1 // SPDX-License-Identifier: GPL-2.0 2 3 #define pr_fmt(fmt) "DMAR-IR: " fmt 4 5 #include <linux/interrupt.h> 6 #include <linux/dmar.h> 7 #include <linux/spinlock.h> 8 #include <linux/slab.h> 9 #include <linux/jiffies.h> 10 #include <linux/hpet.h> 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/acpi.h> 14 #include <linux/irqdomain.h> 15 #include <linux/crash_dump.h> 16 #include <asm/io_apic.h> 17 #include <asm/apic.h> 18 #include <asm/smp.h> 19 #include <asm/cpu.h> 20 #include <asm/irq_remapping.h> 21 #include <asm/pci-direct.h> 22 #include <asm/posted_intr.h> 23 24 #include "iommu.h" 25 #include "../irq_remapping.h" 26 #include "../iommu-pages.h" 27 28 struct ioapic_scope { 29 struct intel_iommu *iommu; 30 unsigned int id; 31 unsigned int bus; /* PCI bus number */ 32 unsigned int devfn; /* PCI devfn number */ 33 }; 34 35 struct hpet_scope { 36 struct intel_iommu *iommu; 37 u8 id; 38 unsigned int bus; 39 unsigned int devfn; 40 }; 41 42 struct irq_2_iommu { 43 struct intel_iommu *iommu; 44 u16 irte_index; 45 u16 sub_handle; 46 u8 irte_mask; 47 bool posted_msi; 48 bool posted_vcpu; 49 }; 50 51 struct intel_ir_data { 52 struct irq_2_iommu irq_2_iommu; 53 struct irte irte_entry; 54 union { 55 struct msi_msg msi_entry; 56 }; 57 }; 58 59 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) 60 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8) 61 62 static int __read_mostly eim_mode; 63 static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; 64 static struct hpet_scope ir_hpet[MAX_HPET_TBS]; 65 66 /* 67 * Lock ordering: 68 * ->dmar_global_lock 69 * ->irq_2_ir_lock 70 * ->qi->q_lock 71 * ->iommu->register_lock 72 * Note: 73 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called 74 * in single-threaded environment with interrupt disabled, so no need to tabke 75 * the dmar_global_lock. 76 */ 77 DEFINE_RAW_SPINLOCK(irq_2_ir_lock); 78 static const struct irq_domain_ops intel_ir_domain_ops; 79 80 static void iommu_disable_irq_remapping(struct intel_iommu *iommu); 81 static int __init parse_ioapics_under_ir(void); 82 static const struct msi_parent_ops dmar_msi_parent_ops; 83 84 static bool ir_pre_enabled(struct intel_iommu *iommu) 85 { 86 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED); 87 } 88 89 static void clear_ir_pre_enabled(struct intel_iommu *iommu) 90 { 91 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 92 } 93 94 static void init_ir_status(struct intel_iommu *iommu) 95 { 96 u32 gsts; 97 98 gsts = readl(iommu->reg + DMAR_GSTS_REG); 99 if (gsts & DMA_GSTS_IRES) 100 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 101 } 102 103 static int alloc_irte(struct intel_iommu *iommu, 104 struct irq_2_iommu *irq_iommu, u16 count) 105 { 106 struct ir_table *table = iommu->ir_table; 107 unsigned int mask = 0; 108 unsigned long flags; 109 int index; 110 111 if (!count || !irq_iommu) 112 return -1; 113 114 if (count > 1) { 115 count = __roundup_pow_of_two(count); 116 mask = ilog2(count); 117 } 118 119 if (mask > ecap_max_handle_mask(iommu->ecap)) { 120 pr_err("Requested mask %x exceeds the max invalidation handle" 121 " mask value %Lx\n", mask, 122 ecap_max_handle_mask(iommu->ecap)); 123 return -1; 124 } 125 126 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 127 index = bitmap_find_free_region(table->bitmap, 128 INTR_REMAP_TABLE_ENTRIES, mask); 129 if (index < 0) { 130 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); 131 } else { 132 irq_iommu->iommu = iommu; 133 irq_iommu->irte_index = index; 134 irq_iommu->sub_handle = 0; 135 irq_iommu->irte_mask = mask; 136 } 137 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 138 139 return index; 140 } 141 142 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) 143 { 144 struct qi_desc desc; 145 146 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) 147 | QI_IEC_SELECTIVE; 148 desc.qw1 = 0; 149 desc.qw2 = 0; 150 desc.qw3 = 0; 151 152 return qi_submit_sync(iommu, &desc, 1, 0); 153 } 154 155 static int modify_irte(struct irq_2_iommu *irq_iommu, 156 struct irte *irte_modified) 157 { 158 struct intel_iommu *iommu; 159 unsigned long flags; 160 struct irte *irte; 161 int rc, index; 162 163 if (!irq_iommu) 164 return -1; 165 166 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 167 168 iommu = irq_iommu->iommu; 169 170 index = irq_iommu->irte_index + irq_iommu->sub_handle; 171 irte = &iommu->ir_table->base[index]; 172 173 if ((irte->pst == 1) || (irte_modified->pst == 1)) { 174 /* 175 * We use cmpxchg16 to atomically update the 128-bit IRTE, 176 * and it cannot be updated by the hardware or other processors 177 * behind us, so the return value of cmpxchg16 should be the 178 * same as the old value. 179 */ 180 u128 old = irte->irte; 181 WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte)); 182 } else { 183 WRITE_ONCE(irte->low, irte_modified->low); 184 WRITE_ONCE(irte->high, irte_modified->high); 185 } 186 __iommu_flush_cache(iommu, irte, sizeof(*irte)); 187 188 rc = qi_flush_iec(iommu, index, 0); 189 190 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 191 192 return rc; 193 } 194 195 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id) 196 { 197 int i; 198 199 for (i = 0; i < MAX_HPET_TBS; i++) { 200 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu) 201 return ir_hpet[i].iommu; 202 } 203 return NULL; 204 } 205 206 static struct intel_iommu *map_ioapic_to_iommu(int apic) 207 { 208 int i; 209 210 for (i = 0; i < MAX_IO_APICS; i++) { 211 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu) 212 return ir_ioapic[i].iommu; 213 } 214 return NULL; 215 } 216 217 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev) 218 { 219 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev); 220 221 return drhd ? drhd->iommu->ir_domain : NULL; 222 } 223 224 static int clear_entries(struct irq_2_iommu *irq_iommu) 225 { 226 struct irte *start, *entry, *end; 227 struct intel_iommu *iommu; 228 int index; 229 230 if (irq_iommu->sub_handle) 231 return 0; 232 233 iommu = irq_iommu->iommu; 234 index = irq_iommu->irte_index; 235 236 start = iommu->ir_table->base + index; 237 end = start + (1 << irq_iommu->irte_mask); 238 239 for (entry = start; entry < end; entry++) { 240 WRITE_ONCE(entry->low, 0); 241 WRITE_ONCE(entry->high, 0); 242 } 243 bitmap_release_region(iommu->ir_table->bitmap, index, 244 irq_iommu->irte_mask); 245 246 return qi_flush_iec(iommu, index, irq_iommu->irte_mask); 247 } 248 249 /* 250 * source validation type 251 */ 252 #define SVT_NO_VERIFY 0x0 /* no verification is required */ 253 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ 254 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ 255 256 /* 257 * source-id qualifier 258 */ 259 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ 260 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore 261 * the third least significant bit 262 */ 263 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore 264 * the second and third least significant bits 265 */ 266 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore 267 * the least three significant bits 268 */ 269 270 /* 271 * set SVT, SQ and SID fields of irte to verify 272 * source ids of interrupt requests 273 */ 274 static void set_irte_sid(struct irte *irte, unsigned int svt, 275 unsigned int sq, unsigned int sid) 276 { 277 if (disable_sourceid_checking) 278 svt = SVT_NO_VERIFY; 279 irte->svt = svt; 280 irte->sq = sq; 281 irte->sid = sid; 282 } 283 284 /* 285 * Set an IRTE to match only the bus number. Interrupt requests that reference 286 * this IRTE must have a requester-id whose bus number is between or equal 287 * to the start_bus and end_bus arguments. 288 */ 289 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus, 290 unsigned int end_bus) 291 { 292 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, 293 (start_bus << 8) | end_bus); 294 } 295 296 static int set_ioapic_sid(struct irte *irte, int apic) 297 { 298 int i; 299 u16 sid = 0; 300 301 if (!irte) 302 return -1; 303 304 for (i = 0; i < MAX_IO_APICS; i++) { 305 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) { 306 sid = PCI_DEVID(ir_ioapic[i].bus, ir_ioapic[i].devfn); 307 break; 308 } 309 } 310 311 if (sid == 0) { 312 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic); 313 return -1; 314 } 315 316 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); 317 318 return 0; 319 } 320 321 static int set_hpet_sid(struct irte *irte, u8 id) 322 { 323 int i; 324 u16 sid = 0; 325 326 if (!irte) 327 return -1; 328 329 for (i = 0; i < MAX_HPET_TBS; i++) { 330 if (ir_hpet[i].iommu && ir_hpet[i].id == id) { 331 sid = PCI_DEVID(ir_hpet[i].bus, ir_hpet[i].devfn); 332 break; 333 } 334 } 335 336 if (sid == 0) { 337 pr_warn("Failed to set source-id of HPET block (%d)\n", id); 338 return -1; 339 } 340 341 /* 342 * Should really use SQ_ALL_16. Some platforms are broken. 343 * While we figure out the right quirks for these broken platforms, use 344 * SQ_13_IGNORE_3 for now. 345 */ 346 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); 347 348 return 0; 349 } 350 351 struct set_msi_sid_data { 352 struct pci_dev *pdev; 353 u16 alias; 354 int count; 355 int busmatch_count; 356 }; 357 358 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) 359 { 360 struct set_msi_sid_data *data = opaque; 361 362 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias)) 363 data->busmatch_count++; 364 365 data->pdev = pdev; 366 data->alias = alias; 367 data->count++; 368 369 return 0; 370 } 371 372 static int set_msi_sid(struct irte *irte, struct pci_dev *dev) 373 { 374 struct set_msi_sid_data data; 375 376 if (!irte || !dev) 377 return -1; 378 379 data.count = 0; 380 data.busmatch_count = 0; 381 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); 382 383 /* 384 * DMA alias provides us with a PCI device and alias. The only case 385 * where the it will return an alias on a different bus than the 386 * device is the case of a PCIe-to-PCI bridge, where the alias is for 387 * the subordinate bus. In this case we can only verify the bus. 388 * 389 * If there are multiple aliases, all with the same bus number, 390 * then all we can do is verify the bus. This is typical in NTB 391 * hardware which use proxy IDs where the device will generate traffic 392 * from multiple devfn numbers on the same bus. 393 * 394 * If the alias device is on a different bus than our source device 395 * then we have a topology based alias, use it. 396 * 397 * Otherwise, the alias is for a device DMA quirk and we cannot 398 * assume that MSI uses the same requester ID. Therefore use the 399 * original device. 