1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2014 Intel Corporation. 4 * 5 * Authors: David Woodhouse <dwmw2@infradead.org>, 6 * Ashok Raj <ashok.raj@intel.com>, 7 * Shaohua Li <shaohua.li@intel.com>, 8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, 9 * Fenghua Yu <fenghua.yu@intel.com> 10 * Joerg Roedel <jroedel@suse.de> 11 */ 12 13 #define pr_fmt(fmt) "DMAR: " fmt 14 #define dev_fmt(fmt) pr_fmt(fmt) 15 16 #include <linux/crash_dump.h> 17 #include <linux/dma-direct.h> 18 #include <linux/dma-iommu.h> 19 #include <linux/dmi.h> 20 #include <linux/intel-svm.h> 21 #include <linux/memory.h> 22 #include <linux/pci.h> 23 #include <linux/pci-ats.h> 24 #include <linux/spinlock.h> 25 #include <linux/syscore_ops.h> 26 #include <linux/tboot.h> 27 28 #include "iommu.h" 29 #include "../irq_remapping.h" 30 #include "../iommu-sva-lib.h" 31 #include "pasid.h" 32 #include "cap_audit.h" 33 34 #define ROOT_SIZE VTD_PAGE_SIZE 35 #define CONTEXT_SIZE VTD_PAGE_SIZE 36 37 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) 38 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) 39 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) 40 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) 41 42 #define IOAPIC_RANGE_START (0xfee00000) 43 #define IOAPIC_RANGE_END (0xfeefffff) 44 #define IOVA_START_ADDR (0x1000) 45 46 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 47 48 #define MAX_AGAW_WIDTH 64 49 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT) 50 51 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1) 52 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1) 53 54 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR 55 to match. That way, we can use 'unsigned long' for PFNs with impunity. */ 56 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ 57 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) 58 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) 59 60 /* IO virtual address start page frame number */ 61 #define IOVA_START_PFN (1) 62 63 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 64 65 /* page table handling */ 66 #define LEVEL_STRIDE (9) 67 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) 68 69 static inline int agaw_to_level(int agaw) 70 { 71 return agaw + 2; 72 } 73 74 static inline int agaw_to_width(int agaw) 75 { 76 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH); 77 } 78 79 static inline int width_to_agaw(int width) 80 { 81 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE); 82 } 83 84 static inline unsigned int level_to_offset_bits(int level) 85 { 86 return (level - 1) * LEVEL_STRIDE; 87 } 88 89 static inline int pfn_level_offset(u64 pfn, int level) 90 { 91 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; 92 } 93 94 static inline u64 level_mask(int level) 95 { 96 return -1ULL << level_to_offset_bits(level); 97 } 98 99 static inline u64 level_size(int level) 100 { 101 return 1ULL << level_to_offset_bits(level); 102 } 103 104 static inline u64 align_to_level(u64 pfn, int level) 105 { 106 return (pfn + level_size(level) - 1) & level_mask(level); 107 } 108 109 static inline unsigned long lvl_to_nr_pages(unsigned int lvl) 110 { 111 return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH); 112 } 113 114 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things 115 are never going to work. */ 116 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) 117 { 118 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); 119 } 120 static inline unsigned long page_to_dma_pfn(struct page *pg) 121 { 122 return mm_to_dma_pfn(page_to_pfn(pg)); 123 } 124 static inline unsigned long virt_to_dma_pfn(void *p) 125 { 126 return page_to_dma_pfn(virt_to_page(p)); 127 } 128 129 static void __init check_tylersburg_isoch(void); 130 static int rwbf_quirk; 131 132 /* 133 * set to 1 to panic kernel if can't successfully enable VT-d 134 * (used when kernel is launched w/ TXT) 135 */ 136 static int force_on = 0; 137 static int intel_iommu_tboot_noforce; 138 static int no_platform_optin; 139 140 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) 141 142 /* 143 * Take a root_entry and return the Lower Context Table Pointer (LCTP) 144 * if marked present. 145 */ 146 static phys_addr_t root_entry_lctp(struct root_entry *re) 147 { 148 if (!(re->lo & 1)) 149 return 0; 150 151 return re->lo & VTD_PAGE_MASK; 152 } 153 154 /* 155 * Take a root_entry and return the Upper Context Table Pointer (UCTP) 156 * if marked present. 157 */ 158 static phys_addr_t root_entry_uctp(struct root_entry *re) 159 { 160 if (!(re->hi & 1)) 161 return 0; 162 163 return re->hi & VTD_PAGE_MASK; 164 } 165 166 static inline void context_set_present(struct context_entry *context) 167 { 168 context->lo |= 1; 169 } 170 171 static inline void context_set_fault_enable(struct context_entry *context) 172 { 173 context->lo &= (((u64)-1) << 2) | 1; 174 } 175 176 static inline void context_set_translation_type(struct context_entry *context, 177 unsigned long value) 178 { 179 context->lo &= (((u64)-1) << 4) | 3; 180 context->lo |= (value & 3) << 2; 181 } 182 183 static inline void context_set_address_root(struct context_entry *context, 184 unsigned long value) 185 { 186 context->lo &= ~VTD_PAGE_MASK; 187 context->lo |= value & VTD_PAGE_MASK; 188 } 189 190 static inline void context_set_address_width(struct context_entry *context, 191 unsigned long value) 192 { 193 context->hi |= value & 7; 194 } 195 196 static inline void context_set_domain_id(struct context_entry *context, 197 unsigned long value) 198 { 199 context->hi |= (value & ((1 << 16) - 1)) << 8; 200 } 201 202 static inline int context_domain_id(struct context_entry *c) 203 { 204 return((c->hi >> 8) & 0xffff); 205 } 206 207 static inline void context_clear_entry(struct context_entry *context) 208 { 209 context->lo = 0; 210 context->hi = 0; 211 } 212 213 static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn) 214 { 215 if (!iommu->copied_tables) 216 return false; 217 218 return test_bit(((long)bus << 8) | devfn, iommu->copied_tables); 219 } 220 221 static inline void 222 set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn) 223 { 224 set_bit(((long)bus << 8) | devfn, iommu->copied_tables); 225 } 226 227 static inline void 228 clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn) 229 { 230 clear_bit(((long)bus << 8) | devfn, iommu->copied_tables); 231 } 232 233 /* 234 * This domain is a statically identity mapping domain. 235 * 1. This domain creats a static 1:1 mapping to all usable memory. 236 * 2. It maps to each iommu if successful. 237 * 3. Each iommu mapps to this domain if successful. 238 */ 239 static struct dmar_domain *si_domain; 240 static int hw_pass_through = 1; 241 242 struct dmar_rmrr_unit { 243 struct list_head list; /* list of rmrr units */ 244 struct acpi_dmar_header *hdr; /* ACPI header */ 245 u64 base_address; /* reserved base address*/ 246 u64 end_address; /* reserved end address */ 247 struct dmar_dev_scope *devices; /* target devices */ 248 int devices_cnt; /* target device count */ 249 }; 250 251 struct dmar_atsr_unit { 252 struct list_head list; /* list of ATSR units */ 253 struct acpi_dmar_header *hdr; /* ACPI header */ 254 struct dmar_dev_scope *devices; /* target devices */ 255 int devices_cnt; /* target device count */ 256 u8 include_all:1; /* include all ports */ 257 }; 258 259 struct dmar_satc_unit { 260 struct list_head list; /* list of SATC units */ 261 struct acpi_dmar_header *hdr; /* ACPI header */ 262 struct dmar_dev_scope *devices; /* target devices */ 263 struct intel_iommu *iommu; /* the corresponding iommu */ 264 int devices_cnt; /* target device count */ 265 u8 atc_required:1; /* ATS is required */ 266 }; 267 268 static LIST_HEAD(dmar_atsr_units); 269 static LIST_HEAD(dmar_rmrr_units); 270 static LIST_HEAD(dmar_satc_units); 271 272 #define for_each_rmrr_units(rmrr) \ 273 list_for_each_entry(rmrr, &dmar_rmrr_units, list) 274 275 static void dmar_remove_one_dev_info(struct device *dev); 276 277 int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON); 278 int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON); 279 280 int intel_iommu_enabled = 0; 281 EXPORT_SYMBOL_GPL(intel_iommu_enabled); 282 283 static int dmar_map_gfx = 1; 284 static int intel_iommu_superpage = 1; 285 static int iommu_identity_mapping; 286 static int iommu_skip_te_disable; 287 288 #define IDENTMAP_GFX 2 289 #define IDENTMAP_AZALIA 4 290 291 const struct iommu_ops intel_iommu_ops; 292 293 static bool translation_pre_enabled(struct intel_iommu *iommu) 294 { 295 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); 296 } 297 298 static void clear_translation_pre_enabled(struct intel_iommu *iommu) 299 { 300 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; 301 } 302 303 static void init_translation_status(struct intel_iommu *iommu) 304 { 305 u32 gsts; 306 307 gsts = readl(iommu->reg + DMAR_GSTS_REG); 308 if (gsts & DMA_GSTS_TES) 309 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; 310 } 311 312 static int __init intel_iommu_setup(char *str) 313 { 314 if (!str) 315 return -EINVAL; 316 317 while (*str) { 318 if (!strncmp(str, "on", 2)) { 319 dmar_disabled = 0; 320 pr_info("IOMMU enabled\n"); 321 } else if (!strncmp(str, "off", 3)) { 322 dmar_disabled = 1; 323 no_platform_optin = 1; 324 pr_info("IOMMU disabled\n"); 325 } else if (!strncmp(str, "igfx_off", 8)) { 326 dmar_map_gfx = 0; 327 pr_info("Disable GFX device mapping\n"); 328 } else if (!strncmp(str, "forcedac", 8)) { 329 pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n"); 330 iommu_dma_forcedac = true; 331 } else if (!strncmp(str, "strict", 6)) { 332 pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n"); 333 iommu_set_dma_strict(); 334 } else if (!strncmp(str, "sp_off", 6)) { 335 pr_info("Disable supported super page\n"); 336 intel_iommu_superpage = 0; 337 } else if (!strncmp(str, "sm_on", 5)) { 338 pr_info("Enable scalable mode if hardware supports\n"); 339 intel_iommu_sm = 1; 340 } else if (!strncmp(str, "sm_off", 6)) { 341 pr_info("Scalable mode is disallowed\n"); 342 intel_iommu_sm = 0; 343 } else if (!strncmp(str, "tboot_noforce", 13)) { 344 pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); 345 intel_iommu_tboot_noforce = 1; 346 } else { 347 pr_notice("Unknown option - '%s'\n", str); 348 } 349 350 str += strcspn(str, ","); 351 while (*str == ',') 352 str++; 353 } 354 355 return 1; 356 } 357 __setup("intel_iommu=", intel_iommu_setup); 358 359 void *alloc_pgtable_page(int node) 360 { 361 struct page *page; 362 void *vaddr = NULL; 363 364 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); 365 if (page) 366 vaddr = page_address(page); 367 return vaddr; 368 } 369 370 void free_pgtable_page(void *vaddr) 371 { 372 free_page((unsigned long)vaddr); 373 } 374 375 static inline int domain_type_is_si(struct dmar_domain *domain) 376 { 377 return domain->domain.type == IOMMU_DOMAIN_IDENTITY; 378 } 379 380 static inline bool domain_use_first_level(struct dmar_domain *domain) 381 { 382 return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL; 383 } 384 385 static inline int domain_pfn_supported(struct dmar_domain *domain, 386 unsigned long pfn) 387 { 388 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; 389 390 return !(addr_width < BITS_PER_LONG && pfn >> addr_width); 391 } 392 393 /* 394 * Calculate the Supported Adjusted Guest Address Widths of an IOMMU. 395 * Refer to 11.4.2 of the VT-d spec for the encoding of each bit of 396 * the returned SAGAW. 397 */ 398 static unsigned long __iommu_calculate_sagaw(struct intel_iommu *iommu) 399 { 400 unsigned long fl_sagaw, sl_sagaw; 401 402 fl_sagaw = BIT(2) | (cap_5lp_support(iommu->cap) ? BIT(3) : 0); 403 sl_sagaw = cap_sagaw(iommu->cap); 404 405 /* Second level only. */ 406 if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) 407 return sl_sagaw; 408 409 /* First level only. */ 410 if (!ecap_slts(iommu->ecap)) 411 return fl_sagaw; 412 413 return fl_sagaw & sl_sagaw; 414 } 415 416 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) 417 { 418 unsigned long sagaw; 419 int agaw; 420 421 sagaw = __iommu_calculate_sagaw(iommu); 422 for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) { 423 if (test_bit(agaw, &sagaw)) 424 break; 425 } 426 427 return agaw; 428 } 429 430 /* 431 * Calculate max SAGAW for each iommu. 