1 // SPDX-License-Identifier: GPL-2.0 2 3 #define pr_fmt(fmt) "DMAR-IR: " fmt 4 5 #include <linux/interrupt.h> 6 #include <linux/dmar.h> 7 #include <linux/spinlock.h> 8 #include <linux/slab.h> 9 #include <linux/jiffies.h> 10 #include <linux/hpet.h> 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/acpi.h> 14 #include <linux/irqdomain.h> 15 #include <linux/crash_dump.h> 16 #include <asm/io_apic.h> 17 #include <asm/apic.h> 18 #include <asm/smp.h> 19 #include <asm/cpu.h> 20 #include <asm/irq_remapping.h> 21 #include <asm/pci-direct.h> 22 23 #include "iommu.h" 24 #include "../irq_remapping.h" 25 #include "cap_audit.h" 26 27 enum irq_mode { 28 IRQ_REMAPPING, 29 IRQ_POSTING, 30 }; 31 32 struct ioapic_scope { 33 struct intel_iommu *iommu; 34 unsigned int id; 35 unsigned int bus; /* PCI bus number */ 36 unsigned int devfn; /* PCI devfn number */ 37 }; 38 39 struct hpet_scope { 40 struct intel_iommu *iommu; 41 u8 id; 42 unsigned int bus; 43 unsigned int devfn; 44 }; 45 46 struct irq_2_iommu { 47 struct intel_iommu *iommu; 48 u16 irte_index; 49 u16 sub_handle; 50 u8 irte_mask; 51 enum irq_mode mode; 52 }; 53 54 struct intel_ir_data { 55 struct irq_2_iommu irq_2_iommu; 56 struct irte irte_entry; 57 union { 58 struct msi_msg msi_entry; 59 }; 60 }; 61 62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) 63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8) 64 65 static int __read_mostly eim_mode; 66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; 67 static struct hpet_scope ir_hpet[MAX_HPET_TBS]; 68 69 /* 70 * Lock ordering: 71 * ->dmar_global_lock 72 * ->irq_2_ir_lock 73 * ->qi->q_lock 74 * ->iommu->register_lock 75 * Note: 76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called 77 * in single-threaded environment with interrupt disabled, so no need to tabke 78 * the dmar_global_lock. 79 */ 80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock); 81 static const struct irq_domain_ops intel_ir_domain_ops; 82 83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu); 84 static int __init parse_ioapics_under_ir(void); 85 static const struct msi_parent_ops dmar_msi_parent_ops, virt_dmar_msi_parent_ops; 86 87 static bool ir_pre_enabled(struct intel_iommu *iommu) 88 { 89 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED); 90 } 91 92 static void clear_ir_pre_enabled(struct intel_iommu *iommu) 93 { 94 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 95 } 96 97 static void init_ir_status(struct intel_iommu *iommu) 98 { 99 u32 gsts; 100 101 gsts = readl(iommu->reg + DMAR_GSTS_REG); 102 if (gsts & DMA_GSTS_IRES) 103 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 104 } 105 106 static int alloc_irte(struct intel_iommu *iommu, 107 struct irq_2_iommu *irq_iommu, u16 count) 108 { 109 struct ir_table *table = iommu->ir_table; 110 unsigned int mask = 0; 111 unsigned long flags; 112 int index; 113 114 if (!count || !irq_iommu) 115 return -1; 116 117 if (count > 1) { 118 count = __roundup_pow_of_two(count); 119 mask = ilog2(count); 120 } 121 122 if (mask > ecap_max_handle_mask(iommu->ecap)) { 123 pr_err("Requested mask %x exceeds the max invalidation handle" 124 " mask value %Lx\n", mask, 125 ecap_max_handle_mask(iommu->ecap)); 126 return -1; 127 } 128 129 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 130 index = bitmap_find_free_region(table->bitmap, 131 INTR_REMAP_TABLE_ENTRIES, mask); 132 if (index < 0) { 133 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); 134 } else { 135 irq_iommu->iommu = iommu; 136 irq_iommu->irte_index = index; 137 irq_iommu->sub_handle = 0; 138 irq_iommu->irte_mask = mask; 139 irq_iommu->mode = IRQ_REMAPPING; 140 } 141 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 142 143 return index; 144 } 145 146 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) 147 { 148 struct qi_desc desc; 149 150 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) 151 | QI_IEC_SELECTIVE; 152 desc.qw1 = 0; 153 desc.qw2 = 0; 154 desc.qw3 = 0; 155 156 return qi_submit_sync(iommu, &desc, 1, 0); 157 } 158 159 static int modify_irte(struct irq_2_iommu *irq_iommu, 160 struct irte *irte_modified) 161 { 162 struct intel_iommu *iommu; 163 unsigned long flags; 164 struct irte *irte; 165 int rc, index; 166 167 if (!irq_iommu) 168 return -1; 169 170 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 171 172 iommu = irq_iommu->iommu; 173 174 index = irq_iommu->irte_index + irq_iommu->sub_handle; 175 irte = &iommu->ir_table->base[index]; 176 177 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) 178 if ((irte->pst == 1) || (irte_modified->pst == 1)) { 179 bool ret; 180 181 ret = cmpxchg_double(&irte->low, &irte->high, 182 irte->low, irte->high, 183 irte_modified->low, irte_modified->high); 184 /* 185 * We use cmpxchg16 to atomically update the 128-bit IRTE, 186 * and it cannot be updated by the hardware or other processors 187 * behind us, so the return value of cmpxchg16 should be the 188 * same as the old value. 