xref: /linux/drivers/iommu/intel/irq_remapping.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
4 
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/intel-iommu.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
18 #include <asm/apic.h>
19 #include <asm/smp.h>
20 #include <asm/cpu.h>
21 #include <asm/irq_remapping.h>
22 #include <asm/pci-direct.h>
23 
24 #include "../irq_remapping.h"
25 #include "cap_audit.h"
26 
27 enum irq_mode {
28 	IRQ_REMAPPING,
29 	IRQ_POSTING,
30 };
31 
32 struct ioapic_scope {
33 	struct intel_iommu *iommu;
34 	unsigned int id;
35 	unsigned int bus;	/* PCI bus number */
36 	unsigned int devfn;	/* PCI devfn number */
37 };
38 
39 struct hpet_scope {
40 	struct intel_iommu *iommu;
41 	u8 id;
42 	unsigned int bus;
43 	unsigned int devfn;
44 };
45 
46 struct irq_2_iommu {
47 	struct intel_iommu *iommu;
48 	u16 irte_index;
49 	u16 sub_handle;
50 	u8  irte_mask;
51 	enum irq_mode mode;
52 };
53 
54 struct intel_ir_data {
55 	struct irq_2_iommu			irq_2_iommu;
56 	struct irte				irte_entry;
57 	union {
58 		struct msi_msg			msi_entry;
59 	};
60 };
61 
62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64 
65 static int __read_mostly eim_mode;
66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68 
69 /*
70  * Lock ordering:
71  * ->dmar_global_lock
72  *	->irq_2_ir_lock
73  *		->qi->q_lock
74  *	->iommu->register_lock
75  * Note:
76  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77  * in single-threaded environment with interrupt disabled, so no need to tabke
78  * the dmar_global_lock.
79  */
80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81 static const struct irq_domain_ops intel_ir_domain_ops;
82 
83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 static int __init parse_ioapics_under_ir(void);
85 
86 static bool ir_pre_enabled(struct intel_iommu *iommu)
87 {
88 	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
89 }
90 
91 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
92 {
93 	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
94 }
95 
96 static void init_ir_status(struct intel_iommu *iommu)
97 {
98 	u32 gsts;
99 
100 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
101 	if (gsts & DMA_GSTS_IRES)
102 		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
103 }
104 
105 static int alloc_irte(struct intel_iommu *iommu,
106 		      struct irq_2_iommu *irq_iommu, u16 count)
107 {
108 	struct ir_table *table = iommu->ir_table;
109 	unsigned int mask = 0;
110 	unsigned long flags;
111 	int index;
112 
113 	if (!count || !irq_iommu)
114 		return -1;
115 
116 	if (count > 1) {
117 		count = __roundup_pow_of_two(count);
118 		mask = ilog2(count);
119 	}
120 
121 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
122 		pr_err("Requested mask %x exceeds the max invalidation handle"
123 		       " mask value %Lx\n", mask,
124 		       ecap_max_handle_mask(iommu->ecap));
125 		return -1;
126 	}
127 
128 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
129 	index = bitmap_find_free_region(table->bitmap,
130 					INTR_REMAP_TABLE_ENTRIES, mask);
131 	if (index < 0) {
132 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
133 	} else {
134 		irq_iommu->iommu = iommu;
135 		irq_iommu->irte_index =  index;
136 		irq_iommu->sub_handle = 0;
137 		irq_iommu->irte_mask = mask;
138 		irq_iommu->mode = IRQ_REMAPPING;
139 	}
140 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
141 
142 	return index;
143 }
144 
145 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
146 {
147 	struct qi_desc desc;
148 
149 	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
150 		   | QI_IEC_SELECTIVE;
151 	desc.qw1 = 0;
152 	desc.qw2 = 0;
153 	desc.qw3 = 0;
154 
155 	return qi_submit_sync(iommu, &desc, 1, 0);
156 }
157 
158 static int modify_irte(struct irq_2_iommu *irq_iommu,
159 		       struct irte *irte_modified)
160 {
161 	struct intel_iommu *iommu;
162 	unsigned long flags;
163 	struct irte *irte;
164 	int rc, index;
165 
166 	if (!irq_iommu)
167 		return -1;
168 
169 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
170 
171 	iommu = irq_iommu->iommu;
172 
173 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
174 	irte = &iommu->ir_table->base[index];
175 
176 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
177 	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 		bool ret;
179 
180 		ret = cmpxchg_double(&irte->low, &irte->high,
181 				     irte->low, irte->high,
182 				     irte_modified->low, irte_modified->high);
183 		/*
184 		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
185 		 * and it cannot be updated by the hardware or other processors
186 		 * behind us, so the return value of cmpxchg16 should be the
187 		 * same as the old value.