432 */ 433 int iommu_calculate_max_sagaw(struct intel_iommu *iommu) 434 { 435 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); 436 } 437 438 /* 439 * calculate agaw for each iommu. 440 * "SAGAW" may be different across iommus, use a default agaw, and 441 * get a supported less agaw for iommus that don't support the default agaw. 442 */ 443 int iommu_calculate_agaw(struct intel_iommu *iommu) 444 { 445 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); 446 } 447 448 static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu) 449 { 450 return sm_supported(iommu) ? 451 ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap); 452 } 453 454 static void domain_update_iommu_coherency(struct dmar_domain *domain) 455 { 456 struct iommu_domain_info *info; 457 struct dmar_drhd_unit *drhd; 458 struct intel_iommu *iommu; 459 bool found = false; 460 unsigned long i; 461 462 domain->iommu_coherency = true; 463 xa_for_each(&domain->iommu_array, i, info) { 464 found = true; 465 if (!iommu_paging_structure_coherency(info->iommu)) { 466 domain->iommu_coherency = false; 467 break; 468 } 469 } 470 if (found) 471 return; 472 473 /* No hardware attached; use lowest common denominator */ 474 rcu_read_lock(); 475 for_each_active_iommu(iommu, drhd) { 476 if (!iommu_paging_structure_coherency(iommu)) { 477 domain->iommu_coherency = false; 478 break; 479 } 480 } 481 rcu_read_unlock(); 482 } 483 484 static int domain_update_iommu_superpage(struct dmar_domain *domain, 485 struct intel_iommu *skip) 486 { 487 struct dmar_drhd_unit *drhd; 488 struct intel_iommu *iommu; 489 int mask = 0x3; 490 491 if (!intel_iommu_superpage) 492 return 0; 493 494 /* set iommu_superpage to the smallest common denominator */ 495 rcu_read_lock(); 496 for_each_active_iommu(iommu, drhd) { 497 if (iommu != skip) { 498 if (domain && domain_use_first_level(domain)) { 499 if (!cap_fl1gp_support(iommu->cap)) 500 mask = 0x1; 501 } else { 502 mask &= cap_super_page_val(iommu->cap); 503 } 504 505 if (!mask) 506 break; 507 } 508 } 509 rcu_read_unlock(); 510 511 return fls(mask); 512 } 513 514 static int domain_update_device_node(struct dmar_domain *domain) 515 { 516 struct device_domain_info *info; 517 int nid = NUMA_NO_NODE; 518 unsigned long flags; 519 520 spin_lock_irqsave(&domain->lock, flags); 521 list_for_each_entry(info, &domain->devices, link) { 522 /* 523 * There could possibly be multiple device numa nodes as devices 524 * within the same domain may sit behind different IOMMUs. There 525 * isn't perfect answer in such situation, so we select first 526 * come first served policy. 527 */ 528 nid = dev_to_node(info->dev); 529 if (nid != NUMA_NO_NODE) 530 break; 531 } 532 spin_unlock_irqrestore(&domain->lock, flags); 533 534 return nid; 535 } 536 537 static void domain_update_iotlb(struct dmar_domain *domain); 538 539 /* Return the super pagesize bitmap if supported. */ 540 static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain) 541 { 542 unsigned long bitmap = 0; 543 544 /* 545 * 1-level super page supports page size of 2MiB, 2-level super page 546 * supports page size of both 2MiB and 1GiB. 547 */ 548 if (domain->iommu_superpage == 1) 549 bitmap |= SZ_2M; 550 else if (domain->iommu_superpage == 2) 551 bitmap |= SZ_2M | SZ_1G; 552 553 return bitmap; 554 } 555 556 /* Some capabilities may be different across iommus */ 557 static void domain_update_iommu_cap(struct dmar_domain *domain) 558 { 559 domain_update_iommu_coherency(domain); 560 domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL); 561 562 /* 563 * If RHSA is missing, we should default to the device numa domain 564 * as fall back. 565 */ 566 if (domain->nid == NUMA_NO_NODE) 567 domain->nid = domain_update_device_node(domain); 568 569 /* 570 * First-level translation restricts the input-address to a 571 * canonical address (i.e., address bits 63:N have the same 572 * value as address bit [N-1], where N is 48-bits with 4-level 573 * paging and 57-bits with 5-level paging). Hence, skip bit 574 * [N-1]. 575 */ 576 if (domain_use_first_level(domain)) 577 domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1); 578 else 579 domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw); 580 581 domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain); 582 domain_update_iotlb(domain); 583 } 584 585 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, 586 u8 devfn, int alloc) 587 { 588 struct root_entry *root = &iommu->root_entry[bus]; 589 struct context_entry *context; 590 u64 *entry; 591 592 /* 593 * Except that the caller requested to allocate a new entry, 594 * returning a copied context entry makes no sense. 595 */ 596 if (!alloc && context_copied(iommu, bus, devfn)) 597 return NULL; 598 599 entry = &root->lo; 600 if (sm_supported(iommu)) { 601 if (devfn >= 0x80) { 602 devfn -= 0x80; 603 entry = &root->hi; 604 } 605 devfn *= 2; 606 } 607 if (*entry & 1) 608 context = phys_to_virt(*entry & VTD_PAGE_MASK); 609 else { 610 unsigned long phy_addr; 611 if (!alloc) 612 return NULL; 613 614 context = alloc_pgtable_page(iommu->node); 615 if (!context) 616 return NULL; 617 618 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); 619 phy_addr = virt_to_phys((void *)context); 620 *entry = phy_addr | 1; 621 __iommu_flush_cache(iommu, entry, sizeof(*entry)); 622 } 623 return &context[devfn]; 624 } 625 626 /** 627 * is_downstream_to_pci_bridge - test if a device belongs to the PCI 628 * sub-hierarchy of a candidate PCI-PCI bridge 629 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy 630 * @bridge: the candidate PCI-PCI bridge 631 * 632 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. 633 */ 634 static bool 635 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) 636 { 637 struct pci_dev *pdev, *pbridge; 638 639 if (!dev_is_pci(dev) || !dev_is_pci(bridge)) 640 return false; 641 642 pdev = to_pci_dev(dev); 643 pbridge = to_pci_dev(bridge); 644 645 if (pbridge->subordinate && 646 pbridge->subordinate->number <= pdev->bus->number && 647 pbridge->subordinate->busn_res.end >= pdev->bus->number) 648 return true; 649 650 return false; 651 } 652 653 static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev) 654 { 655 struct dmar_drhd_unit *drhd; 656 u32 vtbar; 657 int rc; 658 659 /* We know that this device on this chipset has its own IOMMU. 660 * If we find it under a different IOMMU, then the BIOS is lying 661 * to us. Hope that the IOMMU for this device is actually 662 * disabled, and it needs no translation... 663 */ 664 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); 665 if (rc) { 666 /* "can't" happen */ 667 dev_info(&pdev->dev, "failed to run vt-d quirk\n"); 668 return false; 669 } 670 vtbar &= 0xffff0000; 671 672 /* we know that the this iommu should be at offset 0xa000 from vtbar */ 673 drhd = dmar_find_matched_drhd_unit(pdev); 674 if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { 675 pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); 676 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 677 return true; 678 } 679 680 return false; 681 } 682 683 static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev) 684 { 685 if (!iommu || iommu->drhd->ignored) 686 return true; 687 688 if (dev_is_pci(dev)) { 689 struct pci_dev *pdev = to_pci_dev(dev); 690 691 if (pdev->vendor == PCI_VENDOR_ID_INTEL && 692 pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB && 693 quirk_ioat_snb_local_iommu(pdev)) 694 return true; 695 } 696 697 return false; 698 } 699 700 struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn) 701 { 702 struct dmar_drhd_unit *drhd = NULL; 703 struct pci_dev *pdev = NULL; 704 struct intel_iommu *iommu; 705 struct device *tmp; 706 u16 segment = 0; 707 int i; 708 709 if (!dev) 710 return NULL; 711 712 if (dev_is_pci(dev)) { 713 struct pci_dev *pf_pdev; 714 715 pdev = pci_real_dma_dev(to_pci_dev(dev)); 716 717 /* VFs aren't listed in scope tables; we need to look up 718 * the PF instead to find the IOMMU. */ 719 pf_pdev = pci_physfn(pdev); 720 dev = &pf_pdev->dev; 721 segment = pci_domain_nr(pdev->bus); 722 } else if (has_acpi_companion(dev)) 723 dev = &ACPI_COMPANION(dev)->dev; 724 725 rcu_read_lock(); 726 for_each_iommu(iommu, drhd) { 727 if (pdev && segment != drhd->segment) 728 continue; 729 730 for_each_active_dev_scope(drhd->devices, 731 drhd->devices_cnt, i, tmp) { 732 if (tmp == dev) { 733 /* For a VF use its original BDF# not that of the PF 734 * which we used for the IOMMU lookup. Strictly speaking 735 * we could do this for all PCI devices; we only need to 736 * get the BDF# from the scope table for ACPI matches. */ 737 if (pdev && pdev->is_virtfn) 738 goto got_pdev; 739 740 if (bus && devfn) { 741 *bus = drhd->devices[i].bus; 742 *devfn = drhd->devices[i].devfn; 743 } 744 goto out; 745 } 746 747 if (is_downstream_to_pci_bridge(dev, tmp)) 748 goto got_pdev; 749 } 750 751 if (pdev && drhd->include_all) { 752 got_pdev: 753 if (bus && devfn) { 754 *bus = pdev->bus->number; 755 *devfn = pdev->devfn; 756 } 757 goto out; 758 } 759 } 760 iommu = NULL; 761 out: 762 if (iommu_is_dummy(iommu, dev)) 763 iommu = NULL; 764 765 rcu_read_unlock(); 766 767 return iommu; 768 } 769 770 static void domain_flush_cache(struct dmar_domain *domain, 771 void *addr, int size) 772 { 773 if (!domain->iommu_coherency) 774 clflush_cache_range(addr, size); 775 } 776 777 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) 778 { 779 struct context_entry *context; 780 int ret = 0; 781 782 spin_lock(&iommu->lock); 783 context = iommu_context_addr(iommu, bus, devfn, 0); 784 if (context) 785 ret = context_present(context); 786 spin_unlock(&iommu->lock); 787 return ret; 788 } 789 790 static void free_context_table(struct intel_iommu *iommu) 791 { 792 struct context_entry *context; 793 int i; 794 795 if (!iommu->root_entry) 796 return; 797 798 for (i = 0; i < ROOT_ENTRY_NR; i++) { 799 context = iommu_context_addr(iommu, i, 0, 0); 800 if (context) 801 free_pgtable_page(context); 802 803 if (!sm_supported(iommu)) 804 continue; 805 806 context = iommu_context_addr(iommu, i, 0x80, 0); 807 if (context) 808 free_pgtable_page(context); 809 } 810 811 free_pgtable_page(iommu->root_entry); 812 iommu->root_entry = NULL; 813 } 814 815 #ifdef CONFIG_DMAR_DEBUG 816 static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn, 817 u8 bus, u8 devfn, struct dma_pte *parent, int level) 818 { 819 struct dma_pte *pte; 820 int offset; 821 822 while (1) { 823 offset = pfn_level_offset(pfn, level); 824 pte = &parent[offset]; 825 if (!pte || (dma_pte_superpage(pte) || !dma_pte_present(pte))) { 826 pr_info("PTE not present at level %d\n", level); 827 break; 828 } 829 830 pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val); 831 832 if (level == 1) 833 break; 834 835 parent = phys_to_virt(dma_pte_addr(pte)); 836 level--; 837 } 838 } 839 840 void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id, 841 unsigned long long addr, u32 pasid) 842 { 843 struct pasid_dir_entry *dir, *pde; 844 struct pasid_entry *entries, *pte; 845 struct context_entry *ctx_entry; 846 struct root_entry *rt_entry; 847 int i, dir_index, index, level; 848 u8 devfn = source_id & 0xff; 849 u8 bus = source_id >> 8; 850 struct dma_pte *pgtable; 851 852 pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr); 853 854 /* root entry dump */ 855 rt_entry = &iommu->root_entry[bus]; 856 if (!rt_entry) { 857 pr_info("root table entry is not present\n"); 858 return; 859 } 860 861 if (sm_supported(iommu)) 862 pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n", 863 rt_entry->hi, rt_entry->lo); 864 else 865 pr_info("root entry: 0x%016llx", rt_entry->lo); 866 867 /* context entry dump */ 868 ctx_entry = iommu_context_addr(iommu, bus, devfn, 0); 869 if (!ctx_entry) { 870 pr_info("context table entry is not present\n"); 871 return; 872 } 873 874 pr_info("context entry: hi 0x%016llx, low 0x%016llx\n", 875 ctx_entry->hi, ctx_entry->lo); 876 877 /* legacy mode does not require PASID entries */ 878 if (!sm_supported(iommu)) { 879 level = agaw_to_level(ctx_entry->hi & 7); 880 pgtable = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK); 881 goto pgtable_walk; 882 } 883 884 /* get the pointer to pasid directory entry */ 885 dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK); 886 if (!dir) { 887 pr_info("pasid directory entry is not present\n"); 888 return; 889 } 890 /* For request-without-pasid, get the pasid from context entry */ 891 if (intel_iommu_sm && pasid == INVALID_IOASID) 892 pasid = PASID_RID2PASID; 893 894 dir_index = pasid >> PASID_PDE_SHIFT; 895 pde = &dir[dir_index]; 896 pr_info("pasid dir entry: 0x%016llx\n", pde->val); 897 898 /* get the pointer to the pasid table entry */ 899 entries = get_pasid_table_from_pde(pde); 900 if (!entries) { 901 pr_info("pasid table entry is not present\n"); 902 return; 903 } 904 index = pasid & PASID_PTE_MASK; 905 pte = &entries[index]; 906 for (i = 0; i < ARRAY_SIZE(pte->val); i++) 907 pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]); 908 909 if (pasid_pte_get_pgtt(pte) == PASID_ENTRY_PGTT_FL_ONLY) { 910 level = pte->val[2] & BIT_ULL(2) ? 