400 */ 401 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) 402 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias), 403 dev->bus->number); 404 else if (data.count >= 2 && data.busmatch_count == data.count) 405 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number); 406 else if (data.pdev->bus->number != dev->bus->number) 407 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); 408 else 409 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, 410 pci_dev_id(dev)); 411 412 return 0; 413 } 414 415 static int iommu_load_old_irte(struct intel_iommu *iommu) 416 { 417 struct irte *old_ir_table; 418 phys_addr_t irt_phys; 419 unsigned int i; 420 size_t size; 421 u64 irta; 422 423 /* Check whether the old ir-table has the same size as ours */ 424 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG); 425 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK) 426 != INTR_REMAP_TABLE_REG_SIZE) 427 return -EINVAL; 428 429 irt_phys = irta & VTD_PAGE_MASK; 430 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte); 431 432 /* Map the old IR table */ 433 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB); 434 if (!old_ir_table) 435 return -ENOMEM; 436 437 /* Copy data over */ 438 memcpy(iommu->ir_table->base, old_ir_table, size); 439 440 __iommu_flush_cache(iommu, iommu->ir_table->base, size); 441 442 /* 443 * Now check the table for used entries and mark those as 444 * allocated in the bitmap 445 */ 446 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) { 447 if (iommu->ir_table->base[i].present) 448 bitmap_set(iommu->ir_table->bitmap, i, 1); 449 } 450 451 memunmap(old_ir_table); 452 453 return 0; 454 } 455 456 457 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) 458 { 459 unsigned long flags; 460 u64 addr; 461 u32 sts; 462 463 addr = virt_to_phys((void *)iommu->ir_table->base); 464 465 raw_spin_lock_irqsave(&iommu->register_lock, flags); 466 467 dmar_writeq(iommu->reg + DMAR_IRTA_REG, 468 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); 469 470 /* Set interrupt-remapping table pointer */ 471 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); 472 473 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 474 readl, (sts & DMA_GSTS_IRTPS), sts); 475 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 476 477 /* 478 * Global invalidation of interrupt entry cache to make sure the 479 * hardware uses the new irq remapping table. 480 */ 481 if (!cap_esirtps(iommu->cap)) 482 qi_global_iec(iommu); 483 } 484 485 static void iommu_enable_irq_remapping(struct intel_iommu *iommu) 486 { 487 unsigned long flags; 488 u32 sts; 489 490 raw_spin_lock_irqsave(&iommu->register_lock, flags); 491 492 /* Enable interrupt-remapping */ 493 iommu->gcmd |= DMA_GCMD_IRE; 494 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 495 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 496 readl, (sts & DMA_GSTS_IRES), sts); 497 498 /* Block compatibility-format MSIs */ 499 if (sts & DMA_GSTS_CFIS) { 500 iommu->gcmd &= ~DMA_GCMD_CFI; 501 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 502 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 503 readl, !(sts & DMA_GSTS_CFIS), sts); 504 } 505 506 /* 507 * With CFI clear in the Global Command register, we should be 508 * protected from dangerous (i.e. compatibility) interrupts 509 * regardless of x2apic status. Check just to be sure. 510 */ 511 if (sts & DMA_GSTS_CFIS) 512 WARN(1, KERN_WARNING 513 "Compatibility-format IRQs enabled despite intr remapping;\n" 514 "you are vulnerable to IRQ injection.\n"); 515 516 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 517 } 518 519 static int intel_setup_irq_remapping(struct intel_iommu *iommu) 520 { 521 struct ir_table *ir_table; 522 struct fwnode_handle *fn; 523 unsigned long *bitmap; 524 void *ir_table_base; 525 526 if (iommu->ir_table) 527 return 0; 528 529 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); 530 if (!ir_table) 531 return -ENOMEM; 532 533 /* 1MB - maximum possible interrupt remapping table size */ 534 ir_table_base = 535 iommu_alloc_pages_node_sz(iommu->node, GFP_KERNEL, SZ_1M); 536 if (!ir_table_base) { 537 pr_err("IR%d: failed to allocate 1M of pages\n", iommu->seq_id); 538 goto out_free_table; 539 } 540 541 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL); 542 if (bitmap == NULL) { 543 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); 544 goto out_free_pages; 545 } 546 547 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id); 548 if (!fn) 549 goto out_free_bitmap; 550 551 iommu->ir_domain = 552 irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 553 0, INTR_REMAP_TABLE_ENTRIES, 554 fn, &intel_ir_domain_ops, 555 iommu); 556 if (!iommu->ir_domain) { 557 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id); 558 goto out_free_fwnode; 559 } 560 561 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_DMAR); 562 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT | 563 IRQ_DOMAIN_FLAG_ISOLATED_MSI; 564 iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops; 565 566 ir_table->base = ir_table_base; 567 ir_table->bitmap = bitmap; 568 iommu->ir_table = ir_table; 569 570 /* 571 * If the queued invalidation is already initialized, 572 * shouldn't disable it. 573 */ 574 if (!iommu->qi) { 575 /* 576 * Clear previous faults. 577 */ 578 dmar_fault(-1, iommu); 579 dmar_disable_qi(iommu); 580 581 if (dmar_enable_qi(iommu)) { 582 pr_err("Failed to enable queued invalidation\n"); 583 goto out_free_ir_domain; 584 } 585 } 586 587 init_ir_status(iommu); 588 589 if (ir_pre_enabled(iommu)) { 590 if (!is_kdump_kernel()) { 591 pr_info_once("IRQ remapping was enabled on %s but we are not in kdump mode\n", 592 iommu->name); 593 clear_ir_pre_enabled(iommu); 594 iommu_disable_irq_remapping(iommu); 595 } else if (iommu_load_old_irte(iommu)) 596 pr_err("Failed to copy IR table for %s from previous kernel\n", 597 iommu->name); 598 else 599 pr_info("Copied IR table for %s from previous kernel\n", 600 iommu->name); 601 } 602 603 iommu_set_irq_remapping(iommu, eim_mode); 604 605 return 0; 606 607 out_free_ir_domain: 608 irq_domain_remove(iommu->ir_domain); 609 iommu->ir_domain = NULL; 610 out_free_fwnode: 611 irq_domain_free_fwnode(fn); 612 out_free_bitmap: 613 bitmap_free(bitmap); 614 out_free_pages: 615 iommu_free_pages(ir_table_base); 616 out_free_table: 617 kfree(ir_table); 618 619 iommu->ir_table = NULL; 620 621 return -ENOMEM; 622 } 623 624 static void intel_teardown_irq_remapping(struct intel_iommu *iommu) 625 { 626 struct fwnode_handle *fn; 627 628 if (iommu && iommu->ir_table) { 629 if (iommu->ir_domain) { 630 fn = iommu->ir_domain->fwnode; 631 632 irq_domain_remove(iommu->ir_domain); 633 irq_domain_free_fwnode(fn); 634 iommu->ir_domain = NULL; 635 } 636 iommu_free_pages(iommu->ir_table->base); 637 bitmap_free(iommu->ir_table->bitmap); 638 kfree(iommu->ir_table); 639 iommu->ir_table = NULL; 640 } 641 } 642 643 /* 644 * Disable Interrupt Remapping. 