xref: /linux/drivers/iommu/intel/irq_remapping.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
4 
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
17 #include <asm/apic.h>
18 #include <asm/smp.h>
19 #include <asm/cpu.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22 #include <asm/posted_intr.h>
23 
24 #include "iommu.h"
25 #include "../irq_remapping.h"
26 #include "../iommu-pages.h"
27 #include "cap_audit.h"
28 
29 enum irq_mode {
30 	IRQ_REMAPPING,
31 	IRQ_POSTING,
32 };
33 
34 struct ioapic_scope {
35 	struct intel_iommu *iommu;
36 	unsigned int id;
37 	unsigned int bus;	/* PCI bus number */
38 	unsigned int devfn;	/* PCI devfn number */
39 };
40 
41 struct hpet_scope {
42 	struct intel_iommu *iommu;
43 	u8 id;
44 	unsigned int bus;
45 	unsigned int devfn;
46 };
47 
48 struct irq_2_iommu {
49 	struct intel_iommu *iommu;
50 	u16 irte_index;
51 	u16 sub_handle;
52 	u8  irte_mask;
53 	enum irq_mode mode;
54 	bool posted_msi;
55 };
56 
57 struct intel_ir_data {
58 	struct irq_2_iommu			irq_2_iommu;
59 	struct irte				irte_entry;
60 	union {
61 		struct msi_msg			msi_entry;
62 	};
63 };
64 
65 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
66 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
67 
68 static int __read_mostly eim_mode;
69 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
70 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
71 
72 /*
73  * Lock ordering:
74  * ->dmar_global_lock
75  *	->irq_2_ir_lock
76  *		->qi->q_lock
77  *	->iommu->register_lock
78  * Note:
79  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
80  * in single-threaded environment with interrupt disabled, so no need to tabke
81  * the dmar_global_lock.
82  */
83 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
84 static const struct irq_domain_ops intel_ir_domain_ops;
85 
86 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
87 static int __init parse_ioapics_under_ir(void);
88 static const struct msi_parent_ops dmar_msi_parent_ops;
89 
90 static bool ir_pre_enabled(struct intel_iommu *iommu)
91 {
92 	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
93 }
94 
95 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
96 {
97 	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
98 }
99 
100 static void init_ir_status(struct intel_iommu *iommu)
101 {
102 	u32 gsts;
103 
104 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
105 	if (gsts & DMA_GSTS_IRES)
106 		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
107 }
108 
109 static int alloc_irte(struct intel_iommu *iommu,
110 		      struct irq_2_iommu *irq_iommu, u16 count)
111 {
112 	struct ir_table *table = iommu->ir_table;
113 	unsigned int mask = 0;
114 	unsigned long flags;
115 	int index;
116 
117 	if (!count || !irq_iommu)
118 		return -1;
119 
120 	if (count > 1) {
121 		count = __roundup_pow_of_two(count);
122 		mask = ilog2(count);
123 	}
124 
125 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
126 		pr_err("Requested mask %x exceeds the max invalidation handle"
127 		       " mask value %Lx\n", mask,
128 		       ecap_max_handle_mask(iommu->ecap));
129 		return -1;
130 	}
131 
132 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
133 	index = bitmap_find_free_region(table->bitmap,
134 					INTR_REMAP_TABLE_ENTRIES, mask);
135 	if (index < 0) {
136 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
137 	} else {
138 		irq_iommu->iommu = iommu;
139 		irq_iommu->irte_index =  index;
140 		irq_iommu->sub_handle = 0;
141 		irq_iommu->irte_mask = mask;
142 		irq_iommu->mode = IRQ_REMAPPING;
143 	}
144 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
145 
146 	return index;
147 }
148 
149 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
150 {
151 	struct qi_desc desc;
152 
153 	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
154 		   | QI_IEC_SELECTIVE;
155 	desc.qw1 = 0;
156 	desc.qw2 = 0;
157 	desc.qw3 = 0;
158 
159 	return qi_submit_sync(iommu, &desc, 1, 0);
160 }
161 
162 static int modify_irte(struct irq_2_iommu *irq_iommu,
163 		       struct irte *irte_modified)
164 {
165 	struct intel_iommu *iommu;
166 	unsigned long flags;
167 	struct irte *irte;
168 	int rc, index;
169 
170 	if (!irq_iommu)
171 		return -1;
172 
173 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
174 
175 	iommu = irq_iommu->iommu;
176 
177 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
178 	irte = &iommu->ir_table->base[index];
179 
180 	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
181 		/*
182 		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
183 		 * and it cannot be updated by the hardware or other processors
184 		 * behind us, so the return value of cmpxchg16 should be the
185 		 * same as the old value.