188 		 */
189 		WARN_ON(!ret);
190 	} else
191 #endif
192 	{
193 		set_64bit(&irte->low, irte_modified->low);
194 		set_64bit(&irte->high, irte_modified->high);
195 	}
196 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
197 
198 	rc = qi_flush_iec(iommu, index, 0);
199 
200 	/* Update iommu mode according to the IRTE mode */
201 	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
202 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203 
204 	return rc;
205 }
206 
207 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
208 {
209 	int i;
210 
211 	for (i = 0; i < MAX_HPET_TBS; i++) {
212 		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
213 			return ir_hpet[i].iommu;
214 	}
215 	return NULL;
216 }
217 
218 static struct intel_iommu *map_ioapic_to_iommu(int apic)
219 {
220 	int i;
221 
222 	for (i = 0; i < MAX_IO_APICS; i++) {
223 		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
224 			return ir_ioapic[i].iommu;
225 	}
226 	return NULL;
227 }
228 
229 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
230 {
231 	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
232 
233 	return drhd ? drhd->iommu->ir_msi_domain : NULL;
234 }
235 
236 static int clear_entries(struct irq_2_iommu *irq_iommu)
237 {
238 	struct irte *start, *entry, *end;
239 	struct intel_iommu *iommu;
240 	int index;
241 
242 	if (irq_iommu->sub_handle)
243 		return 0;
244 
245 	iommu = irq_iommu->iommu;
246 	index = irq_iommu->irte_index;
247 
248 	start = iommu->ir_table->base + index;
249 	end = start + (1 << irq_iommu->irte_mask);
250 
251 	for (entry = start; entry < end; entry++) {
252 		set_64bit(&entry->low, 0);
253 		set_64bit(&entry->high, 0);
254 	}
255 	bitmap_release_region(iommu->ir_table->bitmap, index,
256 			      irq_iommu->irte_mask);
257 
258 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
259 }
260 
261 /*
262  * source validation type
263  */
264 #define SVT_NO_VERIFY		0x0  /* no verification is required */
265 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
266 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
267 
268 /*
269  * source-id qualifier
270  */
271 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
272 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
273 			      * the third least significant bit
274 			      */
275 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
276 			      * the second and third least significant bits
277 			      */
278 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
279 			      * the least three significant bits
280 			      */
281 
282 /*
283  * set SVT, SQ and SID fields of irte to verify
284  * source ids of interrupt requests
285  */
286 static void set_irte_sid(struct irte *irte, unsigned int svt,
287 			 unsigned int sq, unsigned int sid)
288 {
289 	if (disable_sourceid_checking)
290 		svt = SVT_NO_VERIFY;
291 	irte->svt = svt;
292 	irte->sq = sq;
293 	irte->sid = sid;
294 }
295 
296 /*
297  * Set an IRTE to match only the bus number. Interrupt requests that reference
298  * this IRTE must have a requester-id whose bus number is between or equal
299  * to the start_bus and end_bus arguments.
300  */
301 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
302 				unsigned int end_bus)
303 {
304 	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
305 		     (start_bus << 8) | end_bus);
306 }
307 
308 static int set_ioapic_sid(struct irte *irte, int apic)
309 {
310 	int i;
311 	u16 sid = 0;
312 
313 	if (!irte)
314 		return -1;
315 
316 	down_read(&dmar_global_lock);
317 	for (i = 0; i < MAX_IO_APICS; i++) {
318 		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
319 			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
320 			break;
321 		}
322 	}
323 	up_read(&dmar_global_lock);
324 
325 	if (sid == 0) {
326 		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
327 		return -1;
328 	}
329 
330 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
331 
332 	return 0;
333 }
334 
335 static int set_hpet_sid(struct irte *irte, u8 id)
336 {
337 	int i;
338 	u16 sid = 0;
339 
340 	if (!irte)
341 		return -1;
342 
343 	down_read(&dmar_global_lock);
344 	for (i = 0; i < MAX_HPET_TBS; i++) {
345 		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
346 			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
347 			break;
348 		}
349 	}
350 	up_read(&dmar_global_lock);
351 
352 	if (sid == 0) {
353 		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
354 		return -1;
355 	}
356 
357 	/*
358 	 * Should really use SQ_ALL_16. Some platforms are broken.
359 	 * While we figure out the right quirks for these broken platforms, use
360 	 * SQ_13_IGNORE_3 for now.
361 	 */
362 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
363 
364 	return 0;
365 }
366 
367 struct set_msi_sid_data {
368 	struct pci_dev *pdev;
369 	u16 alias;
370 	int count;
371 	int busmatch_count;
372 };
373 
374 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
375 {
376 	struct set_msi_sid_data *data = opaque;
377 
378 	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
379 		data->busmatch_count++;
380 
381 	data->pdev = pdev;
382 	data->alias = alias;
383 	data->count++;
384 
385 	return 0;
386 }
387 
388 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
389 {
390 	struct set_msi_sid_data data;
391 
392 	if (!irte || !dev)
393 		return -1;
394 
395 	data.count = 0;
396 	data.busmatch_count = 0;
397 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
398 
399 	/*
400 	 * DMA alias provides us with a PCI device and alias.  The only case
401 	 * where the it will return an alias on a different bus than the
402 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
403 	 * the subordinate bus.  In this case we can only verify the bus.
404 	 *
405 	 * If there are multiple aliases, all with the same bus number,
406 	 * then all we can do is verify the bus. This is typical in NTB
407 	 * hardware which use proxy IDs where the device will generate traffic
408 	 * from multiple devfn numbers on the same bus.
409 	 *
410 	 * If the alias device is on a different bus than our source device
411 	 * then we have a topology based alias, use it.
412 	 *
413 	 * Otherwise, the alias is for a device DMA quirk and we cannot
414 	 * assume that MSI uses the same requester ID.  Therefore use the
415 	 * original device.