645 */ 646 static void iommu_disable_irq_remapping(struct intel_iommu *iommu) 647 { 648 unsigned long flags; 649 u32 sts; 650 651 if (!ecap_ir_support(iommu->ecap)) 652 return; 653 654 /* 655 * global invalidation of interrupt entry cache before disabling 656 * interrupt-remapping. 657 */ 658 if (!cap_esirtps(iommu->cap)) 659 qi_global_iec(iommu); 660 661 raw_spin_lock_irqsave(&iommu->register_lock, flags); 662 663 sts = readl(iommu->reg + DMAR_GSTS_REG); 664 if (!(sts & DMA_GSTS_IRES)) 665 goto end; 666 667 iommu->gcmd &= ~DMA_GCMD_IRE; 668 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 669 670 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 671 readl, !(sts & DMA_GSTS_IRES), sts); 672 673 end: 674 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 675 } 676 677 static int __init dmar_x2apic_optout(void) 678 { 679 struct acpi_table_dmar *dmar; 680 dmar = (struct acpi_table_dmar *)dmar_tbl; 681 if (!dmar || no_x2apic_optout) 682 return 0; 683 return dmar->flags & DMAR_X2APIC_OPT_OUT; 684 } 685 686 static void __init intel_cleanup_irq_remapping(void) 687 { 688 struct dmar_drhd_unit *drhd; 689 struct intel_iommu *iommu; 690 691 for_each_iommu(iommu, drhd) { 692 if (ecap_ir_support(iommu->ecap)) { 693 iommu_disable_irq_remapping(iommu); 694 intel_teardown_irq_remapping(iommu); 695 } 696 } 697 698 if (x2apic_supported()) 699 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); 700 } 701 702 static int __init intel_prepare_irq_remapping(void) 703 { 704 struct dmar_drhd_unit *drhd; 705 struct intel_iommu *iommu; 706 int eim = 0; 707 708 if (irq_remap_broken) { 709 pr_warn("This system BIOS has enabled interrupt remapping\n" 710 "on a chipset that contains an erratum making that\n" 711 "feature unstable. To maintain system stability\n" 712 "interrupt remapping is being disabled. Please\n" 713 "contact your BIOS vendor for an update\n"); 714 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 715 return -ENODEV; 716 } 717 718 if (dmar_table_init() < 0) 719 return -ENODEV; 720 721 if (!dmar_ir_support()) 722 return -ENODEV; 723 724 if (parse_ioapics_under_ir()) { 725 pr_info("Not enabling interrupt remapping\n"); 726 goto error; 727 } 728 729 /* First make sure all IOMMUs support IRQ remapping */ 730 for_each_iommu(iommu, drhd) 731 if (!ecap_ir_support(iommu->ecap)) 732 goto error; 733 734 /* Detect remapping mode: lapic or x2apic */ 735 if (x2apic_supported()) { 736 eim = !dmar_x2apic_optout(); 737 if (!eim) { 738 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit."); 739 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n"); 740 } 741 } 742 743 for_each_iommu(iommu, drhd) { 744 if (eim && !ecap_eim_support(iommu->ecap)) { 745 pr_info("%s does not support EIM\n", iommu->name); 746 eim = 0; 747 } 748 } 749 750 eim_mode = eim; 751 if (eim) 752 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); 753 754 /* Do the initializations early */ 755 for_each_iommu(iommu, drhd) { 756 if (intel_setup_irq_remapping(iommu)) { 757 pr_err("Failed to setup irq remapping for %s\n", 758 iommu->name); 759 goto error; 760 } 761 } 762 763 return 0; 764 765 error: 766 intel_cleanup_irq_remapping(); 767 return -ENODEV; 768 } 769 770 /* 771 * Set Posted-Interrupts capability. 772 */ 773 static inline void set_irq_posting_cap(void) 774 { 775 struct dmar_drhd_unit *drhd; 776 struct intel_iommu *iommu; 777 778 if (!disable_irq_post) { 779 /* 780 * If IRTE is in posted format, the 'pda' field goes across the 781 * 64-bit boundary, we need use cmpxchg16b to atomically update 782 * it. We only expose posted-interrupt when X86_FEATURE_CX16 783 * is supported. Actually, hardware platforms supporting PI 784 * should have X86_FEATURE_CX16 support, this has been confirmed 785 * with Intel hardware guys. 786 */ 787 if (boot_cpu_has(X86_FEATURE_CX16)) 788 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP; 789 790 for_each_iommu(iommu, drhd) 791 if (!cap_pi_support(iommu->cap)) { 792 intel_irq_remap_ops.capability &= 793 ~(1 << IRQ_POSTING_CAP); 794 break; 795 } 796 } 797 } 798 799 static int __init intel_enable_irq_remapping(void) 800 { 801 struct dmar_drhd_unit *drhd; 802 struct intel_iommu *iommu; 803 bool setup = false; 804 805 /* 806 * Setup Interrupt-remapping for all the DRHD's now. 807 */ 808 for_each_iommu(iommu, drhd) { 809 if (!ir_pre_enabled(iommu)) 810 iommu_enable_irq_remapping(iommu); 811 setup = true; 812 } 813 814 if (!setup) 815 goto error; 816 817 irq_remapping_enabled = 1; 818 819 set_irq_posting_cap(); 820 821 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic"); 822 823 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; 824 825 error: 826 intel_cleanup_irq_remapping(); 827 return -1; 828 } 829 830 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, 831 struct intel_iommu *iommu, 832 struct acpi_dmar_hardware_unit *drhd) 833 { 834 struct acpi_dmar_pci_path *path; 835 u8 bus; 836 int count, free = -1; 837 838 bus = scope->bus; 839 path = (struct acpi_dmar_pci_path *)(scope + 1); 840 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 