xref: /linux/drivers/iommu/intel/irq_remapping.c (revision 0a1d4434db5f86c50018fe0aab299ac97dc15b76)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
4 
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
17 #include <asm/apic.h>
18 #include <asm/smp.h>
19 #include <asm/cpu.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22 
23 #include "iommu.h"
24 #include "../irq_remapping.h"
25 #include "cap_audit.h"
26 
27 enum irq_mode {
28 	IRQ_REMAPPING,
29 	IRQ_POSTING,
30 };
31 
32 struct ioapic_scope {
33 	struct intel_iommu *iommu;
34 	unsigned int id;
35 	unsigned int bus;	/* PCI bus number */
36 	unsigned int devfn;	/* PCI devfn number */
37 };
38 
39 struct hpet_scope {
40 	struct intel_iommu *iommu;
41 	u8 id;
42 	unsigned int bus;
43 	unsigned int devfn;
44 };
45 
46 struct irq_2_iommu {
47 	struct intel_iommu *iommu;
48 	u16 irte_index;
49 	u16 sub_handle;
50 	u8  irte_mask;
51 	enum irq_mode mode;
52 };
53 
54 struct intel_ir_data {
55 	struct irq_2_iommu			irq_2_iommu;
56 	struct irte				irte_entry;
57 	union {
58 		struct msi_msg			msi_entry;
59 	};
60 };
61 
62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64 
65 static int __read_mostly eim_mode;
66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68 
69 /*
70  * Lock ordering:
71  * ->dmar_global_lock
72  *	->irq_2_ir_lock
73  *		->qi->q_lock
74  *	->iommu->register_lock
75  * Note:
76  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77  * in single-threaded environment with interrupt disabled, so no need to tabke
78  * the dmar_global_lock.
79  */
80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81 static const struct irq_domain_ops intel_ir_domain_ops;
82 
83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 static int __init parse_ioapics_under_ir(void);
85 static const struct msi_parent_ops dmar_msi_parent_ops, virt_dmar_msi_parent_ops;
86 
87 static bool ir_pre_enabled(struct intel_iommu *iommu)
88 {
89 	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
90 }
91 
92 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
93 {
94 	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
95 }
96 
97 static void init_ir_status(struct intel_iommu *iommu)
98 {
99 	u32 gsts;
100 
101 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
102 	if (gsts & DMA_GSTS_IRES)
103 		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
104 }
105 
106 static int alloc_irte(struct intel_iommu *iommu,
107 		      struct irq_2_iommu *irq_iommu, u16 count)
108 {
109 	struct ir_table *table = iommu->ir_table;
110 	unsigned int mask = 0;
111 	unsigned long flags;
112 	int index;
113 
114 	if (!count || !irq_iommu)
115 		return -1;
116 
117 	if (count > 1) {
118 		count = __roundup_pow_of_two(count);
119 		mask = ilog2(count);
120 	}
121 
122 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
123 		pr_err("Requested mask %x exceeds the max invalidation handle"
124 		       " mask value %Lx\n", mask,
125 		       ecap_max_handle_mask(iommu->ecap));
126 		return -1;
127 	}
128 
129 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
130 	index = bitmap_find_free_region(table->bitmap,
131 					INTR_REMAP_TABLE_ENTRIES, mask);
132 	if (index < 0) {
133 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
134 	} else {
135 		irq_iommu->iommu = iommu;
136 		irq_iommu->irte_index =  index;
137 		irq_iommu->sub_handle = 0;
138 		irq_iommu->irte_mask = mask;
139 		irq_iommu->mode = IRQ_REMAPPING;
140 	}
141 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
142 
143 	return index;
144 }
145 
146 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
147 {
148 	struct qi_desc desc;
149 
150 	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
151 		   | QI_IEC_SELECTIVE;
152 	desc.qw1 = 0;
153 	desc.qw2 = 0;
154 	desc.qw3 = 0;
155 
156 	return qi_submit_sync(iommu, &desc, 1, 0);
157 }
158 
159 static int modify_irte(struct irq_2_iommu *irq_iommu,
160 		       struct irte *irte_modified)
161 {
162 	struct intel_iommu *iommu;
163 	unsigned long flags;
164 	struct irte *irte;
165 	int rc, index;
166 
167 	if (!irq_iommu)
168 		return -1;
169 
170 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
171 
172 	iommu = irq_iommu->iommu;
173 
174 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
175 	irte = &iommu->ir_table->base[index];
176 
177 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
178 	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
179 		bool ret;
180 
181 		ret = cmpxchg_double(&irte->low, &irte->high,
182 				     irte->low, irte->high,
183 				     irte_modified->low, irte_modified->high);
184 		/*
185 		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
186 		 * and it cannot be updated by the hardware or other processors
187 		 * behind us, so the return value of cmpxchg16 should be the
188 		 * same as the old value.