5 : 4; 911 pgtable = phys_to_virt(pte->val[2] & VTD_PAGE_MASK); 912 } else { 913 level = agaw_to_level((pte->val[0] >> 2) & 0x7); 914 pgtable = phys_to_virt(pte->val[0] & VTD_PAGE_MASK); 915 } 916 917 pgtable_walk: 918 pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn, pgtable, level); 919 } 920 #endif 921 922 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, 923 unsigned long pfn, int *target_level) 924 { 925 struct dma_pte *parent, *pte; 926 int level = agaw_to_level(domain->agaw); 927 int offset; 928 929 BUG_ON(!domain->pgd); 930 931 if (!domain_pfn_supported(domain, pfn)) 932 /* Address beyond IOMMU's addressing capabilities. */ 933 return NULL; 934 935 parent = domain->pgd; 936 937 while (1) { 938 void *tmp_page; 939 940 offset = pfn_level_offset(pfn, level); 941 pte = &parent[offset]; 942 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) 943 break; 944 if (level == *target_level) 945 break; 946 947 if (!dma_pte_present(pte)) { 948 uint64_t pteval; 949 950 tmp_page = alloc_pgtable_page(domain->nid); 951 952 if (!tmp_page) 953 return NULL; 954 955 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); 956 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; 957 if (domain_use_first_level(domain)) { 958 pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US; 959 if (iommu_is_dma_domain(&domain->domain)) 960 pteval |= DMA_FL_PTE_ACCESS; 961 } 962 if (cmpxchg64(&pte->val, 0ULL, pteval)) 963 /* Someone else set it while we were thinking; use theirs. */ 964 free_pgtable_page(tmp_page); 965 else 966 domain_flush_cache(domain, pte, sizeof(*pte)); 967 } 968 if (level == 1) 969 break; 970 971 parent = phys_to_virt(dma_pte_addr(pte)); 972 level--; 973 } 974 975 if (!*target_level) 976 *target_level = level; 977 978 return pte; 979 } 980 981 /* return address's pte at specific level */ 982 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, 983 unsigned long pfn, 984 int level, int *large_page) 985 { 986 struct dma_pte *parent, *pte; 987 int total = agaw_to_level(domain->agaw); 988 int offset; 989 990 parent = domain->pgd; 991 while (level <= total) { 992 offset = pfn_level_offset(pfn, total); 993 pte = &parent[offset]; 994 if (level == total) 995 return pte; 996 997 if (!dma_pte_present(pte)) { 998 *large_page = total; 999 break; 1000 } 1001 1002 if (dma_pte_superpage(pte)) { 1003 *large_page = total; 1004 return pte; 1005 } 1006 1007 parent = phys_to_virt(dma_pte_addr(pte)); 1008 total--; 1009 } 1010 return NULL; 1011 } 1012 1013 /* clear last level pte, a tlb flush should be followed */ 1014 static void dma_pte_clear_range(struct dmar_domain *domain, 1015 unsigned long start_pfn, 1016 unsigned long last_pfn) 1017 { 1018 unsigned int large_page; 1019 struct dma_pte *first_pte, *pte; 1020 1021 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1022 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1023 BUG_ON(start_pfn > last_pfn); 1024 1025 /* we don't need lock here; nobody else touches the iova range */ 1026 do { 1027 large_page = 1; 1028 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); 1029 if (!pte) { 1030 start_pfn = align_to_level(start_pfn + 1, large_page + 1); 1031 continue; 1032 } 1033 do { 1034 dma_clear_pte(pte); 1035 start_pfn += lvl_to_nr_pages(large_page); 1036 pte++; 1037 } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); 1038 1039 domain_flush_cache(domain, first_pte, 1040 (void *)pte - (void *)first_pte); 1041 1042 } while (start_pfn && start_pfn <= last_pfn); 1043 } 1044 1045 static void dma_pte_free_level(struct dmar_domain *domain, int level, 1046 int retain_level, struct dma_pte *pte, 1047 unsigned long pfn, unsigned long start_pfn, 1048 unsigned long last_pfn) 1049 { 1050 pfn = max(start_pfn, pfn); 1051 pte = &pte[pfn_level_offset(pfn, level)]; 1052 1053 do { 1054 unsigned long level_pfn; 1055 struct dma_pte *level_pte; 1056 1057 if (!dma_pte_present(pte) || dma_pte_superpage(pte)) 1058 goto next; 1059 1060 level_pfn = pfn & level_mask(level); 1061 level_pte = phys_to_virt(dma_pte_addr(pte)); 1062 1063 if (level > 2) { 1064 dma_pte_free_level(domain, level - 1, retain_level, 1065 level_pte, level_pfn, start_pfn, 1066 last_pfn); 1067 } 1068 1069 /* 1070 * Free the page table if we're below the level we want to 1071 * retain and the range covers the entire table. 1072 */ 1073 if (level < retain_level && !(start_pfn > level_pfn || 1074 last_pfn < level_pfn + level_size(level) - 1)) { 1075 dma_clear_pte(pte); 1076 domain_flush_cache(domain, pte, sizeof(*pte)); 1077 free_pgtable_page(level_pte); 1078 } 1079 next: 1080 pfn += level_size(level); 1081 } while (!first_pte_in_page(++pte) && pfn <= last_pfn); 1082 } 1083 1084 /* 1085 * clear last level (leaf) ptes and free page table pages below the 1086 * level we wish to keep intact. 1087 */ 1088 static void dma_pte_free_pagetable(struct dmar_domain *domain, 1089 unsigned long start_pfn, 1090 unsigned long last_pfn, 1091 int retain_level) 1092 { 1093 dma_pte_clear_range(domain, start_pfn, last_pfn); 1094 1095 /* We don't need lock here; nobody else touches the iova range */ 1096 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, 1097 domain->pgd, 0, start_pfn, last_pfn); 1098 1099 /* free pgd */ 1100 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { 1101 free_pgtable_page(domain->pgd); 1102 domain->pgd = NULL; 1103 } 1104 } 1105 1106 /* When a page at a given level is being unlinked from its parent, we don't 1107 need to *modify* it at all. All we need to do is make a list of all the 1108 pages which can be freed just as soon as we've flushed the IOTLB and we 1109 know the hardware page-walk will no longer touch them. 1110 The 'pte' argument is the *parent* PTE, pointing to the page that is to 1111 be freed. */ 1112 static void dma_pte_list_pagetables(struct dmar_domain *domain, 1113 int level, struct dma_pte *pte, 1114 struct list_head *freelist) 1115 { 1116 struct page *pg; 1117 1118 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); 1119 list_add_tail(&pg->lru, freelist); 1120 1121 if (level == 1) 1122 return; 1123 1124 pte = page_address(pg); 1125 do { 1126 if (dma_pte_present(pte) && !dma_pte_superpage(pte)) 1127 dma_pte_list_pagetables(domain, level - 1, pte, freelist); 1128 pte++; 1129 } while (!first_pte_in_page(pte)); 1130 } 1131 1132 static void dma_pte_clear_level(struct dmar_domain *domain, int level, 1133 struct dma_pte *pte, unsigned long pfn, 1134 unsigned long start_pfn, unsigned long last_pfn, 1135 struct list_head *freelist) 1136 { 1137 struct dma_pte *first_pte = NULL, *last_pte = NULL; 1138 1139 pfn = max(start_pfn, pfn); 1140 pte = &pte[pfn_level_offset(pfn, level)]; 1141 1142 do { 1143 unsigned long level_pfn = pfn & level_mask(level); 1144 1145 if (!dma_pte_present(pte)) 1146 goto next; 1147 1148 /* If range covers entire pagetable, free it */ 1149 if (start_pfn <= level_pfn && 1150 last_pfn >= level_pfn + level_size(level) - 1) { 1151 /* These suborbinate page tables are going away entirely. Don't 1152 bother to clear them; we're just going to *free* them. */ 1153 if (level > 1 && !dma_pte_superpage(pte)) 1154 dma_pte_list_pagetables(domain, level - 1, pte, freelist); 1155 1156 dma_clear_pte(pte); 1157 if (!first_pte) 1158 first_pte = pte; 1159 last_pte = pte; 1160 } else if (level > 1) { 1161 /* Recurse down into a level that isn't *entirely* obsolete */ 1162 dma_pte_clear_level(domain, level - 1, 1163 phys_to_virt(dma_pte_addr(pte)), 1164 level_pfn, start_pfn, last_pfn, 1165 freelist); 1166 } 1167 next: 1168 pfn = level_pfn + level_size(level); 1169 } while (!first_pte_in_page(++pte) && pfn <= last_pfn); 1170 1171 if (first_pte) 1172 domain_flush_cache(domain, first_pte, 1173 (void *)++last_pte - (void *)first_pte); 1174 } 1175 1176 /* We can't just free the pages because the IOMMU may still be walking 1177 the page tables, and may have cached the intermediate levels. The 1178 pages can only be freed after the IOTLB flush has been done. */ 1179 static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn, 1180 unsigned long last_pfn, struct list_head *freelist) 1181 { 1182 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1183 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1184 BUG_ON(start_pfn > last_pfn); 1185 1186 /* we don't need lock here; nobody else touches the iova range */ 1187 dma_pte_clear_level(domain, agaw_to_level(domain->agaw), 1188 domain->pgd, 0, start_pfn, last_pfn, freelist); 1189 1190 /* free pgd */ 1191 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { 1192 struct page *pgd_page = virt_to_page(domain->pgd); 1193 list_add_tail(&pgd_page->lru, freelist); 1194 domain->pgd = NULL; 1195 } 1196 } 1197 1198 /* iommu handling */ 1199 static int iommu_alloc_root_entry(struct intel_iommu *iommu) 1200 { 1201 struct root_entry *root; 1202 1203 root = (struct root_entry *)alloc_pgtable_page(iommu->node); 1204 if (!root) { 1205 pr_err("Allocating root entry for %s failed\n", 1206 iommu->name); 1207 return -ENOMEM; 1208 } 1209 1210 __iommu_flush_cache(iommu, root, ROOT_SIZE); 1211 iommu->root_entry = root; 1212 1213 return 0; 1214 } 1215 1216 static void iommu_set_root_entry(struct intel_iommu *iommu) 1217 { 1218 u64 addr; 1219 u32 sts; 1220 unsigned long flag; 1221 1222 addr = virt_to_phys(iommu->root_entry); 1223 if (sm_supported(iommu)) 1224 addr |= DMA_RTADDR_SMT; 1225 1226 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1227 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); 1228 1229 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); 1230 1231 /* Make sure hardware complete it */ 1232 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1233 readl, (sts & DMA_GSTS_RTPS), sts); 1234 1235 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1236 1237 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); 1238 if (sm_supported(iommu)) 1239 qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0); 1240 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); 1241 } 1242 1243 void iommu_flush_write_buffer(struct intel_iommu *iommu) 1244 { 1245 u32 val; 1246 unsigned long flag; 1247 1248 if (!rwbf_quirk && !cap_rwbf(iommu->cap)) 1249 return; 1250 1251 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1252 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); 1253 1254 /* Make sure hardware complete it */ 1255 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1256 readl, (!(val & DMA_GSTS_WBFS)), val); 1257 1258 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1259 } 1260 1261 /* return value determine if we need a write buffer flush */ 1262 static void __iommu_flush_context(struct intel_iommu *iommu, 1263 u16 did, u16 source_id, u8 function_mask, 1264 u64 type) 1265 { 1266 u64 val = 0; 1267 unsigned long flag; 1268 1269 switch (type) { 1270 case DMA_CCMD_GLOBAL_INVL: 1271 val = DMA_CCMD_GLOBAL_INVL; 1272 break; 1273 case DMA_CCMD_DOMAIN_INVL: 1274 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); 1275 break; 1276 case DMA_CCMD_DEVICE_INVL: 1277 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) 1278 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); 1279 break; 1280 default: 1281 BUG(); 1282 } 1283 val |= DMA_CCMD_ICC; 1284 1285 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1286 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); 1287 1288 /* Make sure hardware complete it */ 1289 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, 1290 dmar_readq, (!