841 / sizeof(struct acpi_dmar_pci_path); 842 843 while (--count > 0) { 844 /* 845 * Access PCI directly due to the PCI 846 * subsystem isn't initialized yet. 847 */ 848 bus = read_pci_config_byte(bus, path->device, path->function, 849 PCI_SECONDARY_BUS); 850 path++; 851 } 852 853 for (count = 0; count < MAX_HPET_TBS; count++) { 854 if (ir_hpet[count].iommu == iommu && 855 ir_hpet[count].id == scope->enumeration_id) 856 return 0; 857 else if (ir_hpet[count].iommu == NULL && free == -1) 858 free = count; 859 } 860 if (free == -1) { 861 pr_warn("Exceeded Max HPET blocks\n"); 862 return -ENOSPC; 863 } 864 865 ir_hpet[free].iommu = iommu; 866 ir_hpet[free].id = scope->enumeration_id; 867 ir_hpet[free].bus = bus; 868 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function); 869 pr_info("HPET id %d under DRHD base 0x%Lx\n", 870 scope->enumeration_id, drhd->address); 871 872 return 0; 873 } 874 875 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, 876 struct intel_iommu *iommu, 877 struct acpi_dmar_hardware_unit *drhd) 878 { 879 struct acpi_dmar_pci_path *path; 880 u8 bus; 881 int count, free = -1; 882 883 bus = scope->bus; 884 path = (struct acpi_dmar_pci_path *)(scope + 1); 885 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 886 / sizeof(struct acpi_dmar_pci_path); 887 888 while (--count > 0) { 889 /* 890 * Access PCI directly due to the PCI 891 * subsystem isn't initialized yet. 892 */ 893 bus = read_pci_config_byte(bus, path->device, path->function, 894 PCI_SECONDARY_BUS); 895 path++; 896 } 897 898 for (count = 0; count < MAX_IO_APICS; count++) { 899 if (ir_ioapic[count].iommu == iommu && 900 ir_ioapic[count].id == scope->enumeration_id) 901 return 0; 902 else if (ir_ioapic[count].iommu == NULL && free == -1) 903 free = count; 904 } 905 if (free == -1) { 906 pr_warn("Exceeded Max IO APICS\n"); 907 return -ENOSPC; 908 } 909 910 ir_ioapic[free].bus = bus; 911 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function); 912 ir_ioapic[free].iommu = iommu; 913 ir_ioapic[free].id = scope->enumeration_id; 914 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n", 915 scope->enumeration_id, drhd->address, iommu->seq_id); 916 917 return 0; 918 } 919 920 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, 921 struct intel_iommu *iommu) 922 { 923 int ret = 0; 924 struct acpi_dmar_hardware_unit *drhd; 925 struct acpi_dmar_device_scope *scope; 926 void *start, *end; 927 928 drhd = (struct acpi_dmar_hardware_unit *)header; 929 start = (void *)(drhd + 1); 930 end = ((void *)drhd) + header->length; 931 932 while (start < end && ret == 0) { 933 scope = start; 934 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) 935 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd); 936 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) 937 ret = ir_parse_one_hpet_scope(scope, iommu, drhd); 938 start += scope->length; 939 } 940 941 return ret; 942 } 943 944 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu) 945 { 946 int i; 947 948 for (i = 0; i < MAX_HPET_TBS; i++) 949 if (ir_hpet[i].iommu == iommu) 950 ir_hpet[i].iommu = NULL; 951 952 for (i = 0; i < MAX_IO_APICS; i++) 953 if (ir_ioapic[i].iommu == iommu) 954 ir_ioapic[i].iommu = NULL; 955 } 956 957 /* 958 * Finds the assocaition between IOAPIC's and its Interrupt-remapping 959 * hardware unit. 960 */ 961 static int __init parse_ioapics_under_ir(void) 962 { 963 struct dmar_drhd_unit *drhd; 964 struct intel_iommu *iommu; 965 bool ir_supported = false; 966 int ioapic_idx; 967 968 for_each_iommu(iommu, drhd) { 969 int ret; 970 971 if (!ecap_ir_support(iommu->ecap)) 972 continue; 973 974 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu); 975 if (ret) 976 return ret; 977 978 ir_supported = true; 979 } 980 981 if (!ir_supported) 982 return -ENODEV; 983 984 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { 985 int ioapic_id = mpc_ioapic_id(ioapic_idx); 986 if (!map_ioapic_to_iommu(ioapic_id)) { 987 pr_err(FW_BUG "ioapic %d has no mapping iommu, " 988 "interrupt remapping will be disabled\n", 989 ioapic_id); 990 return -1; 991 } 992 } 993 994 return 0; 995 } 996 997 static int __init ir_dev_scope_init(void) 998 { 999 int ret; 1000 1001 if (!irq_remapping_enabled) 1002 return 0; 1003 1004 down_write(&dmar_global_lock); 1005 ret = dmar_dev_scope_init(); 1006 up_write(&dmar_global_lock); 1007 1008 return ret; 1009 } 1010 rootfs_initcall(ir_dev_scope_init); 1011 1012 static void disable_irq_remapping(void) 1013 { 1014 struct dmar_drhd_unit *drhd; 1015 struct intel_iommu *iommu = NULL; 1016 1017 /* 1018 * Disable Interrupt-remapping for all the DRHD's now. 1019 */ 1020 for_each_iommu(iommu, drhd) { 1021 if (!ecap_ir_support(iommu->ecap)) 1022 continue; 1023 1024 iommu_disable_irq_remapping(iommu); 1025 } 1026 1027 /* 1028 * Clear Posted-Interrupts capability. 1029 */ 1030 if (!disable_irq_post) 1031 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); 1032 } 1033 1034 static int reenable_irq_remapping(int eim) 1035 { 1036 struct dmar_drhd_unit *drhd; 1037 bool setup = false; 1038 struct intel_iommu *iommu = NULL; 1039 1040 for_each_iommu(iommu, drhd) 1041 if (iommu->qi) 1042 dmar_reenable_qi(iommu); 1043 1044 /* 1045 * Setup Interrupt-remapping for all the DRHD's now. 1046 */ 1047 for_each_iommu(iommu, drhd) { 1048 if (!ecap_ir_support(iommu->ecap)) 1049 continue; 1050 1051 /* Set up interrupt remapping for iommu.*/ 1052 iommu_set_irq_remapping(iommu, eim); 1053 iommu_enable_irq_remapping(iommu); 1054 setup = true; 1055 } 1056 1057 if (!setup) 1058 goto error; 1059 1060 set_irq_posting_cap(); 1061 1062 return 0; 1063 1064 error: 1065 /* 1066 * handle error condition gracefully here! 1067 */ 1068 return -1; 1069 } 1070 1071 /* 1072 * Store the MSI remapping domain pointer in the device if enabled. 