189 		 */
190 		WARN_ON(!ret);
191 	} else
192 #endif
193 	{
194 		set_64bit(&irte->low, irte_modified->low);
195 		set_64bit(&irte->high, irte_modified->high);
196 	}
197 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
198 
199 	rc = qi_flush_iec(iommu, index, 0);
200 
201 	/* Update iommu mode according to the IRTE mode */
202 	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
203 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
204 
205 	return rc;
206 }
207 
208 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
209 {
210 	int i;
211 
212 	for (i = 0; i < MAX_HPET_TBS; i++) {
213 		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
214 			return ir_hpet[i].iommu;
215 	}
216 	return NULL;
217 }
218 
219 static struct intel_iommu *map_ioapic_to_iommu(int apic)
220 {
221 	int i;
222 
223 	for (i = 0; i < MAX_IO_APICS; i++) {
224 		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
225 			return ir_ioapic[i].iommu;
226 	}
227 	return NULL;
228 }
229 
230 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
231 {
232 	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
233 
234 	return drhd ? drhd->iommu->ir_domain : NULL;
235 }
236 
237 static int clear_entries(struct irq_2_iommu *irq_iommu)
238 {
239 	struct irte *start, *entry, *end;
240 	struct intel_iommu *iommu;
241 	int index;
242 
243 	if (irq_iommu->sub_handle)
244 		return 0;
245 
246 	iommu = irq_iommu->iommu;
247 	index = irq_iommu->irte_index;
248 
249 	start = iommu->ir_table->base + index;
250 	end = start + (1 << irq_iommu->irte_mask);
251 
252 	for (entry = start; entry < end; entry++) {
253 		set_64bit(&entry->low, 0);
254 		set_64bit(&entry->high, 0);
255 	}
256 	bitmap_release_region(iommu->ir_table->bitmap, index,
257 			      irq_iommu->irte_mask);
258 
259 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
260 }
261 
262 /*
263  * source validation type
264  */
265 #define SVT_NO_VERIFY		0x0  /* no verification is required */
266 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
267 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
268 
269 /*
270  * source-id qualifier
271  */
272 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
273 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
274 			      * the third least significant bit
275 			      */
276 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
277 			      * the second and third least significant bits
278 			      */
279 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
280 			      * the least three significant bits
281 			      */
282 
283 /*
284  * set SVT, SQ and SID fields of irte to verify
285  * source ids of interrupt requests
286  */
287 static void set_irte_sid(struct irte *irte, unsigned int svt,
288 			 unsigned int sq, unsigned int sid)
289 {
290 	if (disable_sourceid_checking)
291 		svt = SVT_NO_VERIFY;
292 	irte->svt = svt;
293 	irte->sq = sq;
294 	irte->sid = sid;
295 }
296 
297 /*
298  * Set an IRTE to match only the bus number. Interrupt requests that reference
299  * this IRTE must have a requester-id whose bus number is between or equal
300  * to the start_bus and end_bus arguments.
301  */
302 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
303 				unsigned int end_bus)
304 {
305 	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
306 		     (start_bus << 8) | end_bus);
307 }
308 
309 static int set_ioapic_sid(struct irte *irte, int apic)
310 {
311 	int i;
312 	u16 sid = 0;
313 
314 	if (!irte)
315 		return -1;
316 
317 	down_read(&dmar_global_lock);
318 	for (i = 0; i < MAX_IO_APICS; i++) {
319 		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
320 			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
321 			break;
322 		}
323 	}
324 	up_read(&dmar_global_lock);
325 
326 	if (sid == 0) {
327 		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
328 		return -1;
329 	}
330 
331 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
332 
333 	return 0;
334 }
335 
336 static int set_hpet_sid(struct irte *irte, u8 id)
337 {
338 	int i;
339 	u16 sid = 0;
340 
341 	if (!irte)
342 		return -1;
343 
344 	down_read(&dmar_global_lock);
345 	for (i = 0; i < MAX_HPET_TBS; i++) {
346 		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
347 			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
348 			break;
349 		}
350 	}
351 	up_read(&dmar_global_lock);
352 
353 	if (sid == 0) {
354 		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
355 		return -1;
356 	}
357 
358 	/*
359 	 * Should really use SQ_ALL_16. Some platforms are broken.
360 	 * While we figure out the right quirks for these broken platforms, use
361 	 * SQ_13_IGNORE_3 for now.
362 	 */
363 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
364 
365 	return 0;
366 }
367 
368 struct set_msi_sid_data {
369 	struct pci_dev *pdev;
370 	u16 alias;
371 	int count;
372 	int busmatch_count;
373 };
374 
375 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
376 {
377 	struct set_msi_sid_data *data = opaque;
378 
379 	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
380 		data->busmatch_count++;
381 
382 	data->pdev = pdev;
383 	data->alias = alias;
384 	data->count++;
385 
386 	return 0;
387 }
388 
389 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
390 {
391 	struct set_msi_sid_data data;
392 
393 	if (!irte || !dev)
394 		return -1;
395 
396 	data.count = 0;
397 	data.busmatch_count = 0;
398 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
399 
400 	/*
401 	 * DMA alias provides us with a PCI device and alias.  The only case
402 	 * where the it will return an alias on a different bus than the
403 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
404 	 * the subordinate bus.  In this case we can only verify the bus.
405 	 *
406 	 * If there are multiple aliases, all with the same bus number,
407 	 * then all we can do is verify the bus. This is typical in NTB
408 	 * hardware which use proxy IDs where the device will generate traffic
409 	 * from multiple devfn numbers on the same bus.
410 	 *
411 	 * If the alias device is on a different bus than our source device
412 	 * then we have a topology based alias, use it.
413 	 *
414 	 * Otherwise, the alias is for a device DMA quirk and we cannot
415 	 * assume that MSI uses the same requester ID.  Therefore use the
416 	 * original device.
