xref: /linux/drivers/iommu/intel/irq_remapping.c (revision 7fe03f8ff55d33fe6398637f78a8620dd2a78b38)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
4 
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
17 #include <asm/apic.h>
18 #include <asm/smp.h>
19 #include <asm/cpu.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22 #include <asm/posted_intr.h>
23 
24 #include "iommu.h"
25 #include "../irq_remapping.h"
26 #include "../iommu-pages.h"
27 
28 enum irq_mode {
29 	IRQ_REMAPPING,
30 	IRQ_POSTING,
31 };
32 
33 struct ioapic_scope {
34 	struct intel_iommu *iommu;
35 	unsigned int id;
36 	unsigned int bus;	/* PCI bus number */
37 	unsigned int devfn;	/* PCI devfn number */
38 };
39 
40 struct hpet_scope {
41 	struct intel_iommu *iommu;
42 	u8 id;
43 	unsigned int bus;
44 	unsigned int devfn;
45 };
46 
47 struct irq_2_iommu {
48 	struct intel_iommu *iommu;
49 	u16 irte_index;
50 	u16 sub_handle;
51 	u8  irte_mask;
52 	enum irq_mode mode;
53 	bool posted_msi;
54 };
55 
56 struct intel_ir_data {
57 	struct irq_2_iommu			irq_2_iommu;
58 	struct irte				irte_entry;
59 	union {
60 		struct msi_msg			msi_entry;
61 	};
62 };
63 
64 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
65 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
66 
67 static int __read_mostly eim_mode;
68 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
69 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
70 
71 /*
72  * Lock ordering:
73  * ->dmar_global_lock
74  *	->irq_2_ir_lock
75  *		->qi->q_lock
76  *	->iommu->register_lock
77  * Note:
78  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
79  * in single-threaded environment with interrupt disabled, so no need to tabke
80  * the dmar_global_lock.
81  */
82 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
83 static const struct irq_domain_ops intel_ir_domain_ops;
84 
85 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
86 static int __init parse_ioapics_under_ir(void);
87 static const struct msi_parent_ops dmar_msi_parent_ops;
88 
89 static bool ir_pre_enabled(struct intel_iommu *iommu)
90 {
91 	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
92 }
93 
94 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
95 {
96 	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
97 }
98 
99 static void init_ir_status(struct intel_iommu *iommu)
100 {
101 	u32 gsts;
102 
103 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
104 	if (gsts & DMA_GSTS_IRES)
105 		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
106 }
107 
108 static int alloc_irte(struct intel_iommu *iommu,
109 		      struct irq_2_iommu *irq_iommu, u16 count)
110 {
111 	struct ir_table *table = iommu->ir_table;
112 	unsigned int mask = 0;
113 	unsigned long flags;
114 	int index;
115 
116 	if (!count || !irq_iommu)
117 		return -1;
118 
119 	if (count > 1) {
120 		count = __roundup_pow_of_two(count);
121 		mask = ilog2(count);
122 	}
123 
124 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
125 		pr_err("Requested mask %x exceeds the max invalidation handle"
126 		       " mask value %Lx\n", mask,
127 		       ecap_max_handle_mask(iommu->ecap));
128 		return -1;
129 	}
130 
131 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
132 	index = bitmap_find_free_region(table->bitmap,
133 					INTR_REMAP_TABLE_ENTRIES, mask);
134 	if (index < 0) {
135 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
136 	} else {
137 		irq_iommu->iommu = iommu;
138 		irq_iommu->irte_index =  index;
139 		irq_iommu->sub_handle = 0;
140 		irq_iommu->irte_mask = mask;
141 		irq_iommu->mode = IRQ_REMAPPING;
142 	}
143 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
144 
145 	return index;
146 }
147 
148 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
149 {
150 	struct qi_desc desc;
151 
152 	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
153 		   | QI_IEC_SELECTIVE;
154 	desc.qw1 = 0;
155 	desc.qw2 = 0;
156 	desc.qw3 = 0;
157 
158 	return qi_submit_sync(iommu, &desc, 1, 0);
159 }
160 
161 static int modify_irte(struct irq_2_iommu *irq_iommu,
162 		       struct irte *irte_modified)
163 {
164 	struct intel_iommu *iommu;
165 	unsigned long flags;
166 	struct irte *irte;
167 	int rc, index;
168 
169 	if (!irq_iommu)
170 		return -1;
171 
172 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
173 
174 	iommu = irq_iommu->iommu;
175 
176 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
177 	irte = &iommu->ir_table->base[index];
178 
179 	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
180 		/*
181 		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
182 		 * and it cannot be updated by the hardware or other processors
183 		 * behind us, so the return value of cmpxchg16 should be the
184 		 * same as the old value.