(val & DMA_CCMD_ICC)), val); 1291 1292 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1293 } 1294 1295 /* return value determine if we need a write buffer flush */ 1296 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, 1297 u64 addr, unsigned int size_order, u64 type) 1298 { 1299 int tlb_offset = ecap_iotlb_offset(iommu->ecap); 1300 u64 val = 0, val_iva = 0; 1301 unsigned long flag; 1302 1303 switch (type) { 1304 case DMA_TLB_GLOBAL_FLUSH: 1305 /* global flush doesn't need set IVA_REG */ 1306 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; 1307 break; 1308 case DMA_TLB_DSI_FLUSH: 1309 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); 1310 break; 1311 case DMA_TLB_PSI_FLUSH: 1312 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); 1313 /* IH bit is passed in as part of address */ 1314 val_iva = size_order | addr; 1315 break; 1316 default: 1317 BUG(); 1318 } 1319 /* Note: set drain read/write */ 1320 #if 0 1321 /* 1322 * This is probably to be super secure.. Looks like we can 1323 * ignore it without any impact. 1324 */ 1325 if (cap_read_drain(iommu->cap)) 1326 val |= DMA_TLB_READ_DRAIN; 1327 #endif 1328 if (cap_write_drain(iommu->cap)) 1329 val |= DMA_TLB_WRITE_DRAIN; 1330 1331 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1332 /* Note: Only uses first TLB reg currently */ 1333 if (val_iva) 1334 dmar_writeq(iommu->reg + tlb_offset, val_iva); 1335 dmar_writeq(iommu->reg + tlb_offset + 8, val); 1336 1337 /* Make sure hardware complete it */ 1338 IOMMU_WAIT_OP(iommu, tlb_offset + 8, 1339 dmar_readq, (!(val & DMA_TLB_IVT)), val); 1340 1341 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1342 1343 /* check IOTLB invalidation granularity */ 1344 if (DMA_TLB_IAIG(val) == 0) 1345 pr_err("Flush IOTLB failed\n"); 1346 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) 1347 pr_debug("TLB flush request %Lx, actual %Lx\n", 1348 (unsigned long long)DMA_TLB_IIRG(type), 1349 (unsigned long long)DMA_TLB_IAIG(val)); 1350 } 1351 1352 static struct device_domain_info * 1353 iommu_support_dev_iotlb(struct dmar_domain *domain, struct intel_iommu *iommu, 1354 u8 bus, u8 devfn) 1355 { 1356 struct device_domain_info *info; 1357 unsigned long flags; 1358 1359 if (!iommu->qi) 1360 return NULL; 1361 1362 spin_lock_irqsave(&domain->lock, flags); 1363 list_for_each_entry(info, &domain->devices, link) { 1364 if (info->iommu == iommu && info->bus == bus && 1365 info->devfn == devfn) { 1366 spin_unlock_irqrestore(&domain->lock, flags); 1367 return info->ats_supported ? info : NULL; 1368 } 1369 } 1370 spin_unlock_irqrestore(&domain->lock, flags); 1371 1372 return NULL; 1373 } 1374 1375 static void domain_update_iotlb(struct dmar_domain *domain) 1376 { 1377 struct device_domain_info *info; 1378 bool has_iotlb_device = false; 1379 unsigned long flags; 1380 1381 spin_lock_irqsave(&domain->lock, flags); 1382 list_for_each_entry(info, &domain->devices, link) { 1383 if (info->ats_enabled) { 1384 has_iotlb_device = true; 1385 break; 1386 } 1387 } 1388 domain->has_iotlb_device = has_iotlb_device; 1389 spin_unlock_irqrestore(&domain->lock, flags); 1390 } 1391 1392 static void iommu_enable_dev_iotlb(struct device_domain_info *info) 1393 { 1394 struct pci_dev *pdev; 1395 1396 if (!info || !dev_is_pci(info->dev)) 1397 return; 1398 1399 pdev = to_pci_dev(info->dev); 1400 /* For IOMMU that supports device IOTLB throttling (DIT), we assign 1401 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge 1402 * queue depth at PF level. If DIT is not set, PFSID will be treated as 1403 * reserved, which should be set to 0. 1404 */ 1405 if (!ecap_dit(info->iommu->ecap)) 1406 info->pfsid = 0; 1407 else { 1408 struct pci_dev *pf_pdev; 1409 1410 /* pdev will be returned if device is not a vf */ 1411 pf_pdev = pci_physfn(pdev); 1412 info->pfsid = pci_dev_id(pf_pdev); 1413 } 1414 1415 #ifdef CONFIG_INTEL_IOMMU_SVM 1416 /* The PCIe spec, in its wisdom, declares that the behaviour of 1417 the device if you enable PASID support after ATS support is 1418 undefined. So always enable PASID support on devices which 1419 have it, even if we can't yet know if we're ever going to 1420 use it. */ 1421 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) 1422 info->pasid_enabled = 1; 1423 1424 if (info->pri_supported && 1425 (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) && 1426 !pci_reset_pri(pdev) && !pci_enable_pri(pdev, PRQ_DEPTH)) 1427 info->pri_enabled = 1; 1428 #endif 1429 if (info->ats_supported && pci_ats_page_aligned(pdev) && 1430 !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { 1431 info->ats_enabled = 1; 1432 domain_update_iotlb(info->domain); 1433 info->ats_qdep = pci_ats_queue_depth(pdev); 1434 } 1435 } 1436 1437 static void iommu_disable_dev_iotlb(struct device_domain_info *info) 1438 { 1439 struct pci_dev *pdev; 1440 1441 if (!dev_is_pci(info->dev)) 1442 return; 1443 1444 pdev = to_pci_dev(info->dev); 1445 1446 if (info->ats_enabled) { 1447 pci_disable_ats(pdev); 1448 info->ats_enabled = 0; 1449 domain_update_iotlb(info->domain); 1450 } 1451 #ifdef CONFIG_INTEL_IOMMU_SVM 1452 if (info->pri_enabled) { 1453 pci_disable_pri(pdev); 1454 info->pri_enabled = 0; 1455 } 1456 if (info->pasid_enabled) { 1457 pci_disable_pasid(pdev); 1458 info->pasid_enabled = 0; 1459 } 1460 #endif 1461 } 1462 1463 static void __iommu_flush_dev_iotlb(struct device_domain_info *info, 1464 u64 addr, unsigned int mask) 1465 { 1466 u16 sid, qdep; 1467 1468 if (!info || !info->ats_enabled) 1469 return; 1470 1471 sid = info->bus << 8 | info->devfn; 1472 qdep = info->ats_qdep; 1473 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, 1474 qdep, addr, mask); 1475 } 1476 1477 static void iommu_flush_dev_iotlb(struct dmar_domain *domain, 1478 u64 addr, unsigned mask) 1479 { 1480 struct device_domain_info *info; 1481 unsigned long flags; 1482 1483 if (!domain->has_iotlb_device) 1484 return; 1485 1486 spin_lock_irqsave(&domain->lock, flags); 1487 list_for_each_entry(info, &domain->devices, link) 1488 __iommu_flush_dev_iotlb(info, addr, mask); 1489 spin_unlock_irqrestore(&domain->lock, flags); 1490 } 1491 1492 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, 1493 struct dmar_domain *domain, 1494 unsigned long pfn, unsigned int pages, 1495 int ih, int map) 1496 { 1497 unsigned int aligned_pages = __roundup_pow_of_two(pages); 1498 unsigned int mask = ilog2(aligned_pages); 1499 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; 1500 u16 did = domain_id_iommu(domain, iommu); 1501 1502 BUG_ON(pages == 0); 1503 1504 if (ih) 1505 ih = 1 << 6; 1506 1507 if (domain_use_first_level(domain)) { 1508 qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, pages, ih); 1509 } else { 1510 unsigned long bitmask = aligned_pages - 1; 1511 1512 /* 1513 * PSI masks the low order bits of the base address. If the 1514 * address isn't aligned to the mask, then compute a mask value 1515 * needed to ensure the target range is flushed. 1516 */ 1517 if (unlikely(bitmask & pfn)) { 1518 unsigned long end_pfn = pfn + pages - 1, shared_bits; 1519 1520 /* 1521 * Since end_pfn <= pfn + bitmask, the only way bits 1522 * higher than bitmask can differ in pfn and end_pfn is 1523 * by carrying. This means after masking out bitmask, 1524 * high bits starting with the first set bit in 1525 * shared_bits are all equal in both pfn and end_pfn. 1526 */ 1527 shared_bits = ~(pfn ^ end_pfn) & ~bitmask; 1528 mask = shared_bits ? __ffs(shared_bits) : BITS_PER_LONG; 1529 } 1530 1531 /* 1532 * Fallback to domain selective flush if no PSI support or 1533 * the size is too big. 1534 */ 1535 if (!cap_pgsel_inv(iommu->cap) || 1536 mask > cap_max_amask_val(iommu->cap)) 1537 iommu->flush.flush_iotlb(iommu, did, 0, 0, 1538 DMA_TLB_DSI_FLUSH); 1539 else 1540 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask, 1541 DMA_TLB_PSI_FLUSH); 1542 } 1543 1544 /* 1545 * In caching mode, changes of pages from non-present to present require 1546 * flush. However, device IOTLB doesn't need to be flushed in this case. 1547 */ 1548 if (!cap_caching_mode(iommu->cap) || !map) 1549 iommu_flush_dev_iotlb(domain, addr, mask); 1550 } 1551 1552 /* Notification for newly created mappings */ 1553 static inline void __mapping_notify_one(struct intel_iommu *iommu, 1554 struct dmar_domain *domain, 1555 unsigned long pfn, unsigned int pages) 1556 { 1557 /* 1558 * It's a non-present to present mapping. Only flush if caching mode 1559 * and second level. 1560 */ 1561 if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain)) 1562 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1); 1563 else 1564 iommu_flush_write_buffer(iommu); 1565 } 1566 1567 static void intel_flush_iotlb_all(struct iommu_domain *domain) 1568 { 1569 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 1570 struct iommu_domain_info *info; 1571 unsigned long idx; 1572 1573 xa_for_each(&dmar_domain->iommu_array, idx, info) { 1574 struct intel_iommu *iommu = info->iommu; 1575 u16 did = domain_id_iommu(dmar_domain, iommu); 1576 1577 if (domain_use_first_level(dmar_domain)) 1578 qi_flush_piotlb(iommu, did, PASID_RID2PASID, 0, -1, 0); 1579 else 1580 iommu->flush.flush_iotlb(iommu, did, 0, 0, 1581 DMA_TLB_DSI_FLUSH); 1582 1583 if (!cap_caching_mode(iommu->cap)) 1584 iommu_flush_dev_iotlb(dmar_domain, 0, MAX_AGAW_PFN_WIDTH); 1585 } 1586 } 1587 1588 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) 1589 { 1590 u32 pmen; 1591 unsigned long flags; 1592 1593 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) 1594 return; 1595 1596 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1597 pmen = readl(iommu->reg + DMAR_PMEN_REG); 1598 pmen &= ~DMA_PMEN_EPM; 1599 writel(pmen, iommu->reg + DMAR_PMEN_REG); 1600 1601 /* wait for the protected region status bit to clear */ 1602 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, 1603 readl, !(pmen & DMA_PMEN_PRS), pmen); 1604 1605 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1606 } 1607 1608 static void iommu_enable_translation(struct intel_iommu *iommu) 1609 { 1610 u32 sts; 1611 unsigned long flags; 1612 1613 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1614 iommu->gcmd |= DMA_GCMD_TE; 1615 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1616 1617 /* Make sure hardware complete it */ 1618 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1619 readl, (sts & DMA_GSTS_TES), sts); 1620 1621 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1622 } 1623 1624 static void iommu_disable_translation(struct intel_iommu *iommu) 1625 { 1626 u32 sts; 1627 unsigned long flag; 1628 1629 if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated && 1630 (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap))) 1631 return; 1632 1633 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1634 iommu->gcmd &= ~DMA_GCMD_TE; 1635 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1636 1637 /* Make sure hardware complete it */ 1638 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1639 readl, (!(sts & DMA_GSTS_TES)), sts); 1640 1641 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1642 } 1643 1644 static int iommu_init_domains(struct intel_iommu *iommu) 1645 { 1646 u32 ndomains; 1647 1648 ndomains = cap_ndoms(iommu->cap); 1649 pr_debug("%s: Number of Domains supported <%d>\n", 1650 iommu->name, ndomains); 1651 1652 spin_lock_init(&iommu->lock); 1653 1654 iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL); 1655 if (!iommu->domain_ids) 1656 return -ENOMEM; 1657 1658 /* 1659 * If Caching mode is set, then invalid translations are tagged 1660 * with domain-id 0, hence we need to pre-allocate it. We also 1661 * use domain-id 0 as a marker for non-allocated domain-id, so 1662 * make sure it is not used for a real domain. 1663 */ 1664 set_bit(0, iommu->domain_ids); 1665 1666 /* 1667 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid 1668 * entry for first-level or pass-through translation modes should 1669 * be programmed with a domain id different from those used for 1670 * second-level or nested translation. We reserve a domain id for 1671 * this purpose. 