1073 * 1074 * This is called from dmar_pci_bus_add_dev() so it works even when DMA 1075 * remapping is disabled. Only update the pointer if the device is not 1076 * already handled by a non default PCI/MSI interrupt domain. This protects 1077 * e.g. VMD devices. 1078 */ 1079 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info) 1080 { 1081 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev)) 1082 return; 1083 1084 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev)); 1085 } 1086 1087 static void prepare_irte(struct irte *irte, int vector, unsigned int dest) 1088 { 1089 memset(irte, 0, sizeof(*irte)); 1090 1091 irte->present = 1; 1092 irte->dst_mode = apic->dest_mode_logical; 1093 /* 1094 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the 1095 * actual level or edge trigger will be setup in the IO-APIC 1096 * RTE. This will help simplify level triggered irq migration. 1097 * For more details, see the comments (in io_apic.c) explainig IO-APIC 1098 * irq migration in the presence of interrupt-remapping. 1099 */ 1100 irte->trigger_mode = 0; 1101 irte->dlvry_mode = APIC_DELIVERY_MODE_FIXED; 1102 irte->vector = vector; 1103 irte->dest_id = IRTE_DEST(dest); 1104 irte->redir_hint = 1; 1105 } 1106 1107 static void prepare_irte_posted(struct irte *irte) 1108 { 1109 memset(irte, 0, sizeof(*irte)); 1110 1111 irte->present = 1; 1112 irte->p_pst = 1; 1113 } 1114 1115 struct irq_remap_ops intel_irq_remap_ops = { 1116 .prepare = intel_prepare_irq_remapping, 1117 .enable = intel_enable_irq_remapping, 1118 .disable = disable_irq_remapping, 1119 .reenable = reenable_irq_remapping, 1120 .enable_faulting = enable_drhd_fault_handling, 1121 }; 1122 1123 #ifdef CONFIG_X86_POSTED_MSI 1124 1125 static phys_addr_t get_pi_desc_addr(struct irq_data *irqd) 1126 { 1127 int cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd)); 1128 1129 if (WARN_ON(cpu >= nr_cpu_ids)) 1130 return 0; 1131 1132 return __pa(per_cpu_ptr(&posted_msi_pi_desc, cpu)); 1133 } 1134 1135 static void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) 1136 { 1137 struct intel_ir_data *ir_data = irqd->chip_data; 1138 struct irte *irte = &ir_data->irte_entry; 1139 struct irte irte_pi; 1140 u64 pid_addr; 1141 1142 pid_addr = get_pi_desc_addr(irqd); 1143 1144 if (!pid_addr) { 1145 pr_warn("Failed to setup IRQ %d for posted mode", irqd->irq); 1146 return; 1147 } 1148 1149 memset(&irte_pi, 0, sizeof(irte_pi)); 1150 1151 /* The shared IRTE already be set up as posted during alloc_irte */ 1152 dmar_copy_shared_irte(&irte_pi, irte); 1153 1154 irte_pi.pda_l = (pid_addr >> (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1155 irte_pi.pda_h = (pid_addr >> 32) & ~(-1UL << PDA_HIGH_BIT); 1156 1157 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1158 } 1159 1160 #else 1161 static inline void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) {} 1162 #endif 1163 1164 static void __intel_ir_reconfigure_irte(struct irq_data *irqd, bool force_host) 1165 { 1166 struct intel_ir_data *ir_data = irqd->chip_data; 1167 1168 /* 1169 * Don't modify IRTEs for IRQs that are being posted to vCPUs if the 1170 * host CPU affinity changes. 1171 */ 1172 if (ir_data->irq_2_iommu.posted_vcpu && !force_host) 1173 return; 1174 1175 ir_data->irq_2_iommu.posted_vcpu = false; 1176 1177 if (ir_data->irq_2_iommu.posted_msi) 1178 intel_ir_reconfigure_irte_posted(irqd); 1179 else 1180 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry); 1181 } 1182 1183 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force_host) 1184 { 1185 struct intel_ir_data *ir_data = irqd->chip_data; 1186 struct irte *irte = &ir_data->irte_entry; 1187 struct irq_cfg *cfg = irqd_cfg(irqd); 1188 1189 /* 1190 * Atomically updates the IRTE with the new destination, vector 1191 * and flushes the interrupt entry cache. 1192 */ 1193 irte->vector = cfg->vector; 1194 irte->dest_id = IRTE_DEST(cfg->dest_apicid); 1195 1196 __intel_ir_reconfigure_irte(irqd, force_host); 1197 } 1198 1199 /* 1200 * Migrate the IO-APIC irq in the presence of intr-remapping. 1201 * 1202 * For both level and edge triggered, irq migration is a simple atomic 1203 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 1204 * 1205 * For level triggered, we eliminate the io-apic RTE modification (with the 1206 * updated vector information), by using a virtual vector (io-apic pin number). 1207 * Real vector that is used for interrupting cpu will be coming from 1208 * the interrupt-remapping table entry. 1209 * 1210 * As the migration is a simple atomic update of IRTE, the same mechanism 1211 * is used to migrate MSI irq's in the presence of interrupt-remapping. 1212 */ 1213 static int 1214 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, 1215 bool force) 1216 { 1217 struct irq_data *parent = data->parent_data; 1218 struct irq_cfg *cfg = irqd_cfg(data); 1219 int ret; 1220 1221 ret = parent->chip->irq_set_affinity(parent, mask, force); 1222 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 1223 return ret; 1224 1225 intel_ir_reconfigure_irte(data, false); 1226 /* 1227 * After this point, all the interrupts will start arriving 1228 * at the new destination. So, time to cleanup the previous 1229 * vector allocation. 