416 	 */
417 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
418 		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
419 				    dev->bus->number);
420 	else if (data.count >= 2 && data.busmatch_count == data.count)
421 		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
422 	else if (data.pdev->bus->number != dev->bus->number)
423 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
424 	else
425 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
426 			     pci_dev_id(dev));
427 
428 	return 0;
429 }
430 
431 static int iommu_load_old_irte(struct intel_iommu *iommu)
432 {
433 	struct irte *old_ir_table;
434 	phys_addr_t irt_phys;
435 	unsigned int i;
436 	size_t size;
437 	u64 irta;
438 
439 	/* Check whether the old ir-table has the same size as ours */
440 	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
441 	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
442 	     != INTR_REMAP_TABLE_REG_SIZE)
443 		return -EINVAL;
444 
445 	irt_phys = irta & VTD_PAGE_MASK;
446 	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
447 
448 	/* Map the old IR table */
449 	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
450 	if (!old_ir_table)
451 		return -ENOMEM;
452 
453 	/* Copy data over */
454 	memcpy(iommu->ir_table->base, old_ir_table, size);
455 
456 	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
457 
458 	/*
459 	 * Now check the table for used entries and mark those as
460 	 * allocated in the bitmap
461 	 */
462 	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
463 		if (iommu->ir_table->base[i].present)
464 			bitmap_set(iommu->ir_table->bitmap, i, 1);
465 	}
466 
467 	memunmap(old_ir_table);
468 
469 	return 0;
470 }
471 
472 
473 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
474 {
475 	unsigned long flags;
476 	u64 addr;
477 	u32 sts;
478 
479 	addr = virt_to_phys((void *)iommu->ir_table->base);
480 
481 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
482 
483 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
484 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
485 
486 	/* Set interrupt-remapping table pointer */
487 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
488 
489 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
490 		      readl, (sts & DMA_GSTS_IRTPS), sts);
491 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
492 
493 	/*
494 	 * Global invalidation of interrupt entry cache to make sure the
495 	 * hardware uses the new irq remapping table.
496 	 */
497 	qi_global_iec(iommu);
498 }
499 
500 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
501 {
502 	unsigned long flags;
503 	u32 sts;
504 
505 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
506 
507 	/* Enable interrupt-remapping */
508 	iommu->gcmd |= DMA_GCMD_IRE;
509 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
510 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
511 		      readl, (sts & DMA_GSTS_IRES), sts);
512 
513 	/* Block compatibility-format MSIs */
514 	if (sts & DMA_GSTS_CFIS) {
515 		iommu->gcmd &= ~DMA_GCMD_CFI;
516 		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
517 		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
518 			      readl, !(sts & DMA_GSTS_CFIS), sts);
519 	}
520 
521 	/*
522 	 * With CFI clear in the Global Command register, we should be
523 	 * protected from dangerous (i.e. compatibility) interrupts
524 	 * regardless of x2apic status.  Check just to be sure.
525 	 */
526 	if (sts & DMA_GSTS_CFIS)
527 		WARN(1, KERN_WARNING
528 			"Compatibility-format IRQs enabled despite intr remapping;\n"
529 			"you are vulnerable to IRQ injection.\n");
530 
531 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
532 }
533 
534 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
535 {
536 	struct ir_table *ir_table;
537 	struct fwnode_handle *fn;
538 	unsigned long *bitmap;
539 	struct page *pages;
540 
541 	if (iommu->ir_table)
542 		return 0;
543 
544 	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
545 	if (!ir_table)
546 		return -ENOMEM;
547 
548 	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
549 				 INTR_REMAP_PAGE_ORDER);
550 	if (!pages) {
551 		pr_err("IR%d: failed to allocate pages of order %d\n",
552 		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
553 		goto out_free_table;
554 	}
555 
556 	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
557 	if (bitmap == NULL) {
558 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
559 		goto out_free_pages;
560 	}
561 
562 	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
563 	if (!fn)
564 		goto out_free_bitmap;
565 
566 	iommu->ir_domain =
567 		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
568 					    0, INTR_REMAP_TABLE_ENTRIES,
569 					    fn, &intel_ir_domain_ops,
570 					    iommu);
571 	if (!iommu->ir_domain) {
572 		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
573 		goto out_free_fwnode;
574 	}
575 	iommu->ir_msi_domain =
576 		arch_create_remap_msi_irq_domain(iommu->ir_domain,
577 						 "INTEL-IR-MSI",
578 						 iommu->seq_id);
579 
580 	ir_table->base = page_address(pages);
581 	ir_table->bitmap = bitmap;
582 	iommu->ir_table = ir_table;
583 
584 	/*
585 	 * If the queued invalidation is already initialized,
586 	 * shouldn't disable it.
587 	 */
588 	if (!iommu->qi) {
589 		/*
590 		 * Clear previous faults.
591 		 */
592 		dmar_fault(-1, iommu);
593 		dmar_disable_qi(iommu);
594 
595 		if (dmar_enable_qi(iommu)) {
596 			pr_err("Failed to enable queued invalidation\n");
597 			goto out_free_ir_domain;
598 		}
599 	}
600 
601 	init_ir_status(iommu);
602 
603 	if (ir_pre_enabled(iommu)) {
604 		if (!is_kdump_kernel()) {
605 			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
606 				iommu->name);
607 			clear_ir_pre_enabled(iommu);
608 			iommu_disable_irq_remapping(iommu);
609 		} else if (iommu_load_old_irte(iommu))
610 			pr_err("Failed to copy IR table for %s from previous kernel\n",
611 			       iommu->name);
612 		else
613 			pr_info("Copied IR table for %s from previous kernel\n",
614 				iommu->name);
615 	}
616 
617 	iommu_set_irq_remapping(iommu, eim_mode);
618 
619 	return 0;
620 
621 out_free_ir_domain:
622 	if (iommu->ir_msi_domain)
623 		irq_domain_remove(iommu->ir_msi_domain);
624 	iommu->ir_msi_domain = NULL;
625 	irq_domain_remove(iommu->ir_domain);
626 	iommu->ir_domain = NULL;
627 out_free_fwnode:
628 	irq_domain_free_fwnode(fn);
629 out_free_bitmap:
630 	bitmap_free(bitmap);
631 out_free_pages:
632 	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
633 out_free_table:
634 	kfree(ir_table);
635 
636 	iommu->ir_table  = NULL;
637 
638 	return -ENOMEM;
639 }
640 
641 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
642 {
643 	struct fwnode_handle *fn;
644 
645 	if (iommu && iommu->ir_table) {
646 		if (iommu->ir_msi_domain) {
647 			fn = iommu->ir_msi_domain->fwnode;
648 
649 			irq_domain_remove(iommu->ir_msi_domain);
650 			irq_domain_free_fwnode(fn);
651 			iommu->ir_msi_domain = NULL;
652 		}
653 		if (iommu->ir_domain) {
654 			fn = iommu->ir_domain->fwnode;
655 
656 			irq_domain_remove(iommu->ir_domain);
657 			irq_domain_free_fwnode(fn);
658 			iommu->ir_domain = NULL;
659 		}
660 		free_pages((unsigned long)iommu->ir_table->base,
661 			   INTR_REMAP_PAGE_ORDER);
662 		bitmap_free(iommu->ir_table->bitmap);
663 		kfree(iommu->ir_table);
664 		iommu->ir_table = NULL;
665 	}
666 }
667 
668 /*
669  * Disable Interrupt Remapping.