1672 */ 1673 if (sm_supported(iommu)) 1674 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); 1675 1676 return 0; 1677 } 1678 1679 static void disable_dmar_iommu(struct intel_iommu *iommu) 1680 { 1681 if (!iommu->domain_ids) 1682 return; 1683 1684 /* 1685 * All iommu domains must have been detached from the devices, 1686 * hence there should be no domain IDs in use. 1687 */ 1688 if (WARN_ON(bitmap_weight(iommu->domain_ids, cap_ndoms(iommu->cap)) 1689 > NUM_RESERVED_DID)) 1690 return; 1691 1692 if (iommu->gcmd & DMA_GCMD_TE) 1693 iommu_disable_translation(iommu); 1694 } 1695 1696 static void free_dmar_iommu(struct intel_iommu *iommu) 1697 { 1698 if (iommu->domain_ids) { 1699 bitmap_free(iommu->domain_ids); 1700 iommu->domain_ids = NULL; 1701 } 1702 1703 if (iommu->copied_tables) { 1704 bitmap_free(iommu->copied_tables); 1705 iommu->copied_tables = NULL; 1706 } 1707 1708 /* free context mapping */ 1709 free_context_table(iommu); 1710 1711 #ifdef CONFIG_INTEL_IOMMU_SVM 1712 if (pasid_supported(iommu)) { 1713 if (ecap_prs(iommu->ecap)) 1714 intel_svm_finish_prq(iommu); 1715 } 1716 if (vccap_pasid(iommu->vccap)) 1717 ioasid_unregister_allocator(&iommu->pasid_allocator); 1718 1719 #endif 1720 } 1721 1722 /* 1723 * Check and return whether first level is used by default for 1724 * DMA translation. 1725 */ 1726 static bool first_level_by_default(unsigned int type) 1727 { 1728 /* Only SL is available in legacy mode */ 1729 if (!scalable_mode_support()) 1730 return false; 1731 1732 /* Only level (either FL or SL) is available, just use it */ 1733 if (intel_cap_flts_sanity() ^ intel_cap_slts_sanity()) 1734 return intel_cap_flts_sanity(); 1735 1736 /* Both levels are available, decide it based on domain type */ 1737 return type != IOMMU_DOMAIN_UNMANAGED; 1738 } 1739 1740 static struct dmar_domain *alloc_domain(unsigned int type) 1741 { 1742 struct dmar_domain *domain; 1743 1744 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 1745 if (!domain) 1746 return NULL; 1747 1748 domain->nid = NUMA_NO_NODE; 1749 if (first_level_by_default(type)) 1750 domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL; 1751 domain->has_iotlb_device = false; 1752 INIT_LIST_HEAD(&domain->devices); 1753 spin_lock_init(&domain->lock); 1754 xa_init(&domain->iommu_array); 1755 1756 return domain; 1757 } 1758 1759 static int domain_attach_iommu(struct dmar_domain *domain, 1760 struct intel_iommu *iommu) 1761 { 1762 struct iommu_domain_info *info, *curr; 1763 unsigned long ndomains; 1764 int num, ret = -ENOSPC; 1765 1766 info = kzalloc(sizeof(*info), GFP_KERNEL); 1767 if (!info) 1768 return -ENOMEM; 1769 1770 spin_lock(&iommu->lock); 1771 curr = xa_load(&domain->iommu_array, iommu->seq_id); 1772 if (curr) { 1773 curr->refcnt++; 1774 spin_unlock(&iommu->lock); 1775 kfree(info); 1776 return 0; 1777 } 1778 1779 ndomains = cap_ndoms(iommu->cap); 1780 num = find_first_zero_bit(iommu->domain_ids, ndomains); 1781 if (num >= ndomains) { 1782 pr_err("%s: No free domain ids\n", iommu->name); 1783 goto err_unlock; 1784 } 1785 1786 set_bit(num, iommu->domain_ids); 1787 info->refcnt = 1; 1788 info->did = num; 1789 info->iommu = iommu; 1790 curr = xa_cmpxchg(&domain->iommu_array, iommu->seq_id, 1791 NULL, info, GFP_ATOMIC); 1792 if (curr) { 1793 ret = xa_err(curr) ? : -EBUSY; 1794 goto err_clear; 1795 } 1796 domain_update_iommu_cap(domain); 1797 1798 spin_unlock(&iommu->lock); 1799 return 0; 1800 1801 err_clear: 1802 clear_bit(info->did, iommu->domain_ids); 1803 err_unlock: 1804 spin_unlock(&iommu->lock); 1805 kfree(info); 1806 return ret; 1807 } 1808 1809 static void domain_detach_iommu(struct dmar_domain *domain, 1810 struct intel_iommu *iommu) 1811 { 1812 struct iommu_domain_info *info; 1813 1814 spin_lock(&iommu->lock); 1815 info = xa_load(&domain->iommu_array, iommu->seq_id); 1816 if (--info->refcnt == 0) { 1817 clear_bit(info->did, iommu->domain_ids); 1818 xa_erase(&domain->iommu_array, iommu->seq_id); 1819 domain->nid = NUMA_NO_NODE; 1820 domain_update_iommu_cap(domain); 1821 kfree(info); 1822 } 1823 spin_unlock(&iommu->lock); 1824 } 1825 1826 static inline int guestwidth_to_adjustwidth(int gaw) 1827 { 1828 int agaw; 1829 int r = (gaw - 12) % 9; 1830 1831 if (r == 0) 1832 agaw = gaw; 1833 else 1834 agaw = gaw + 9 - r; 1835 if (agaw > 64) 1836 agaw = 64; 1837 return agaw; 1838 } 1839 1840 static void domain_exit(struct dmar_domain *domain) 1841 { 1842 if (domain->pgd) { 1843 LIST_HEAD(freelist); 1844 1845 domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist); 1846 put_pages_list(&freelist); 1847 } 1848 1849 if (WARN_ON(!list_empty(&domain->devices))) 1850 return; 1851 1852 kfree(domain); 1853 } 1854 1855 /* 1856 * Get the PASID directory size for scalable mode context entry. 1857 * Value of X in the PDTS field of a scalable mode context entry 1858 * indicates PASID directory with 2^(X + 7) entries. 1859 */ 1860 static inline unsigned long context_get_sm_pds(struct pasid_table *table) 1861 { 1862 unsigned long pds, max_pde; 1863 1864 max_pde = table->max_pasid >> PASID_PDE_SHIFT; 1865 pds = find_first_bit(&max_pde, MAX_NR_PASID_BITS); 1866 if (pds < 7) 1867 return 0; 1868 1869 return pds - 7; 1870 } 1871 1872 /* 1873 * Set the RID_PASID field of a scalable mode context entry. The 1874 * IOMMU hardware will use the PASID value set in this field for 1875 * DMA translations of DMA requests without PASID. 1876 */ 1877 static inline void 1878 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid) 1879 { 1880 context->hi |= pasid & ((1 << 20) - 1); 1881 } 1882 1883 /* 1884 * Set the DTE(Device-TLB Enable) field of a scalable mode context 1885 * entry. 1886 */ 1887 static inline void context_set_sm_dte(struct context_entry *context) 1888 { 1889 context->lo |= (1 << 2); 1890 } 1891 1892 /* 1893 * Set the PRE(Page Request Enable) field of a scalable mode context 1894 * entry. 1895 */ 1896 static inline void context_set_sm_pre(struct context_entry *context) 1897 { 1898 context->lo |= (1 << 4); 1899 } 1900 1901 /* Convert value to context PASID directory size field coding. */ 1902 #define context_pdts(pds) (((pds) & 0x7) << 9) 1903 1904 static int domain_context_mapping_one(struct dmar_domain *domain, 1905 struct intel_iommu *iommu, 1906 struct pasid_table *table, 1907 u8 bus, u8 devfn) 1908 { 1909 struct device_domain_info *info = 1910 iommu_support_dev_iotlb(domain, iommu, bus, devfn); 1911 u16 did = domain_id_iommu(domain, iommu); 1912 int translation = CONTEXT_TT_MULTI_LEVEL; 1913 struct context_entry *context; 1914 int ret; 1915 1916 WARN_ON(did == 0); 1917 1918 if (hw_pass_through && domain_type_is_si(domain)) 1919 translation = CONTEXT_TT_PASS_THROUGH; 1920 1921 pr_debug("Set context mapping for %02x:%02x.%d\n", 1922 bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); 1923 1924 BUG_ON(!domain->pgd); 1925 1926 spin_lock(&iommu->lock); 1927 ret = -ENOMEM; 1928 context = iommu_context_addr(iommu, bus, devfn, 1); 1929 if (!context) 1930 goto out_unlock; 1931 1932 ret = 0; 1933 if (context_present(context) && !context_copied(iommu, bus, devfn)) 1934 goto out_unlock; 1935 1936 /* 1937 * For kdump cases, old valid entries may be cached due to the 1938 * in-flight DMA and copied pgtable, but there is no unmapping 1939 * behaviour for them, thus we need an explicit cache flush for 1940 * the newly-mapped device. For kdump, at this point, the device 1941 * is supposed to finish reset at its driver probe stage, so no 1942 * in-flight DMA will exist, and we don't need to worry anymore 1943 * hereafter. 1944 */ 1945 if (context_copied(iommu, bus, devfn)) { 1946 u16 did_old = context_domain_id(context); 1947 1948 if (did_old < cap_ndoms(iommu->cap)) { 1949 iommu->flush.flush_context(iommu, did_old, 1950 (((u16)bus) << 8) | devfn, 1951 DMA_CCMD_MASK_NOBIT, 1952 DMA_CCMD_DEVICE_INVL); 1953 iommu->flush.flush_iotlb(iommu, did_old, 0, 0, 1954 DMA_TLB_DSI_FLUSH); 1955 } 1956 1957 clear_context_copied(iommu, bus, devfn); 1958 } 1959 1960 context_clear_entry(context); 1961 1962 if (sm_supported(iommu)) { 1963 unsigned long pds; 1964 1965 WARN_ON(!table); 1966 1967 /* Setup the PASID DIR pointer: */ 1968 pds = context_get_sm_pds(table); 1969 context->lo = (u64)virt_to_phys(table->table) | 1970 context_pdts(pds); 1971 1972 /* Setup the RID_PASID field: */ 1973 context_set_sm_rid2pasid(context, PASID_RID2PASID); 1974 1975 /* 1976 * Setup the Device-TLB enable bit and Page request 1977 * Enable bit: 1978 */ 1979 if (info && info->ats_supported) 1980 context_set_sm_dte(context); 1981 if (info && info->pri_supported) 1982 context_set_sm_pre(context); 1983 } else { 1984 struct dma_pte *pgd = domain->pgd; 1985 int agaw; 1986 1987 context_set_domain_id(context, did); 1988 1989 if (translation != CONTEXT_TT_PASS_THROUGH) { 1990 /* 1991 * Skip top levels of page tables for iommu which has 1992 * less agaw than default. Unnecessary for PT mode. 1993 */ 1994 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { 1995 ret = -ENOMEM; 1996 pgd = phys_to_virt(dma_pte_addr(pgd)); 1997 if (!dma_pte_present(pgd)) 1998 goto out_unlock; 1999 } 2000 2001 if (info && info->ats_supported) 2002 translation = CONTEXT_TT_DEV_IOTLB; 2003 else 2004 translation = CONTEXT_TT_MULTI_LEVEL; 2005 2006 context_set_address_root(context, virt_to_phys(pgd)); 2007 context_set_address_width(context, agaw); 2008 } else { 2009 /* 2010 * In pass through mode, AW must be programmed to 2011 * indicate the largest AGAW value supported by 2012 * hardware. And ASR is ignored by hardware. 2013 */ 2014 context_set_address_width(context, iommu->msagaw); 2015 } 2016 2017 context_set_translation_type(context, translation); 2018 } 2019 2020 context_set_fault_enable(context); 2021 context_set_present(context); 2022 if (!ecap_coherent(iommu->ecap)) 2023 clflush_cache_range(context, sizeof(*context)); 2024 2025 /* 2026 * It's a non-present to present mapping. If hardware doesn't cache 2027 * non-present entry we only need to flush the write-buffer. If the 2028 * _does_ cache non-present entries, then it does so in the special 2029 * domain #0, which we have to flush: 2030 */ 2031 if (cap_caching_mode(iommu->cap)) { 2032 iommu->flush.flush_context(iommu, 0, 2033 (((u16)bus) << 8) | devfn, 2034 DMA_CCMD_MASK_NOBIT, 2035 DMA_CCMD_DEVICE_INVL); 2036 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); 2037 } else { 2038 iommu_flush_write_buffer(iommu); 2039 } 2040 iommu_enable_dev_iotlb(info); 2041 2042 ret = 0; 2043 2044 out_unlock: 2045 spin_unlock(&iommu->lock); 2046 2047 return ret; 2048 } 2049 2050 struct domain_context_mapping_data { 2051 struct dmar_domain *domain; 2052 struct intel_iommu *iommu; 2053 struct pasid_table *table; 2054 }; 2055 2056 static int domain_context_mapping_cb(struct pci_dev *pdev, 2057 u16 alias, void *opaque) 2058 { 2059 struct domain_context_mapping_data *data = opaque; 2060 2061 return domain_context_mapping_one(data->domain, data->iommu, 2062 data->table, PCI_BUS_NUM(alias), 2063 alias & 0xff); 2064 } 2065 2066 static int 2067 domain_context_mapping(struct dmar_domain *domain, struct device *dev) 2068 { 2069 struct domain_context_mapping_data data; 2070 struct pasid_table *table; 2071 struct intel_iommu *iommu; 2072 u8 bus, devfn; 2073 2074 iommu = device_to_iommu(dev, &bus, &devfn); 2075 if (!iommu) 2076 return -ENODEV; 2077 2078 table = intel_pasid_get_table(dev); 2079 2080 if (!dev_is_pci(dev)) 2081 return domain_context_mapping_one(domain, iommu, table, 2082 bus, devfn); 2083 2084 data.domain = domain; 2085 data.iommu = iommu; 2086 data.table = table; 2087 2088 return pci_for_each_dma_alias(to_pci_dev(dev), 2089 &domain_context_mapping_cb, &data); 2090 } 2091 2092 static int domain_context_mapped_cb(struct pci_dev *pdev, 2093 u16 alias, void *opaque) 2094 { 2095 struct intel_iommu *iommu = opaque; 2096 2097 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff); 2098 } 2099 2100 static int domain_context_mapped(struct device *dev) 2101 { 2102 struct intel_iommu *iommu; 2103 u8 bus, devfn; 2104 2105 iommu = device_to_iommu(dev, &bus, &devfn); 2106 if (!iommu) 2107 return -ENODEV; 2108 2109 if (!dev_is_pci(dev)) 2110 return device_context_mapped(iommu, bus, devfn); 2111 2112 return !pci_for_each_dma_alias(to_pci_dev(dev), 2113 domain_context_mapped_cb, iommu); 2114 } 2115 2116 /* Returns a number of VTD pages, but aligned to MM page size */ 2117 static inline unsigned long aligned_nrpages(unsigned long host_addr, 2118 size_t size) 2119 { 2120 host_addr &= ~PAGE_MASK; 2121 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; 2122 } 2123 2124 /* Return largest possible superpage level for a given mapping */ 2125 static inline int hardware_largepage_caps(struct dmar_domain *domain, 2126 unsigned long iov_pfn, 2127 unsigned long phy_pfn, 2128 unsigned long pages) 2129 { 2130 int support, level = 1; 2131 unsigned long pfnmerge; 2132 2133 support = domain->iommu_superpage; 2134 2135 /* To use a large page, the virtual *and* physical addresses 2136 must be aligned to 2MiB/1GiB/etc. Lower bits set in either 2137 of them will mean we have to use smaller pages. So just 2138 merge them and check both at once. */ 2139 pfnmerge = iov_pfn | phy_pfn; 2140 2141 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { 2142 pages >>= VTD_STRIDE_SHIFT; 2143 if (!pages) 2144 break; 2145 pfnmerge >>= VTD_STRIDE_SHIFT; 2146 level++; 2147 support--; 2148 } 2149 return level; 2150 } 2151 2152 /* 2153 * Ensure that old small page tables are removed to make room for superpage(s). 