186 		 */
187 		u128 old = irte->irte;
188 		WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte));
189 	} else {
190 		WRITE_ONCE(irte->low, irte_modified->low);
191 		WRITE_ONCE(irte->high, irte_modified->high);
192 	}
193 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
194 
195 	rc = qi_flush_iec(iommu, index, 0);
196 
197 	/* Update iommu mode according to the IRTE mode */
198 	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
199 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
200 
201 	return rc;
202 }
203 
204 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
205 {
206 	int i;
207 
208 	for (i = 0; i < MAX_HPET_TBS; i++) {
209 		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
210 			return ir_hpet[i].iommu;
211 	}
212 	return NULL;
213 }
214 
215 static struct intel_iommu *map_ioapic_to_iommu(int apic)
216 {
217 	int i;
218 
219 	for (i = 0; i < MAX_IO_APICS; i++) {
220 		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
221 			return ir_ioapic[i].iommu;
222 	}
223 	return NULL;
224 }
225 
226 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
227 {
228 	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
229 
230 	return drhd ? drhd->iommu->ir_domain : NULL;
231 }
232 
233 static int clear_entries(struct irq_2_iommu *irq_iommu)
234 {
235 	struct irte *start, *entry, *end;
236 	struct intel_iommu *iommu;
237 	int index;
238 
239 	if (irq_iommu->sub_handle)
240 		return 0;
241 
242 	iommu = irq_iommu->iommu;
243 	index = irq_iommu->irte_index;
244 
245 	start = iommu->ir_table->base + index;
246 	end = start + (1 << irq_iommu->irte_mask);
247 
248 	for (entry = start; entry < end; entry++) {
249 		WRITE_ONCE(entry->low, 0);
250 		WRITE_ONCE(entry->high, 0);
251 	}
252 	bitmap_release_region(iommu->ir_table->bitmap, index,
253 			      irq_iommu->irte_mask);
254 
255 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
256 }
257 
258 /*
259  * source validation type
260  */
261 #define SVT_NO_VERIFY		0x0  /* no verification is required */
262 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
263 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
264 
265 /*
266  * source-id qualifier
267  */
268 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
269 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
270 			      * the third least significant bit
271 			      */
272 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
273 			      * the second and third least significant bits
274 			      */
275 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
276 			      * the least three significant bits
277 			      */
278 
279 /*
280  * set SVT, SQ and SID fields of irte to verify
281  * source ids of interrupt requests
282  */
283 static void set_irte_sid(struct irte *irte, unsigned int svt,
284 			 unsigned int sq, unsigned int sid)
285 {
286 	if (disable_sourceid_checking)
287 		svt = SVT_NO_VERIFY;
288 	irte->svt = svt;
289 	irte->sq = sq;
290 	irte->sid = sid;
291 }
292 
293 /*
294  * Set an IRTE to match only the bus number. Interrupt requests that reference
295  * this IRTE must have a requester-id whose bus number is between or equal
296  * to the start_bus and end_bus arguments.
297  */
298 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
299 				unsigned int end_bus)
300 {
301 	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
302 		     (start_bus << 8) | end_bus);
303 }
304 
305 static int set_ioapic_sid(struct irte *irte, int apic)
306 {
307 	int i;
308 	u16 sid = 0;
309 
310 	if (!irte)
311 		return -1;
312 
313 	for (i = 0; i < MAX_IO_APICS; i++) {
314 		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
315 			sid = PCI_DEVID(ir_ioapic[i].bus, ir_ioapic[i].devfn);
316 			break;
317 		}
318 	}
319 
320 	if (sid == 0) {
321 		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
322 		return -1;
323 	}
324 
325 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
326 
327 	return 0;
328 }
329 
330 static int set_hpet_sid(struct irte *irte, u8 id)
331 {
332 	int i;
333 	u16 sid = 0;
334 
335 	if (!irte)
336 		return -1;
337 
338 	for (i = 0; i < MAX_HPET_TBS; i++) {
339 		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
340 			sid = PCI_DEVID(ir_hpet[i].bus, ir_hpet[i].devfn);
341 			break;
342 		}
343 	}
344 
345 	if (sid == 0) {
346 		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
347 		return -1;
348 	}
349 
350 	/*
351 	 * Should really use SQ_ALL_16. Some platforms are broken.
352 	 * While we figure out the right quirks for these broken platforms, use
353 	 * SQ_13_IGNORE_3 for now.
354 	 */
355 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
356 
357 	return 0;
358 }
359 
360 struct set_msi_sid_data {
361 	struct pci_dev *pdev;
362 	u16 alias;
363 	int count;
364 	int busmatch_count;
365 };
366 
367 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
368 {
369 	struct set_msi_sid_data *data = opaque;
370 
371 	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
372 		data->busmatch_count++;
373 
374 	data->pdev = pdev;
375 	data->alias = alias;
376 	data->count++;
377 
378 	return 0;
379 }
380 
381 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
382 {
383 	struct set_msi_sid_data data;
384 
385 	if (!irte || !dev)
386 		return -1;
387 
388 	data.count = 0;
389 	data.busmatch_count = 0;
390 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
391 
392 	/*
393 	 * DMA alias provides us with a PCI device and alias.  The only case
394 	 * where the it will return an alias on a different bus than the
395 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
396 	 * the subordinate bus.  In this case we can only verify the bus.
397 	 *
398 	 * If there are multiple aliases, all with the same bus number,
399 	 * then all we can do is verify the bus. This is typical in NTB
400 	 * hardware which use proxy IDs where the device will generate traffic
401 	 * from multiple devfn numbers on the same bus.
402 	 *
403 	 * If the alias device is on a different bus than our source device
404 	 * then we have a topology based alias, use it.
405 	 *
406 	 * Otherwise, the alias is for a device DMA quirk and we cannot
407 	 * assume that MSI uses the same requester ID.  Therefore use the
408 	 * original device.
409 	 */
410 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
411 		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
412 				    dev->bus->number);
413 	else if (data.count >= 2 && data.busmatch_count == data.count)
414 		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
415 	else if (data.pdev->bus->number != dev->bus->number)
416 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
417 	else
418 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
419 			     pci_dev_id(dev));
420 
421 	return 0;
422 }
423 
424 static int iommu_load_old_irte(struct intel_iommu *iommu)
425 {
426 	struct irte *old_ir_table;
427 	phys_addr_t irt_phys;
428 	unsigned int i;
429 	size_t size;
430 	u64 irta;
431 
432 	/* Check whether the old ir-table has the same size as ours */
433 	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
434 	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
435 	     != INTR_REMAP_TABLE_REG_SIZE)
436 		return -EINVAL;
437 
438 	irt_phys = irta & VTD_PAGE_MASK;
439 	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
440 
441 	/* Map the old IR table */
442 	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
443 	if (!old_ir_table)
444 		return -ENOMEM;
445 
446 	/* Copy data over */
447 	memcpy(iommu->ir_table->base, old_ir_table, size);
448 
449 	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
450 
451 	/*
452 	 * Now check the table for used entries and mark those as
453 	 * allocated in the bitmap
454 	 */
455 	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
456 		if (iommu->ir_table->base[i].present)
457 			bitmap_set(iommu->ir_table->bitmap, i, 1);
458 	}
459 
460 	memunmap(old_ir_table);
461 
462 	return 0;
463 }
464 
465 
466 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
467 {
468 	unsigned long flags;
469 	u64 addr;
470 	u32 sts;
471 
472 	addr = virt_to_phys((void *)iommu->ir_table->base);
473 
474 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
475 
476 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
477 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
478 
479 	/* Set interrupt-remapping table pointer */
480 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
481 
482 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
483 		      readl, (sts & DMA_GSTS_IRTPS), sts);
484 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
485 
486 	/*
487 	 * Global invalidation of interrupt entry cache to make sure the
488 	 * hardware uses the new irq remapping table.