189 */ 190 WARN_ON(!ret); 191 } else 192 #endif 193 { 194 set_64bit(&irte->low, irte_modified->low); 195 set_64bit(&irte->high, irte_modified->high); 196 } 197 __iommu_flush_cache(iommu, irte, sizeof(*irte)); 198 199 rc = qi_flush_iec(iommu, index, 0); 200 201 /* Update iommu mode according to the IRTE mode */ 202 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING; 203 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 204 205 return rc; 206 } 207 208 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id) 209 { 210 int i; 211 212 for (i = 0; i < MAX_HPET_TBS; i++) { 213 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu) 214 return ir_hpet[i].iommu; 215 } 216 return NULL; 217 } 218 219 static struct intel_iommu *map_ioapic_to_iommu(int apic) 220 { 221 int i; 222 223 for (i = 0; i < MAX_IO_APICS; i++) { 224 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu) 225 return ir_ioapic[i].iommu; 226 } 227 return NULL; 228 } 229 230 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev) 231 { 232 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev); 233 234 return drhd ? drhd->iommu->ir_domain : NULL; 235 } 236 237 static int clear_entries(struct irq_2_iommu *irq_iommu) 238 { 239 struct irte *start, *entry, *end; 240 struct intel_iommu *iommu; 241 int index; 242 243 if (irq_iommu->sub_handle) 244 return 0; 245 246 iommu = irq_iommu->iommu; 247 index = irq_iommu->irte_index; 248 249 start = iommu->ir_table->base + index; 250 end = start + (1 << irq_iommu->irte_mask); 251 252 for (entry = start; entry < end; entry++) { 253 set_64bit(&entry->low, 0); 254 set_64bit(&entry->high, 0); 255 } 256 bitmap_release_region(iommu->ir_table->bitmap, index, 257 irq_iommu->irte_mask); 258 259 return qi_flush_iec(iommu, index, irq_iommu->irte_mask); 260 } 261 262 /* 263 * source validation type 264 */ 265 #define SVT_NO_VERIFY 0x0 /* no verification is required */ 266 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ 267 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ 268 269 /* 270 * source-id qualifier 271 */ 272 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ 273 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore 274 * the third least significant bit 275 */ 276 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore 277 * the second and third least significant bits 278 */ 279 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore 280 * the least three significant bits 281 */ 282 283 /* 284 * set SVT, SQ and SID fields of irte to verify 285 * source ids of interrupt requests 286 */ 287 static void set_irte_sid(struct irte *irte, unsigned int svt, 288 unsigned int sq, unsigned int sid) 289 { 290 if (disable_sourceid_checking) 291 svt = SVT_NO_VERIFY; 292 irte->svt = svt; 293 irte->sq = sq; 294 irte->sid = sid; 295 } 296 297 /* 298 * Set an IRTE to match only the bus number. Interrupt requests that reference 299 * this IRTE must have a requester-id whose bus number is between or equal 300 * to the start_bus and end_bus arguments. 301 */ 302 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus, 303 unsigned int end_bus) 304 { 305 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, 306 (start_bus << 8) | end_bus); 307 } 308 309 static int set_ioapic_sid(struct irte *irte, int apic) 310 { 311 int i; 312 u16 sid = 0; 313 314 if (!irte) 315 return -1; 316 317 down_read(&dmar_global_lock); 318 for (i = 0; i < MAX_IO_APICS; i++) { 319 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) { 320 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; 321 break; 322 } 323 } 324 up_read(&dmar_global_lock); 325 326 if (sid == 0) { 327 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic); 328 return -1; 329 } 330 331 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); 332 333 return 0; 334 } 335 336 static int set_hpet_sid(struct irte *irte, u8 id) 337 { 338 int i; 339 u16 sid = 0; 340 341 if (!irte) 342 return -1; 343 344 down_read(&dmar_global_lock); 345 for (i = 0; i < MAX_HPET_TBS; i++) { 346 if (ir_hpet[i].iommu && ir_hpet[i].id == id) { 347 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; 348 break; 349 } 350 } 351 up_read(&dmar_global_lock); 352 353 if (sid == 0) { 354 pr_warn("Failed to set source-id of HPET block (%d)\n", id); 355 return -1; 356 } 357 358 /* 359 * Should really use SQ_ALL_16. Some platforms are broken. 360 * While we figure out the right quirks for these broken platforms, use 361 * SQ_13_IGNORE_3 for now. 362 */ 363 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); 364 365 return 0; 366 } 367 368 struct set_msi_sid_data { 369 struct pci_dev *pdev; 370 u16 alias; 371 int count; 372 int busmatch_count; 373 }; 374 375 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) 376 { 377 struct set_msi_sid_data *data = opaque; 378 379 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias)) 380 data->busmatch_count++; 381 382 data->pdev = pdev; 383 data->alias = alias; 384 data->count++; 385 386 return 0; 387 } 388 389 static int set_msi_sid(struct irte *irte, struct pci_dev *dev) 390 { 391 struct set_msi_sid_data data; 392 393 if (!irte || !dev) 394 return -1; 395 396 data.count = 0; 397 data.busmatch_count = 0; 398 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); 399 400 /* 401 * DMA alias provides us with a PCI device and alias. The only case 402 * where the it will return an alias on a different bus than the 403 * device is the case of a PCIe-to-PCI bridge, where the alias is for 404 * the subordinate bus. In this case we can only verify the bus. 405 * 406 * If there are multiple aliases, all with the same bus number, 407 * then all we can do is verify the bus. This is typical in NTB 408 * hardware which use proxy IDs where the device will generate traffic 409 * from multiple devfn numbers on the same bus. 410 * 411 * If the alias device is on a different bus than our source device 412 * then we have a topology based alias, use it. 413 * 414 * Otherwise, the alias is for a device DMA quirk and we cannot 415 * assume that MSI uses the same requester ID. Therefore use the 416 * original device. 