2154 * We're going to add new large pages, so make sure we don't remove their parent 2155 * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared. 2156 */ 2157 static void switch_to_super_page(struct dmar_domain *domain, 2158 unsigned long start_pfn, 2159 unsigned long end_pfn, int level) 2160 { 2161 unsigned long lvl_pages = lvl_to_nr_pages(level); 2162 struct iommu_domain_info *info; 2163 struct dma_pte *pte = NULL; 2164 unsigned long i; 2165 2166 while (start_pfn <= end_pfn) { 2167 if (!pte) 2168 pte = pfn_to_dma_pte(domain, start_pfn, &level); 2169 2170 if (dma_pte_present(pte)) { 2171 dma_pte_free_pagetable(domain, start_pfn, 2172 start_pfn + lvl_pages - 1, 2173 level + 1); 2174 2175 xa_for_each(&domain->iommu_array, i, info) 2176 iommu_flush_iotlb_psi(info->iommu, domain, 2177 start_pfn, lvl_pages, 2178 0, 0); 2179 } 2180 2181 pte++; 2182 start_pfn += lvl_pages; 2183 if (first_pte_in_page(pte)) 2184 pte = NULL; 2185 } 2186 } 2187 2188 static int 2189 __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, 2190 unsigned long phys_pfn, unsigned long nr_pages, int prot) 2191 { 2192 struct dma_pte *first_pte = NULL, *pte = NULL; 2193 unsigned int largepage_lvl = 0; 2194 unsigned long lvl_pages = 0; 2195 phys_addr_t pteval; 2196 u64 attr; 2197 2198 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)); 2199 2200 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) 2201 return -EINVAL; 2202 2203 attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); 2204 attr |= DMA_FL_PTE_PRESENT; 2205 if (domain_use_first_level(domain)) { 2206 attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS; 2207 if (prot & DMA_PTE_WRITE) 2208 attr |= DMA_FL_PTE_DIRTY; 2209 } 2210 2211 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; 2212 2213 while (nr_pages > 0) { 2214 uint64_t tmp; 2215 2216 if (!pte) { 2217 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, 2218 phys_pfn, nr_pages); 2219 2220 pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl); 2221 if (!pte) 2222 return -ENOMEM; 2223 first_pte = pte; 2224 2225 lvl_pages = lvl_to_nr_pages(largepage_lvl); 2226 2227 /* It is large page*/ 2228 if (largepage_lvl > 1) { 2229 unsigned long end_pfn; 2230 unsigned long pages_to_remove; 2231 2232 pteval |= DMA_PTE_LARGE_PAGE; 2233 pages_to_remove = min_t(unsigned long, nr_pages, 2234 nr_pte_to_next_page(pte) * lvl_pages); 2235 end_pfn = iov_pfn + pages_to_remove - 1; 2236 switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl); 2237 } else { 2238 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; 2239 } 2240 2241 } 2242 /* We don't need lock here, nobody else 2243 * touches the iova range 2244 */ 2245 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); 2246 if (tmp) { 2247 static int dumps = 5; 2248 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", 2249 iov_pfn, tmp, (unsigned long long)pteval); 2250 if (dumps) { 2251 dumps--; 2252 debug_dma_dump_mappings(NULL); 2253 } 2254 WARN_ON(1); 2255 } 2256 2257 nr_pages -= lvl_pages; 2258 iov_pfn += lvl_pages; 2259 phys_pfn += lvl_pages; 2260 pteval += lvl_pages * VTD_PAGE_SIZE; 2261 2262 /* If the next PTE would be the first in a new page, then we 2263 * need to flush the cache on the entries we've just written. 2264 * And then we'll need to recalculate 'pte', so clear it and 2265 * let it get set again in the if (!pte) block above. 2266 * 2267 * If we're done (!nr_pages) we need to flush the cache too. 2268 * 2269 * Also if we've been setting superpages, we may need to 2270 * recalculate 'pte' and switch back to smaller pages for the 2271 * end of the mapping, if the trailing size is not enough to 2272 * use another superpage (i.e. nr_pages < lvl_pages). 2273 */ 2274 pte++; 2275 if (!nr_pages || first_pte_in_page(pte) || 2276 (largepage_lvl > 1 && nr_pages < lvl_pages)) { 2277 domain_flush_cache(domain, first_pte, 2278 (void *)pte - (void *)first_pte); 2279 pte = NULL; 2280 } 2281 } 2282 2283 return 0; 2284 } 2285 2286 static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn) 2287 { 2288 struct intel_iommu *iommu = info->iommu; 2289 struct context_entry *context; 2290 u16 did_old; 2291 2292 if (!iommu) 2293 return; 2294 2295 spin_lock(&iommu->lock); 2296 context = iommu_context_addr(iommu, bus, devfn, 0); 2297 if (!context) { 2298 spin_unlock(&iommu->lock); 2299 return; 2300 } 2301 2302 if (sm_supported(iommu)) { 2303 if (hw_pass_through && domain_type_is_si(info->domain)) 2304 did_old = FLPT_DEFAULT_DID; 2305 else 2306 did_old = domain_id_iommu(info->domain, iommu); 2307 } else { 2308 did_old = context_domain_id(context); 2309 } 2310 2311 context_clear_entry(context); 2312 __iommu_flush_cache(iommu, context, sizeof(*context)); 2313 spin_unlock(&iommu->lock); 2314 iommu->flush.flush_context(iommu, 2315 did_old, 2316 (((u16)bus) << 8) | devfn, 2317 DMA_CCMD_MASK_NOBIT, 2318 DMA_CCMD_DEVICE_INVL); 2319 2320 if (sm_supported(iommu)) 2321 qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0); 2322 2323 iommu->flush.flush_iotlb(iommu, 2324 did_old, 2325 0, 2326 0, 2327 DMA_TLB_DSI_FLUSH); 2328 2329 __iommu_flush_dev_iotlb(info, 0, MAX_AGAW_PFN_WIDTH); 2330 } 2331 2332 static int domain_setup_first_level(struct intel_iommu *iommu, 2333 struct dmar_domain *domain, 2334 struct device *dev, 2335 u32 pasid) 2336 { 2337 struct dma_pte *pgd = domain->pgd; 2338 int agaw, level; 2339 int flags = 0; 2340 2341 /* 2342 * Skip top levels of page tables for iommu which has 2343 * less agaw than default. Unnecessary for PT mode. 2344 */ 2345 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { 2346 pgd = phys_to_virt(dma_pte_addr(pgd)); 2347 if (!dma_pte_present(pgd)) 2348 return -ENOMEM; 2349 } 2350 2351 level = agaw_to_level(agaw); 2352 if (level != 4 && level != 5) 2353 return -EINVAL; 2354 2355 if (pasid != PASID_RID2PASID) 2356 flags |= PASID_FLAG_SUPERVISOR_MODE; 2357 if (level == 5) 2358 flags |= PASID_FLAG_FL5LP; 2359 2360 if (domain->force_snooping) 2361 flags |= PASID_FLAG_PAGE_SNOOP; 2362 2363 return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid, 2364 domain_id_iommu(domain, iommu), 2365 flags); 2366 } 2367 2368 static bool dev_is_real_dma_subdevice(struct device *dev) 2369 { 2370 return dev && dev_is_pci(dev) && 2371 pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev); 2372 } 2373 2374 static int iommu_domain_identity_map(struct dmar_domain *domain, 2375 unsigned long first_vpfn, 2376 unsigned long last_vpfn) 2377 { 2378 /* 2379 * RMRR range might have overlap with physical memory range, 2380 * clear it first 2381 */ 2382 dma_pte_clear_range(domain, first_vpfn, last_vpfn); 2383 2384 return __domain_mapping(domain, first_vpfn, 2385 first_vpfn, last_vpfn - first_vpfn + 1, 2386 DMA_PTE_READ|DMA_PTE_WRITE); 2387 } 2388 2389 static int md_domain_init(struct dmar_domain *domain, int guest_width); 2390 2391 static int __init si_domain_init(int hw) 2392 { 2393 struct dmar_rmrr_unit *rmrr; 2394 struct device *dev; 2395 int i, nid, ret; 2396 2397 si_domain = alloc_domain(IOMMU_DOMAIN_IDENTITY); 2398 if (!si_domain) 2399 return -EFAULT; 2400 2401 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { 2402 domain_exit(si_domain); 2403 return -EFAULT; 2404 } 2405 2406 if (hw) 2407 return 0; 2408 2409 for_each_online_node(nid) { 2410 unsigned long start_pfn, end_pfn; 2411 int i; 2412 2413 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 2414 ret = iommu_domain_identity_map(si_domain, 2415 mm_to_dma_pfn(start_pfn), 2416 mm_to_dma_pfn(end_pfn)); 2417 if (ret) 2418 return ret; 2419 } 2420 } 2421 2422 /* 2423 * Identity map the RMRRs so that devices with RMRRs could also use 2424 * the si_domain. 2425 */ 2426 for_each_rmrr_units(rmrr) { 2427 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, 2428 i, dev) { 2429 unsigned long long start = rmrr->base_address; 2430 unsigned long long end = rmrr->end_address; 2431 2432 if (WARN_ON(end < start || 2433 end >> agaw_to_width(si_domain->agaw))) 2434 continue; 2435 2436 ret = iommu_domain_identity_map(si_domain, 2437 mm_to_dma_pfn(start >> PAGE_SHIFT), 2438 mm_to_dma_pfn(end >> PAGE_SHIFT)); 2439 if (ret) 2440 return ret; 2441 } 2442 } 2443 2444 return 0; 2445 } 2446 2447 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev) 2448 { 2449 struct device_domain_info *info = dev_iommu_priv_get(dev); 2450 struct intel_iommu *iommu; 2451 unsigned long flags; 2452 u8 bus, devfn; 2453 int ret; 2454 2455 iommu = device_to_iommu(dev, &bus, &devfn); 2456 if (!iommu) 2457 return -ENODEV; 2458 2459 ret = domain_attach_iommu(domain, iommu); 2460 if (ret) 2461 return ret; 2462 info->domain = domain; 2463 spin_lock_irqsave(&domain->lock, flags); 2464 list_add(&info->link, &domain->devices); 2465 spin_unlock_irqrestore(&domain->lock, flags); 2466 2467 /* PASID table is mandatory for a PCI device in scalable mode. */ 2468 if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) { 2469 ret = intel_pasid_alloc_table(dev); 2470 if (ret) { 2471 dev_err(dev, "PASID table allocation failed\n"); 2472 dmar_remove_one_dev_info(dev); 2473 return ret; 2474 } 2475 2476 /* Setup the PASID entry for requests without PASID: */ 2477 if (hw_pass_through && domain_type_is_si(domain)) 2478 ret = intel_pasid_setup_pass_through(iommu, domain, 2479 dev, PASID_RID2PASID); 2480 else if (domain_use_first_level(domain)) 2481 ret = domain_setup_first_level(iommu, domain, dev, 2482 PASID_RID2PASID); 2483 else 2484 ret = intel_pasid_setup_second_level(iommu, domain, 2485 dev, PASID_RID2PASID); 2486 if (ret) { 2487 dev_err(dev, "Setup RID2PASID failed\n"); 2488 dmar_remove_one_dev_info(dev); 2489 return ret; 2490 } 2491 } 2492 2493 ret = domain_context_mapping(domain, dev); 2494 if (ret) { 2495 dev_err(dev, "Domain context map failed\n"); 2496 dmar_remove_one_dev_info(dev); 2497 return ret; 2498 } 2499 2500 return 0; 2501 } 2502 2503 static bool device_has_rmrr(struct device *dev) 2504 { 2505 struct dmar_rmrr_unit *rmrr; 2506 struct device *tmp; 2507 int i; 2508 2509 rcu_read_lock(); 2510 for_each_rmrr_units(rmrr) { 2511 /* 2512 * Return TRUE if this RMRR contains the device that 2513 * is passed in. 2514 */ 2515 for_each_active_dev_scope(rmrr->devices, 2516 rmrr->devices_cnt, i, tmp) 2517 if (tmp == dev || 2518 is_downstream_to_pci_bridge(dev, tmp)) { 2519 rcu_read_unlock(); 2520 return true; 2521 } 2522 } 2523 rcu_read_unlock(); 2524 return false; 2525 } 2526 2527 /** 2528 * device_rmrr_is_relaxable - Test whether the RMRR of this device 2529 * is relaxable (ie. is allowed to be not enforced under some conditions) 2530 * @dev: device handle 2531 * 2532 * We assume that PCI USB devices with RMRRs have them largely 2533 * for historical reasons and that the RMRR space is not actively used post 2534 * boot. This exclusion may change if vendors begin to abuse it. 2535 * 2536 * The same exception is made for graphics devices, with the requirement that 2537 * any use of the RMRR regions will be torn down before assigning the device 2538 * to a guest. 