489 	 */
490 	if (!cap_esirtps(iommu->cap))
491 		qi_global_iec(iommu);
492 }
493 
494 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
495 {
496 	unsigned long flags;
497 	u32 sts;
498 
499 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
500 
501 	/* Enable interrupt-remapping */
502 	iommu->gcmd |= DMA_GCMD_IRE;
503 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
504 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
505 		      readl, (sts & DMA_GSTS_IRES), sts);
506 
507 	/* Block compatibility-format MSIs */
508 	if (sts & DMA_GSTS_CFIS) {
509 		iommu->gcmd &= ~DMA_GCMD_CFI;
510 		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
511 		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
512 			      readl, !(sts & DMA_GSTS_CFIS), sts);
513 	}
514 
515 	/*
516 	 * With CFI clear in the Global Command register, we should be
517 	 * protected from dangerous (i.e. compatibility) interrupts
518 	 * regardless of x2apic status.  Check just to be sure.
519 	 */
520 	if (sts & DMA_GSTS_CFIS)
521 		WARN(1, KERN_WARNING
522 			"Compatibility-format IRQs enabled despite intr remapping;\n"
523 			"you are vulnerable to IRQ injection.\n");
524 
525 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
526 }
527 
528 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
529 {
530 	struct ir_table *ir_table;
531 	struct fwnode_handle *fn;
532 	unsigned long *bitmap;
533 	void *ir_table_base;
534 
535 	if (iommu->ir_table)
536 		return 0;
537 
538 	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
539 	if (!ir_table)
540 		return -ENOMEM;
541 
542 	ir_table_base = iommu_alloc_pages_node(iommu->node, GFP_KERNEL,
543 					       INTR_REMAP_PAGE_ORDER);
544 	if (!ir_table_base) {
545 		pr_err("IR%d: failed to allocate pages of order %d\n",
546 		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
547 		goto out_free_table;
548 	}
549 
550 	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL);
551 	if (bitmap == NULL) {
552 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
553 		goto out_free_pages;
554 	}
555 
556 	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
557 	if (!fn)
558 		goto out_free_bitmap;
559 
560 	iommu->ir_domain =
561 		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
562 					    0, INTR_REMAP_TABLE_ENTRIES,
563 					    fn, &intel_ir_domain_ops,
564 					    iommu);
565 	if (!iommu->ir_domain) {
566 		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
567 		goto out_free_fwnode;
568 	}
569 
570 	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_DMAR);
571 	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
572 				   IRQ_DOMAIN_FLAG_ISOLATED_MSI;
573 	iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
574 
575 	ir_table->base = ir_table_base;
576 	ir_table->bitmap = bitmap;
577 	iommu->ir_table = ir_table;
578 
579 	/*
580 	 * If the queued invalidation is already initialized,
581 	 * shouldn't disable it.
582 	 */
583 	if (!iommu->qi) {
584 		/*
585 		 * Clear previous faults.
586 		 */
587 		dmar_fault(-1, iommu);
588 		dmar_disable_qi(iommu);
589 
590 		if (dmar_enable_qi(iommu)) {
591 			pr_err("Failed to enable queued invalidation\n");
592 			goto out_free_ir_domain;
593 		}
594 	}
595 
596 	init_ir_status(iommu);
597 
598 	if (ir_pre_enabled(iommu)) {
599 		if (!is_kdump_kernel()) {
600 			pr_info_once("IRQ remapping was enabled on %s but we are not in kdump mode\n",
601 				     iommu->name);
602 			clear_ir_pre_enabled(iommu);
603 			iommu_disable_irq_remapping(iommu);
604 		} else if (iommu_load_old_irte(iommu))
605 			pr_err("Failed to copy IR table for %s from previous kernel\n",
606 			       iommu->name);
607 		else
608 			pr_info("Copied IR table for %s from previous kernel\n",
609 				iommu->name);
610 	}
611 
612 	iommu_set_irq_remapping(iommu, eim_mode);
613 
614 	return 0;
615 
616 out_free_ir_domain:
617 	irq_domain_remove(iommu->ir_domain);
618 	iommu->ir_domain = NULL;
619 out_free_fwnode:
620 	irq_domain_free_fwnode(fn);
621 out_free_bitmap:
622 	bitmap_free(bitmap);
623 out_free_pages:
624 	iommu_free_pages(ir_table_base, INTR_REMAP_PAGE_ORDER);
625 out_free_table:
626 	kfree(ir_table);
627 
628 	iommu->ir_table  = NULL;
629 
630 	return -ENOMEM;
631 }
632 
633 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
634 {
635 	struct fwnode_handle *fn;
636 
637 	if (iommu && iommu->ir_table) {
638 		if (iommu->ir_domain) {
639 			fn = iommu->ir_domain->fwnode;
640 
641 			irq_domain_remove(iommu->ir_domain);
642 			irq_domain_free_fwnode(fn);
643 			iommu->ir_domain = NULL;
644 		}
645 		iommu_free_pages(iommu->ir_table->base, INTR_REMAP_PAGE_ORDER);
646 		bitmap_free(iommu->ir_table->bitmap);
647 		kfree(iommu->ir_table);
648 		iommu->ir_table = NULL;
649 	}
650 }
651 
652 /*
653  * Disable Interrupt Remapping.
654  */
655 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
656 {
657 	unsigned long flags;
658 	u32 sts;
659 
660 	if (!ecap_ir_support(iommu->ecap))
661 		return;
662 
663 	/*
664 	 * global invalidation of interrupt entry cache before disabling
665 	 * interrupt-remapping.