417 */ 418 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) 419 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias), 420 dev->bus->number); 421 else if (data.count >= 2 && data.busmatch_count == data.count) 422 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number); 423 else if (data.pdev->bus->number != dev->bus->number) 424 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); 425 else 426 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, 427 pci_dev_id(dev)); 428 429 return 0; 430 } 431 432 static int iommu_load_old_irte(struct intel_iommu *iommu) 433 { 434 struct irte *old_ir_table; 435 phys_addr_t irt_phys; 436 unsigned int i; 437 size_t size; 438 u64 irta; 439 440 /* Check whether the old ir-table has the same size as ours */ 441 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG); 442 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK) 443 != INTR_REMAP_TABLE_REG_SIZE) 444 return -EINVAL; 445 446 irt_phys = irta & VTD_PAGE_MASK; 447 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte); 448 449 /* Map the old IR table */ 450 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB); 451 if (!old_ir_table) 452 return -ENOMEM; 453 454 /* Copy data over */ 455 memcpy(iommu->ir_table->base, old_ir_table, size); 456 457 __iommu_flush_cache(iommu, iommu->ir_table->base, size); 458 459 /* 460 * Now check the table for used entries and mark those as 461 * allocated in the bitmap 462 */ 463 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) { 464 if (iommu->ir_table->base[i].present) 465 bitmap_set(iommu->ir_table->bitmap, i, 1); 466 } 467 468 memunmap(old_ir_table); 469 470 return 0; 471 } 472 473 474 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) 475 { 476 unsigned long flags; 477 u64 addr; 478 u32 sts; 479 480 addr = virt_to_phys((void *)iommu->ir_table->base); 481 482 raw_spin_lock_irqsave(&iommu->register_lock, flags); 483 484 dmar_writeq(iommu->reg + DMAR_IRTA_REG, 485 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); 486 487 /* Set interrupt-remapping table pointer */ 488 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); 489 490 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 491 readl, (sts & DMA_GSTS_IRTPS), sts); 492 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 493 494 /* 495 * Global invalidation of interrupt entry cache to make sure the 496 * hardware uses the new irq remapping table. 497 */ 498 if (!cap_esirtps(iommu->cap)) 499 qi_global_iec(iommu); 500 } 501 502 static void iommu_enable_irq_remapping(struct intel_iommu *iommu) 503 { 504 unsigned long flags; 505 u32 sts; 506 507 raw_spin_lock_irqsave(&iommu->register_lock, flags); 508 509 /* Enable interrupt-remapping */ 510 iommu->gcmd |= DMA_GCMD_IRE; 511 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 512 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 513 readl, (sts & DMA_GSTS_IRES), sts); 514 515 /* Block compatibility-format MSIs */ 516 if (sts & DMA_GSTS_CFIS) { 517 iommu->gcmd &= ~DMA_GCMD_CFI; 518 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 519 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 520 readl, !(sts & DMA_GSTS_CFIS), sts); 521 } 522 523 /* 524 * With CFI clear in the Global Command register, we should be 525 * protected from dangerous (i.e. compatibility) interrupts 526 * regardless of x2apic status. Check just to be sure. 527 */ 528 if (sts & DMA_GSTS_CFIS) 529 WARN(1, KERN_WARNING 530 "Compatibility-format IRQs enabled despite intr remapping;\n" 531 "you are vulnerable to IRQ injection.\n"); 532 533 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 534 } 535 536 static int intel_setup_irq_remapping(struct intel_iommu *iommu) 537 { 538 struct ir_table *ir_table; 539 struct fwnode_handle *fn; 540 unsigned long *bitmap; 541 struct page *pages; 542 543 if (iommu->ir_table) 544 return 0; 545 546 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); 547 if (!ir_table) 548 return -ENOMEM; 549 550 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO, 551 INTR_REMAP_PAGE_ORDER); 552 if (!pages) { 553 pr_err("IR%d: failed to allocate pages of order %d\n", 554 iommu->seq_id, INTR_REMAP_PAGE_ORDER); 555 goto out_free_table; 556 } 557 558 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC); 559 if (bitmap == NULL) { 560 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); 561 goto out_free_pages; 562 } 563 564 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id); 565 if (!fn) 566 goto out_free_bitmap; 567 568 iommu->ir_domain = 569 irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 570 0, INTR_REMAP_TABLE_ENTRIES, 571 fn, &intel_ir_domain_ops, 572 iommu); 573 if (!iommu->ir_domain) { 574 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id); 575 goto out_free_fwnode; 576 } 577 578 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_DMAR); 579 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT; 580 581 if (cap_caching_mode(iommu->cap)) 582 iommu->ir_domain->msi_parent_ops = &virt_dmar_msi_parent_ops; 583 else 584 iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops; 585 586 ir_table->base = page_address(pages); 587 ir_table->bitmap = bitmap; 588 iommu->ir_table = ir_table; 589 590 /* 591 * If the queued invalidation is already initialized, 592 * shouldn't disable it. 593 */ 594 if (!iommu->qi) { 595 /* 596 * Clear previous faults. 