417 	 */
418 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
419 		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
420 				    dev->bus->number);
421 	else if (data.count >= 2 && data.busmatch_count == data.count)
422 		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
423 	else if (data.pdev->bus->number != dev->bus->number)
424 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
425 	else
426 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
427 			     pci_dev_id(dev));
428 
429 	return 0;
430 }
431 
432 static int iommu_load_old_irte(struct intel_iommu *iommu)
433 {
434 	struct irte *old_ir_table;
435 	phys_addr_t irt_phys;
436 	unsigned int i;
437 	size_t size;
438 	u64 irta;
439 
440 	/* Check whether the old ir-table has the same size as ours */
441 	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
442 	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
443 	     != INTR_REMAP_TABLE_REG_SIZE)
444 		return -EINVAL;
445 
446 	irt_phys = irta & VTD_PAGE_MASK;
447 	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
448 
449 	/* Map the old IR table */
450 	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
451 	if (!old_ir_table)
452 		return -ENOMEM;
453 
454 	/* Copy data over */
455 	memcpy(iommu->ir_table->base, old_ir_table, size);
456 
457 	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
458 
459 	/*
460 	 * Now check the table for used entries and mark those as
461 	 * allocated in the bitmap
462 	 */
463 	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
464 		if (iommu->ir_table->base[i].present)
465 			bitmap_set(iommu->ir_table->bitmap, i, 1);
466 	}
467 
468 	memunmap(old_ir_table);
469 
470 	return 0;
471 }
472 
473 
474 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
475 {
476 	unsigned long flags;
477 	u64 addr;
478 	u32 sts;
479 
480 	addr = virt_to_phys((void *)iommu->ir_table->base);
481 
482 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
483 
484 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
485 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
486 
487 	/* Set interrupt-remapping table pointer */
488 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
489 
490 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
491 		      readl, (sts & DMA_GSTS_IRTPS), sts);
492 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
493 
494 	/*
495 	 * Global invalidation of interrupt entry cache to make sure the
496 	 * hardware uses the new irq remapping table.
497 	 */
498 	if (!cap_esirtps(iommu->cap))
499 		qi_global_iec(iommu);
500 }
501 
502 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
503 {
504 	unsigned long flags;
505 	u32 sts;
506 
507 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
508 
509 	/* Enable interrupt-remapping */
510 	iommu->gcmd |= DMA_GCMD_IRE;
511 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
512 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
513 		      readl, (sts & DMA_GSTS_IRES), sts);
514 
515 	/* Block compatibility-format MSIs */
516 	if (sts & DMA_GSTS_CFIS) {
517 		iommu->gcmd &= ~DMA_GCMD_CFI;
518 		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
519 		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
520 			      readl, !(sts & DMA_GSTS_CFIS), sts);
521 	}
522 
523 	/*
524 	 * With CFI clear in the Global Command register, we should be
525 	 * protected from dangerous (i.e. compatibility) interrupts
526 	 * regardless of x2apic status.  Check just to be sure.
527 	 */
528 	if (sts & DMA_GSTS_CFIS)
529 		WARN(1, KERN_WARNING
530 			"Compatibility-format IRQs enabled despite intr remapping;\n"
531 			"you are vulnerable to IRQ injection.\n");
532 
533 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
534 }
535 
536 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
537 {
538 	struct ir_table *ir_table;
539 	struct fwnode_handle *fn;
540 	unsigned long *bitmap;
541 	struct page *pages;
542 
543 	if (iommu->ir_table)
544 		return 0;
545 
546 	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
547 	if (!ir_table)
548 		return -ENOMEM;
549 
550 	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
551 				 INTR_REMAP_PAGE_ORDER);
552 	if (!pages) {
553 		pr_err("IR%d: failed to allocate pages of order %d\n",
554 		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
555 		goto out_free_table;
556 	}
557 
558 	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
559 	if (bitmap == NULL) {
560 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
561 		goto out_free_pages;
562 	}
563 
564 	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
565 	if (!fn)
566 		goto out_free_bitmap;
567 
568 	iommu->ir_domain =
569 		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
570 					    0, INTR_REMAP_TABLE_ENTRIES,
571 					    fn, &intel_ir_domain_ops,
572 					    iommu);
573 	if (!iommu->ir_domain) {
574 		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
575 		goto out_free_fwnode;
576 	}
577 
578 	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_DMAR);
579 	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
580 
581 	if (cap_caching_mode(iommu->cap))
582 		iommu->ir_domain->msi_parent_ops = &virt_dmar_msi_parent_ops;
583 	else
584 		iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
585 
586 	ir_table->base = page_address(pages);
587 	ir_table->bitmap = bitmap;
588 	iommu->ir_table = ir_table;
589 
590 	/*
591 	 * If the queued invalidation is already initialized,
592 	 * shouldn't disable it.
593 	 */
594 	if (!iommu->qi) {
595 		/*
596 		 * Clear previous faults.
597 		 */
598 		dmar_fault(-1, iommu);
599 		dmar_disable_qi(iommu);
600 
601 		if (dmar_enable_qi(iommu)) {
602 			pr_err("Failed to enable queued invalidation\n");
603 			goto out_free_ir_domain;
604 		}
605 	}
606 
607 	init_ir_status(iommu);
608 
609 	if (ir_pre_enabled(iommu)) {
610 		if (!is_kdump_kernel()) {
611 			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
612 				iommu->name);
613 			clear_ir_pre_enabled(iommu);
614 			iommu_disable_irq_remapping(iommu);
615 		} else if (iommu_load_old_irte(iommu))
616 			pr_err("Failed to copy IR table for %s from previous kernel\n",
617 			       iommu->name);
618 		else
619 			pr_info("Copied IR table for %s from previous kernel\n",
620 				iommu->name);
621 	}
622 
623 	iommu_set_irq_remapping(iommu, eim_mode);
624 
625 	return 0;
626 
627 out_free_ir_domain:
628 	irq_domain_remove(iommu->ir_domain);
629 	iommu->ir_domain = NULL;
630 out_free_fwnode:
631 	irq_domain_free_fwnode(fn);
632 out_free_bitmap:
633 	bitmap_free(bitmap);
634 out_free_pages:
635 	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
636 out_free_table:
637 	kfree(ir_table);
638 
639 	iommu->ir_table  = NULL;
640 
641 	return -ENOMEM;
642 }
643 
644 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
645 {
646 	struct fwnode_handle *fn;
647 
648 	if (iommu && iommu->ir_table) {
649 		if (iommu->ir_domain) {
650 			fn = iommu->ir_domain->fwnode;
651 
652 			irq_domain_remove(iommu->ir_domain);
653 			irq_domain_free_fwnode(fn);
654 			iommu->ir_domain = NULL;
655 		}
656 		free_pages((unsigned long)iommu->ir_table->base,
657 			   INTR_REMAP_PAGE_ORDER);
658 		bitmap_free(iommu->ir_table->bitmap);
659 		kfree(iommu->ir_table);
660 		iommu->ir_table = NULL;
661 	}
662 }
663 
664 /*
665  * Disable Interrupt Remapping.