666 	 */
667 	if (!cap_esirtps(iommu->cap))
668 		qi_global_iec(iommu);
669 
670 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
671 
672 	sts = readl(iommu->reg + DMAR_GSTS_REG);
673 	if (!(sts & DMA_GSTS_IRES))
674 		goto end;
675 
676 	iommu->gcmd &= ~DMA_GCMD_IRE;
677 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
678 
679 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
680 		      readl, !(sts & DMA_GSTS_IRES), sts);
681 
682 end:
683 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
684 }
685 
686 static int __init dmar_x2apic_optout(void)
687 {
688 	struct acpi_table_dmar *dmar;
689 	dmar = (struct acpi_table_dmar *)dmar_tbl;
690 	if (!dmar || no_x2apic_optout)
691 		return 0;
692 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
693 }
694 
695 static void __init intel_cleanup_irq_remapping(void)
696 {
697 	struct dmar_drhd_unit *drhd;
698 	struct intel_iommu *iommu;
699 
700 	for_each_iommu(iommu, drhd) {
701 		if (ecap_ir_support(iommu->ecap)) {
702 			iommu_disable_irq_remapping(iommu);
703 			intel_teardown_irq_remapping(iommu);
704 		}
705 	}
706 
707 	if (x2apic_supported())
708 		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
709 }
710 
711 static int __init intel_prepare_irq_remapping(void)
712 {
713 	struct dmar_drhd_unit *drhd;
714 	struct intel_iommu *iommu;
715 	int eim = 0;
716 
717 	if (irq_remap_broken) {
718 		pr_warn("This system BIOS has enabled interrupt remapping\n"
719 			"on a chipset that contains an erratum making that\n"
720 			"feature unstable.  To maintain system stability\n"
721 			"interrupt remapping is being disabled.  Please\n"
722 			"contact your BIOS vendor for an update\n");
723 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
724 		return -ENODEV;
725 	}
726 
727 	if (dmar_table_init() < 0)
728 		return -ENODEV;
729 
730 	if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
731 		return -ENODEV;
732 
733 	if (!dmar_ir_support())
734 		return -ENODEV;
735 
736 	if (parse_ioapics_under_ir()) {
737 		pr_info("Not enabling interrupt remapping\n");
738 		goto error;
739 	}
740 
741 	/* First make sure all IOMMUs support IRQ remapping */
742 	for_each_iommu(iommu, drhd)
743 		if (!ecap_ir_support(iommu->ecap))
744 			goto error;
745 
746 	/* Detect remapping mode: lapic or x2apic */
747 	if (x2apic_supported()) {
748 		eim = !dmar_x2apic_optout();
749 		if (!eim) {
750 			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
751 			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
752 		}
753 	}
754 
755 	for_each_iommu(iommu, drhd) {
756 		if (eim && !ecap_eim_support(iommu->ecap)) {
757 			pr_info("%s does not support EIM\n", iommu->name);
758 			eim = 0;
759 		}
760 	}
761 
762 	eim_mode = eim;
763 	if (eim)
764 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
765 
766 	/* Do the initializations early */
767 	for_each_iommu(iommu, drhd) {
768 		if (intel_setup_irq_remapping(iommu)) {
769 			pr_err("Failed to setup irq remapping for %s\n",
770 			       iommu->name);
771 			goto error;
772 		}
773 	}
774 
775 	return 0;
776 
777 error:
778 	intel_cleanup_irq_remapping();
779 	return -ENODEV;
780 }
781 
782 /*
783  * Set Posted-Interrupts capability.
784  */
785 static inline void set_irq_posting_cap(void)
786 {
787 	struct dmar_drhd_unit *drhd;
788 	struct intel_iommu *iommu;
789 
790 	if (!disable_irq_post) {
791 		/*
792 		 * If IRTE is in posted format, the 'pda' field goes across the
793 		 * 64-bit boundary, we need use cmpxchg16b to atomically update
794 		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
795 		 * is supported. Actually, hardware platforms supporting PI
796 		 * should have X86_FEATURE_CX16 support, this has been confirmed
797 		 * with Intel hardware guys.
798 		 */
799 		if (boot_cpu_has(X86_FEATURE_CX16))
800 			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
801 
802 		for_each_iommu(iommu, drhd)
803 			if (!cap_pi_support(iommu->cap)) {
804 				intel_irq_remap_ops.capability &=
805 						~(1 << IRQ_POSTING_CAP);
806 				break;
807 			}
808 	}
809 }
810 
811 static int __init intel_enable_irq_remapping(void)
812 {
813 	struct dmar_drhd_unit *drhd;
814 	struct intel_iommu *iommu;
815 	bool setup = false;
816 
817 	/*
818 	 * Setup Interrupt-remapping for all the DRHD's now.
819 	 */
820 	for_each_iommu(iommu, drhd) {
821 		if (!ir_pre_enabled(iommu))
822 			iommu_enable_irq_remapping(iommu);
823 		setup = true;
824 	}
825 
826 	if (!setup)
827 		goto error;
828 
829 	irq_remapping_enabled = 1;
830 
831 	set_irq_posting_cap();
832 
833 	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
834 
835 	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
836 
837 error:
838 	intel_cleanup_irq_remapping();
839 	return -1;
840 }
841 
842 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
843 				   struct intel_iommu *iommu,
844 				   struct acpi_dmar_hardware_unit *drhd)
845 {
846 	struct acpi_dmar_pci_path *path;
847 	u8 bus;
848 	int count, free = -1;
849 
850 	bus = scope->bus;
851 	path = (struct acpi_dmar_pci_path *)(scope + 1);
852 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
853 		/ sizeof(struct acpi_dmar_pci_path);
854 
855 	while (--count > 0) {
856 		/*
857 		 * Access PCI directly due to the PCI
858 		 * subsystem isn't initialized yet.