670  */
671 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
672 {
673 	unsigned long flags;
674 	u32 sts;
675 
676 	if (!ecap_ir_support(iommu->ecap))
677 		return;
678 
679 	/*
680 	 * global invalidation of interrupt entry cache before disabling
681 	 * interrupt-remapping.
682 	 */
683 	qi_global_iec(iommu);
684 
685 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
686 
687 	sts = readl(iommu->reg + DMAR_GSTS_REG);
688 	if (!(sts & DMA_GSTS_IRES))
689 		goto end;
690 
691 	iommu->gcmd &= ~DMA_GCMD_IRE;
692 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
693 
694 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
695 		      readl, !(sts & DMA_GSTS_IRES), sts);
696 
697 end:
698 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
699 }
700 
701 static int __init dmar_x2apic_optout(void)
702 {
703 	struct acpi_table_dmar *dmar;
704 	dmar = (struct acpi_table_dmar *)dmar_tbl;
705 	if (!dmar || no_x2apic_optout)
706 		return 0;
707 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
708 }
709 
710 static void __init intel_cleanup_irq_remapping(void)
711 {
712 	struct dmar_drhd_unit *drhd;
713 	struct intel_iommu *iommu;
714 
715 	for_each_iommu(iommu, drhd) {
716 		if (ecap_ir_support(iommu->ecap)) {
717 			iommu_disable_irq_remapping(iommu);
718 			intel_teardown_irq_remapping(iommu);
719 		}
720 	}
721 
722 	if (x2apic_supported())
723 		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
724 }
725 
726 static int __init intel_prepare_irq_remapping(void)
727 {
728 	struct dmar_drhd_unit *drhd;
729 	struct intel_iommu *iommu;
730 	int eim = 0;
731 
732 	if (irq_remap_broken) {
733 		pr_warn("This system BIOS has enabled interrupt remapping\n"
734 			"on a chipset that contains an erratum making that\n"
735 			"feature unstable.  To maintain system stability\n"
736 			"interrupt remapping is being disabled.  Please\n"
737 			"contact your BIOS vendor for an update\n");
738 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
739 		return -ENODEV;
740 	}
741 
742 	if (dmar_table_init() < 0)
743 		return -ENODEV;
744 
745 	if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
746 		return -ENODEV;
747 
748 	if (!dmar_ir_support())
749 		return -ENODEV;
750 
751 	if (parse_ioapics_under_ir()) {
752 		pr_info("Not enabling interrupt remapping\n");
753 		goto error;
754 	}
755 
756 	/* First make sure all IOMMUs support IRQ remapping */
757 	for_each_iommu(iommu, drhd)
758 		if (!ecap_ir_support(iommu->ecap))
759 			goto error;
760 
761 	/* Detect remapping mode: lapic or x2apic */
762 	if (x2apic_supported()) {
763 		eim = !dmar_x2apic_optout();
764 		if (!eim) {
765 			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
766 			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
767 		}
768 	}
769 
770 	for_each_iommu(iommu, drhd) {
771 		if (eim && !ecap_eim_support(iommu->ecap)) {
772 			pr_info("%s does not support EIM\n", iommu->name);
773 			eim = 0;
774 		}
775 	}
776 
777 	eim_mode = eim;
778 	if (eim)
779 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
780 
781 	/* Do the initializations early */
782 	for_each_iommu(iommu, drhd) {
783 		if (intel_setup_irq_remapping(iommu)) {
784 			pr_err("Failed to setup irq remapping for %s\n",
785 			       iommu->name);
786 			goto error;
787 		}
788 	}
789 
790 	return 0;
791 
792 error:
793 	intel_cleanup_irq_remapping();
794 	return -ENODEV;
795 }
796 
797 /*
798  * Set Posted-Interrupts capability.
799  */
800 static inline void set_irq_posting_cap(void)
801 {
802 	struct dmar_drhd_unit *drhd;
803 	struct intel_iommu *iommu;
804 
805 	if (!disable_irq_post) {
806 		/*
807 		 * If IRTE is in posted format, the 'pda' field goes across the
808 		 * 64-bit boundary, we need use cmpxchg16b to atomically update
809 		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
810 		 * is supported. Actually, hardware platforms supporting PI
811 		 * should have X86_FEATURE_CX16 support, this has been confirmed
812 		 * with Intel hardware guys.