666  */
667 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
668 {
669 	unsigned long flags;
670 	u32 sts;
671 
672 	if (!ecap_ir_support(iommu->ecap))
673 		return;
674 
675 	/*
676 	 * global invalidation of interrupt entry cache before disabling
677 	 * interrupt-remapping.
678 	 */
679 	if (!cap_esirtps(iommu->cap))
680 		qi_global_iec(iommu);
681 
682 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
683 
684 	sts = readl(iommu->reg + DMAR_GSTS_REG);
685 	if (!(sts & DMA_GSTS_IRES))
686 		goto end;
687 
688 	iommu->gcmd &= ~DMA_GCMD_IRE;
689 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
690 
691 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
692 		      readl, !(sts & DMA_GSTS_IRES), sts);
693 
694 end:
695 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
696 }
697 
698 static int __init dmar_x2apic_optout(void)
699 {
700 	struct acpi_table_dmar *dmar;
701 	dmar = (struct acpi_table_dmar *)dmar_tbl;
702 	if (!dmar || no_x2apic_optout)
703 		return 0;
704 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
705 }
706 
707 static void __init intel_cleanup_irq_remapping(void)
708 {
709 	struct dmar_drhd_unit *drhd;
710 	struct intel_iommu *iommu;
711 
712 	for_each_iommu(iommu, drhd) {
713 		if (ecap_ir_support(iommu->ecap)) {
714 			iommu_disable_irq_remapping(iommu);
715 			intel_teardown_irq_remapping(iommu);
716 		}
717 	}
718 
719 	if (x2apic_supported())
720 		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
721 }
722 
723 static int __init intel_prepare_irq_remapping(void)
724 {
725 	struct dmar_drhd_unit *drhd;
726 	struct intel_iommu *iommu;
727 	int eim = 0;
728 
729 	if (irq_remap_broken) {
730 		pr_warn("This system BIOS has enabled interrupt remapping\n"
731 			"on a chipset that contains an erratum making that\n"
732 			"feature unstable.  To maintain system stability\n"
733 			"interrupt remapping is being disabled.  Please\n"
734 			"contact your BIOS vendor for an update\n");
735 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
736 		return -ENODEV;
737 	}
738 
739 	if (dmar_table_init() < 0)
740 		return -ENODEV;
741 
742 	if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
743 		return -ENODEV;
744 
745 	if (!dmar_ir_support())
746 		return -ENODEV;
747 
748 	if (parse_ioapics_under_ir()) {
749 		pr_info("Not enabling interrupt remapping\n");
750 		goto error;
751 	}
752 
753 	/* First make sure all IOMMUs support IRQ remapping */
754 	for_each_iommu(iommu, drhd)
755 		if (!ecap_ir_support(iommu->ecap))
756 			goto error;
757 
758 	/* Detect remapping mode: lapic or x2apic */
759 	if (x2apic_supported()) {
760 		eim = !dmar_x2apic_optout();
761 		if (!eim) {
762 			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
763 			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
764 		}
765 	}
766 
767 	for_each_iommu(iommu, drhd) {
768 		if (eim && !ecap_eim_support(iommu->ecap)) {
769 			pr_info("%s does not support EIM\n", iommu->name);
770 			eim = 0;
771 		}
772 	}
773 
774 	eim_mode = eim;
775 	if (eim)
776 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
777 
778 	/* Do the initializations early */
779 	for_each_iommu(iommu, drhd) {
780 		if (intel_setup_irq_remapping(iommu)) {
781 			pr_err("Failed to setup irq remapping for %s\n",
782 			       iommu->name);
783 			goto error;
784 		}
785 	}
786 
787 	return 0;
788 
789 error:
790 	intel_cleanup_irq_remapping();
791 	return -ENODEV;
792 }
793 
794 /*
795  * Set Posted-Interrupts capability.
796  */
797 static inline void set_irq_posting_cap(void)
798 {
799 	struct dmar_drhd_unit *drhd;
800 	struct intel_iommu *iommu;
801 
802 	if (!disable_irq_post) {
803 		/*
804 		 * If IRTE is in posted format, the 'pda' field goes across the
805 		 * 64-bit boundary, we need use cmpxchg16b to atomically update
806 		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
807 		 * is supported. Actually, hardware platforms supporting PI
808 		 * should have X86_FEATURE_CX16 support, this has been confirmed
809 		 * with Intel hardware guys.