2539 * 2540 * Return: true if the RMRR is relaxable, false otherwise 2541 */ 2542 static bool device_rmrr_is_relaxable(struct device *dev) 2543 { 2544 struct pci_dev *pdev; 2545 2546 if (!dev_is_pci(dev)) 2547 return false; 2548 2549 pdev = to_pci_dev(dev); 2550 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) 2551 return true; 2552 else 2553 return false; 2554 } 2555 2556 /* 2557 * There are a couple cases where we need to restrict the functionality of 2558 * devices associated with RMRRs. The first is when evaluating a device for 2559 * identity mapping because problems exist when devices are moved in and out 2560 * of domains and their respective RMRR information is lost. This means that 2561 * a device with associated RMRRs will never be in a "passthrough" domain. 2562 * The second is use of the device through the IOMMU API. This interface 2563 * expects to have full control of the IOVA space for the device. We cannot 2564 * satisfy both the requirement that RMRR access is maintained and have an 2565 * unencumbered IOVA space. We also have no ability to quiesce the device's 2566 * use of the RMRR space or even inform the IOMMU API user of the restriction. 2567 * We therefore prevent devices associated with an RMRR from participating in 2568 * the IOMMU API, which eliminates them from device assignment. 2569 * 2570 * In both cases, devices which have relaxable RMRRs are not concerned by this 2571 * restriction. See device_rmrr_is_relaxable comment. 2572 */ 2573 static bool device_is_rmrr_locked(struct device *dev) 2574 { 2575 if (!device_has_rmrr(dev)) 2576 return false; 2577 2578 if (device_rmrr_is_relaxable(dev)) 2579 return false; 2580 2581 return true; 2582 } 2583 2584 /* 2585 * Return the required default domain type for a specific device. 2586 * 2587 * @dev: the device in query 2588 * @startup: true if this is during early boot 2589 * 2590 * Returns: 2591 * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain 2592 * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain 2593 * - 0: both identity and dynamic domains work for this device 2594 */ 2595 static int device_def_domain_type(struct device *dev) 2596 { 2597 if (dev_is_pci(dev)) { 2598 struct pci_dev *pdev = to_pci_dev(dev); 2599 2600 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) 2601 return IOMMU_DOMAIN_IDENTITY; 2602 2603 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) 2604 return IOMMU_DOMAIN_IDENTITY; 2605 } 2606 2607 return 0; 2608 } 2609 2610 static void intel_iommu_init_qi(struct intel_iommu *iommu) 2611 { 2612 /* 2613 * Start from the sane iommu hardware state. 2614 * If the queued invalidation is already initialized by us 2615 * (for example, while enabling interrupt-remapping) then 2616 * we got the things already rolling from a sane state. 2617 */ 2618 if (!iommu->qi) { 2619 /* 2620 * Clear any previous faults. 2621 */ 2622 dmar_fault(-1, iommu); 2623 /* 2624 * Disable queued invalidation if supported and already enabled 2625 * before OS handover. 2626 */ 2627 dmar_disable_qi(iommu); 2628 } 2629 2630 if (dmar_enable_qi(iommu)) { 2631 /* 2632 * Queued Invalidate not enabled, use Register Based Invalidate 2633 */ 2634 iommu->flush.flush_context = __iommu_flush_context; 2635 iommu->flush.flush_iotlb = __iommu_flush_iotlb; 2636 pr_info("%s: Using Register based invalidation\n", 2637 iommu->name); 2638 } else { 2639 iommu->flush.flush_context = qi_flush_context; 2640 iommu->flush.flush_iotlb = qi_flush_iotlb; 2641 pr_info("%s: Using Queued invalidation\n", iommu->name); 2642 } 2643 } 2644 2645 static int copy_context_table(struct intel_iommu *iommu, 2646 struct root_entry *old_re, 2647 struct context_entry **tbl, 2648 int bus, bool ext) 2649 { 2650 int tbl_idx, pos = 0, idx, devfn, ret = 0, did; 2651 struct context_entry *new_ce = NULL, ce; 2652 struct context_entry *old_ce = NULL; 2653 struct root_entry re; 2654 phys_addr_t old_ce_phys; 2655 2656 tbl_idx = ext ? bus * 2 : bus; 2657 memcpy(&re, old_re, sizeof(re)); 2658 2659 for (devfn = 0; devfn < 256; devfn++) { 2660 /* First calculate the correct index */ 2661 idx = (ext ? devfn * 2 : devfn) % 256; 2662 2663 if (idx == 0) { 2664 /* First save what we may have and clean up */ 2665 if (new_ce) { 2666 tbl[tbl_idx] = new_ce; 2667 __iommu_flush_cache(iommu, new_ce, 2668 VTD_PAGE_SIZE); 2669 pos = 1; 2670 } 2671 2672 if (old_ce) 2673 memunmap(old_ce); 2674 2675 ret = 0; 2676 if (devfn < 0x80) 2677 old_ce_phys = root_entry_lctp(&re); 2678 else 2679 old_ce_phys = root_entry_uctp(&re); 2680 2681 if (!old_ce_phys) { 2682 if (ext && devfn == 0) { 2683 /* No LCTP, try UCTP */ 2684 devfn = 0x7f; 2685 continue; 2686 } else { 2687 goto out; 2688 } 2689 } 2690 2691 ret = -ENOMEM; 2692 old_ce = memremap(old_ce_phys, PAGE_SIZE, 2693 MEMREMAP_WB); 2694 if (!old_ce) 2695 goto out; 2696 2697 new_ce = alloc_pgtable_page(iommu->node); 2698 if (!new_ce) 2699 goto out_unmap; 2700 2701 ret = 0; 2702 } 2703 2704 /* Now copy the context entry */ 2705 memcpy(&ce, old_ce + idx, sizeof(ce)); 2706 2707 if (!context_present(&ce)) 2708 continue; 2709 2710 did = context_domain_id(&ce); 2711 if (did >= 0 && did < cap_ndoms(iommu->cap)) 2712 set_bit(did, iommu->domain_ids); 2713 2714 set_context_copied(iommu, bus, devfn); 2715 new_ce[idx] = ce; 2716 } 2717 2718 tbl[tbl_idx + pos] = new_ce; 2719 2720 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); 2721 2722 out_unmap: 2723 memunmap(old_ce); 2724 2725 out: 2726 return ret; 2727 } 2728 2729 static int copy_translation_tables(struct intel_iommu *iommu) 2730 { 2731 struct context_entry **ctxt_tbls; 2732 struct root_entry *old_rt; 2733 phys_addr_t old_rt_phys; 2734 int ctxt_table_entries; 2735 u64 rtaddr_reg; 2736 int bus, ret; 2737 bool new_ext, ext; 2738 2739 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); 2740 ext = !!(rtaddr_reg & DMA_RTADDR_SMT); 2741 new_ext = !!sm_supported(iommu); 2742 2743 /* 2744 * The RTT bit can only be changed when translation is disabled, 2745 * but disabling translation means to open a window for data 2746 * corruption. So bail out and don't copy anything if we would 2747 * have to change the bit. 2748 */ 2749 if (new_ext != ext) 2750 return -EINVAL; 2751 2752 iommu->copied_tables = bitmap_zalloc(BIT_ULL(16), GFP_KERNEL); 2753 if (!iommu->copied_tables) 2754 return -ENOMEM; 2755 2756 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; 2757 if (!old_rt_phys) 2758 return -EINVAL; 2759 2760 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); 2761 if (!old_rt) 2762 return -ENOMEM; 2763 2764 /* This is too big for the stack - allocate it from slab */ 2765 ctxt_table_entries = ext ? 512 : 256; 2766 ret = -ENOMEM; 2767 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL); 2768 if (!ctxt_tbls) 2769 goto out_unmap; 2770 2771 for (bus = 0; bus < 256; bus++) { 2772 ret = copy_context_table(iommu, &old_rt[bus], 2773 ctxt_tbls, bus, ext); 2774 if (ret) { 2775 pr_err("%s: Failed to copy context table for bus %d\n", 2776 iommu->name, bus); 2777 continue; 2778 } 2779 } 2780 2781 spin_lock(&iommu->lock); 2782 2783 /* Context tables are copied, now write them to the root_entry table */ 2784 for (bus = 0; bus < 256; bus++) { 2785 int idx = ext ? bus * 2 : bus; 2786 u64 val; 2787 2788 if (ctxt_tbls[idx]) { 2789 val = virt_to_phys(ctxt_tbls[idx]) | 1; 2790 iommu->root_entry[bus].lo = val; 2791 } 2792 2793 if (!ext || !ctxt_tbls[idx + 1]) 2794 continue; 2795 2796 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; 2797 iommu->root_entry[bus].hi = val; 2798 } 2799 2800 spin_unlock(&iommu->lock); 2801 2802 kfree(ctxt_tbls); 2803 2804 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); 2805 2806 ret = 0; 2807 2808 out_unmap: 2809 memunmap(old_rt); 2810 2811 return ret; 2812 } 2813 2814 #ifdef CONFIG_INTEL_IOMMU_SVM 2815 static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data) 2816 { 2817 struct intel_iommu *iommu = data; 2818 ioasid_t ioasid; 2819 2820 if (!iommu) 2821 return INVALID_IOASID; 2822 /* 2823 * VT-d virtual command interface always uses the full 20 bit 2824 * PASID range. Host can partition guest PASID range based on 2825 * policies but it is out of guest's control. 2826 */ 2827 if (min < PASID_MIN || max > intel_pasid_max_id) 2828 return INVALID_IOASID; 2829 2830 if (vcmd_alloc_pasid(iommu, &ioasid)) 2831 return INVALID_IOASID; 2832 2833 return ioasid; 2834 } 2835 2836 static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data) 2837 { 2838 struct intel_iommu *iommu = data; 2839 2840 if (!iommu) 2841 return; 2842 /* 2843 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO 2844 * We can only free the PASID when all the devices are unbound. 2845 */ 2846 if (ioasid_find(NULL, ioasid, NULL)) { 2847 pr_alert("Cannot free active IOASID %d\n", ioasid); 2848 return; 2849 } 2850 vcmd_free_pasid(iommu, ioasid); 2851 } 2852 2853 static void register_pasid_allocator(struct intel_iommu *iommu) 2854 { 2855 /* 2856 * If we are running in the host, no need for custom allocator 2857 * in that PASIDs are allocated from the host system-wide. 2858 */ 2859 if (!cap_caching_mode(iommu->cap)) 2860 return; 2861 2862 if (!sm_supported(iommu)) { 2863 pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n"); 2864 return; 2865 } 2866 2867 /* 2868 * Register a custom PASID allocator if we are running in a guest, 2869 * guest PASID must be obtained via virtual command interface. 2870 * There can be multiple vIOMMUs in each guest but only one allocator 2871 * is active. All vIOMMU allocators will eventually be calling the same 2872 * host allocator. 2873 */ 2874 if (!vccap_pasid(iommu->vccap)) 2875 return; 2876 2877 pr_info("Register custom PASID allocator\n"); 2878 iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc; 2879 iommu->pasid_allocator.free = intel_vcmd_ioasid_free; 2880 iommu->pasid_allocator.pdata = (void *)iommu; 2881 if (ioasid_register_allocator(&iommu->pasid_allocator)) { 2882 pr_warn("Custom PASID allocator failed, scalable mode disabled\n"); 2883 /* 2884 * Disable scalable mode on this IOMMU if there 2885 * is no custom allocator. Mixing SM capable vIOMMU 2886 * and non-SM vIOMMU are not supported. 2887 */ 2888 intel_iommu_sm = 0; 2889 } 2890 } 2891 #endif 2892 2893 static int __init init_dmars(void) 2894 { 2895 struct dmar_drhd_unit *drhd; 2896 struct intel_iommu *iommu; 2897 int ret; 2898 2899 ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL); 2900 if (ret) 2901 goto free_iommu; 2902 2903 for_each_iommu(iommu, drhd) { 2904 if (drhd->ignored) { 2905 iommu_disable_translation(iommu); 2906 continue; 2907 } 2908 2909 /* 2910 * Find the max pasid size of all IOMMU's in the system. 2911 * We need to ensure the system pasid table is no bigger 2912 * than the smallest supported. 2913 */ 2914 if (pasid_supported(iommu)) { 2915 u32 temp = 2 << ecap_pss(iommu->ecap); 2916 2917 intel_pasid_max_id = min_t(u32, temp, 2918 intel_pasid_max_id); 2919 } 2920 2921 intel_iommu_init_qi(iommu); 2922 2923 ret = iommu_init_domains(iommu); 2924 if (ret) 2925 goto free_iommu; 2926 2927 init_translation_status(iommu); 2928 2929 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { 2930 iommu_disable_translation(iommu); 2931 clear_translation_pre_enabled(iommu); 2932 pr_warn("Translation was enabled for %s but we are not in kdump mode\n", 2933 iommu->name); 2934 } 2935 2936 /* 2937 * TBD: 2938 * we could share the same root & context tables 2939 * among all IOMMU's. Need to Split it later. 2940 */ 2941 ret = iommu_alloc_root_entry(iommu); 2942 if (ret) 2943 goto free_iommu; 2944 2945 if (translation_pre_enabled(iommu)) { 2946 pr_info("Translation already enabled - trying to copy translation structures\n"); 2947 2948 ret = copy_translation_tables(iommu); 2949 if (ret) { 2950 /* 2951 * We found the IOMMU with translation 2952 * enabled - but failed to copy over the 2953 * old root-entry table. Try to proceed 2954 * by disabling translation now and 2955 * allocating a clean root-entry table. 2956 * This might cause DMAR faults, but 2957 * probably the dump will still succeed. 2958 */ 2959 pr_err("Failed to copy translation tables from previous kernel for %s\n", 2960 iommu->name); 2961 iommu_disable_translation(iommu); 2962 clear_translation_pre_enabled(iommu); 2963 } else { 2964 pr_info("Copied translation tables from previous kernel for %s\n", 2965 iommu->name); 2966 } 2967 } 2968 2969 if (!ecap_pass_through(iommu->ecap)) 2970 hw_pass_through = 0; 2971 intel_svm_check(iommu); 2972 } 2973 2974 /* 2975 * Now that qi is enabled on all iommus, set the root entry and flush 2976 * caches. This is required on some Intel X58 chipsets, otherwise the 2977 * flush_context function will loop forever and the boot hangs. 