1230 */ 1231 vector_schedule_cleanup(cfg); 1232 1233 return IRQ_SET_MASK_OK_DONE; 1234 } 1235 1236 static void intel_ir_compose_msi_msg(struct irq_data *irq_data, 1237 struct msi_msg *msg) 1238 { 1239 struct intel_ir_data *ir_data = irq_data->chip_data; 1240 1241 *msg = ir_data->msi_entry; 1242 } 1243 1244 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info) 1245 { 1246 struct intel_ir_data *ir_data = data->chip_data; 1247 struct vcpu_data *vcpu_pi_info = info; 1248 1249 /* stop posting interrupts, back to the default mode */ 1250 if (!vcpu_pi_info) { 1251 __intel_ir_reconfigure_irte(data, true); 1252 } else { 1253 struct irte irte_pi; 1254 1255 /* 1256 * We are not caching the posted interrupt entry. We 1257 * copy the data from the remapped entry and modify 1258 * the fields which are relevant for posted mode. The 1259 * cached remapped entry is used for switching back to 1260 * remapped mode. 1261 */ 1262 memset(&irte_pi, 0, sizeof(irte_pi)); 1263 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry); 1264 1265 /* Update the posted mode fields */ 1266 irte_pi.p_pst = 1; 1267 irte_pi.p_urgent = 0; 1268 irte_pi.p_vector = vcpu_pi_info->vector; 1269 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >> 1270 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1271 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) & 1272 ~(-1UL << PDA_HIGH_BIT); 1273 1274 ir_data->irq_2_iommu.posted_vcpu = true; 1275 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1276 } 1277 1278 return 0; 1279 } 1280 1281 static struct irq_chip intel_ir_chip = { 1282 .name = "INTEL-IR", 1283 .irq_ack = apic_ack_irq, 1284 .irq_set_affinity = intel_ir_set_affinity, 1285 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1286 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1287 }; 1288 1289 /* 1290 * With posted MSIs, the MSI vectors are multiplexed into a single notification 1291 * vector, and only the notification vector is sent to the APIC IRR. Device 1292 * MSIs are then dispatched in a demux loop that harvests the MSIs from the 1293 * CPU's Posted Interrupt Request bitmap. I.e. Posted MSIs never get sent to 1294 * the APIC IRR, and thus do not need an EOI. The notification handler instead 1295 * performs a single EOI after processing the PIR. 1296 * 1297 * Note! Pending SMP/CPU affinity changes, which are per MSI, must still be 1298 * honored, only the APIC EOI is omitted. 1299 * 1300 * For the example below, 3 MSIs are coalesced into one CPU notification. Only 1301 * one apic_eoi() is needed, but each MSI needs to process pending changes to 1302 * its CPU affinity. 1303 * 1304 * __sysvec_posted_msi_notification() 1305 * irq_enter(); 1306 * handle_edge_irq() 1307 * irq_chip_ack_parent() 1308 * irq_move_irq(); // No EOI 1309 * handle_irq_event() 1310 * driver_handler() 1311 * handle_edge_irq() 1312 * irq_chip_ack_parent() 1313 * irq_move_irq(); // No EOI 1314 * handle_irq_event() 1315 * driver_handler() 1316 * handle_edge_irq() 1317 * irq_chip_ack_parent() 1318 * irq_move_irq(); // No EOI 1319 * handle_irq_event() 1320 * driver_handler() 1321 * apic_eoi() 1322 * irq_exit() 1323 * 1324 */ 1325 static struct irq_chip intel_ir_chip_post_msi = { 1326 .name = "INTEL-IR-POST", 1327 .irq_ack = irq_move_irq, 1328 .irq_set_affinity = intel_ir_set_affinity, 1329 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1330 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1331 }; 1332 1333 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle) 1334 { 1335 memset(msg, 0, sizeof(*msg)); 1336 1337 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW; 1338 msg->arch_addr_lo.dmar_subhandle_valid = true; 1339 msg->arch_addr_lo.dmar_format = true; 1340 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF; 1341 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000); 1342 1343 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 1344 1345 msg->arch_data.dmar_subhandle = subhandle; 1346 } 1347 1348 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data, 1349 struct irq_cfg *irq_cfg, 1350 struct irq_alloc_info *info, 1351 int index, int sub_handle) 1352 { 1353 struct irte *irte = &data->irte_entry; 1354 1355 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid); 1356 1357 switch (info->type) { 1358 case X86_IRQ_ALLOC_TYPE_IOAPIC: 1359 /* Set source-id of interrupt request */ 1360 set_ioapic_sid(irte, info->devid); 1361 apic_pr_verbose("IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n", 1362 info->devid, irte->present, irte->fpd, irte->dst_mode, 1363 irte->redir_hint, irte->trigger_mode, irte->dlvry_mode, 1364 irte->avail, irte->vector, irte->dest_id, irte->sid, 1365 irte->sq, irte->svt); 1366 sub_handle = info->ioapic.pin; 1367 break; 1368 case X86_IRQ_ALLOC_TYPE_HPET: 1369 set_hpet_sid(irte, info->devid); 1370 break; 1371 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 1372 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 1373 if (posted_msi_supported()) { 1374 prepare_irte_posted(irte); 1375 data->irq_2_iommu.posted_msi = 1; 1376 } 1377 1378 set_msi_sid(irte, 1379 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc))); 1380 break; 1381 default: 1382 BUG_ON(1); 1383 break; 1384 } 1385 fill_msi_msg(&data->msi_entry, index, sub_handle); 1386 } 1387 1388 static void intel_free_irq_resources(struct irq_domain *domain, 1389 unsigned int virq, unsigned int nr_irqs) 1390 { 1391 struct irq_data *irq_data; 1392 struct intel_ir_data *data; 1393 struct irq_2_iommu *irq_iommu; 1394 unsigned long flags; 1395 int i; 1396 for (i = 0; i < nr_irqs; i++) { 1397 irq_data = irq_domain_get_irq_data(domain, virq + i); 1398 if (irq_data && irq_data->chip_data) { 1399 data = irq_data->chip_data; 1400 irq_iommu = &data->irq_2_iommu; 1401 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 1402 clear_entries(irq_iommu); 1403 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 1404 irq_domain_reset_irq_data(irq_data); 