185 		 */
186 		u128 old = irte->irte;
187 		WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte));
188 	} else {
189 		WRITE_ONCE(irte->low, irte_modified->low);
190 		WRITE_ONCE(irte->high, irte_modified->high);
191 	}
192 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
193 
194 	rc = qi_flush_iec(iommu, index, 0);
195 
196 	/* Update iommu mode according to the IRTE mode */
197 	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
198 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
199 
200 	return rc;
201 }
202 
203 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
204 {
205 	int i;
206 
207 	for (i = 0; i < MAX_HPET_TBS; i++) {
208 		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
209 			return ir_hpet[i].iommu;
210 	}
211 	return NULL;
212 }
213 
214 static struct intel_iommu *map_ioapic_to_iommu(int apic)
215 {
216 	int i;
217 
218 	for (i = 0; i < MAX_IO_APICS; i++) {
219 		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
220 			return ir_ioapic[i].iommu;
221 	}
222 	return NULL;
223 }
224 
225 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
226 {
227 	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
228 
229 	return drhd ? drhd->iommu->ir_domain : NULL;
230 }
231 
232 static int clear_entries(struct irq_2_iommu *irq_iommu)
233 {
234 	struct irte *start, *entry, *end;
235 	struct intel_iommu *iommu;
236 	int index;
237 
238 	if (irq_iommu->sub_handle)
239 		return 0;
240 
241 	iommu = irq_iommu->iommu;
242 	index = irq_iommu->irte_index;
243 
244 	start = iommu->ir_table->base + index;
245 	end = start + (1 << irq_iommu->irte_mask);
246 
247 	for (entry = start; entry < end; entry++) {
248 		WRITE_ONCE(entry->low, 0);
249 		WRITE_ONCE(entry->high, 0);
250 	}
251 	bitmap_release_region(iommu->ir_table->bitmap, index,
252 			      irq_iommu->irte_mask);
253 
254 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
255 }
256 
257 /*
258  * source validation type
259  */
260 #define SVT_NO_VERIFY		0x0  /* no verification is required */
261 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
262 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
263 
264 /*
265  * source-id qualifier
266  */
267 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
268 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
269 			      * the third least significant bit
270 			      */
271 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
272 			      * the second and third least significant bits
273 			      */
274 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
275 			      * the least three significant bits
276 			      */
277 
278 /*
279  * set SVT, SQ and SID fields of irte to verify
280  * source ids of interrupt requests
281  */
282 static void set_irte_sid(struct irte *irte, unsigned int svt,
283 			 unsigned int sq, unsigned int sid)
284 {
285 	if (disable_sourceid_checking)
286 		svt = SVT_NO_VERIFY;
287 	irte->svt = svt;
288 	irte->sq = sq;
289 	irte->sid = sid;
290 }
291 
292 /*
293  * Set an IRTE to match only the bus number. Interrupt requests that reference
294  * this IRTE must have a requester-id whose bus number is between or equal
295  * to the start_bus and end_bus arguments.
296  */
297 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
298 				unsigned int end_bus)
299 {
300 	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
301 		     (start_bus << 8) | end_bus);
302 }
303 
304 static int set_ioapic_sid(struct irte *irte, int apic)
305 {
306 	int i;
307 	u16 sid = 0;
308 
309 	if (!irte)
310 		return -1;
311 
312 	for (i = 0; i < MAX_IO_APICS; i++) {
313 		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
314 			sid = PCI_DEVID(ir_ioapic[i].bus, ir_ioapic[i].devfn);
315 			break;
316 		}
317 	}
318 
319 	if (sid == 0) {
320 		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
321 		return -1;
322 	}
323 
324 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
325 
326 	return 0;
327 }
328 
329 static int set_hpet_sid(struct irte *irte, u8 id)
330 {
331 	int i;
332 	u16 sid = 0;
333 
334 	if (!irte)
335 		return -1;
336 
337 	for (i = 0; i < MAX_HPET_TBS; i++) {
338 		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
339 			sid = PCI_DEVID(ir_hpet[i].bus, ir_hpet[i].devfn);
340 			break;
341 		}
342 	}
343 
344 	if (sid == 0) {
345 		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
346 		return -1;
347 	}
348 
349 	/*
350 	 * Should really use SQ_ALL_16. Some platforms are broken.
351 	 * While we figure out the right quirks for these broken platforms, use
352 	 * SQ_13_IGNORE_3 for now.
353 	 */
354 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
355 
356 	return 0;
357 }
358 
359 struct set_msi_sid_data {
360 	struct pci_dev *pdev;
361 	u16 alias;
362 	int count;
363 	int busmatch_count;
364 };
365 
366 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
367 {
368 	struct set_msi_sid_data *data = opaque;
369 
370 	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
371 		data->busmatch_count++;
372 
373 	data->pdev = pdev;
374 	data->alias = alias;
375 	data->count++;
376 
377 	return 0;
378 }
379 
380 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
381 {
382 	struct set_msi_sid_data data;
383 
384 	if (!irte || !dev)
385 		return -1;
386 
387 	data.count = 0;
388 	data.busmatch_count = 0;
389 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
390 
391 	/*
392 	 * DMA alias provides us with a PCI device and alias.  The only case
393 	 * where the it will return an alias on a different bus than the
394 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
395 	 * the subordinate bus.  In this case we can only verify the bus.
396 	 *
397 	 * If there are multiple aliases, all with the same bus number,
398 	 * then all we can do is verify the bus. This is typical in NTB
399 	 * hardware which use proxy IDs where the device will generate traffic
400 	 * from multiple devfn numbers on the same bus.
401 	 *
402 	 * If the alias device is on a different bus than our source device
403 	 * then we have a topology based alias, use it.
404 	 *
405 	 * Otherwise, the alias is for a device DMA quirk and we cannot
406 	 * assume that MSI uses the same requester ID.  Therefore use the
407 	 * original device.
408 	 */
409 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
410 		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
411 				    dev->bus->number);
412 	else if (data.count >= 2 && data.busmatch_count == data.count)
413 		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
414 	else if (data.pdev->bus->number != dev->bus->number)
415 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
416 	else
417 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
418 			     pci_dev_id(dev));
419 
420 	return 0;
421 }
422 
423 static int iommu_load_old_irte(struct intel_iommu *iommu)
424 {
425 	struct irte *old_ir_table;
426 	phys_addr_t irt_phys;
427 	unsigned int i;
428 	size_t size;
429 	u64 irta;
430 
431 	/* Check whether the old ir-table has the same size as ours */
432 	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
433 	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
434 	     != INTR_REMAP_TABLE_REG_SIZE)
435 		return -EINVAL;
436 
437 	irt_phys = irta & VTD_PAGE_MASK;
438 	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
439 
440 	/* Map the old IR table */
441 	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
442 	if (!old_ir_table)
443 		return -ENOMEM;
444 
445 	/* Copy data over */
446 	memcpy(iommu->ir_table->base, old_ir_table, size);
447 
448 	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
449 
450 	/*
451 	 * Now check the table for used entries and mark those as
452 	 * allocated in the bitmap
453 	 */
454 	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
455 		if (iommu->ir_table->base[i].present)
456 			bitmap_set(iommu->ir_table->bitmap, i, 1);
457 	}
458 
459 	memunmap(old_ir_table);
460 
461 	return 0;
462 }
463 
464 
465 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
466 {
467 	unsigned long flags;
468 	u64 addr;
469 	u32 sts;
470 
471 	addr = virt_to_phys((void *)iommu->ir_table->base);
472 
473 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
474 
475 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
476 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
477 
478 	/* Set interrupt-remapping table pointer */
479 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
480 
481 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
482 		      readl, (sts & DMA_GSTS_IRTPS), sts);
483 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
484 
485 	/*
486 	 * Global invalidation of interrupt entry cache to make sure the
487 	 * hardware uses the new irq remapping table.