810 		 */
811 		if (boot_cpu_has(X86_FEATURE_CX16))
812 			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
813 
814 		for_each_iommu(iommu, drhd)
815 			if (!cap_pi_support(iommu->cap)) {
816 				intel_irq_remap_ops.capability &=
817 						~(1 << IRQ_POSTING_CAP);
818 				break;
819 			}
820 	}
821 }
822 
823 static int __init intel_enable_irq_remapping(void)
824 {
825 	struct dmar_drhd_unit *drhd;
826 	struct intel_iommu *iommu;
827 	bool setup = false;
828 
829 	/*
830 	 * Setup Interrupt-remapping for all the DRHD's now.
831 	 */
832 	for_each_iommu(iommu, drhd) {
833 		if (!ir_pre_enabled(iommu))
834 			iommu_enable_irq_remapping(iommu);
835 		setup = true;
836 	}
837 
838 	if (!setup)
839 		goto error;
840 
841 	irq_remapping_enabled = 1;
842 
843 	set_irq_posting_cap();
844 
845 	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
846 
847 	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
848 
849 error:
850 	intel_cleanup_irq_remapping();
851 	return -1;
852 }
853 
854 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
855 				   struct intel_iommu *iommu,
856 				   struct acpi_dmar_hardware_unit *drhd)
857 {
858 	struct acpi_dmar_pci_path *path;
859 	u8 bus;
860 	int count, free = -1;
861 
862 	bus = scope->bus;
863 	path = (struct acpi_dmar_pci_path *)(scope + 1);
864 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
865 		/ sizeof(struct acpi_dmar_pci_path);
866 
867 	while (--count > 0) {
868 		/*
869 		 * Access PCI directly due to the PCI
870 		 * subsystem isn't initialized yet.
871 		 */
872 		bus = read_pci_config_byte(bus, path->device, path->function,
873 					   PCI_SECONDARY_BUS);
874 		path++;
875 	}
876 
877 	for (count = 0; count < MAX_HPET_TBS; count++) {
878 		if (ir_hpet[count].iommu == iommu &&
879 		    ir_hpet[count].id == scope->enumeration_id)
880 			return 0;
881 		else if (ir_hpet[count].iommu == NULL && free == -1)
882 			free = count;
883 	}
884 	if (free == -1) {
885 		pr_warn("Exceeded Max HPET blocks\n");
886 		return -ENOSPC;
887 	}
888 
889 	ir_hpet[free].iommu = iommu;
890 	ir_hpet[free].id    = scope->enumeration_id;
891 	ir_hpet[free].bus   = bus;
892 	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
893 	pr_info("HPET id %d under DRHD base 0x%Lx\n",
894 		scope->enumeration_id, drhd->address);
895 
896 	return 0;
897 }
898 
899 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
900 				     struct intel_iommu *iommu,
901 				     struct acpi_dmar_hardware_unit *drhd)
902 {
903 	struct acpi_dmar_pci_path *path;
904 	u8 bus;
905 	int count, free = -1;
906 
907 	bus = scope->bus;
908 	path = (struct acpi_dmar_pci_path *)(scope + 1);
909 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
910 		/ sizeof(struct acpi_dmar_pci_path);
911 
912 	while (--count > 0) {
913 		/*
914 		 * Access PCI directly due to the PCI
915 		 * subsystem isn't initialized yet.
916 		 */
917 		bus = read_pci_config_byte(bus, path->device, path->function,
918 					   PCI_SECONDARY_BUS);
919 		path++;
920 	}
921 
922 	for (count = 0; count < MAX_IO_APICS; count++) {
923 		if (ir_ioapic[count].iommu == iommu &&
924 		    ir_ioapic[count].id == scope->enumeration_id)
925 			return 0;
926 		else if (ir_ioapic[count].iommu == NULL && free == -1)
927 			free = count;
928 	}
929 	if (free == -1) {
930 		pr_warn("Exceeded Max IO APICS\n");
931 		return -ENOSPC;
932 	}
933 
934 	ir_ioapic[free].bus   = bus;
935 	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
936 	ir_ioapic[free].iommu = iommu;
937 	ir_ioapic[free].id    = scope->enumeration_id;
938 	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
939 		scope->enumeration_id, drhd->address, iommu->seq_id);
940 
941 	return 0;
942 }
943 
944 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
945 				      struct intel_iommu *iommu)
946 {
947 	int ret = 0;
948 	struct acpi_dmar_hardware_unit *drhd;
949 	struct acpi_dmar_device_scope *scope;
950 	void *start, *end;
951 
952 	drhd = (struct acpi_dmar_hardware_unit *)header;
953 	start = (void *)(drhd + 1);
954 	end = ((void *)drhd) + header->length;
955 
956 	while (start < end && ret == 0) {
957 		scope = start;
958 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
959 			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
960 		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
961 			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
962 		start += scope->length;
963 	}
964 
965 	return ret;
966 }
967 
968 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
969 {
970 	int i;
971 
972 	for (i = 0; i < MAX_HPET_TBS; i++)
973 		if (ir_hpet[i].iommu == iommu)
974 			ir_hpet[i].iommu = NULL;
975 
976 	for (i = 0; i < MAX_IO_APICS; i++)
977 		if (ir_ioapic[i].iommu == iommu)
978 			ir_ioapic[i].iommu = NULL;
979 }
980 
981 /*
982  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
983  * hardware unit.