813 		 */
814 		if (boot_cpu_has(X86_FEATURE_CX16))
815 			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
816 
817 		for_each_iommu(iommu, drhd)
818 			if (!cap_pi_support(iommu->cap)) {
819 				intel_irq_remap_ops.capability &=
820 						~(1 << IRQ_POSTING_CAP);
821 				break;
822 			}
823 	}
824 }
825 
826 static int __init intel_enable_irq_remapping(void)
827 {
828 	struct dmar_drhd_unit *drhd;
829 	struct intel_iommu *iommu;
830 	bool setup = false;
831 
832 	/*
833 	 * Setup Interrupt-remapping for all the DRHD's now.
834 	 */
835 	for_each_iommu(iommu, drhd) {
836 		if (!ir_pre_enabled(iommu))
837 			iommu_enable_irq_remapping(iommu);
838 		setup = true;
839 	}
840 
841 	if (!setup)
842 		goto error;
843 
844 	irq_remapping_enabled = 1;
845 
846 	set_irq_posting_cap();
847 
848 	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
849 
850 	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
851 
852 error:
853 	intel_cleanup_irq_remapping();
854 	return -1;
855 }
856 
857 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
858 				   struct intel_iommu *iommu,
859 				   struct acpi_dmar_hardware_unit *drhd)
860 {
861 	struct acpi_dmar_pci_path *path;
862 	u8 bus;
863 	int count, free = -1;
864 
865 	bus = scope->bus;
866 	path = (struct acpi_dmar_pci_path *)(scope + 1);
867 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
868 		/ sizeof(struct acpi_dmar_pci_path);
869 
870 	while (--count > 0) {
871 		/*
872 		 * Access PCI directly due to the PCI
873 		 * subsystem isn't initialized yet.
874 		 */
875 		bus = read_pci_config_byte(bus, path->device, path->function,
876 					   PCI_SECONDARY_BUS);
877 		path++;
878 	}
879 
880 	for (count = 0; count < MAX_HPET_TBS; count++) {
881 		if (ir_hpet[count].iommu == iommu &&
882 		    ir_hpet[count].id == scope->enumeration_id)
883 			return 0;
884 		else if (ir_hpet[count].iommu == NULL && free == -1)
885 			free = count;
886 	}
887 	if (free == -1) {
888 		pr_warn("Exceeded Max HPET blocks\n");
889 		return -ENOSPC;
890 	}
891 
892 	ir_hpet[free].iommu = iommu;
893 	ir_hpet[free].id    = scope->enumeration_id;
894 	ir_hpet[free].bus   = bus;
895 	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
896 	pr_info("HPET id %d under DRHD base 0x%Lx\n",
897 		scope->enumeration_id, drhd->address);
898 
899 	return 0;
900 }
901 
902 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
903 				     struct intel_iommu *iommu,
904 				     struct acpi_dmar_hardware_unit *drhd)
905 {
906 	struct acpi_dmar_pci_path *path;
907 	u8 bus;
908 	int count, free = -1;
909 
910 	bus = scope->bus;
911 	path = (struct acpi_dmar_pci_path *)(scope + 1);
912 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
913 		/ sizeof(struct acpi_dmar_pci_path);
914 
915 	while (--count > 0) {
916 		/*
917 		 * Access PCI directly due to the PCI
918 		 * subsystem isn't initialized yet.
919 		 */
920 		bus = read_pci_config_byte(bus, path->device, path->function,
921 					   PCI_SECONDARY_BUS);
922 		path++;
923 	}
924 
925 	for (count = 0; count < MAX_IO_APICS; count++) {
926 		if (ir_ioapic[count].iommu == iommu &&
927 		    ir_ioapic[count].id == scope->enumeration_id)
928 			return 0;
929 		else if (ir_ioapic[count].iommu == NULL && free == -1)
930 			free = count;
931 	}
932 	if (free == -1) {
933 		pr_warn("Exceeded Max IO APICS\n");
934 		return -ENOSPC;
935 	}
936 
937 	ir_ioapic[free].bus   = bus;
938 	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
939 	ir_ioapic[free].iommu = iommu;
940 	ir_ioapic[free].id    = scope->enumeration_id;
941 	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
942 		scope->enumeration_id, drhd->address, iommu->seq_id);
943 
944 	return 0;
945 }
946 
947 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
948 				      struct intel_iommu *iommu)
949 {
950 	int ret = 0;
951 	struct acpi_dmar_hardware_unit *drhd;
952 	struct acpi_dmar_device_scope *scope;
953 	void *start, *end;
954 
955 	drhd = (struct acpi_dmar_hardware_unit *)header;
956 	start = (void *)(drhd + 1);
957 	end = ((void *)drhd) + header->length;
958 
959 	while (start < end && ret == 0) {
960 		scope = start;
961 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
962 			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
963 		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
964 			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
965 		start += scope->length;
966 	}
967 
968 	return ret;
969 }
970 
971 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
972 {
973 	int i;
974 
975 	for (i = 0; i < MAX_HPET_TBS; i++)
976 		if (ir_hpet[i].iommu == iommu)
977 			ir_hpet[i].iommu = NULL;
978 
979 	for (i = 0; i < MAX_IO_APICS; i++)
980 		if (ir_ioapic[i].iommu == iommu)
981 			ir_ioapic[i].iommu = NULL;
982 }
983 
984 /*
985  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
986  * hardware unit.