859 		 */
860 		bus = read_pci_config_byte(bus, path->device, path->function,
861 					   PCI_SECONDARY_BUS);
862 		path++;
863 	}
864 
865 	for (count = 0; count < MAX_HPET_TBS; count++) {
866 		if (ir_hpet[count].iommu == iommu &&
867 		    ir_hpet[count].id == scope->enumeration_id)
868 			return 0;
869 		else if (ir_hpet[count].iommu == NULL && free == -1)
870 			free = count;
871 	}
872 	if (free == -1) {
873 		pr_warn("Exceeded Max HPET blocks\n");
874 		return -ENOSPC;
875 	}
876 
877 	ir_hpet[free].iommu = iommu;
878 	ir_hpet[free].id    = scope->enumeration_id;
879 	ir_hpet[free].bus   = bus;
880 	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
881 	pr_info("HPET id %d under DRHD base 0x%Lx\n",
882 		scope->enumeration_id, drhd->address);
883 
884 	return 0;
885 }
886 
887 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
888 				     struct intel_iommu *iommu,
889 				     struct acpi_dmar_hardware_unit *drhd)
890 {
891 	struct acpi_dmar_pci_path *path;
892 	u8 bus;
893 	int count, free = -1;
894 
895 	bus = scope->bus;
896 	path = (struct acpi_dmar_pci_path *)(scope + 1);
897 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
898 		/ sizeof(struct acpi_dmar_pci_path);
899 
900 	while (--count > 0) {
901 		/*
902 		 * Access PCI directly due to the PCI
903 		 * subsystem isn't initialized yet.
904 		 */
905 		bus = read_pci_config_byte(bus, path->device, path->function,
906 					   PCI_SECONDARY_BUS);
907 		path++;
908 	}
909 
910 	for (count = 0; count < MAX_IO_APICS; count++) {
911 		if (ir_ioapic[count].iommu == iommu &&
912 		    ir_ioapic[count].id == scope->enumeration_id)
913 			return 0;
914 		else if (ir_ioapic[count].iommu == NULL && free == -1)
915 			free = count;
916 	}
917 	if (free == -1) {
918 		pr_warn("Exceeded Max IO APICS\n");
919 		return -ENOSPC;
920 	}
921 
922 	ir_ioapic[free].bus   = bus;
923 	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
924 	ir_ioapic[free].iommu = iommu;
925 	ir_ioapic[free].id    = scope->enumeration_id;
926 	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
927 		scope->enumeration_id, drhd->address, iommu->seq_id);
928 
929 	return 0;
930 }
931 
932 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
933 				      struct intel_iommu *iommu)
934 {
935 	int ret = 0;
936 	struct acpi_dmar_hardware_unit *drhd;
937 	struct acpi_dmar_device_scope *scope;
938 	void *start, *end;
939 
940 	drhd = (struct acpi_dmar_hardware_unit *)header;
941 	start = (void *)(drhd + 1);
942 	end = ((void *)drhd) + header->length;
943 
944 	while (start < end && ret == 0) {
945 		scope = start;
946 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
947 			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
948 		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
949 			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
950 		start += scope->length;
951 	}
952 
953 	return ret;
954 }
955 
956 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
957 {
958 	int i;
959 
960 	for (i = 0; i < MAX_HPET_TBS; i++)
961 		if (ir_hpet[i].iommu == iommu)
962 			ir_hpet[i].iommu = NULL;
963 
964 	for (i = 0; i < MAX_IO_APICS; i++)
965 		if (ir_ioapic[i].iommu == iommu)
966 			ir_ioapic[i].iommu = NULL;
967 }
968 
969 /*
970  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
971  * hardware unit.
972  */
973 static int __init parse_ioapics_under_ir(void)
974 {
975 	struct dmar_drhd_unit *drhd;
976 	struct intel_iommu *iommu;
977 	bool ir_supported = false;
978 	int ioapic_idx;
979 
980 	for_each_iommu(iommu, drhd) {
981 		int ret;
982 
983 		if (!ecap_ir_support(iommu->ecap))
984 			continue;
985 
986 		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
987 		if (ret)
988 			return ret;
989 
990 		ir_supported = true;
991 	}
992 
993 	if (!ir_supported)
994 		return -ENODEV;
995 
996 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
997 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
998 		if (!map_ioapic_to_iommu(ioapic_id)) {
999 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1000 			       "interrupt remapping will be disabled\n",
1001 			       ioapic_id);
1002 			return -1;
1003 		}
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 static int __init ir_dev_scope_init(void)
1010 {
1011 	int ret;
1012 
1013 	if (!irq_remapping_enabled)
1014 		return 0;
1015 
1016 	down_write(&dmar_global_lock);
1017 	ret = dmar_dev_scope_init();
1018 	up_write(&dmar_global_lock);
1019 
1020 	return ret;
1021 }
1022 rootfs_initcall(ir_dev_scope_init);
1023 
1024 static void disable_irq_remapping(void)
1025 {
1026 	struct dmar_drhd_unit *drhd;
1027 	struct intel_iommu *iommu = NULL;
1028 
1029 	/*
1030 	 * Disable Interrupt-remapping for all the DRHD's now.
1031 	 */
1032 	for_each_iommu(iommu, drhd) {
1033 		if (!ecap_ir_support(iommu->ecap))
1034 			continue;
1035 
1036 		iommu_disable_irq_remapping(iommu);
1037 	}
1038 
1039 	/*
1040 	 * Clear Posted-Interrupts capability.
1041 	 */
1042 	if (!disable_irq_post)
1043 		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1044 }
1045 
1046 static int reenable_irq_remapping(int eim)
1047 {
1048 	struct dmar_drhd_unit *drhd;
1049 	bool setup = false;
1050 	struct intel_iommu *iommu = NULL;
1051 
1052 	for_each_iommu(iommu, drhd)
1053 		if (iommu->qi)
1054 			dmar_reenable_qi(iommu);
1055 
1056 	/*
1057 	 * Setup Interrupt-remapping for all the DRHD's now.