597 */ 598 dmar_fault(-1, iommu); 599 dmar_disable_qi(iommu); 600 601 if (dmar_enable_qi(iommu)) { 602 pr_err("Failed to enable queued invalidation\n"); 603 goto out_free_ir_domain; 604 } 605 } 606 607 init_ir_status(iommu); 608 609 if (ir_pre_enabled(iommu)) { 610 if (!is_kdump_kernel()) { 611 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n", 612 iommu->name); 613 clear_ir_pre_enabled(iommu); 614 iommu_disable_irq_remapping(iommu); 615 } else if (iommu_load_old_irte(iommu)) 616 pr_err("Failed to copy IR table for %s from previous kernel\n", 617 iommu->name); 618 else 619 pr_info("Copied IR table for %s from previous kernel\n", 620 iommu->name); 621 } 622 623 iommu_set_irq_remapping(iommu, eim_mode); 624 625 return 0; 626 627 out_free_ir_domain: 628 irq_domain_remove(iommu->ir_domain); 629 iommu->ir_domain = NULL; 630 out_free_fwnode: 631 irq_domain_free_fwnode(fn); 632 out_free_bitmap: 633 bitmap_free(bitmap); 634 out_free_pages: 635 __free_pages(pages, INTR_REMAP_PAGE_ORDER); 636 out_free_table: 637 kfree(ir_table); 638 639 iommu->ir_table = NULL; 640 641 return -ENOMEM; 642 } 643 644 static void intel_teardown_irq_remapping(struct intel_iommu *iommu) 645 { 646 struct fwnode_handle *fn; 647 648 if (iommu && iommu->ir_table) { 649 if (iommu->ir_domain) { 650 fn = iommu->ir_domain->fwnode; 651 652 irq_domain_remove(iommu->ir_domain); 653 irq_domain_free_fwnode(fn); 654 iommu->ir_domain = NULL; 655 } 656 free_pages((unsigned long)iommu->ir_table->base, 657 INTR_REMAP_PAGE_ORDER); 658 bitmap_free(iommu->ir_table->bitmap); 659 kfree(iommu->ir_table); 660 iommu->ir_table = NULL; 661 } 662 } 663 664 /* 665 * Disable Interrupt Remapping. 666 */ 667 static void iommu_disable_irq_remapping(struct intel_iommu *iommu) 668 { 669 unsigned long flags; 670 u32 sts; 671 672 if (!ecap_ir_support(iommu->ecap)) 673 return; 674 675 /* 676 * global invalidation of interrupt entry cache before disabling 677 * interrupt-remapping. 678 */ 679 if (!cap_esirtps(iommu->cap)) 680 qi_global_iec(iommu); 681 682 raw_spin_lock_irqsave(&iommu->register_lock, flags); 683 684 sts = readl(iommu->reg + DMAR_GSTS_REG); 685 if (!(sts & DMA_GSTS_IRES)) 686 goto end; 687 688 iommu->gcmd &= ~DMA_GCMD_IRE; 689 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 690 691 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 692 readl, !(sts & DMA_GSTS_IRES), sts); 693 694 end: 695 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 696 } 697 698 static int __init dmar_x2apic_optout(void) 699 { 700 struct acpi_table_dmar *dmar; 701 dmar = (struct acpi_table_dmar *)dmar_tbl; 702 if (!dmar || no_x2apic_optout) 703 return 0; 704 return dmar->flags & DMAR_X2APIC_OPT_OUT; 705 } 706 707 static void __init intel_cleanup_irq_remapping(void) 708 { 709 struct dmar_drhd_unit *drhd; 710 struct intel_iommu *iommu; 711 712 for_each_iommu(iommu, drhd) { 713 if (ecap_ir_support(iommu->ecap)) { 714 iommu_disable_irq_remapping(iommu); 715 intel_teardown_irq_remapping(iommu); 716 } 717 } 718 719 if (x2apic_supported()) 720 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); 721 } 722 723 static int __init intel_prepare_irq_remapping(void) 724 { 725 struct dmar_drhd_unit *drhd; 726 struct intel_iommu *iommu; 727 int eim = 0; 728 729 if (irq_remap_broken) { 730 pr_warn("This system BIOS has enabled interrupt remapping\n" 731 "on a chipset that contains an erratum making that\n" 732 "feature unstable. To maintain system stability\n" 733 "interrupt remapping is being disabled. Please\n" 734 "contact your BIOS vendor for an update\n"); 735 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 736 return -ENODEV; 737 } 738 739 if (dmar_table_init() < 0) 740 return -ENODEV; 741 742 if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL)) 743 return -ENODEV; 744 745 if (!dmar_ir_support()) 746 return -ENODEV; 747 748 if (parse_ioapics_under_ir()) { 749 pr_info("Not enabling interrupt remapping\n"); 750 goto error; 751 } 752 753 /* First make sure all IOMMUs support IRQ remapping */ 754 for_each_iommu(iommu, drhd) 755 if (!ecap_ir_support(iommu->ecap)) 756 goto error; 757 758 /* Detect remapping mode: lapic or x2apic */ 759 if (x2apic_supported()) { 760 eim = !dmar_x2apic_optout(); 761 if (!eim) { 762 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit."); 763 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n"); 764 } 765 } 766 767 for_each_iommu(iommu, drhd) { 768 if (eim && !ecap_eim_support(iommu->ecap)) { 769 pr_info("%s does not support EIM\n", iommu->name); 770 eim = 0; 771 } 772 } 773 774 eim_mode = eim; 775 if (eim) 776 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); 777 778 /* Do the initializations early */ 779 for_each_iommu(iommu, drhd) { 780 if (intel_setup_irq_remapping(iommu)) { 781 pr_err("Failed to setup irq remapping for %s\n", 782 iommu->name); 783 goto error; 784 } 785 } 786 787 return 0; 788 789 error: 790 intel_cleanup_irq_remapping(); 791 return -ENODEV; 792 } 793 794 /* 795 * Set Posted-Interrupts capability. 