987  */
988 static int __init parse_ioapics_under_ir(void)
989 {
990 	struct dmar_drhd_unit *drhd;
991 	struct intel_iommu *iommu;
992 	bool ir_supported = false;
993 	int ioapic_idx;
994 
995 	for_each_iommu(iommu, drhd) {
996 		int ret;
997 
998 		if (!ecap_ir_support(iommu->ecap))
999 			continue;
1000 
1001 		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
1002 		if (ret)
1003 			return ret;
1004 
1005 		ir_supported = true;
1006 	}
1007 
1008 	if (!ir_supported)
1009 		return -ENODEV;
1010 
1011 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1012 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
1013 		if (!map_ioapic_to_iommu(ioapic_id)) {
1014 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1015 			       "interrupt remapping will be disabled\n",
1016 			       ioapic_id);
1017 			return -1;
1018 		}
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static int __init ir_dev_scope_init(void)
1025 {
1026 	int ret;
1027 
1028 	if (!irq_remapping_enabled)
1029 		return 0;
1030 
1031 	down_write(&dmar_global_lock);
1032 	ret = dmar_dev_scope_init();
1033 	up_write(&dmar_global_lock);
1034 
1035 	return ret;
1036 }
1037 rootfs_initcall(ir_dev_scope_init);
1038 
1039 static void disable_irq_remapping(void)
1040 {
1041 	struct dmar_drhd_unit *drhd;
1042 	struct intel_iommu *iommu = NULL;
1043 
1044 	/*
1045 	 * Disable Interrupt-remapping for all the DRHD's now.
1046 	 */
1047 	for_each_iommu(iommu, drhd) {
1048 		if (!ecap_ir_support(iommu->ecap))
1049 			continue;
1050 
1051 		iommu_disable_irq_remapping(iommu);
1052 	}
1053 
1054 	/*
1055 	 * Clear Posted-Interrupts capability.
1056 	 */
1057 	if (!disable_irq_post)
1058 		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1059 }
1060 
1061 static int reenable_irq_remapping(int eim)
1062 {
1063 	struct dmar_drhd_unit *drhd;
1064 	bool setup = false;
1065 	struct intel_iommu *iommu = NULL;
1066 
1067 	for_each_iommu(iommu, drhd)
1068 		if (iommu->qi)
1069 			dmar_reenable_qi(iommu);
1070 
1071 	/*
1072 	 * Setup Interrupt-remapping for all the DRHD's now.
1073 	 */
1074 	for_each_iommu(iommu, drhd) {
1075 		if (!ecap_ir_support(iommu->ecap))
1076 			continue;
1077 
1078 		/* Set up interrupt remapping for iommu.*/
1079 		iommu_set_irq_remapping(iommu, eim);
1080 		iommu_enable_irq_remapping(iommu);
1081 		setup = true;
1082 	}
1083 
1084 	if (!setup)
1085 		goto error;
1086 
1087 	set_irq_posting_cap();
1088 
1089 	return 0;
1090 
1091 error:
1092 	/*
1093 	 * handle error condition gracefully here!
1094 	 */
1095 	return -1;
1096 }
1097 
1098 /*
1099  * Store the MSI remapping domain pointer in the device if enabled.
1100  *
1101  * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1102  * remapping is disabled. Only update the pointer if the device is not
1103  * already handled by a non default PCI/MSI interrupt domain. This protects
1104  * e.g. VMD devices.
1105  */
1106 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1107 {
1108 	if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev))
1109 		return;
1110 
1111 	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1112 }
1113 
1114 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1115 {
1116 	memset(irte, 0, sizeof(*irte));
1117 
1118 	irte->present = 1;
1119 	irte->dst_mode = apic->dest_mode_logical;
1120 	/*
1121 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1122 	 * actual level or edge trigger will be setup in the IO-APIC
1123 	 * RTE. This will help simplify level triggered irq migration.
1124 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1125 	 * irq migration in the presence of interrupt-remapping.
1126 	*/
1127 	irte->trigger_mode = 0;
1128 	irte->dlvry_mode = apic->delivery_mode;
1129 	irte->vector = vector;
1130 	irte->dest_id = IRTE_DEST(dest);
1131 	irte->redir_hint = 1;
1132 }
1133 
1134 struct irq_remap_ops intel_irq_remap_ops = {
1135 	.prepare		= intel_prepare_irq_remapping,
1136 	.enable			= intel_enable_irq_remapping,
1137 	.disable		= disable_irq_remapping,
1138 	.reenable		= reenable_irq_remapping,
1139 	.enable_faulting	= enable_drhd_fault_handling,
1140 };
1141 
1142 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1143 {
1144 	struct intel_ir_data *ir_data = irqd->chip_data;
1145 	struct irte *irte = &ir_data->irte_entry;
1146 	struct irq_cfg *cfg = irqd_cfg(irqd);
1147 
1148 	/*
1149 	 * Atomically updates the IRTE with the new destination, vector
1150 	 * and flushes the interrupt entry cache.
1151 	 */
1152 	irte->vector = cfg->vector;
1153 	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1154 
1155 	/* Update the hardware only if the interrupt is in remapped mode. */
1156 	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1157 		modify_irte(&ir_data->irq_2_iommu, irte);
1158 }
1159 
1160 /*
1161  * Migrate the IO-APIC irq in the presence of intr-remapping.
1162  *
1163  * For both level and edge triggered, irq migration is a simple atomic
1164  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1165  *
1166  * For level triggered, we eliminate the io-apic RTE modification (with the
1167  * updated vector information), by using a virtual vector (io-apic pin number).
1168  * Real vector that is used for interrupting cpu will be coming from
1169  * the interrupt-remapping table entry.