1058 	 */
1059 	for_each_iommu(iommu, drhd) {
1060 		if (!ecap_ir_support(iommu->ecap))
1061 			continue;
1062 
1063 		/* Set up interrupt remapping for iommu.*/
1064 		iommu_set_irq_remapping(iommu, eim);
1065 		iommu_enable_irq_remapping(iommu);
1066 		setup = true;
1067 	}
1068 
1069 	if (!setup)
1070 		goto error;
1071 
1072 	set_irq_posting_cap();
1073 
1074 	return 0;
1075 
1076 error:
1077 	/*
1078 	 * handle error condition gracefully here!
1079 	 */
1080 	return -1;
1081 }
1082 
1083 /*
1084  * Store the MSI remapping domain pointer in the device if enabled.
1085  *
1086  * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1087  * remapping is disabled. Only update the pointer if the device is not
1088  * already handled by a non default PCI/MSI interrupt domain. This protects
1089  * e.g. VMD devices.
1090  */
1091 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1092 {
1093 	if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1094 		return;
1095 
1096 	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1097 }
1098 
1099 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1100 {
1101 	memset(irte, 0, sizeof(*irte));
1102 
1103 	irte->present = 1;
1104 	irte->dst_mode = apic->dest_mode_logical;
1105 	/*
1106 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1107 	 * actual level or edge trigger will be setup in the IO-APIC
1108 	 * RTE. This will help simplify level triggered irq migration.
1109 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1110 	 * irq migration in the presence of interrupt-remapping.
1111 	*/
1112 	irte->trigger_mode = 0;
1113 	irte->dlvry_mode = APIC_DELIVERY_MODE_FIXED;
1114 	irte->vector = vector;
1115 	irte->dest_id = IRTE_DEST(dest);
1116 	irte->redir_hint = 1;
1117 }
1118 
1119 static void prepare_irte_posted(struct irte *irte)
1120 {
1121 	memset(irte, 0, sizeof(*irte));
1122 
1123 	irte->present = 1;
1124 	irte->p_pst = 1;
1125 }
1126 
1127 struct irq_remap_ops intel_irq_remap_ops = {
1128 	.prepare		= intel_prepare_irq_remapping,
1129 	.enable			= intel_enable_irq_remapping,
1130 	.disable		= disable_irq_remapping,
1131 	.reenable		= reenable_irq_remapping,
1132 	.enable_faulting	= enable_drhd_fault_handling,
1133 };
1134 
1135 #ifdef CONFIG_X86_POSTED_MSI
1136 
1137 static phys_addr_t get_pi_desc_addr(struct irq_data *irqd)
1138 {
1139 	int cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
1140 
1141 	if (WARN_ON(cpu >= nr_cpu_ids))
1142 		return 0;
1143 
1144 	return __pa(per_cpu_ptr(&posted_msi_pi_desc, cpu));
1145 }
1146 
1147 static void intel_ir_reconfigure_irte_posted(struct irq_data *irqd)
1148 {
1149 	struct intel_ir_data *ir_data = irqd->chip_data;
1150 	struct irte *irte = &ir_data->irte_entry;
1151 	struct irte irte_pi;
1152 	u64 pid_addr;
1153 
1154 	pid_addr = get_pi_desc_addr(irqd);
1155 
1156 	if (!pid_addr) {
1157 		pr_warn("Failed to setup IRQ %d for posted mode", irqd->irq);
1158 		return;
1159 	}
1160 
1161 	memset(&irte_pi, 0, sizeof(irte_pi));
1162 
1163 	/* The shared IRTE already be set up as posted during alloc_irte */
1164 	dmar_copy_shared_irte(&irte_pi, irte);
1165 
1166 	irte_pi.pda_l = (pid_addr >> (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1167 	irte_pi.pda_h = (pid_addr >> 32) & ~(-1UL << PDA_HIGH_BIT);
1168 
1169 	modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1170 }
1171 
1172 #else
1173 static inline void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) {}
1174 #endif
1175 
1176 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1177 {
1178 	struct intel_ir_data *ir_data = irqd->chip_data;
1179 	struct irte *irte = &ir_data->irte_entry;
1180 	struct irq_cfg *cfg = irqd_cfg(irqd);
1181 
1182 	/*
1183 	 * Atomically updates the IRTE with the new destination, vector
1184 	 * and flushes the interrupt entry cache.
1185 	 */
1186 	irte->vector = cfg->vector;
1187 	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1188 
1189 	if (ir_data->irq_2_iommu.posted_msi)
1190 		intel_ir_reconfigure_irte_posted(irqd);
1191 	else if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1192 		modify_irte(&ir_data->irq_2_iommu, irte);
1193 }
1194 
1195 /*
1196  * Migrate the IO-APIC irq in the presence of intr-remapping.
1197  *
1198  * For both level and edge triggered, irq migration is a simple atomic
1199  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1200  *
1201  * For level triggered, we eliminate the io-apic RTE modification (with the
1202  * updated vector information), by using a virtual vector (io-apic pin number).
1203  * Real vector that is used for interrupting cpu will be coming from
1204  * the interrupt-remapping table entry.
1205  *
1206  * As the migration is a simple atomic update of IRTE, the same mechanism
1207  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1208  */
1209 static int
1210 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1211 		      bool force)
1212 {
1213 	struct irq_data *parent = data->parent_data;
1214 	struct irq_cfg *cfg = irqd_cfg(data);
1215 	int ret;
1216 
1217 	ret = parent->chip->irq_set_affinity(parent, mask, force);
1218 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1219 		return ret;
1220 
1221 	intel_ir_reconfigure_irte(data, false);
1222 	/*
1223 	 * After this point, all the interrupts will start arriving
1224 	 * at the new destination. So, time to cleanup the previous
1225 	 * vector allocation.