488 	 */
489 	if (!cap_esirtps(iommu->cap))
490 		qi_global_iec(iommu);
491 }
492 
493 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
494 {
495 	unsigned long flags;
496 	u32 sts;
497 
498 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
499 
500 	/* Enable interrupt-remapping */
501 	iommu->gcmd |= DMA_GCMD_IRE;
502 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
503 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
504 		      readl, (sts & DMA_GSTS_IRES), sts);
505 
506 	/* Block compatibility-format MSIs */
507 	if (sts & DMA_GSTS_CFIS) {
508 		iommu->gcmd &= ~DMA_GCMD_CFI;
509 		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
510 		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
511 			      readl, !(sts & DMA_GSTS_CFIS), sts);
512 	}
513 
514 	/*
515 	 * With CFI clear in the Global Command register, we should be
516 	 * protected from dangerous (i.e. compatibility) interrupts
517 	 * regardless of x2apic status.  Check just to be sure.
518 	 */
519 	if (sts & DMA_GSTS_CFIS)
520 		WARN(1, KERN_WARNING
521 			"Compatibility-format IRQs enabled despite intr remapping;\n"
522 			"you are vulnerable to IRQ injection.\n");
523 
524 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
525 }
526 
527 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
528 {
529 	struct ir_table *ir_table;
530 	struct fwnode_handle *fn;
531 	unsigned long *bitmap;
532 	void *ir_table_base;
533 
534 	if (iommu->ir_table)
535 		return 0;
536 
537 	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
538 	if (!ir_table)
539 		return -ENOMEM;
540 
541 	ir_table_base = iommu_alloc_pages_node(iommu->node, GFP_KERNEL,
542 					       INTR_REMAP_PAGE_ORDER);
543 	if (!ir_table_base) {
544 		pr_err("IR%d: failed to allocate pages of order %d\n",
545 		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
546 		goto out_free_table;
547 	}
548 
549 	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL);
550 	if (bitmap == NULL) {
551 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
552 		goto out_free_pages;
553 	}
554 
555 	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
556 	if (!fn)
557 		goto out_free_bitmap;
558 
559 	iommu->ir_domain =
560 		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
561 					    0, INTR_REMAP_TABLE_ENTRIES,
562 					    fn, &intel_ir_domain_ops,
563 					    iommu);
564 	if (!iommu->ir_domain) {
565 		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
566 		goto out_free_fwnode;
567 	}
568 
569 	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_DMAR);
570 	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
571 				   IRQ_DOMAIN_FLAG_ISOLATED_MSI;
572 	iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
573 
574 	ir_table->base = ir_table_base;
575 	ir_table->bitmap = bitmap;
576 	iommu->ir_table = ir_table;
577 
578 	/*
579 	 * If the queued invalidation is already initialized,
580 	 * shouldn't disable it.
581 	 */
582 	if (!iommu->qi) {
583 		/*
584 		 * Clear previous faults.
585 		 */
586 		dmar_fault(-1, iommu);
587 		dmar_disable_qi(iommu);
588 
589 		if (dmar_enable_qi(iommu)) {
590 			pr_err("Failed to enable queued invalidation\n");
591 			goto out_free_ir_domain;
592 		}
593 	}
594 
595 	init_ir_status(iommu);
596 
597 	if (ir_pre_enabled(iommu)) {
598 		if (!is_kdump_kernel()) {
599 			pr_info_once("IRQ remapping was enabled on %s but we are not in kdump mode\n",
600 				     iommu->name);
601 			clear_ir_pre_enabled(iommu);
602 			iommu_disable_irq_remapping(iommu);
603 		} else if (iommu_load_old_irte(iommu))
604 			pr_err("Failed to copy IR table for %s from previous kernel\n",
605 			       iommu->name);
606 		else
607 			pr_info("Copied IR table for %s from previous kernel\n",
608 				iommu->name);
609 	}
610 
611 	iommu_set_irq_remapping(iommu, eim_mode);
612 
613 	return 0;
614 
615 out_free_ir_domain:
616 	irq_domain_remove(iommu->ir_domain);
617 	iommu->ir_domain = NULL;
618 out_free_fwnode:
619 	irq_domain_free_fwnode(fn);
620 out_free_bitmap:
621 	bitmap_free(bitmap);
622 out_free_pages:
623 	iommu_free_pages(ir_table_base, INTR_REMAP_PAGE_ORDER);
624 out_free_table:
625 	kfree(ir_table);
626 
627 	iommu->ir_table  = NULL;
628 
629 	return -ENOMEM;
630 }
631 
632 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
633 {
634 	struct fwnode_handle *fn;
635 
636 	if (iommu && iommu->ir_table) {
637 		if (iommu->ir_domain) {
638 			fn = iommu->ir_domain->fwnode;
639 
640 			irq_domain_remove(iommu->ir_domain);
641 			irq_domain_free_fwnode(fn);
642 			iommu->ir_domain = NULL;
643 		}
644 		iommu_free_pages(iommu->ir_table->base, INTR_REMAP_PAGE_ORDER);
645 		bitmap_free(iommu->ir_table->bitmap);
646 		kfree(iommu->ir_table);
647 		iommu->ir_table = NULL;
648 	}
649 }
650 
651 /*
652  * Disable Interrupt Remapping.
653  */
654 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
655 {
656 	unsigned long flags;
657 	u32 sts;
658 
659 	if (!ecap_ir_support(iommu->ecap))
660 		return;
661 
662 	/*
663 	 * global invalidation of interrupt entry cache before disabling
664 	 * interrupt-remapping.