1170  *
1171  * As the migration is a simple atomic update of IRTE, the same mechanism
1172  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1173  */
1174 static int
1175 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1176 		      bool force)
1177 {
1178 	struct irq_data *parent = data->parent_data;
1179 	struct irq_cfg *cfg = irqd_cfg(data);
1180 	int ret;
1181 
1182 	ret = parent->chip->irq_set_affinity(parent, mask, force);
1183 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1184 		return ret;
1185 
1186 	intel_ir_reconfigure_irte(data, false);
1187 	/*
1188 	 * After this point, all the interrupts will start arriving
1189 	 * at the new destination. So, time to cleanup the previous
1190 	 * vector allocation.
1191 	 */
1192 	send_cleanup_vector(cfg);
1193 
1194 	return IRQ_SET_MASK_OK_DONE;
1195 }
1196 
1197 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1198 				     struct msi_msg *msg)
1199 {
1200 	struct intel_ir_data *ir_data = irq_data->chip_data;
1201 
1202 	*msg = ir_data->msi_entry;
1203 }
1204 
1205 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1206 {
1207 	struct intel_ir_data *ir_data = data->chip_data;
1208 	struct vcpu_data *vcpu_pi_info = info;
1209 
1210 	/* stop posting interrupts, back to remapping mode */
1211 	if (!vcpu_pi_info) {
1212 		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1213 	} else {
1214 		struct irte irte_pi;
1215 
1216 		/*
1217 		 * We are not caching the posted interrupt entry. We
1218 		 * copy the data from the remapped entry and modify
1219 		 * the fields which are relevant for posted mode. The
1220 		 * cached remapped entry is used for switching back to
1221 		 * remapped mode.
1222 		 */
1223 		memset(&irte_pi, 0, sizeof(irte_pi));
1224 		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1225 
1226 		/* Update the posted mode fields */
1227 		irte_pi.p_pst = 1;
1228 		irte_pi.p_urgent = 0;
1229 		irte_pi.p_vector = vcpu_pi_info->vector;
1230 		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1231 				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1232 		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1233 				~(-1UL << PDA_HIGH_BIT);
1234 
1235 		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static struct irq_chip intel_ir_chip = {
1242 	.name			= "INTEL-IR",
1243 	.irq_ack		= apic_ack_irq,
1244 	.irq_set_affinity	= intel_ir_set_affinity,
1245 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1246 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1247 };
1248 
1249 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1250 {
1251 	memset(msg, 0, sizeof(*msg));
1252 
1253 	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1254 	msg->arch_addr_lo.dmar_subhandle_valid = true;
1255 	msg->arch_addr_lo.dmar_format = true;
1256 	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1257 	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1258 
1259 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1260 
1261 	msg->arch_data.dmar_subhandle = subhandle;
1262 }
1263 
1264 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1265 					     struct irq_cfg *irq_cfg,
1266 					     struct irq_alloc_info *info,
1267 					     int index, int sub_handle)
1268 {
1269 	struct irte *irte = &data->irte_entry;
1270 
1271 	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1272 
1273 	switch (info->type) {
1274 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1275 		/* Set source-id of interrupt request */
1276 		set_ioapic_sid(irte, info->devid);
1277 		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1278 			info->devid, irte->present, irte->fpd,
1279 			irte->dst_mode, irte->redir_hint,
1280 			irte->trigger_mode, irte->dlvry_mode,
1281 			irte->avail, irte->vector, irte->dest_id,
1282 			irte->sid, irte->sq, irte->svt);
1283 		sub_handle = info->ioapic.pin;
1284 		break;
1285 	case X86_IRQ_ALLOC_TYPE_HPET:
1286 		set_hpet_sid(irte, info->devid);
1287 		break;
1288 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1289 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1290 		set_msi_sid(irte,
1291 			    pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1292 		break;
1293 	default:
1294 		BUG_ON(1);
1295 		break;
1296 	}
1297 	fill_msi_msg(&data->msi_entry, index, sub_handle);
1298 }
1299 
1300 static void intel_free_irq_resources(struct irq_domain *domain,
1301 				     unsigned int virq, unsigned int nr_irqs)
1302 {
1303 	struct irq_data *irq_data;
1304 	struct intel_ir_data *data;
1305 	struct irq_2_iommu *irq_iommu;
1306 	unsigned long flags;
1307 	int i;
1308 	for (i = 0; i < nr_irqs; i++) {
1309 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1310 		if (irq_data && irq_data->chip_data) {
1311 			data = irq_data->chip_data;
1312 			irq_iommu = &data->irq_2_iommu;
1313 			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1314 			clear_entries(irq_iommu);
1315 			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1316 			irq_domain_reset_irq_data(irq_data);
1317 			kfree(data);
1318 		}
1319 	}
1320 }
1321 
1322 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1323 				     unsigned int virq, unsigned int nr_irqs,
1324 				     void *arg)
1325 {
1326 	struct intel_iommu *iommu = domain->host_data;
1327 	struct irq_alloc_info *info = arg;
1328 	struct intel_ir_data *data, *ird;
1329 	struct irq_data *irq_data;
1330 	struct irq_cfg *irq_cfg;
1331 	int i, ret, index;
1332 
1333 	if (!info || !iommu)
1334 		return -EINVAL;
1335 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
1336 	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
1337 		return -EINVAL;
1338 
1339 	/*
1340 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
1341 	 * to support multiple MSI interrupts.