1226 	 */
1227 	vector_schedule_cleanup(cfg);
1228 
1229 	return IRQ_SET_MASK_OK_DONE;
1230 }
1231 
1232 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1233 				     struct msi_msg *msg)
1234 {
1235 	struct intel_ir_data *ir_data = irq_data->chip_data;
1236 
1237 	*msg = ir_data->msi_entry;
1238 }
1239 
1240 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1241 {
1242 	struct intel_ir_data *ir_data = data->chip_data;
1243 	struct vcpu_data *vcpu_pi_info = info;
1244 
1245 	/* stop posting interrupts, back to the default mode */
1246 	if (!vcpu_pi_info) {
1247 		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1248 	} else {
1249 		struct irte irte_pi;
1250 
1251 		/*
1252 		 * We are not caching the posted interrupt entry. We
1253 		 * copy the data from the remapped entry and modify
1254 		 * the fields which are relevant for posted mode. The
1255 		 * cached remapped entry is used for switching back to
1256 		 * remapped mode.
1257 		 */
1258 		memset(&irte_pi, 0, sizeof(irte_pi));
1259 		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1260 
1261 		/* Update the posted mode fields */
1262 		irte_pi.p_pst = 1;
1263 		irte_pi.p_urgent = 0;
1264 		irte_pi.p_vector = vcpu_pi_info->vector;
1265 		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1266 				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1267 		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1268 				~(-1UL << PDA_HIGH_BIT);
1269 
1270 		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static struct irq_chip intel_ir_chip = {
1277 	.name			= "INTEL-IR",
1278 	.irq_ack		= apic_ack_irq,
1279 	.irq_set_affinity	= intel_ir_set_affinity,
1280 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1281 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1282 };
1283 
1284 /*
1285  * With posted MSIs, all vectors are multiplexed into a single notification
1286  * vector. Devices MSIs are then dispatched in a demux loop where
1287  * EOIs can be coalesced as well.
1288  *
1289  * "INTEL-IR-POST" IRQ chip does not do EOI on ACK, thus the dummy irq_ack()
1290  * function. Instead EOI is performed by the posted interrupt notification
1291  * handler.
1292  *
1293  * For the example below, 3 MSIs are coalesced into one CPU notification. Only
1294  * one apic_eoi() is needed.
1295  *
1296  * __sysvec_posted_msi_notification()
1297  *	irq_enter();
1298  *		handle_edge_irq()
1299  *			irq_chip_ack_parent()
1300  *				dummy(); // No EOI
1301  *			handle_irq_event()
1302  *				driver_handler()
1303  *		handle_edge_irq()
1304  *			irq_chip_ack_parent()
1305  *				dummy(); // No EOI
1306  *			handle_irq_event()
1307  *				driver_handler()
1308  *		handle_edge_irq()
1309  *			irq_chip_ack_parent()
1310  *				dummy(); // No EOI
1311  *			handle_irq_event()
1312  *				driver_handler()
1313  *	apic_eoi()
1314  *	irq_exit()
1315  */
1316 
1317 static void dummy_ack(struct irq_data *d) { }
1318 
1319 static struct irq_chip intel_ir_chip_post_msi = {
1320 	.name			= "INTEL-IR-POST",
1321 	.irq_ack		= dummy_ack,
1322 	.irq_set_affinity	= intel_ir_set_affinity,
1323 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1324 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1325 };
1326 
1327 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1328 {
1329 	memset(msg, 0, sizeof(*msg));
1330 
1331 	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1332 	msg->arch_addr_lo.dmar_subhandle_valid = true;
1333 	msg->arch_addr_lo.dmar_format = true;
1334 	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1335 	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1336 
1337 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1338 
1339 	msg->arch_data.dmar_subhandle = subhandle;
1340 }
1341 
1342 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1343 					     struct irq_cfg *irq_cfg,
1344 					     struct irq_alloc_info *info,
1345 					     int index, int sub_handle)
1346 {
1347 	struct irte *irte = &data->irte_entry;
1348 
1349 	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1350 
1351 	switch (info->type) {
1352 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1353 		/* Set source-id of interrupt request */
1354 		set_ioapic_sid(irte, info->devid);
1355 		apic_pr_verbose("IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1356 				info->devid, irte->present, irte->fpd, irte->dst_mode,
1357 				irte->redir_hint, irte->trigger_mode, irte->dlvry_mode,
1358 				irte->avail, irte->vector, irte->dest_id, irte->sid,
1359 				irte->sq, irte->svt);
1360 		sub_handle = info->ioapic.pin;
1361 		break;
1362 	case X86_IRQ_ALLOC_TYPE_HPET:
1363 		set_hpet_sid(irte, info->devid);
1364 		break;
1365 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1366 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1367 		if (posted_msi_supported()) {
1368 			prepare_irte_posted(irte);
1369 			data->irq_2_iommu.posted_msi = 1;
1370 		}
1371 
1372 		set_msi_sid(irte,
1373 			    pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1374 		break;
1375 	default:
1376 		BUG_ON(1);
1377 		break;
1378 	}
1379 	fill_msi_msg(&data->msi_entry, index, sub_handle);
1380 }
1381 
1382 static void intel_free_irq_resources(struct irq_domain *domain,
1383 				     unsigned int virq, unsigned int nr_irqs)
1384 {
1385 	struct irq_data *irq_data;
1386 	struct intel_ir_data *data;
1387 	struct irq_2_iommu *irq_iommu;
1388 	unsigned long flags;
1389 	int i;
1390 	for (i = 0; i < nr_irqs; i++) {
1391 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1392 		if (irq_data && irq_data->chip_data) {
1393 			data = irq_data->chip_data;
1394 			irq_iommu = &data->irq_2_iommu;
1395 			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1396 			clear_entries(irq_iommu);
1397 			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1398 			irq_domain_reset_irq_data(irq_data);
1399 			kfree(data);
1400 		}
1401 	}
1402 }
1403 