665 	 */
666 	if (!cap_esirtps(iommu->cap))
667 		qi_global_iec(iommu);
668 
669 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
670 
671 	sts = readl(iommu->reg + DMAR_GSTS_REG);
672 	if (!(sts & DMA_GSTS_IRES))
673 		goto end;
674 
675 	iommu->gcmd &= ~DMA_GCMD_IRE;
676 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
677 
678 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
679 		      readl, !(sts & DMA_GSTS_IRES), sts);
680 
681 end:
682 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
683 }
684 
685 static int __init dmar_x2apic_optout(void)
686 {
687 	struct acpi_table_dmar *dmar;
688 	dmar = (struct acpi_table_dmar *)dmar_tbl;
689 	if (!dmar || no_x2apic_optout)
690 		return 0;
691 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
692 }
693 
694 static void __init intel_cleanup_irq_remapping(void)
695 {
696 	struct dmar_drhd_unit *drhd;
697 	struct intel_iommu *iommu;
698 
699 	for_each_iommu(iommu, drhd) {
700 		if (ecap_ir_support(iommu->ecap)) {
701 			iommu_disable_irq_remapping(iommu);
702 			intel_teardown_irq_remapping(iommu);
703 		}
704 	}
705 
706 	if (x2apic_supported())
707 		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
708 }
709 
710 static int __init intel_prepare_irq_remapping(void)
711 {
712 	struct dmar_drhd_unit *drhd;
713 	struct intel_iommu *iommu;
714 	int eim = 0;
715 
716 	if (irq_remap_broken) {
717 		pr_warn("This system BIOS has enabled interrupt remapping\n"
718 			"on a chipset that contains an erratum making that\n"
719 			"feature unstable.  To maintain system stability\n"
720 			"interrupt remapping is being disabled.  Please\n"
721 			"contact your BIOS vendor for an update\n");
722 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
723 		return -ENODEV;
724 	}
725 
726 	if (dmar_table_init() < 0)
727 		return -ENODEV;
728 
729 	if (!dmar_ir_support())
730 		return -ENODEV;
731 
732 	if (parse_ioapics_under_ir()) {
733 		pr_info("Not enabling interrupt remapping\n");
734 		goto error;
735 	}
736 
737 	/* First make sure all IOMMUs support IRQ remapping */
738 	for_each_iommu(iommu, drhd)
739 		if (!ecap_ir_support(iommu->ecap))
740 			goto error;
741 
742 	/* Detect remapping mode: lapic or x2apic */
743 	if (x2apic_supported()) {
744 		eim = !dmar_x2apic_optout();
745 		if (!eim) {
746 			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
747 			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
748 		}
749 	}
750 
751 	for_each_iommu(iommu, drhd) {
752 		if (eim && !ecap_eim_support(iommu->ecap)) {
753 			pr_info("%s does not support EIM\n", iommu->name);
754 			eim = 0;
755 		}
756 	}
757 
758 	eim_mode = eim;
759 	if (eim)
760 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
761 
762 	/* Do the initializations early */
763 	for_each_iommu(iommu, drhd) {
764 		if (intel_setup_irq_remapping(iommu)) {
765 			pr_err("Failed to setup irq remapping for %s\n",
766 			       iommu->name);
767 			goto error;
768 		}
769 	}
770 
771 	return 0;
772 
773 error:
774 	intel_cleanup_irq_remapping();
775 	return -ENODEV;
776 }
777 
778 /*
779  * Set Posted-Interrupts capability.
780  */
781 static inline void set_irq_posting_cap(void)
782 {
783 	struct dmar_drhd_unit *drhd;
784 	struct intel_iommu *iommu;
785 
786 	if (!disable_irq_post) {
787 		/*
788 		 * If IRTE is in posted format, the 'pda' field goes across the
789 		 * 64-bit boundary, we need use cmpxchg16b to atomically update
790 		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
791 		 * is supported. Actually, hardware platforms supporting PI
792 		 * should have X86_FEATURE_CX16 support, this has been confirmed
793 		 * with Intel hardware guys.
794 		 */
795 		if (boot_cpu_has(X86_FEATURE_CX16))
796 			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
797 
798 		for_each_iommu(iommu, drhd)
799 			if (!cap_pi_support(iommu->cap)) {
800 				intel_irq_remap_ops.capability &=
801 						~(1 << IRQ_POSTING_CAP);
802 				break;
803 			}
804 	}
805 }
806 
807 static int __init intel_enable_irq_remapping(void)
808 {
809 	struct dmar_drhd_unit *drhd;
810 	struct intel_iommu *iommu;
811 	bool setup = false;
812 
813 	/*
814 	 * Setup Interrupt-remapping for all the DRHD's now.
815 	 */
816 	for_each_iommu(iommu, drhd) {
817 		if (!ir_pre_enabled(iommu))
818 			iommu_enable_irq_remapping(iommu);
819 		setup = true;
820 	}
821 
822 	if (!setup)
823 		goto error;
824 
825 	irq_remapping_enabled = 1;
826 
827 	set_irq_posting_cap();
828 
829 	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
830 
831 	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
832 
833 error:
834 	intel_cleanup_irq_remapping();
835 	return -1;
836 }
837 
838 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
839 				   struct intel_iommu *iommu,
840 				   struct acpi_dmar_hardware_unit *drhd)
841 {
842 	struct acpi_dmar_pci_path *path;
843 	u8 bus;
844 	int count, free = -1;
845 
846 	bus = scope->bus;
847 	path = (struct acpi_dmar_pci_path *)(scope + 1);
848 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
849 		/ sizeof(struct acpi_dmar_pci_path);
850 
851 	while (--count > 0) {
852 		/*
853 		 * Access PCI directly due to the PCI
854 		 * subsystem isn't initialized yet.