984  */
985 static int __init parse_ioapics_under_ir(void)
986 {
987 	struct dmar_drhd_unit *drhd;
988 	struct intel_iommu *iommu;
989 	bool ir_supported = false;
990 	int ioapic_idx;
991 
992 	for_each_iommu(iommu, drhd) {
993 		int ret;
994 
995 		if (!ecap_ir_support(iommu->ecap))
996 			continue;
997 
998 		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
999 		if (ret)
1000 			return ret;
1001 
1002 		ir_supported = true;
1003 	}
1004 
1005 	if (!ir_supported)
1006 		return -ENODEV;
1007 
1008 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1009 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
1010 		if (!map_ioapic_to_iommu(ioapic_id)) {
1011 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1012 			       "interrupt remapping will be disabled\n",
1013 			       ioapic_id);
1014 			return -1;
1015 		}
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 static int __init ir_dev_scope_init(void)
1022 {
1023 	int ret;
1024 
1025 	if (!irq_remapping_enabled)
1026 		return 0;
1027 
1028 	down_write(&dmar_global_lock);
1029 	ret = dmar_dev_scope_init();
1030 	up_write(&dmar_global_lock);
1031 
1032 	return ret;
1033 }
1034 rootfs_initcall(ir_dev_scope_init);
1035 
1036 static void disable_irq_remapping(void)
1037 {
1038 	struct dmar_drhd_unit *drhd;
1039 	struct intel_iommu *iommu = NULL;
1040 
1041 	/*
1042 	 * Disable Interrupt-remapping for all the DRHD's now.
1043 	 */
1044 	for_each_iommu(iommu, drhd) {
1045 		if (!ecap_ir_support(iommu->ecap))
1046 			continue;
1047 
1048 		iommu_disable_irq_remapping(iommu);
1049 	}
1050 
1051 	/*
1052 	 * Clear Posted-Interrupts capability.
1053 	 */
1054 	if (!disable_irq_post)
1055 		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1056 }
1057 
1058 static int reenable_irq_remapping(int eim)
1059 {
1060 	struct dmar_drhd_unit *drhd;
1061 	bool setup = false;
1062 	struct intel_iommu *iommu = NULL;
1063 
1064 	for_each_iommu(iommu, drhd)
1065 		if (iommu->qi)
1066 			dmar_reenable_qi(iommu);
1067 
1068 	/*
1069 	 * Setup Interrupt-remapping for all the DRHD's now.
1070 	 */
1071 	for_each_iommu(iommu, drhd) {
1072 		if (!ecap_ir_support(iommu->ecap))
1073 			continue;
1074 
1075 		/* Set up interrupt remapping for iommu.*/
1076 		iommu_set_irq_remapping(iommu, eim);
1077 		iommu_enable_irq_remapping(iommu);
1078 		setup = true;
1079 	}
1080 
1081 	if (!setup)
1082 		goto error;
1083 
1084 	set_irq_posting_cap();
1085 
1086 	return 0;
1087 
1088 error:
1089 	/*
1090 	 * handle error condition gracefully here!
1091 	 */
1092 	return -1;
1093 }
1094 
1095 /*
1096  * Store the MSI remapping domain pointer in the device if enabled.
1097  *
1098  * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1099  * remapping is disabled. Only update the pointer if the device is not
1100  * already handled by a non default PCI/MSI interrupt domain. This protects
1101  * e.g. VMD devices.
1102  */
1103 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1104 {
1105 	if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1106 		return;
1107 
1108 	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1109 }
1110 
1111 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1112 {
1113 	memset(irte, 0, sizeof(*irte));
1114 
1115 	irte->present = 1;
1116 	irte->dst_mode = apic->dest_mode_logical;
1117 	/*
1118 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1119 	 * actual level or edge trigger will be setup in the IO-APIC
1120 	 * RTE. This will help simplify level triggered irq migration.
1121 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1122 	 * irq migration in the presence of interrupt-remapping.
1123 	*/
1124 	irte->trigger_mode = 0;
1125 	irte->dlvry_mode = apic->delivery_mode;
1126 	irte->vector = vector;
1127 	irte->dest_id = IRTE_DEST(dest);
1128 	irte->redir_hint = 1;
1129 }
1130 
1131 struct irq_remap_ops intel_irq_remap_ops = {
1132 	.prepare		= intel_prepare_irq_remapping,
1133 	.enable			= intel_enable_irq_remapping,
1134 	.disable		= disable_irq_remapping,
1135 	.reenable		= reenable_irq_remapping,
1136 	.enable_faulting	= enable_drhd_fault_handling,
1137 };
1138 
1139 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1140 {
1141 	struct intel_ir_data *ir_data = irqd->chip_data;
1142 	struct irte *irte = &ir_data->irte_entry;
1143 	struct irq_cfg *cfg = irqd_cfg(irqd);
1144 
1145 	/*
1146 	 * Atomically updates the IRTE with the new destination, vector
1147 	 * and flushes the interrupt entry cache.
1148 	 */
1149 	irte->vector = cfg->vector;
1150 	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1151 
1152 	/* Update the hardware only if the interrupt is in remapped mode. */
1153 	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1154 		modify_irte(&ir_data->irq_2_iommu, irte);
1155 }
1156 
1157 /*
1158  * Migrate the IO-APIC irq in the presence of intr-remapping.
1159  *
1160  * For both level and edge triggered, irq migration is a simple atomic
1161  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1162  *
1163  * For level triggered, we eliminate the io-apic RTE modification (with the
1164  * updated vector information), by using a virtual vector (io-apic pin number).
1165  * Real vector that is used for interrupting cpu will be coming from
1166  * the interrupt-remapping table entry.
1167  *
1168  * As the migration is a simple atomic update of IRTE, the same mechanism
1169  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1170  */
1171 static int
1172 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1173 		      bool force)
1174 {
1175 	struct irq_data *parent = data->parent_data;
1176 	struct irq_cfg *cfg = irqd_cfg(data);
1177 	int ret;
1178 
1179 	ret = parent->chip->irq_set_affinity(parent, mask, force);
1180 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1181 		return ret;
1182 
1183 	intel_ir_reconfigure_irte(data, false);
1184 	/*
1185 	 * After this point, all the interrupts will start arriving
1186 	 * at the new destination. So, time to cleanup the previous
1187 	 * vector allocation.