1404 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1405 				     unsigned int virq, unsigned int nr_irqs,
1406 				     void *arg)
1407 {
1408 	struct intel_iommu *iommu = domain->host_data;
1409 	struct irq_alloc_info *info = arg;
1410 	struct intel_ir_data *data, *ird;
1411 	struct irq_data *irq_data;
1412 	struct irq_cfg *irq_cfg;
1413 	int i, ret, index;
1414 
1415 	if (!info || !iommu)
1416 		return -EINVAL;
1417 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1418 		return -EINVAL;
1419 
1420 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1421 	if (ret < 0)
1422 		return ret;
1423 
1424 	ret = -ENOMEM;
1425 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1426 	if (!data)
1427 		goto out_free_parent;
1428 
1429 	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1430 	if (index < 0) {
1431 		pr_warn("Failed to allocate IRTE\n");
1432 		kfree(data);
1433 		goto out_free_parent;
1434 	}
1435 
1436 	for (i = 0; i < nr_irqs; i++) {
1437 		irq_data = irq_domain_get_irq_data(domain, virq + i);
1438 		irq_cfg = irqd_cfg(irq_data);
1439 		if (!irq_data || !irq_cfg) {
1440 			if (!i)
1441 				kfree(data);
1442 			ret = -EINVAL;
1443 			goto out_free_data;
1444 		}
1445 
1446 		if (i > 0) {
1447 			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1448 			if (!ird)
1449 				goto out_free_data;
1450 			/* Initialize the common data */
1451 			ird->irq_2_iommu = data->irq_2_iommu;
1452 			ird->irq_2_iommu.sub_handle = i;
1453 		} else {
1454 			ird = data;
1455 		}
1456 
1457 		irq_data->hwirq = (index << 16) + i;
1458 		irq_data->chip_data = ird;
1459 		if (posted_msi_supported() &&
1460 		    ((info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) ||
1461 		     (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX)))
1462 			irq_data->chip = &intel_ir_chip_post_msi;
1463 		else
1464 			irq_data->chip = &intel_ir_chip;
1465 		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1466 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1467 	}
1468 	return 0;
1469 
1470 out_free_data:
1471 	intel_free_irq_resources(domain, virq, i);
1472 out_free_parent:
1473 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1474 	return ret;
1475 }
1476 
1477 static void intel_irq_remapping_free(struct irq_domain *domain,
1478 				     unsigned int virq, unsigned int nr_irqs)
1479 {
1480 	intel_free_irq_resources(domain, virq, nr_irqs);
1481 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1482 }
1483 
1484 static int intel_irq_remapping_activate(struct irq_domain *domain,
1485 					struct irq_data *irq_data, bool reserve)
1486 {
1487 	intel_ir_reconfigure_irte(irq_data, true);
1488 	return 0;
1489 }
1490 
1491 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1492 					   struct irq_data *irq_data)
1493 {
1494 	struct intel_ir_data *data = irq_data->chip_data;
1495 	struct irte entry;
1496 
1497 	memset(&entry, 0, sizeof(entry));
1498 	modify_irte(&data->irq_2_iommu, &entry);
1499 }
1500 
1501 static int intel_irq_remapping_select(struct irq_domain *d,
1502 				      struct irq_fwspec *fwspec,
1503 				      enum irq_domain_bus_token bus_token)
1504 {
1505 	struct intel_iommu *iommu = NULL;
1506 
1507 	if (x86_fwspec_is_ioapic(fwspec))
1508 		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1509 	else if (x86_fwspec_is_hpet(fwspec))
1510 		iommu = map_hpet_to_iommu(fwspec->param[0]);
1511 
1512 	return iommu && d == iommu->ir_domain;
1513 }
1514 
1515 static const struct irq_domain_ops intel_ir_domain_ops = {
1516 	.select = intel_irq_remapping_select,
1517 	.alloc = intel_irq_remapping_alloc,
1518 	.free = intel_irq_remapping_free,
1519 	.activate = intel_irq_remapping_activate,
1520 	.deactivate = intel_irq_remapping_deactivate,
1521 };
1522 
1523 static const struct msi_parent_ops dmar_msi_parent_ops = {
1524 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
1525 	.prefix			= "IR-",
1526 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
1527 };
1528 
1529 /*
1530  * Support of Interrupt Remapping Unit Hotplug
1531  */
1532 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1533 {
1534 	int ret;
1535 	int eim = x2apic_enabled();
1536 
1537 	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1538 	if (ret)
1539 		return ret;
1540 
1541 	if (eim && !ecap_eim_support(iommu->ecap)) {
1542 		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1543 			iommu->reg_phys, iommu->ecap);
1544 		return -ENODEV;
1545 	}
1546 
1547 	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1548 		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1549 			iommu->reg_phys);
1550 		return -ENODEV;
1551 	}
1552 
1553 	/* TODO: check all IOAPICs are covered by IOMMU */
1554 
1555 	/* Setup Interrupt-remapping now. */
1556 	ret = intel_setup_irq_remapping(iommu);
1557 	if (ret) {
1558 		pr_err("Failed to setup irq remapping for %s\n",
1559 		       iommu->name);
1560 		intel_teardown_irq_remapping(iommu);
1561 		ir_remove_ioapic_hpet_scope(iommu);
1562 	} else {
1563 		iommu_enable_irq_remapping(iommu);
1564 	}
1565 
1566 	return ret;
1567 }
1568 
1569 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1570 {
1571 	int ret = 0;
1572 	struct intel_iommu *iommu = dmaru->iommu;
1573 
1574 	if (!irq_remapping_enabled)
1575 		return 0;
1576 	if (iommu == NULL)
1577 		return -EINVAL;
1578 	if (!ecap_ir_support(iommu->ecap))
1579 		return 0;
1580 	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1581 	    !cap_pi_support(iommu->cap))
1582 		return -EBUSY;
1583 
1584 	if (insert) {
1585 		if (!iommu->ir_table)
1586 			ret = dmar_ir_add(dmaru, iommu);
1587 	} else {
1588 		if (iommu->ir_table) {
1589 			if (!bitmap_empty(iommu->ir_table->bitmap,
1590 					  INTR_REMAP_TABLE_ENTRIES)) {
1591 				ret = -EBUSY;
1592 			} else {
1593 				iommu_disable_irq_remapping(iommu);
1594 				intel_teardown_irq_remapping(iommu);
1595 				ir_remove_ioapic_hpet_scope(iommu);
1596 			}
1597 		}
1598 	}
1599 
1600 	return ret;
1601 }
1602