796 */ 797 static inline void set_irq_posting_cap(void) 798 { 799 struct dmar_drhd_unit *drhd; 800 struct intel_iommu *iommu; 801 802 if (!disable_irq_post) { 803 /* 804 * If IRTE is in posted format, the 'pda' field goes across the 805 * 64-bit boundary, we need use cmpxchg16b to atomically update 806 * it. We only expose posted-interrupt when X86_FEATURE_CX16 807 * is supported. Actually, hardware platforms supporting PI 808 * should have X86_FEATURE_CX16 support, this has been confirmed 809 * with Intel hardware guys. 810 */ 811 if (boot_cpu_has(X86_FEATURE_CX16)) 812 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP; 813 814 for_each_iommu(iommu, drhd) 815 if (!cap_pi_support(iommu->cap)) { 816 intel_irq_remap_ops.capability &= 817 ~(1 << IRQ_POSTING_CAP); 818 break; 819 } 820 } 821 } 822 823 static int __init intel_enable_irq_remapping(void) 824 { 825 struct dmar_drhd_unit *drhd; 826 struct intel_iommu *iommu; 827 bool setup = false; 828 829 /* 830 * Setup Interrupt-remapping for all the DRHD's now. 831 */ 832 for_each_iommu(iommu, drhd) { 833 if (!ir_pre_enabled(iommu)) 834 iommu_enable_irq_remapping(iommu); 835 setup = true; 836 } 837 838 if (!setup) 839 goto error; 840 841 irq_remapping_enabled = 1; 842 843 set_irq_posting_cap(); 844 845 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic"); 846 847 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; 848 849 error: 850 intel_cleanup_irq_remapping(); 851 return -1; 852 } 853 854 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, 855 struct intel_iommu *iommu, 856 struct acpi_dmar_hardware_unit *drhd) 857 { 858 struct acpi_dmar_pci_path *path; 859 u8 bus; 860 int count, free = -1; 861 862 bus = scope->bus; 863 path = (struct acpi_dmar_pci_path *)(scope + 1); 864 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 865 / sizeof(struct acpi_dmar_pci_path); 866 867 while (--count > 0) { 868 /* 869 * Access PCI directly due to the PCI 870 * subsystem isn't initialized yet. 871 */ 872 bus = read_pci_config_byte(bus, path->device, path->function, 873 PCI_SECONDARY_BUS); 874 path++; 875 } 876 877 for (count = 0; count < MAX_HPET_TBS; count++) { 878 if (ir_hpet[count].iommu == iommu && 879 ir_hpet[count].id == scope->enumeration_id) 880 return 0; 881 else if (ir_hpet[count].iommu == NULL && free == -1) 882 free = count; 883 } 884 if (free == -1) { 885 pr_warn("Exceeded Max HPET blocks\n"); 886 return -ENOSPC; 887 } 888 889 ir_hpet[free].iommu = iommu; 890 ir_hpet[free].id = scope->enumeration_id; 891 ir_hpet[free].bus = bus; 892 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function); 893 pr_info("HPET id %d under DRHD base 0x%Lx\n", 894 scope->enumeration_id, drhd->address); 895 896 return 0; 897 } 898 899 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, 900 struct intel_iommu *iommu, 901 struct acpi_dmar_hardware_unit *drhd) 902 { 903 struct acpi_dmar_pci_path *path; 904 u8 bus; 905 int count, free = -1; 906 907 bus = scope->bus; 908 path = (struct acpi_dmar_pci_path *)(scope + 1); 909 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 910 / sizeof(struct acpi_dmar_pci_path); 911 912 while (--count > 0) { 913 /* 914 * Access PCI directly due to the PCI 915 * subsystem isn't initialized yet. 916 */ 917 bus = read_pci_config_byte(bus, path->device, path->function, 918 PCI_SECONDARY_BUS); 919 path++; 920 } 921 922 for (count = 0; count < MAX_IO_APICS; count++) { 923 if (ir_ioapic[count].iommu == iommu && 924 ir_ioapic[count].id == scope->enumeration_id) 925 return 0; 926 else if (ir_ioapic[count].iommu == NULL && free == -1) 927 free = count; 928 } 929 if (free == -1) { 930 pr_warn("Exceeded Max IO APICS\n"); 931 return -ENOSPC; 932 } 933 934 ir_ioapic[free].bus = bus; 935 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function); 936 ir_ioapic[free].iommu = iommu; 937 ir_ioapic[free].id = scope->enumeration_id; 938 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n", 939 scope->enumeration_id, drhd->address, iommu->seq_id); 940 941 return 0; 942 } 943 944 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, 945 struct intel_iommu *iommu) 946 { 947 int ret = 0; 948 struct acpi_dmar_hardware_unit *drhd; 949 struct acpi_dmar_device_scope *scope; 950 void *start, *end; 951 952 drhd = (struct acpi_dmar_hardware_unit *)header; 953 start = (void *)(drhd + 1); 954 end = ((void *)drhd) + header->length; 955 956 while (start < end && ret == 0) { 957 scope = start; 958 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) 959 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd); 960 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) 961 ret = ir_parse_one_hpet_scope(scope, iommu, drhd); 962 start += scope->length; 963 } 964 965 return ret; 966 } 967 968 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu) 969 { 970 int i; 971 972 for (i = 0; i < MAX_HPET_TBS; i++) 973 if (ir_hpet[i].iommu == iommu) 974 ir_hpet[i].iommu = NULL; 975 976 for (i = 0; i < MAX_IO_APICS; i++) 977 if (ir_ioapic[i].iommu == iommu) 978 ir_ioapic[i].iommu = NULL; 979 } 980 981 /* 982 * Finds the assocaition between IOAPIC's