1188 	 */
1189 	send_cleanup_vector(cfg);
1190 
1191 	return IRQ_SET_MASK_OK_DONE;
1192 }
1193 
1194 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1195 				     struct msi_msg *msg)
1196 {
1197 	struct intel_ir_data *ir_data = irq_data->chip_data;
1198 
1199 	*msg = ir_data->msi_entry;
1200 }
1201 
1202 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1203 {
1204 	struct intel_ir_data *ir_data = data->chip_data;
1205 	struct vcpu_data *vcpu_pi_info = info;
1206 
1207 	/* stop posting interrupts, back to remapping mode */
1208 	if (!vcpu_pi_info) {
1209 		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1210 	} else {
1211 		struct irte irte_pi;
1212 
1213 		/*
1214 		 * We are not caching the posted interrupt entry. We
1215 		 * copy the data from the remapped entry and modify
1216 		 * the fields which are relevant for posted mode. The
1217 		 * cached remapped entry is used for switching back to
1218 		 * remapped mode.
1219 		 */
1220 		memset(&irte_pi, 0, sizeof(irte_pi));
1221 		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1222 
1223 		/* Update the posted mode fields */
1224 		irte_pi.p_pst = 1;
1225 		irte_pi.p_urgent = 0;
1226 		irte_pi.p_vector = vcpu_pi_info->vector;
1227 		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1228 				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1229 		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1230 				~(-1UL << PDA_HIGH_BIT);
1231 
1232 		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 static struct irq_chip intel_ir_chip = {
1239 	.name			= "INTEL-IR",
1240 	.irq_ack		= apic_ack_irq,
1241 	.irq_set_affinity	= intel_ir_set_affinity,
1242 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1243 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1244 };
1245 
1246 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1247 {
1248 	memset(msg, 0, sizeof(*msg));
1249 
1250 	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1251 	msg->arch_addr_lo.dmar_subhandle_valid = true;
1252 	msg->arch_addr_lo.dmar_format = true;
1253 	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1254 	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1255 
1256 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1257 
1258 	msg->arch_data.dmar_subhandle = subhandle;
1259 }
1260 
1261 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1262 					     struct irq_cfg *irq_cfg,
1263 					     struct irq_alloc_info *info,
1264 					     int index, int sub_handle)
1265 {
1266 	struct irte *irte = &data->irte_entry;
1267 
1268 	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1269 
1270 	switch (info->type) {
1271 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1272 		/* Set source-id of interrupt request */
1273 		set_ioapic_sid(irte, info->devid);
1274 		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1275 			info->devid, irte->present, irte->fpd,
1276 			irte->dst_mode, irte->redir_hint,
1277 			irte->trigger_mode, irte->dlvry_mode,
1278 			irte->avail, irte->vector, irte->dest_id,
1279 			irte->sid, irte->sq, irte->svt);
1280 		sub_handle = info->ioapic.pin;
1281 		break;
1282 	case X86_IRQ_ALLOC_TYPE_HPET:
1283 		set_hpet_sid(irte, info->devid);
1284 		break;
1285 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1286 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1287 		set_msi_sid(irte,
1288 			    pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1289 		break;
1290 	default:
1291 		BUG_ON(1);
1292 		break;
1293 	}
1294 	fill_msi_msg(&data->msi_entry, index, sub_handle);
1295 }
1296 
1297 static void intel_free_irq_resources(struct irq_domain *domain,
1298 				     unsigned int virq, unsigned int nr_irqs)
1299 {
1300 	struct irq_data *irq_data;
1301 	struct intel_ir_data *data;
1302 	struct irq_2_iommu *irq_iommu;
1303 	unsigned long flags;
1304 	int i;
1305 	for (i = 0; i < nr_irqs; i++) {
1306 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1307 		if (irq_data && irq_data->chip_data) {
1308 			data = irq_data->chip_data;
1309 			irq_iommu = &data->irq_2_iommu;
1310 			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1311 			clear_entries(irq_iommu);
1312 			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1313 			irq_domain_reset_irq_data(irq_data);
1314 			kfree(data);
1315 		}
1316 	}
1317 }
1318 
1319 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1320 				     unsigned int virq, unsigned int nr_irqs,
1321 				     void *arg)
1322 {
1323 	struct intel_iommu *iommu = domain->host_data;
1324 	struct irq_alloc_info *info = arg;
1325 	struct intel_ir_data *data, *ird;
1326 	struct irq_data *irq_data;
1327 	struct irq_cfg *irq_cfg;
1328 	int i, ret, index;
1329 
1330 	if (!info || !iommu)
1331 		return -EINVAL;
1332 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1333 		return -EINVAL;
1334 
1335 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1336 	if (ret < 0)
1337 		return ret;
1338 
1339 	ret = -ENOMEM;
1340 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1341 	if (!data)
1342 		goto out_free_parent;
1343 
1344 	down_read(&dmar_global_lock);
1345 	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1346 	up_read(&dmar_global_lock);
1347 	if (index < 0) {