855 		 */
856 		bus = read_pci_config_byte(bus, path->device, path->function,
857 					   PCI_SECONDARY_BUS);
858 		path++;
859 	}
860 
861 	for (count = 0; count < MAX_HPET_TBS; count++) {
862 		if (ir_hpet[count].iommu == iommu &&
863 		    ir_hpet[count].id == scope->enumeration_id)
864 			return 0;
865 		else if (ir_hpet[count].iommu == NULL && free == -1)
866 			free = count;
867 	}
868 	if (free == -1) {
869 		pr_warn("Exceeded Max HPET blocks\n");
870 		return -ENOSPC;
871 	}
872 
873 	ir_hpet[free].iommu = iommu;
874 	ir_hpet[free].id    = scope->enumeration_id;
875 	ir_hpet[free].bus   = bus;
876 	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
877 	pr_info("HPET id %d under DRHD base 0x%Lx\n",
878 		scope->enumeration_id, drhd->address);
879 
880 	return 0;
881 }
882 
883 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
884 				     struct intel_iommu *iommu,
885 				     struct acpi_dmar_hardware_unit *drhd)
886 {
887 	struct acpi_dmar_pci_path *path;
888 	u8 bus;
889 	int count, free = -1;
890 
891 	bus = scope->bus;
892 	path = (struct acpi_dmar_pci_path *)(scope + 1);
893 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
894 		/ sizeof(struct acpi_dmar_pci_path);
895 
896 	while (--count > 0) {
897 		/*
898 		 * Access PCI directly due to the PCI
899 		 * subsystem isn't initialized yet.
900 		 */
901 		bus = read_pci_config_byte(bus, path->device, path->function,
902 					   PCI_SECONDARY_BUS);
903 		path++;
904 	}
905 
906 	for (count = 0; count < MAX_IO_APICS; count++) {
907 		if (ir_ioapic[count].iommu == iommu &&
908 		    ir_ioapic[count].id == scope->enumeration_id)
909 			return 0;
910 		else if (ir_ioapic[count].iommu == NULL && free == -1)
911 			free = count;
912 	}
913 	if (free == -1) {
914 		pr_warn("Exceeded Max IO APICS\n");
915 		return -ENOSPC;
916 	}
917 
918 	ir_ioapic[free].bus   = bus;
919 	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
920 	ir_ioapic[free].iommu = iommu;
921 	ir_ioapic[free].id    = scope->enumeration_id;
922 	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
923 		scope->enumeration_id, drhd->address, iommu->seq_id);
924 
925 	return 0;
926 }
927 
928 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
929 				      struct intel_iommu *iommu)
930 {
931 	int ret = 0;
932 	struct acpi_dmar_hardware_unit *drhd;
933 	struct acpi_dmar_device_scope *scope;
934 	void *start, *end;
935 
936 	drhd = (struct acpi_dmar_hardware_unit *)header;
937 	start = (void *)(drhd + 1);
938 	end = ((void *)drhd) + header->length;
939 
940 	while (start < end && ret == 0) {
941 		scope = start;
942 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
943 			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
944 		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
945 			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
946 		start += scope->length;
947 	}
948 
949 	return ret;
950 }
951 
952 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
953 {
954 	int i;
955 
956 	for (i = 0; i < MAX_HPET_TBS; i++)
957 		if (ir_hpet[i].iommu == iommu)
958 			ir_hpet[i].iommu = NULL;
959 
960 	for (i = 0; i < MAX_IO_APICS; i++)
961 		if (ir_ioapic[i].iommu == iommu)
962 			ir_ioapic[i].iommu = NULL;
963 }
964 
965 /*
966  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
967  * hardware unit.
968  */
969 static int __init parse_ioapics_under_ir(void)
970 {
971 	struct dmar_drhd_unit *drhd;
972 	struct intel_iommu *iommu;
973 	bool ir_supported = false;
974 	int ioapic_idx;
975 
976 	for_each_iommu(iommu, drhd) {
977 		int ret;
978 
979 		if (!ecap_ir_support(iommu->ecap))
980 			continue;
981 
982 		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
983 		if (ret)
984 			return ret;
985 
986 		ir_supported = true;
987 	}
988 
989 	if (!ir_supported)
990 		return -ENODEV;
991 
992 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
993 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
994 		if (!map_ioapic_to_iommu(ioapic_id)) {
995 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
996 			       "interrupt remapping will be disabled\n",
997 			       ioapic_id);
998 			return -1;
999 		}
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 static int __init ir_dev_scope_init(void)
1006 {
1007 	int ret;
1008 
1009 	if (!irq_remapping_enabled)
1010 		return 0;
1011 
1012 	down_write(&dmar_global_lock);
1013 	ret = dmar_dev_scope_init();
1014 	up_write(&dmar_global_lock);
1015 
1016 	return ret;
1017 }
1018 rootfs_initcall(ir_dev_scope_init);
1019 
1020 static void disable_irq_remapping(void)
1021 {
1022 	struct dmar_drhd_unit *drhd;
1023 	struct intel_iommu *iommu = NULL;
1024 
1025 	/*
1026 	 * Disable Interrupt-remapping for all the DRHD's now.
1027 	 */
1028 	for_each_iommu(iommu, drhd) {
1029 		if (!ecap_ir_support(iommu->ecap))
1030 			continue;
1031 
1032 		iommu_disable_irq_remapping(iommu);
1033 	}
1034 
1035 	/*
1036 	 * Clear Posted-Interrupts capability.
1037 	 */
1038 	if (!disable_irq_post)
1039 		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1040 }
1041 
1042 static int reenable_irq_remapping(int eim)
1043 {
1044 	struct dmar_drhd_unit *drhd;
1045 	bool setup = false;
1046 	struct intel_iommu *iommu = NULL;
1047 
1048 	for_each_iommu(iommu, drhd)
1049 		if (iommu->qi)
1050 			dmar_reenable_qi(iommu);
1051 
1052 	/*
1053 	 * Setup Interrupt-remapping for all the DRHD's now.