and its Interrupt-remapping 983 * hardware unit. 984 */ 985 static int __init parse_ioapics_under_ir(void) 986 { 987 struct dmar_drhd_unit *drhd; 988 struct intel_iommu *iommu; 989 bool ir_supported = false; 990 int ioapic_idx; 991 992 for_each_iommu(iommu, drhd) { 993 int ret; 994 995 if (!ecap_ir_support(iommu->ecap)) 996 continue; 997 998 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu); 999 if (ret) 1000 return ret; 1001 1002 ir_supported = true; 1003 } 1004 1005 if (!ir_supported) 1006 return -ENODEV; 1007 1008 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { 1009 int ioapic_id = mpc_ioapic_id(ioapic_idx); 1010 if (!map_ioapic_to_iommu(ioapic_id)) { 1011 pr_err(FW_BUG "ioapic %d has no mapping iommu, " 1012 "interrupt remapping will be disabled\n", 1013 ioapic_id); 1014 return -1; 1015 } 1016 } 1017 1018 return 0; 1019 } 1020 1021 static int __init ir_dev_scope_init(void) 1022 { 1023 int ret; 1024 1025 if (!irq_remapping_enabled) 1026 return 0; 1027 1028 down_write(&dmar_global_lock); 1029 ret = dmar_dev_scope_init(); 1030 up_write(&dmar_global_lock); 1031 1032 return ret; 1033 } 1034 rootfs_initcall(ir_dev_scope_init); 1035 1036 static void disable_irq_remapping(void) 1037 { 1038 struct dmar_drhd_unit *drhd; 1039 struct intel_iommu *iommu = NULL; 1040 1041 /* 1042 * Disable Interrupt-remapping for all the DRHD's now. 1043 */ 1044 for_each_iommu(iommu, drhd) { 1045 if (!ecap_ir_support(iommu->ecap)) 1046 continue; 1047 1048 iommu_disable_irq_remapping(iommu); 1049 } 1050 1051 /* 1052 * Clear Posted-Interrupts capability. 1053 */ 1054 if (!disable_irq_post) 1055 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); 1056 } 1057 1058 static int reenable_irq_remapping(int eim) 1059 { 1060 struct dmar_drhd_unit *drhd; 1061 bool setup = false; 1062 struct intel_iommu *iommu = NULL; 1063 1064 for_each_iommu(iommu, drhd) 1065 if (iommu->qi) 1066 dmar_reenable_qi(iommu); 1067 1068 /* 1069 * Setup Interrupt-remapping for all the DRHD's now. 1070 */ 1071 for_each_iommu(iommu, drhd) { 1072 if (!ecap_ir_support(iommu->ecap)) 1073 continue; 1074 1075 /* Set up interrupt remapping for iommu.*/ 1076 iommu_set_irq_remapping(iommu, eim); 1077 iommu_enable_irq_remapping(iommu); 1078 setup = true; 1079 } 1080 1081 if (!setup) 1082 goto error; 1083 1084 set_irq_posting_cap(); 1085 1086 return 0; 1087 1088 error: 1089 /* 1090 * handle error condition gracefully here! 1091 */ 1092 return -1; 1093 } 1094 1095 /* 1096 * Store the MSI remapping domain pointer in the device if enabled. 1097 * 1098 * This is called from dmar_pci_bus_add_dev() so it works even when DMA 1099 * remapping is disabled. Only update the pointer if the device is not 1100 * already handled by a non default PCI/MSI interrupt domain. This protects 1101 * e.g. VMD devices. 1102 */ 1103 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info) 1104 { 1105 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev)) 1106 return; 1107 1108 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev)); 1109 } 1110 1111 static void prepare_irte(struct irte *irte, int vector, unsigned int dest) 1112 { 1113 memset(irte, 0, sizeof(*irte)); 1114 1115 irte->present = 1; 1116 irte->dst_mode = apic->dest_mode_logical; 1117 /* 1118 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the 1119 * actual level or edge trigger will be setup in the IO-APIC 1120 * RTE. This will help simplify level triggered irq migration. 1121 * For more details, see the comments (in io_apic.c) explainig IO-APIC 1122 * irq migration in the presence of interrupt-remapping. 1123 */ 1124 irte->trigger_mode = 0; 1125 irte->dlvry_mode = apic->delivery_mode; 1126 irte->vector = vector; 1127 irte->dest_id = IRTE_DEST(dest); 1128 irte->redir_hint = 1; 1129 } 1130 1131 struct irq_remap_ops intel_irq_remap_ops = { 1132 .prepare = intel_prepare_irq_remapping, 1133 .enable = intel_enable_irq_remapping, 1134 .disable = disable_irq_remapping, 1135 .reenable = reenable_irq_remapping, 1136 .enable_faulting = enable_drhd_fault_handling, 1137 }; 1138 1139 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force) 1140 { 1141 struct intel_ir_data *ir_data = irqd->chip_data; 1142 struct irte *irte = &ir_data->irte_entry; 1143 struct irq_cfg *cfg = irqd_cfg(irqd); 1144 1145 /* 1146 * Atomically updates the IRTE with the new destination, vector 1147 * and flushes the interrupt entry cache. 1148 */ 1149 irte->vector = cfg->vector; 1150 irte->dest_id = IRTE_DEST(cfg->dest_apicid); 1151 1152 /* Update the hardware only if the interrupt is in remapped mode. */ 1153 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING) 1154 modify_irte(&ir_data->irq_2_iommu, irte); 1155 } 1156 1157 /* 1158 * Migrate the IO-APIC irq in the presence of intr-remapping. 1159 * 1160 * For both level and edge triggered, irq migration is a simple atomic 1161 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 1162 * 1163 * For level triggered, we eliminate the io-apic RTE modification (with the 1164 * updated vector information), by using a virtual vector (io-apic pin number). 1165 * Real vector that is used for interrupting cpu will be coming from 1166 * the interrupt-remapping table entry. 1167 * 1168 * As the migration is a simple atomic update of IRTE, the same mechanism 1169 * is used to migrate MSI irq's in the presence of interrupt-remapping. 