1405 kfree(data); 1406 } 1407 } 1408 } 1409 1410 static int intel_irq_remapping_alloc(struct irq_domain *domain, 1411 unsigned int virq, unsigned int nr_irqs, 1412 void *arg) 1413 { 1414 struct intel_iommu *iommu = domain->host_data; 1415 struct irq_alloc_info *info = arg; 1416 struct intel_ir_data *data, *ird; 1417 struct irq_data *irq_data; 1418 struct irq_cfg *irq_cfg; 1419 int i, ret, index; 1420 1421 if (!info || !iommu) 1422 return -EINVAL; 1423 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI) 1424 return -EINVAL; 1425 1426 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 1427 if (ret < 0) 1428 return ret; 1429 1430 ret = -ENOMEM; 1431 data = kzalloc(sizeof(*data), GFP_KERNEL); 1432 if (!data) 1433 goto out_free_parent; 1434 1435 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs); 1436 if (index < 0) { 1437 pr_warn("Failed to allocate IRTE\n"); 1438 kfree(data); 1439 goto out_free_parent; 1440 } 1441 1442 for (i = 0; i < nr_irqs; i++) { 1443 irq_data = irq_domain_get_irq_data(domain, virq + i); 1444 irq_cfg = irqd_cfg(irq_data); 1445 if (!irq_data || !irq_cfg) { 1446 if (!i) 1447 kfree(data); 1448 ret = -EINVAL; 1449 goto out_free_data; 1450 } 1451 1452 if (i > 0) { 1453 ird = kzalloc(sizeof(*ird), GFP_KERNEL); 1454 if (!ird) 1455 goto out_free_data; 1456 /* Initialize the common data */ 1457 ird->irq_2_iommu = data->irq_2_iommu; 1458 ird->irq_2_iommu.sub_handle = i; 1459 } else { 1460 ird = data; 1461 } 1462 1463 irq_data->hwirq = (index << 16) + i; 1464 irq_data->chip_data = ird; 1465 if (posted_msi_supported() && 1466 ((info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) || 1467 (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX))) 1468 irq_data->chip = &intel_ir_chip_post_msi; 1469 else 1470 irq_data->chip = &intel_ir_chip; 1471 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i); 1472 } 1473 return 0; 1474 1475 out_free_data: 1476 intel_free_irq_resources(domain, virq, i); 1477 out_free_parent: 1478 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1479 return ret; 1480 } 1481 1482 static void intel_irq_remapping_free(struct irq_domain *domain, 1483 unsigned int virq, unsigned int nr_irqs) 1484 { 1485 intel_free_irq_resources(domain, virq, nr_irqs); 1486 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1487 } 1488 1489 static int intel_irq_remapping_activate(struct irq_domain *domain, 1490 struct irq_data *irq_data, bool reserve) 1491 { 1492 intel_ir_reconfigure_irte(irq_data, true); 1493 return 0; 1494 } 1495 1496 static void intel_irq_remapping_deactivate(struct irq_domain *domain, 1497 struct irq_data *irq_data) 1498 { 1499 struct intel_ir_data *data = irq_data->chip_data; 1500 struct irte entry; 1501 1502 WARN_ON_ONCE(data->irq_2_iommu.posted_vcpu); 1503 data->irq_2_iommu.posted_vcpu = false; 1504 1505 memset(&entry, 0, sizeof(entry)); 1506 modify_irte(&data->irq_2_iommu, &entry); 1507 } 1508 1509 static int intel_irq_remapping_select(struct irq_domain *d, 1510 struct irq_fwspec *fwspec, 1511 enum irq_domain_bus_token bus_token) 1512 { 1513 struct intel_iommu *iommu = NULL; 1514 1515 if (x86_fwspec_is_ioapic(fwspec)) 1516 iommu = map_ioapic_to_iommu(fwspec->param[0]); 1517 else if (x86_fwspec_is_hpet(fwspec)) 1518 iommu = map_hpet_to_iommu(fwspec->param[0]); 1519 1520 return iommu && d == iommu->ir_domain; 1521 } 1522 1523 static const struct irq_domain_ops intel_ir_domain_ops = { 1524 .select = intel_irq_remapping_select, 1525 .alloc = intel_irq_remapping_alloc, 1526 .free = intel_irq_remapping_free, 1527 .activate = intel_irq_remapping_activate, 1528 .deactivate = intel_irq_remapping_deactivate, 1529 }; 1530 1531 static const struct msi_parent_ops dmar_msi_parent_ops = { 1532 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI, 1533 .prefix = "IR-", 1534 .init_dev_msi_info = msi_parent_init_dev_msi_info, 1535 }; 1536 1537 /* 1538 * Support of Interrupt Remapping Unit Hotplug 1539 */ 1540 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu) 1541 { 1542 int ret; 1543 int eim = x2apic_enabled(); 1544 1545 if (eim && !ecap_eim_support(iommu->ecap)) { 1546 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n", 1547 iommu->reg_phys, iommu->ecap); 1548 return -ENODEV; 1549 } 1550 1551 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) { 1552 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n", 1553 iommu->reg_phys); 1554 return -ENODEV; 1555 } 1556 1557 /* TODO: check all IOAPICs are covered by IOMMU */ 1558 1559 /* Setup Interrupt-remapping now. */ 1560 ret = intel_setup_irq_remapping(iommu); 1561 if (ret) { 1562 pr_err("Failed to setup irq remapping for %s\n", 1563 iommu->name); 1564 intel_teardown_irq_remapping(iommu); 1565 ir_remove_ioapic_hpet_scope(iommu); 1566 } else { 1567 iommu_enable_irq_remapping(iommu); 1568 } 1569 1570 return ret; 1571 } 1572 1573 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 1574 { 1575 int ret = 0; 1576 struct intel_iommu *iommu = dmaru->iommu; 1577 1578 if (!irq_remapping_enabled) 1579 return 0; 1580 if (iommu == NULL) 1581 return -EINVAL; 1582 if (!ecap_ir_support(iommu->ecap)) 1583 return 0; 1584 if (irq_remapping_cap(IRQ_POSTING_CAP) && 1585 !cap_pi_support(iommu->cap)) 1586 return -EBUSY; 1587 1588 if (insert) { 1589 if (!iommu->ir_table) 1590 ret = dmar_ir_add(dmaru, iommu); 1591 } else { 1592 if (iommu->ir_table) { 1593 if (!bitmap_empty(iommu->ir_table->bitmap, 1594 INTR_REMAP_TABLE_ENTRIES)) { 1595 ret = -EBUSY; 1596 } else { 1597 iommu_disable_irq_remapping(iommu); 1598 intel_teardown_irq_remapping(iommu); 1599 ir_remove_ioapic_hpet_scope(iommu); 1600 } 1601 } 1602 } 1603 1604 return ret; 1605 } 1606