1054 	 */
1055 	for_each_iommu(iommu, drhd) {
1056 		if (!ecap_ir_support(iommu->ecap))
1057 			continue;
1058 
1059 		/* Set up interrupt remapping for iommu.*/
1060 		iommu_set_irq_remapping(iommu, eim);
1061 		iommu_enable_irq_remapping(iommu);
1062 		setup = true;
1063 	}
1064 
1065 	if (!setup)
1066 		goto error;
1067 
1068 	set_irq_posting_cap();
1069 
1070 	return 0;
1071 
1072 error:
1073 	/*
1074 	 * handle error condition gracefully here!
1075 	 */
1076 	return -1;
1077 }
1078 
1079 /*
1080  * Store the MSI remapping domain pointer in the device if enabled.
1081  *
1082  * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1083  * remapping is disabled. Only update the pointer if the device is not
1084  * already handled by a non default PCI/MSI interrupt domain. This protects
1085  * e.g. VMD devices.
1086  */
1087 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1088 {
1089 	if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1090 		return;
1091 
1092 	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1093 }
1094 
1095 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1096 {
1097 	memset(irte, 0, sizeof(*irte));
1098 
1099 	irte->present = 1;
1100 	irte->dst_mode = apic->dest_mode_logical;
1101 	/*
1102 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1103 	 * actual level or edge trigger will be setup in the IO-APIC
1104 	 * RTE. This will help simplify level triggered irq migration.
1105 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1106 	 * irq migration in the presence of interrupt-remapping.
1107 	*/
1108 	irte->trigger_mode = 0;
1109 	irte->dlvry_mode = APIC_DELIVERY_MODE_FIXED;
1110 	irte->vector = vector;
1111 	irte->dest_id = IRTE_DEST(dest);
1112 	irte->redir_hint = 1;
1113 }
1114 
1115 static void prepare_irte_posted(struct irte *irte)
1116 {
1117 	memset(irte, 0, sizeof(*irte));
1118 
1119 	irte->present = 1;
1120 	irte->p_pst = 1;
1121 }
1122 
1123 struct irq_remap_ops intel_irq_remap_ops = {
1124 	.prepare		= intel_prepare_irq_remapping,
1125 	.enable			= intel_enable_irq_remapping,
1126 	.disable		= disable_irq_remapping,
1127 	.reenable		= reenable_irq_remapping,
1128 	.enable_faulting	= enable_drhd_fault_handling,
1129 };
1130 
1131 #ifdef CONFIG_X86_POSTED_MSI
1132 
1133 static phys_addr_t get_pi_desc_addr(struct irq_data *irqd)
1134 {
1135 	int cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
1136 
1137 	if (WARN_ON(cpu >= nr_cpu_ids))
1138 		return 0;
1139 
1140 	return __pa(per_cpu_ptr(&posted_msi_pi_desc, cpu));
1141 }
1142 
1143 static void intel_ir_reconfigure_irte_posted(struct irq_data *irqd)
1144 {
1145 	struct intel_ir_data *ir_data = irqd->chip_data;
1146 	struct irte *irte = &ir_data->irte_entry;
1147 	struct irte irte_pi;
1148 	u64 pid_addr;
1149 
1150 	pid_addr = get_pi_desc_addr(irqd);
1151 
1152 	if (!pid_addr) {
1153 		pr_warn("Failed to setup IRQ %d for posted mode", irqd->irq);
1154 		return;
1155 	}
1156 
1157 	memset(&irte_pi, 0, sizeof(irte_pi));
1158 
1159 	/* The shared IRTE already be set up as posted during alloc_irte */
1160 	dmar_copy_shared_irte(&irte_pi, irte);
1161 
1162 	irte_pi.pda_l = (pid_addr >> (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1163 	irte_pi.pda_h = (pid_addr >> 32) & ~(-1UL << PDA_HIGH_BIT);
1164 
1165 	modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1166 }
1167 
1168 #else
1169 static inline void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) {}
1170 #endif
1171 
1172 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1173 {
1174 	struct intel_ir_data *ir_data = irqd->chip_data;
1175 	struct irte *irte = &ir_data->irte_entry;
1176 	struct irq_cfg *cfg = irqd_cfg(irqd);
1177 
1178 	/*
1179 	 * Atomically updates the IRTE with the new destination, vector
1180 	 * and flushes the interrupt entry cache.
1181 	 */
1182 	irte->vector = cfg->vector;
1183 	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1184 
1185 	if (ir_data->irq_2_iommu.posted_msi)
1186 		intel_ir_reconfigure_irte_posted(irqd);
1187 	else if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1188 		modify_irte(&ir_data->irq_2_iommu, irte);
1189 }
1190 
1191 /*
1192  * Migrate the IO-APIC irq in the presence of intr-remapping.
1193  *
1194  * For both level and edge triggered, irq migration is a simple atomic
1195  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1196  *
1197  * For level triggered, we eliminate the io-apic RTE modification (with the
1198  * updated vector information), by using a virtual vector (io-apic pin number).
1199  * Real vector that is used for interrupting cpu will be coming from
1200  * the interrupt-remapping table entry.
1201  *
1202  * As the migration is a simple atomic update of IRTE, the same mechanism
1203  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1204  */
1205 static int
1206 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1207 		      bool force)
1208 {
1209 	struct irq_data *parent = data->parent_data;
1210 	struct irq_cfg *cfg = irqd_cfg(data);
1211 	int ret;
1212 
1213 	ret = parent->chip->irq_set_affinity(parent, mask, force);
1214 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1215 		return ret;
1216 
1217 	intel_ir_reconfigure_irte(data, false);
1218 	/*
1219 	 * After this point, all the interrupts will start arriving
1220 	 * at the new destination. So, time to cleanup the previous
1221 	 * vector allocation.