1170 */ 1171 static int 1172 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, 1173 bool force) 1174 { 1175 struct irq_data *parent = data->parent_data; 1176 struct irq_cfg *cfg = irqd_cfg(data); 1177 int ret; 1178 1179 ret = parent->chip->irq_set_affinity(parent, mask, force); 1180 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 1181 return ret; 1182 1183 intel_ir_reconfigure_irte(data, false); 1184 /* 1185 * After this point, all the interrupts will start arriving 1186 * at the new destination. So, time to cleanup the previous 1187 * vector allocation. 1188 */ 1189 send_cleanup_vector(cfg); 1190 1191 return IRQ_SET_MASK_OK_DONE; 1192 } 1193 1194 static void intel_ir_compose_msi_msg(struct irq_data *irq_data, 1195 struct msi_msg *msg) 1196 { 1197 struct intel_ir_data *ir_data = irq_data->chip_data; 1198 1199 *msg = ir_data->msi_entry; 1200 } 1201 1202 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info) 1203 { 1204 struct intel_ir_data *ir_data = data->chip_data; 1205 struct vcpu_data *vcpu_pi_info = info; 1206 1207 /* stop posting interrupts, back to remapping mode */ 1208 if (!vcpu_pi_info) { 1209 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry); 1210 } else { 1211 struct irte irte_pi; 1212 1213 /* 1214 * We are not caching the posted interrupt entry. We 1215 * copy the data from the remapped entry and modify 1216 * the fields which are relevant for posted mode. The 1217 * cached remapped entry is used for switching back to 1218 * remapped mode. 1219 */ 1220 memset(&irte_pi, 0, sizeof(irte_pi)); 1221 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry); 1222 1223 /* Update the posted mode fields */ 1224 irte_pi.p_pst = 1; 1225 irte_pi.p_urgent = 0; 1226 irte_pi.p_vector = vcpu_pi_info->vector; 1227 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >> 1228 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1229 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) & 1230 ~(-1UL << PDA_HIGH_BIT); 1231 1232 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1233 } 1234 1235 return 0; 1236 } 1237 1238 static struct irq_chip intel_ir_chip = { 1239 .name = "INTEL-IR", 1240 .irq_ack = apic_ack_irq, 1241 .irq_set_affinity = intel_ir_set_affinity, 1242 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1243 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1244 }; 1245 1246 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle) 1247 { 1248 memset(msg, 0, sizeof(*msg)); 1249 1250 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW; 1251 msg->arch_addr_lo.dmar_subhandle_valid = true; 1252 msg->arch_addr_lo.dmar_format = true; 1253 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF; 1254 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000); 1255 1256 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 1257 1258 msg->arch_data.dmar_subhandle = subhandle; 1259 } 1260 1261 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data, 1262 struct irq_cfg *irq_cfg, 1263 struct irq_alloc_info *info, 1264 int index, int sub_handle) 1265 { 1266 struct irte *irte = &data->irte_entry; 1267 1268 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid); 1269 1270 switch (info->type) { 1271 case X86_IRQ_ALLOC_TYPE_IOAPIC: 1272 /* Set source-id of interrupt request */ 1273 set_ioapic_sid(irte, info->devid); 1274 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n", 1275 info->devid, irte->present, irte->fpd, 1276 irte->dst_mode, irte->redir_hint, 1277 irte->trigger_mode, irte->dlvry_mode, 1278 irte->avail, irte->vector, irte->dest_id, 1279 irte->sid, irte->sq, irte->svt); 1280 sub_handle = info->ioapic.pin; 1281 break; 1282 case X86_IRQ_ALLOC_TYPE_HPET: 1283 set_hpet_sid(irte, info->devid); 1284 break; 1285 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 1286 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 1287 set_msi_sid(irte, 1288 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc))); 1289 break; 1290 default: 1291 BUG_ON(1); 1292 break; 1293 } 1294 fill_msi_msg(&data->msi_entry, index, sub_handle); 1295 } 1296 1297 static void intel_free_irq_resources(struct irq_domain *domain, 1298 unsigned int virq, unsigned int nr_irqs) 1299 { 1300 struct irq_data *irq_data; 1301 struct intel_ir_data *data; 1302 struct irq_2_iommu *irq_iommu; 1303 unsigned long flags; 1304 int i; 1305 for (i = 0; i < nr_irqs; i++) { 1306 irq_data = irq_domain_get_irq_data(domain, virq + i); 1307 if (irq_data && irq_data->chip_data) { 1308 data = irq_data->chip_data; 1309 irq_iommu = &data->irq_2_iommu; 1310 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 1311 clear_entries(irq_iommu); 1312 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 1313 irq_domain_reset_irq_data(irq_data); 1314 kfree(data); 1315 } 1316 } 1317 } 1318 1319 static int intel_irq_remapping_alloc(struct irq_domain *domain, 1320 unsigned int virq, unsigned int nr_irqs, 1321 void *arg) 1322 { 1323 struct intel_iommu *iommu = domain->host_data; 1324 struct irq_alloc_info *info = arg; 1325 struct intel_ir_data *data, *ird; 1326 struct irq_data *irq_data; 1327 struct irq_cfg *irq_cfg; 1328 int i, ret, index; 1329 1330 if (!info || !iommu) 1331 return -EINVAL; 1332 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI) 1333 return -EINVAL; 1334 