1348 		pr_warn("Failed to allocate IRTE\n");
1349 		kfree(data);
1350 		goto out_free_parent;
1351 	}
1352 
1353 	for (i = 0; i < nr_irqs; i++) {
1354 		irq_data = irq_domain_get_irq_data(domain, virq + i);
1355 		irq_cfg = irqd_cfg(irq_data);
1356 		if (!irq_data || !irq_cfg) {
1357 			if (!i)
1358 				kfree(data);
1359 			ret = -EINVAL;
1360 			goto out_free_data;
1361 		}
1362 
1363 		if (i > 0) {
1364 			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1365 			if (!ird)
1366 				goto out_free_data;
1367 			/* Initialize the common data */
1368 			ird->irq_2_iommu = data->irq_2_iommu;
1369 			ird->irq_2_iommu.sub_handle = i;
1370 		} else {
1371 			ird = data;
1372 		}
1373 
1374 		irq_data->hwirq = (index << 16) + i;
1375 		irq_data->chip_data = ird;
1376 		irq_data->chip = &intel_ir_chip;
1377 		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1378 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1379 	}
1380 	return 0;
1381 
1382 out_free_data:
1383 	intel_free_irq_resources(domain, virq, i);
1384 out_free_parent:
1385 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1386 	return ret;
1387 }
1388 
1389 static void intel_irq_remapping_free(struct irq_domain *domain,
1390 				     unsigned int virq, unsigned int nr_irqs)
1391 {
1392 	intel_free_irq_resources(domain, virq, nr_irqs);
1393 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1394 }
1395 
1396 static int intel_irq_remapping_activate(struct irq_domain *domain,
1397 					struct irq_data *irq_data, bool reserve)
1398 {
1399 	intel_ir_reconfigure_irte(irq_data, true);
1400 	return 0;
1401 }
1402 
1403 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1404 					   struct irq_data *irq_data)
1405 {
1406 	struct intel_ir_data *data = irq_data->chip_data;
1407 	struct irte entry;
1408 
1409 	memset(&entry, 0, sizeof(entry));
1410 	modify_irte(&data->irq_2_iommu, &entry);
1411 }
1412 
1413 static int intel_irq_remapping_select(struct irq_domain *d,
1414 				      struct irq_fwspec *fwspec,
1415 				      enum irq_domain_bus_token bus_token)
1416 {
1417 	struct intel_iommu *iommu = NULL;
1418 
1419 	if (x86_fwspec_is_ioapic(fwspec))
1420 		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1421 	else if (x86_fwspec_is_hpet(fwspec))
1422 		iommu = map_hpet_to_iommu(fwspec->param[0]);
1423 
1424 	return iommu && d == iommu->ir_domain;
1425 }
1426 
1427 static const struct irq_domain_ops intel_ir_domain_ops = {
1428 	.select = intel_irq_remapping_select,
1429 	.alloc = intel_irq_remapping_alloc,
1430 	.free = intel_irq_remapping_free,
1431 	.activate = intel_irq_remapping_activate,
1432 	.deactivate = intel_irq_remapping_deactivate,
1433 };
1434 
1435 static const struct msi_parent_ops dmar_msi_parent_ops = {
1436 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
1437 				  MSI_FLAG_MULTI_PCI_MSI |
1438 				  MSI_FLAG_PCI_IMS,
1439 	.prefix			= "IR-",
1440 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
1441 };
1442 
1443 static const struct msi_parent_ops virt_dmar_msi_parent_ops = {
1444 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
1445 				  MSI_FLAG_MULTI_PCI_MSI,
1446 	.prefix			= "vIR-",
1447 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
1448 };
1449 
1450 /*
1451  * Support of Interrupt Remapping Unit Hotplug
1452  */
1453 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1454 {
1455 	int ret;
1456 	int eim = x2apic_enabled();
1457 
1458 	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1459 	if (ret)
1460 		return ret;
1461 
1462 	if (eim && !ecap_eim_support(iommu->ecap)) {
1463 		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1464 			iommu->reg_phys, iommu->ecap);
1465 		return -ENODEV;
1466 	}
1467 
1468 	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1469 		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1470 			iommu->reg_phys);
1471 		return -ENODEV;
1472 	}
1473 
1474 	/* TODO: check all IOAPICs are covered by IOMMU */
1475 
1476 	/* Setup Interrupt-remapping now. */
1477 	ret = intel_setup_irq_remapping(iommu);
1478 	if (ret) {
1479 		pr_err("Failed to setup irq remapping for %s\n",
1480 		       iommu->name);
1481 		intel_teardown_irq_remapping(iommu);
1482 		ir_remove_ioapic_hpet_scope(iommu);
1483 	} else {
1484 		iommu_enable_irq_remapping(iommu);
1485 	}
1486 
1487 	return ret;
1488 }
1489 
1490 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1491 {
1492 	int ret = 0;
1493 	struct intel_iommu *iommu = dmaru->iommu;
1494 
1495 	if (!irq_remapping_enabled)
1496 		return 0;
1497 	if (iommu == NULL)
1498 		return -EINVAL;
1499 	if (!ecap_ir_support(iommu->ecap))
1500 		return 0;
1501 	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1502 	    !cap_pi_support(iommu->cap))
1503 		return -EBUSY;
1504 
1505 	if (insert) {
1506 		if (!iommu->ir_table)
1507 			ret = dmar_ir_add(dmaru, iommu);
1508 	} else {
1509 		if (iommu->ir_table) {
1510 			if (!bitmap_empty(iommu->ir_table->bitmap,
1511 					  INTR_REMAP_TABLE_ENTRIES)) {
1512 				ret = -EBUSY;
1513 			} else {
1514 				iommu_disable_irq_remapping(iommu);
1515 				intel_teardown_irq_remapping(iommu);
1516 				ir_remove_ioapic_hpet_scope(iommu);
1517 			}
1518 		}
1519 	}
1520 
1521 	return ret;
1522 }
1523