1222 	 */
1223 	vector_schedule_cleanup(cfg);
1224 
1225 	return IRQ_SET_MASK_OK_DONE;
1226 }
1227 
1228 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1229 				     struct msi_msg *msg)
1230 {
1231 	struct intel_ir_data *ir_data = irq_data->chip_data;
1232 
1233 	*msg = ir_data->msi_entry;
1234 }
1235 
1236 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1237 {
1238 	struct intel_ir_data *ir_data = data->chip_data;
1239 	struct vcpu_data *vcpu_pi_info = info;
1240 
1241 	/* stop posting interrupts, back to the default mode */
1242 	if (!vcpu_pi_info) {
1243 		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1244 	} else {
1245 		struct irte irte_pi;
1246 
1247 		/*
1248 		 * We are not caching the posted interrupt entry. We
1249 		 * copy the data from the remapped entry and modify
1250 		 * the fields which are relevant for posted mode. The
1251 		 * cached remapped entry is used for switching back to
1252 		 * remapped mode.
1253 		 */
1254 		memset(&irte_pi, 0, sizeof(irte_pi));
1255 		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1256 
1257 		/* Update the posted mode fields */
1258 		irte_pi.p_pst = 1;
1259 		irte_pi.p_urgent = 0;
1260 		irte_pi.p_vector = vcpu_pi_info->vector;
1261 		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1262 				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1263 		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1264 				~(-1UL << PDA_HIGH_BIT);
1265 
1266 		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 static struct irq_chip intel_ir_chip = {
1273 	.name			= "INTEL-IR",
1274 	.irq_ack		= apic_ack_irq,
1275 	.irq_set_affinity	= intel_ir_set_affinity,
1276 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1277 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1278 };
1279 
1280 /*
1281  * With posted MSIs, all vectors are multiplexed into a single notification
1282  * vector. Devices MSIs are then dispatched in a demux loop where
1283  * EOIs can be coalesced as well.
1284  *
1285  * "INTEL-IR-POST" IRQ chip does not do EOI on ACK, thus the dummy irq_ack()
1286  * function. Instead EOI is performed by the posted interrupt notification
1287  * handler.
1288  *
1289  * For the example below, 3 MSIs are coalesced into one CPU notification. Only
1290  * one apic_eoi() is needed.
1291  *
1292  * __sysvec_posted_msi_notification()
1293  *	irq_enter();
1294  *		handle_edge_irq()
1295  *			irq_chip_ack_parent()
1296  *				dummy(); // No EOI
1297  *			handle_irq_event()
1298  *				driver_handler()
1299  *		handle_edge_irq()
1300  *			irq_chip_ack_parent()
1301  *				dummy(); // No EOI
1302  *			handle_irq_event()
1303  *				driver_handler()
1304  *		handle_edge_irq()
1305  *			irq_chip_ack_parent()
1306  *				dummy(); // No EOI
1307  *			handle_irq_event()
1308  *				driver_handler()
1309  *	apic_eoi()
1310  *	irq_exit()
1311  */
1312 
1313 static void dummy_ack(struct irq_data *d) { }
1314 
1315 static struct irq_chip intel_ir_chip_post_msi = {
1316 	.name			= "INTEL-IR-POST",
1317 	.irq_ack		= dummy_ack,
1318 	.irq_set_affinity	= intel_ir_set_affinity,
1319 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1320 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1321 };
1322 
1323 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1324 {
1325 	memset(msg, 0, sizeof(*msg));
1326 
1327 	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1328 	msg->arch_addr_lo.dmar_subhandle_valid = true;
1329 	msg->arch_addr_lo.dmar_format = true;
1330 	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1331 	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1332 
1333 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1334 
1335 	msg->arch_data.dmar_subhandle = subhandle;
1336 }
1337 
1338 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1339 					     struct irq_cfg *irq_cfg,
1340 					     struct irq_alloc_info *info,
1341 					     int index, int sub_handle)
1342 {
1343 	struct irte *irte = &data->irte_entry;
1344 
1345 	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1346 
1347 	switch (info->type) {
1348 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1349 		/* Set source-id of interrupt request */
1350 		set_ioapic_sid(irte, info->devid);
1351 		apic_pr_verbose("IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1352 				info->devid, irte->present, irte->fpd, irte->dst_mode,
1353 				irte->redir_hint, irte->trigger_mode, irte->dlvry_mode,
1354 				irte->avail, irte->vector, irte->dest_id, irte->sid,
1355 				irte->sq, irte->svt);
1356 		sub_handle = info->ioapic.pin;
1357 		break;
1358 	case X86_IRQ_ALLOC_TYPE_HPET:
1359 		set_hpet_sid(irte, info->devid);
1360 		break;
1361 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1362 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1363 		if (posted_msi_supported()) {
1364 			prepare_irte_posted(irte);
1365 			data->irq_2_iommu.posted_msi = 1;
1366 		}
1367 
1368 		set_msi_sid(irte,
1369 			    pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1370 		break;
1371 	default:
1372 		BUG_ON(1);
1373 		break;
1374 	}
1375 	fill_msi_msg(&data->msi_entry, index, sub_handle);
1376 }
1377 
1378 static void intel_free_irq_resources(struct irq_domain *domain,
1379 				     unsigned int virq, unsigned int nr_irqs)
1380 {
1381 	struct irq_data *irq_data;
1382 	struct intel_ir_data *data;
1383 	struct irq_2_iommu *irq_iommu;
1384 	unsigned long flags;
1385 	int i;
1386 	for (i = 0; i < nr_irqs; i++) {
1387 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1388 		if (irq_data && irq_data->chip_data) {
1389 			data = irq_data->chip_data;
1390 			irq_iommu = &data->irq_2_iommu;
1391 			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1392 			clear_entries(irq_iommu);
1393 			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1394 			irq_domain_reset_irq_data(irq_data);