1335 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 1336 if (ret < 0) 1337 return ret; 1338 1339 ret = -ENOMEM; 1340 data = kzalloc(sizeof(*data), GFP_KERNEL); 1341 if (!data) 1342 goto out_free_parent; 1343 1344 down_read(&dmar_global_lock); 1345 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs); 1346 up_read(&dmar_global_lock); 1347 if (index < 0) { 1348 pr_warn("Failed to allocate IRTE\n"); 1349 kfree(data); 1350 goto out_free_parent; 1351 } 1352 1353 for (i = 0; i < nr_irqs; i++) { 1354 irq_data = irq_domain_get_irq_data(domain, virq + i); 1355 irq_cfg = irqd_cfg(irq_data); 1356 if (!irq_data || !irq_cfg) { 1357 if (!i) 1358 kfree(data); 1359 ret = -EINVAL; 1360 goto out_free_data; 1361 } 1362 1363 if (i > 0) { 1364 ird = kzalloc(sizeof(*ird), GFP_KERNEL); 1365 if (!ird) 1366 goto out_free_data; 1367 /* Initialize the common data */ 1368 ird->irq_2_iommu = data->irq_2_iommu; 1369 ird->irq_2_iommu.sub_handle = i; 1370 } else { 1371 ird = data; 1372 } 1373 1374 irq_data->hwirq = (index << 16) + i; 1375 irq_data->chip_data = ird; 1376 irq_data->chip = &intel_ir_chip; 1377 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i); 1378 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 1379 } 1380 return 0; 1381 1382 out_free_data: 1383 intel_free_irq_resources(domain, virq, i); 1384 out_free_parent: 1385 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1386 return ret; 1387 } 1388 1389 static void intel_irq_remapping_free(struct irq_domain *domain, 1390 unsigned int virq, unsigned int nr_irqs) 1391 { 1392 intel_free_irq_resources(domain, virq, nr_irqs); 1393 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1394 } 1395 1396 static int intel_irq_remapping_activate(struct irq_domain *domain, 1397 struct irq_data *irq_data, bool reserve) 1398 { 1399 intel_ir_reconfigure_irte(irq_data, true); 1400 return 0; 1401 } 1402 1403 static void intel_irq_remapping_deactivate(struct irq_domain *domain, 1404 struct irq_data *irq_data) 1405 { 1406 struct intel_ir_data *data = irq_data->chip_data; 1407 struct irte entry; 1408 1409 memset(&entry, 0, sizeof(entry)); 1410 modify_irte(&data->irq_2_iommu, &entry); 1411 } 1412 1413 static int intel_irq_remapping_select(struct irq_domain *d, 1414 struct irq_fwspec *fwspec, 1415 enum irq_domain_bus_token bus_token) 1416 { 1417 struct intel_iommu *iommu = NULL; 1418 1419 if (x86_fwspec_is_ioapic(fwspec)) 1420 iommu = map_ioapic_to_iommu(fwspec->param[0]); 1421 else if (x86_fwspec_is_hpet(fwspec)) 1422 iommu = map_hpet_to_iommu(fwspec->param[0]); 1423 1424 return iommu && d == iommu->ir_domain; 1425 } 1426 1427 static const struct irq_domain_ops intel_ir_domain_ops = { 1428 .select = intel_irq_remapping_select, 1429 .alloc = intel_irq_remapping_alloc, 1430 .free = intel_irq_remapping_free, 1431 .activate = intel_irq_remapping_activate, 1432 .deactivate = intel_irq_remapping_deactivate, 1433 }; 1434 1435 static const struct msi_parent_ops dmar_msi_parent_ops = { 1436 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | 1437 MSI_FLAG_MULTI_PCI_MSI | 1438 MSI_FLAG_PCI_IMS, 1439 .prefix = "IR-", 1440 .init_dev_msi_info = msi_parent_init_dev_msi_info, 1441 }; 1442 1443 static const struct msi_parent_ops virt_dmar_msi_parent_ops = { 1444 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | 1445 MSI_FLAG_MULTI_PCI_MSI, 1446 .prefix = "vIR-", 1447 .init_dev_msi_info = msi_parent_init_dev_msi_info, 1448 }; 1449 1450 /* 1451 * Support of Interrupt Remapping Unit Hotplug 1452 */ 1453 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu) 1454 { 1455 int ret; 1456 int eim = x2apic_enabled(); 1457 1458 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu); 1459 if (ret) 1460 return ret; 1461 1462 if (eim && !ecap_eim_support(iommu->ecap)) { 1463 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n", 1464 iommu->reg_phys, iommu->ecap); 1465 return -ENODEV; 1466 } 1467 1468 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) { 1469 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n", 1470 iommu->reg_phys); 1471 return -ENODEV; 1472 } 1473 1474 /* TODO: check all IOAPICs are covered by IOMMU */ 1475 1476 /* Setup Interrupt-remapping now. */ 1477 ret = intel_setup_irq_remapping(iommu); 1478 if (ret) { 1479 pr_err("Failed to setup irq remapping for %s\n", 1480 iommu->name); 1481 intel_teardown_irq_remapping(iommu); 1482 ir_remove_ioapic_hpet_scope(iommu); 1483 } else { 1484 iommu_enable_irq_remapping(iommu); 1485 } 1486 1487 return ret; 1488 } 1489 1490 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 1491 { 1492 int ret = 0; 1493 struct intel_iommu *iommu = dmaru->iommu; 1494 1495 if (!irq_remapping_enabled) 1496 return 0; 1497 if (iommu == NULL) 1498 return -EINVAL; 1499 if (!ecap_ir_support(iommu->ecap)) 1500 return 0; 1501 if (irq_remapping_cap(IRQ_POSTING_CAP) && 1502 !cap_pi_support(iommu->cap)) 1503 return -EBUSY; 1504 1505 if (insert) { 1506 if (!iommu->ir_table) 1507 ret = dmar_ir_add(dmaru, iommu); 1508 } else { 1509 if (iommu->ir_table) { 1510 if (!bitmap_empty(iommu->ir_table->bitmap, 1511 INTR_REMAP_TABLE_ENTRIES)) { 1512 ret = -EBUSY; 1513 } else { 1514 iommu_disable_irq_remapping(iommu); 1515 intel_teardown_irq_remapping(iommu); 1516 ir_remove_ioapic_hpet_scope(iommu); 1517 } 1518 } 1519 } 1520 1521 return ret; 1522 } 1523