1342 	 */
1343 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1344 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1345 
1346 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1347 	if (ret < 0)
1348 		return ret;
1349 
1350 	ret = -ENOMEM;
1351 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1352 	if (!data)
1353 		goto out_free_parent;
1354 
1355 	down_read(&dmar_global_lock);
1356 	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1357 	up_read(&dmar_global_lock);
1358 	if (index < 0) {
1359 		pr_warn("Failed to allocate IRTE\n");
1360 		kfree(data);
1361 		goto out_free_parent;
1362 	}
1363 
1364 	for (i = 0; i < nr_irqs; i++) {
1365 		irq_data = irq_domain_get_irq_data(domain, virq + i);
1366 		irq_cfg = irqd_cfg(irq_data);
1367 		if (!irq_data || !irq_cfg) {
1368 			if (!i)
1369 				kfree(data);
1370 			ret = -EINVAL;
1371 			goto out_free_data;
1372 		}
1373 
1374 		if (i > 0) {
1375 			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1376 			if (!ird)
1377 				goto out_free_data;
1378 			/* Initialize the common data */
1379 			ird->irq_2_iommu = data->irq_2_iommu;
1380 			ird->irq_2_iommu.sub_handle = i;
1381 		} else {
1382 			ird = data;
1383 		}
1384 
1385 		irq_data->hwirq = (index << 16) + i;
1386 		irq_data->chip_data = ird;
1387 		irq_data->chip = &intel_ir_chip;
1388 		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1389 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1390 	}
1391 	return 0;
1392 
1393 out_free_data:
1394 	intel_free_irq_resources(domain, virq, i);
1395 out_free_parent:
1396 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1397 	return ret;
1398 }
1399 
1400 static void intel_irq_remapping_free(struct irq_domain *domain,
1401 				     unsigned int virq, unsigned int nr_irqs)
1402 {
1403 	intel_free_irq_resources(domain, virq, nr_irqs);
1404 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1405 }
1406 
1407 static int intel_irq_remapping_activate(struct irq_domain *domain,
1408 					struct irq_data *irq_data, bool reserve)
1409 {
1410 	intel_ir_reconfigure_irte(irq_data, true);
1411 	return 0;
1412 }
1413 
1414 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1415 					   struct irq_data *irq_data)
1416 {
1417 	struct intel_ir_data *data = irq_data->chip_data;
1418 	struct irte entry;
1419 
1420 	memset(&entry, 0, sizeof(entry));
1421 	modify_irte(&data->irq_2_iommu, &entry);
1422 }
1423 
1424 static int intel_irq_remapping_select(struct irq_domain *d,
1425 				      struct irq_fwspec *fwspec,
1426 				      enum irq_domain_bus_token bus_token)
1427 {
1428 	struct intel_iommu *iommu = NULL;
1429 
1430 	if (x86_fwspec_is_ioapic(fwspec))
1431 		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1432 	else if (x86_fwspec_is_hpet(fwspec))
1433 		iommu = map_hpet_to_iommu(fwspec->param[0]);
1434 
1435 	return iommu && d == iommu->ir_domain;
1436 }
1437 
1438 static const struct irq_domain_ops intel_ir_domain_ops = {
1439 	.select = intel_irq_remapping_select,
1440 	.alloc = intel_irq_remapping_alloc,
1441 	.free = intel_irq_remapping_free,
1442 	.activate = intel_irq_remapping_activate,
1443 	.deactivate = intel_irq_remapping_deactivate,
1444 };
1445 
1446 /*
1447  * Support of Interrupt Remapping Unit Hotplug
1448  */
1449 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1450 {
1451 	int ret;
1452 	int eim = x2apic_enabled();
1453 
1454 	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1455 	if (ret)
1456 		return ret;
1457 
1458 	if (eim && !ecap_eim_support(iommu->ecap)) {
1459 		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1460 			iommu->reg_phys, iommu->ecap);
1461 		return -ENODEV;
1462 	}
1463 
1464 	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1465 		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1466 			iommu->reg_phys);
1467 		return -ENODEV;
1468 	}
1469 
1470 	/* TODO: check all IOAPICs are covered by IOMMU */
1471 
1472 	/* Setup Interrupt-remapping now. */
1473 	ret = intel_setup_irq_remapping(iommu);
1474 	if (ret) {
1475 		pr_err("Failed to setup irq remapping for %s\n",
1476 		       iommu->name);
1477 		intel_teardown_irq_remapping(iommu);
1478 		ir_remove_ioapic_hpet_scope(iommu);
1479 	} else {
1480 		iommu_enable_irq_remapping(iommu);
1481 	}
1482 
1483 	return ret;
1484 }
1485 
1486 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1487 {
1488 	int ret = 0;
1489 	struct intel_iommu *iommu = dmaru->iommu;
1490 
1491 	if (!irq_remapping_enabled)
1492 		return 0;
1493 	if (iommu == NULL)
1494 		return -EINVAL;
1495 	if (!ecap_ir_support(iommu->ecap))
1496 		return 0;
1497 	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1498 	    !cap_pi_support(iommu->cap))
1499 		return -EBUSY;
1500 
1501 	if (insert) {
1502 		if (!iommu->ir_table)
1503 			ret = dmar_ir_add(dmaru, iommu);
1504 	} else {
1505 		if (iommu->ir_table) {
1506 			if (!bitmap_empty(iommu->ir_table->bitmap,
1507 					  INTR_REMAP_TABLE_ENTRIES)) {
1508 				ret = -EBUSY;
1509 			} else {
1510 				iommu_disable_irq_remapping(iommu);
1511 				intel_teardown_irq_remapping(iommu);
1512 				ir_remove_ioapic_hpet_scope(iommu);
1513 			}
1514 		}
1515 	}
1516 
1517 	return ret;
1518 }
1519