1395 			kfree(data);
1396 		}
1397 	}
1398 }
1399 
1400 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1401 				     unsigned int virq, unsigned int nr_irqs,
1402 				     void *arg)
1403 {
1404 	struct intel_iommu *iommu = domain->host_data;
1405 	struct irq_alloc_info *info = arg;
1406 	struct intel_ir_data *data, *ird;
1407 	struct irq_data *irq_data;
1408 	struct irq_cfg *irq_cfg;
1409 	int i, ret, index;
1410 
1411 	if (!info || !iommu)
1412 		return -EINVAL;
1413 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1414 		return -EINVAL;
1415 
1416 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1417 	if (ret < 0)
1418 		return ret;
1419 
1420 	ret = -ENOMEM;
1421 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1422 	if (!data)
1423 		goto out_free_parent;
1424 
1425 	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1426 	if (index < 0) {
1427 		pr_warn("Failed to allocate IRTE\n");
1428 		kfree(data);
1429 		goto out_free_parent;
1430 	}
1431 
1432 	for (i = 0; i < nr_irqs; i++) {
1433 		irq_data = irq_domain_get_irq_data(domain, virq + i);
1434 		irq_cfg = irqd_cfg(irq_data);
1435 		if (!irq_data || !irq_cfg) {
1436 			if (!i)
1437 				kfree(data);
1438 			ret = -EINVAL;
1439 			goto out_free_data;
1440 		}
1441 
1442 		if (i > 0) {
1443 			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1444 			if (!ird)
1445 				goto out_free_data;
1446 			/* Initialize the common data */
1447 			ird->irq_2_iommu = data->irq_2_iommu;
1448 			ird->irq_2_iommu.sub_handle = i;
1449 		} else {
1450 			ird = data;
1451 		}
1452 
1453 		irq_data->hwirq = (index << 16) + i;
1454 		irq_data->chip_data = ird;
1455 		if (posted_msi_supported() &&
1456 		    ((info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) ||
1457 		     (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX)))
1458 			irq_data->chip = &intel_ir_chip_post_msi;
1459 		else
1460 			irq_data->chip = &intel_ir_chip;
1461 		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1462 	}
1463 	return 0;
1464 
1465 out_free_data:
1466 	intel_free_irq_resources(domain, virq, i);
1467 out_free_parent:
1468 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1469 	return ret;
1470 }
1471 
1472 static void intel_irq_remapping_free(struct irq_domain *domain,
1473 				     unsigned int virq, unsigned int nr_irqs)
1474 {
1475 	intel_free_irq_resources(domain, virq, nr_irqs);
1476 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1477 }
1478 
1479 static int intel_irq_remapping_activate(struct irq_domain *domain,
1480 					struct irq_data *irq_data, bool reserve)
1481 {
1482 	intel_ir_reconfigure_irte(irq_data, true);
1483 	return 0;
1484 }
1485 
1486 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1487 					   struct irq_data *irq_data)
1488 {
1489 	struct intel_ir_data *data = irq_data->chip_data;
1490 	struct irte entry;
1491 
1492 	memset(&entry, 0, sizeof(entry));
1493 	modify_irte(&data->irq_2_iommu, &entry);
1494 }
1495 
1496 static int intel_irq_remapping_select(struct irq_domain *d,
1497 				      struct irq_fwspec *fwspec,
1498 				      enum irq_domain_bus_token bus_token)
1499 {
1500 	struct intel_iommu *iommu = NULL;
1501 
1502 	if (x86_fwspec_is_ioapic(fwspec))
1503 		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1504 	else if (x86_fwspec_is_hpet(fwspec))
1505 		iommu = map_hpet_to_iommu(fwspec->param[0]);
1506 
1507 	return iommu && d == iommu->ir_domain;
1508 }
1509 
1510 static const struct irq_domain_ops intel_ir_domain_ops = {
1511 	.select = intel_irq_remapping_select,
1512 	.alloc = intel_irq_remapping_alloc,
1513 	.free = intel_irq_remapping_free,
1514 	.activate = intel_irq_remapping_activate,
1515 	.deactivate = intel_irq_remapping_deactivate,
1516 };
1517 
1518 static const struct msi_parent_ops dmar_msi_parent_ops = {
1519 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
1520 	.prefix			= "IR-",
1521 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
1522 };
1523 
1524 /*
1525  * Support of Interrupt Remapping Unit Hotplug
1526  */
1527 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1528 {
1529 	int ret;
1530 	int eim = x2apic_enabled();
1531 
1532 	if (eim && !ecap_eim_support(iommu->ecap)) {
1533 		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1534 			iommu->reg_phys, iommu->ecap);
1535 		return -ENODEV;
1536 	}
1537 
1538 	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1539 		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1540 			iommu->reg_phys);
1541 		return -ENODEV;
1542 	}
1543 
1544 	/* TODO: check all IOAPICs are covered by IOMMU */
1545 
1546 	/* Setup Interrupt-remapping now. */
1547 	ret = intel_setup_irq_remapping(iommu);
1548 	if (ret) {
1549 		pr_err("Failed to setup irq remapping for %s\n",
1550 		       iommu->name);
1551 		intel_teardown_irq_remapping(iommu);
1552 		ir_remove_ioapic_hpet_scope(iommu);
1553 	} else {
1554 		iommu_enable_irq_remapping(iommu);
1555 	}
1556 
1557 	return ret;
1558 }
1559 
1560 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1561 {
1562 	int ret = 0;
1563 	struct intel_iommu *iommu = dmaru->iommu;
1564 
1565 	if (!irq_remapping_enabled)
1566 		return 0;
1567 	if (iommu == NULL)
1568 		return -EINVAL;
1569 	if (!ecap_ir_support(iommu->ecap))
1570 		return 0;
1571 	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1572 	    !cap_pi_support(iommu->cap))
1573 		return -EBUSY;
1574 
1575 	if (insert) {
1576 		if (!iommu->ir_table)
1577 			ret = dmar_ir_add(dmaru, iommu);
1578 	} else {
1579 		if (iommu->ir_table) {
1580 			if (!bitmap_empty(iommu->ir_table->bitmap,
1581 					  INTR_REMAP_TABLE_ENTRIES)) {
1582 				ret = -EBUSY;
1583 			} else {
1584 				iommu_disable_irq_remapping(iommu);
1585 				intel_teardown_irq_remapping(iommu);
1586 				ir_remove_ioapic_hpet_scope(iommu);
1587 			}
1588 		}
1589 	}
1590 
1591 	return ret;
1592 }
1593