iommu; 1300 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 1301 clear_entries(irq_iommu); 1302 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 1303 irq_domain_reset_irq_data(irq_data); 1304 kfree(data); 1305 } 1306 } 1307 } 1308 1309 static int intel_irq_remapping_alloc(struct irq_domain *domain, 1310 unsigned int virq, unsigned int nr_irqs, 1311 void *arg) 1312 { 1313 struct intel_iommu *iommu = domain->host_data; 1314 struct irq_alloc_info *info = arg; 1315 struct intel_ir_data *data, *ird; 1316 struct irq_data *irq_data; 1317 struct irq_cfg *irq_cfg; 1318 int i, ret, index; 1319 1320 if (!info || !iommu) 1321 return -EINVAL; 1322 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI) 1323 return -EINVAL; 1324 1325 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 1326 if (ret < 0) 1327 return ret; 1328 1329 ret = -ENOMEM; 1330 data = kzalloc(sizeof(*data), GFP_KERNEL); 1331 if (!data) 1332 goto out_free_parent; 1333 1334 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs); 1335 if (index < 0) { 1336 pr_warn("Failed to allocate IRTE\n"); 1337 kfree(data); 1338 goto out_free_parent; 1339 } 1340 1341 for (i = 0; i < nr_irqs; i++) { 1342 irq_data = irq_domain_get_irq_data(domain, virq + i); 1343 irq_cfg = irqd_cfg(irq_data); 1344 if (!irq_data || !irq_cfg) { 1345 if (!i) 1346 kfree(data); 1347 ret = -EINVAL; 1348 goto out_free_data; 1349 } 1350 1351 if (i > 0) { 1352 ird = kzalloc(sizeof(*ird), GFP_KERNEL); 1353 if (!ird) 1354 goto out_free_data; 1355 /* Initialize the common data */ 1356 ird->irq_2_iommu = data->irq_2_iommu; 1357 ird->irq_2_iommu.sub_handle = i; 1358 } else { 1359 ird = data; 1360 } 1361 1362 irq_data->hwirq = (index << 16) + i; 1363 irq_data->chip_data = ird; 1364 irq_data->chip = &intel_ir_chip; 1365 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i); 1366 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 1367 } 1368 return 0; 1369 1370 out_free_data: 1371 intel_free_irq_resources(domain, virq, i); 1372 out_free_parent: 1373 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1374 return ret; 1375 } 1376 1377 static void intel_irq_remapping_free(struct irq_domain *domain, 1378 unsigned int virq, unsigned int nr_irqs) 1379 { 1380 intel_free_irq_resources(domain, virq, nr_irqs); 1381 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1382 } 1383 1384 static int intel_irq_remapping_activate(struct irq_domain *domain, 1385 struct irq_data *irq_data, bool reserve) 1386 { 1387 intel_ir_reconfigure_irte(irq_data, true); 1388 return 0; 1389 } 1390 1391 static void intel_irq_remapping_deactivate(struct irq_domain *domain, 1392 struct irq_data *irq_data) 1393 { 1394 struct intel_ir_data *data = irq_data->chip_data; 1395 struct irte entry; 1396 1397 memset(&entry, 0, sizeof(entry)); 1398 modify_irte(&data->irq_2_iommu, &entry); 1399 } 1400 1401 static int intel_irq_remapping_select(struct irq_domain *d, 1402 struct irq_fwspec *fwspec, 1403 enum irq_domain_bus_token bus_token) 1404 { 1405 struct intel_iommu *iommu = NULL; 1406 1407 if (x86_fwspec_is_ioapic(fwspec)) 1408 iommu = map_ioapic_to_iommu(fwspec->param[0]); 1409 else if (x86_fwspec_is_hpet(fwspec)) 1410 iommu = map_hpet_to_iommu(fwspec->param[0]); 1411 1412 return iommu && d == iommu->ir_domain; 1413 } 1414 1415 static const struct irq_domain_ops intel_ir_domain_ops = { 1416 .select = intel_irq_remapping_select, 1417 .alloc = intel_irq_remapping_alloc, 1418 .free = intel_irq_remapping_free, 1419 .activate = intel_irq_remapping_activate, 1420 .deactivate = intel_irq_remapping_deactivate, 1421 }; 1422 1423 static const struct msi_parent_ops dmar_msi_parent_ops = { 1424 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | 1425 MSI_FLAG_MULTI_PCI_MSI | 1426 MSI_FLAG_PCI_IMS, 1427 .prefix = "IR-", 1428 .init_dev_msi_info = msi_parent_init_dev_msi_info, 1429 }; 1430 1431 static const struct msi_parent_ops virt_dmar_msi_parent_ops = { 1432 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | 1433 MSI_FLAG_MULTI_PCI_MSI, 1434 .prefix = "vIR-", 1435 .init_dev_msi_info = msi_parent_init_dev_msi_info, 1436 }; 1437 1438 /* 1439 * Support of Interrupt Remapping Unit Hotplug 1440 */ 1441 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu) 1442 { 1443 int ret; 1444 int eim = x2apic_enabled(); 1445 1446 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu); 1447 if (ret) 1448 return ret; 1449 1450 if (eim && !ecap_eim_support(iommu->ecap)) { 1451 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n", 1452 iommu->reg_phys, iommu->ecap); 1453 return -ENODEV; 1454 } 1455 1456 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) { 1457 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n", 1458 iommu->reg_phys); 1459 return -ENODEV; 1460 } 1461 1462 /* TODO: check all IOAPICs are covered by IOMMU */ 1463 1464 /* Setup Interrupt-remapping now. */ 1465 ret = intel_setup_irq_remapping(iommu); 1466 if (ret) { 1467 pr_err("Failed to setup irq remapping for %s\n", 1468 iommu->name); 1469 intel_teardown_irq_remapping(iommu); 1470 ir_remove_ioapic_hpet_scope(iommu); 1471 } else { 1472 iommu_enable_irq_remapping(iommu); 1473 } 1474 1475 return ret; 1476 } 1477 1478 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 1479 { 1480 int ret = 0; 1481 struct intel_iommu *iommu = dmaru->iommu; 1482 1483 if (!irq_remapping_enabled) 1484 return 0; 1485 if (iommu == NULL) 1486 return -EINVAL; 1487 if (!ecap_ir_support(iommu->ecap)) 1488 return 0; 1489 if (irq_remapping_cap(IRQ_POSTING_CAP) && 1490 !cap_pi_support(iommu->cap)) 1491 return -EBUSY; 1492 1493 if (insert) { 1494 if (!iommu->ir_table) 1495 ret = dmar_ir_add(dmaru, iommu); 1496 } else { 1497 if (iommu->ir_table) { 1498 if (!bitmap_empty(iommu->ir_table->bitmap, 1499 INTR_REMAP_TABLE_ENTRIES)) { 1500 ret = -EBUSY; 1501 } else { 1502 iommu_disable_irq_remapping(iommu); 1503 intel_teardown_irq_remapping(iommu); 1504 ir_remove_ioapic_hpet_scope(iommu); 1505 } 1506 } 1507 } 1508 1509 return ret; 1510 } 1511