2978 */ 2979 for_each_active_iommu(iommu, drhd) { 2980 iommu_flush_write_buffer(iommu); 2981 #ifdef CONFIG_INTEL_IOMMU_SVM 2982 register_pasid_allocator(iommu); 2983 #endif 2984 iommu_set_root_entry(iommu); 2985 } 2986 2987 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA 2988 dmar_map_gfx = 0; 2989 #endif 2990 2991 if (!dmar_map_gfx) 2992 iommu_identity_mapping |= IDENTMAP_GFX; 2993 2994 check_tylersburg_isoch(); 2995 2996 ret = si_domain_init(hw_pass_through); 2997 if (ret) 2998 goto free_iommu; 2999 3000 /* 3001 * for each drhd 3002 * enable fault log 3003 * global invalidate context cache 3004 * global invalidate iotlb 3005 * enable translation 3006 */ 3007 for_each_iommu(iommu, drhd) { 3008 if (drhd->ignored) { 3009 /* 3010 * we always have to disable PMRs or DMA may fail on 3011 * this device 3012 */ 3013 if (force_on) 3014 iommu_disable_protect_mem_regions(iommu); 3015 continue; 3016 } 3017 3018 iommu_flush_write_buffer(iommu); 3019 3020 #ifdef CONFIG_INTEL_IOMMU_SVM 3021 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { 3022 /* 3023 * Call dmar_alloc_hwirq() with dmar_global_lock held, 3024 * could cause possible lock race condition. 3025 */ 3026 up_write(&dmar_global_lock); 3027 ret = intel_svm_enable_prq(iommu); 3028 down_write(&dmar_global_lock); 3029 if (ret) 3030 goto free_iommu; 3031 } 3032 #endif 3033 ret = dmar_set_interrupt(iommu); 3034 if (ret) 3035 goto free_iommu; 3036 } 3037 3038 return 0; 3039 3040 free_iommu: 3041 for_each_active_iommu(iommu, drhd) { 3042 disable_dmar_iommu(iommu); 3043 free_dmar_iommu(iommu); 3044 } 3045 3046 return ret; 3047 } 3048 3049 static void __init init_no_remapping_devices(void) 3050 { 3051 struct dmar_drhd_unit *drhd; 3052 struct device *dev; 3053 int i; 3054 3055 for_each_drhd_unit(drhd) { 3056 if (!drhd->include_all) { 3057 for_each_active_dev_scope(drhd->devices, 3058 drhd->devices_cnt, i, dev) 3059 break; 3060 /* ignore DMAR unit if no devices exist */ 3061 if (i == drhd->devices_cnt) 3062 drhd->ignored = 1; 3063 } 3064 } 3065 3066 for_each_active_drhd_unit(drhd) { 3067 if (drhd->include_all) 3068 continue; 3069 3070 for_each_active_dev_scope(drhd->devices, 3071 drhd->devices_cnt, i, dev) 3072 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) 3073 break; 3074 if (i < drhd->devices_cnt) 3075 continue; 3076 3077 /* This IOMMU has *only* gfx devices. Either bypass it or 3078 set the gfx_mapped flag, as appropriate */ 3079 drhd->gfx_dedicated = 1; 3080 if (!dmar_map_gfx) 3081 drhd->ignored = 1; 3082 } 3083 } 3084 3085 #ifdef CONFIG_SUSPEND 3086 static int init_iommu_hw(void) 3087 { 3088 struct dmar_drhd_unit *drhd; 3089 struct intel_iommu *iommu = NULL; 3090 3091 for_each_active_iommu(iommu, drhd) 3092 if (iommu->qi) 3093 dmar_reenable_qi(iommu); 3094 3095 for_each_iommu(iommu, drhd) { 3096 if (drhd->ignored) { 3097 /* 3098 * we always have to disable PMRs or DMA may fail on 3099 * this device 3100 */ 3101 if (force_on) 3102 iommu_disable_protect_mem_regions(iommu); 3103 continue; 3104 } 3105 3106 iommu_flush_write_buffer(iommu); 3107 iommu_set_root_entry(iommu); 3108 iommu_enable_translation(iommu); 3109 iommu_disable_protect_mem_regions(iommu); 3110 } 3111 3112 return 0; 3113 } 3114 3115 static void iommu_flush_all(void) 3116 { 3117 struct dmar_drhd_unit *drhd; 3118 struct intel_iommu *iommu; 3119 3120 for_each_active_iommu(iommu, drhd) { 3121 iommu->flush.flush_context(iommu, 0, 0, 0, 3122 DMA_CCMD_GLOBAL_INVL); 3123 iommu->flush.flush_iotlb(iommu, 0, 0, 0, 3124 DMA_TLB_GLOBAL_FLUSH); 3125 } 3126 } 3127 3128 static int iommu_suspend(void) 3129 { 3130 struct dmar_drhd_unit *drhd; 3131 struct intel_iommu *iommu = NULL; 3132 unsigned long flag; 3133 3134 for_each_active_iommu(iommu, drhd) { 3135 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32), 3136 GFP_KERNEL); 3137 if (!iommu->iommu_state) 3138 goto nomem; 3139 } 3140 3141 iommu_flush_all(); 3142 3143 for_each_active_iommu(iommu, drhd) { 3144 iommu_disable_translation(iommu); 3145 3146 raw_spin_lock_irqsave(&iommu->register_lock, flag); 3147 3148 iommu->iommu_state[SR_DMAR_FECTL_REG] = 3149 readl(iommu->reg + DMAR_FECTL_REG); 3150 iommu->iommu_state[SR_DMAR_FEDATA_REG] = 3151 readl(iommu->reg + DMAR_FEDATA_REG); 3152 iommu->iommu_state[SR_DMAR_FEADDR_REG] = 3153 readl(iommu->reg + DMAR_FEADDR_REG); 3154 iommu->iommu_state[SR_DMAR_FEUADDR_REG] = 3155 readl(iommu->reg + DMAR_FEUADDR_REG); 3156 3157 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 3158 } 3159 return 0; 3160 3161 nomem: 3162 for_each_active_iommu(iommu, drhd) 3163 kfree(iommu->iommu_state); 3164 3165 return -ENOMEM; 3166 } 3167 3168 static void iommu_resume(void) 3169 { 3170 struct dmar_drhd_unit *drhd; 3171 struct intel_iommu *iommu = NULL; 3172 unsigned long flag; 3173 3174 if (init_iommu_hw()) { 3175 if (force_on) 3176 panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); 3177 else 3178 WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); 3179 return; 3180 } 3181 3182 for_each_active_iommu(iommu, drhd) { 3183 3184 raw_spin_lock_irqsave(&iommu->register_lock, flag); 3185 3186 writel(iommu->iommu_state[SR_DMAR_FECTL_REG], 3187 iommu->reg + DMAR_FECTL_REG); 3188 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], 3189 iommu->reg + DMAR_FEDATA_REG); 3190 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], 3191 iommu->reg + DMAR_FEADDR_REG); 3192 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], 3193 iommu->reg + DMAR_FEUADDR_REG); 3194 3195 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 3196 } 3197 3198 for_each_active_iommu(iommu, drhd) 3199 kfree(iommu->iommu_state); 3200 } 3201 3202 static struct syscore_ops iommu_syscore_ops = { 3203 .resume = iommu_resume, 3204 .suspend = iommu_suspend, 3205 }; 3206 3207 static void __init init_iommu_pm_ops(void) 3208 { 3209 register_syscore_ops(&iommu_syscore_ops); 3210 } 3211 3212 #else 3213 static inline void init_iommu_pm_ops(void) {} 3214 #endif /* CONFIG_PM */ 3215 3216 static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr) 3217 { 3218 if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) || 3219 !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) || 3220 rmrr->end_address <= rmrr->base_address || 3221 arch_rmrr_sanity_check(rmrr)) 3222 return -EINVAL; 3223 3224 return 0; 3225 } 3226 3227 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) 3228 { 3229 struct acpi_dmar_reserved_memory *rmrr; 3230 struct dmar_rmrr_unit *rmrru; 3231 3232 rmrr = (struct acpi_dmar_reserved_memory *)header; 3233 if (rmrr_sanity_check(rmrr)) { 3234 pr_warn(FW_BUG 3235 "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n" 3236 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 3237 rmrr->base_address, rmrr->end_address, 3238 dmi_get_system_info(DMI_BIOS_VENDOR), 3239 dmi_get_system_info(DMI_BIOS_VERSION), 3240 dmi_get_system_info(DMI_PRODUCT_VERSION)); 3241 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 3242 } 3243 3244 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); 3245 if (!rmrru) 3246 goto out; 3247 3248 rmrru->hdr = header; 3249 3250 rmrru->base_address = rmrr->base_address; 3251 rmrru->end_address = rmrr->end_address; 3252 3253 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), 3254 ((void *)rmrr) + rmrr->header.length, 3255 &rmrru->devices_cnt); 3256 if (rmrru->devices_cnt && rmrru->devices == NULL) 3257 goto free_rmrru; 3258 3259 list_add(&rmrru->list, &dmar_rmrr_units); 3260 3261 return 0; 3262 free_rmrru: 3263 kfree(rmrru); 3264 out: 3265 return -ENOMEM; 3266 } 3267 3268 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) 3269 { 3270 struct dmar_atsr_unit *atsru; 3271 struct acpi_dmar_atsr *tmp; 3272 3273 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list, 3274 dmar_rcu_check()) { 3275 tmp = (struct acpi_dmar_atsr *)atsru->hdr; 3276 if (atsr->segment != tmp->segment) 3277 continue; 3278 if (atsr->header.length != tmp->header.length) 3279 continue; 3280 if (memcmp(atsr, tmp, atsr->header.length) == 0) 3281 return atsru; 3282 } 3283 3284 return NULL; 3285 } 3286 3287 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3288 { 3289 struct acpi_dmar_atsr *atsr; 3290 struct dmar_atsr_unit *atsru; 3291 3292 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) 3293 return 0; 3294 3295 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3296 atsru = dmar_find_atsr(atsr); 3297 if (atsru) 3298 return 0; 3299 3300 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); 3301 if (!atsru) 3302 return -ENOMEM; 3303 3304 /* 3305 * If memory is allocated from slab by ACPI _DSM method, we need to 3306 * copy the memory content because the memory buffer will be freed 3307 * on return. 3308 */ 3309 atsru->hdr = (void *)(atsru + 1); 3310 memcpy(atsru->hdr, hdr, hdr->length); 3311 atsru->include_all = atsr->flags & 0x1; 3312 if (!atsru->include_all) { 3313 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), 3314 (void *)atsr + atsr->header.length, 3315 &atsru->devices_cnt); 3316 if (atsru->devices_cnt && atsru->devices == NULL) { 3317 kfree(atsru); 3318 return -ENOMEM; 3319 } 3320 } 3321 3322 list_add_rcu(&atsru->list, &dmar_atsr_units); 3323 3324 return 0; 3325 } 3326 3327 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) 3328 { 3329 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); 3330 kfree(atsru); 3331 } 3332 3333 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3334 { 3335 struct acpi_dmar_atsr *atsr; 3336 struct dmar_atsr_unit *atsru; 3337 3338 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3339 atsru = dmar_find_atsr(atsr); 3340 if (atsru) { 3341 list_del_rcu(&atsru->list); 3342 synchronize_rcu(); 3343 intel_iommu_free_atsr(atsru); 3344 } 3345 3346 return 0; 3347 } 3348 3349 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3350 { 3351 int i; 3352 struct device *dev; 3353 struct acpi_dmar_atsr *atsr; 3354 struct dmar_atsr_unit *atsru; 3355 3356 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3357 atsru = dmar_find_atsr(atsr); 3358 if (!atsru) 3359 return 0; 3360 3361 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { 3362 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, 3363 i, dev) 3364 return -EBUSY; 3365 } 3366 3367 return 0; 3368 } 3369 3370 static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc) 3371 { 3372 struct dmar_satc_unit *satcu; 3373 struct acpi_dmar_satc *tmp; 3374 3375 list_for_each_entry_rcu(satcu, &dmar_satc_units, list, 3376 dmar_rcu_check()) { 3377 tmp = (struct acpi_dmar_satc *)satcu->hdr; 3378 if (satc->segment != tmp->segment) 3379 continue; 3380 if (satc->header.length != tmp->header.length) 3381 continue; 3382 if (memcmp(satc, tmp, satc->header.length) == 0) 3383 return satcu; 3384 } 3385 3386 return NULL; 3387 } 3388 3389 int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg) 3390 { 3391 struct acpi_dmar_satc *satc; 3392 struct dmar_satc_unit *satcu; 3393 3394 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) 3395 return 0; 3396 3397 satc = container_of(hdr, struct acpi_dmar_satc, header); 3398 satcu = dmar_find_satc(satc); 3399 if (satcu) 3400 return 0; 3401 3402 satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL); 3403 if (!satcu) 3404 return -ENOMEM; 3405 3406 satcu->hdr = (void *)(satcu + 1); 3407 memcpy(satcu->hdr, hdr, hdr->length); 3408 satcu->atc_required = satc->flags & 0x1; 3409 satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1), 3410 (void *)satc + satc->header.length, 3411 &satcu->devices_cnt); 3412 if (satcu->devices_cnt && !satcu->devices) { 3413 kfree(satcu); 3414 return -ENOMEM; 3415 } 3416 list_add_rcu(&satcu->list, &dmar_satc_units); 3417 3418 return 0; 3419 } 3420 3421 static int intel_iommu_add(struct dmar_drhd_unit *dmaru) 3422 { 3423 int sp, ret; 3424 struct intel_iommu *iommu = dmaru->iommu; 3425 3426 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu); 3427 if (ret) 3428 goto out; 3429 3430 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) { 3431 pr_warn("%s: Doesn't support hardware pass through.\n", 3432 iommu->name); 3433 return -ENXIO; 3434 } 3435 3436 sp = domain_update_iommu_superpage(NULL, iommu) - 1; 3437 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) { 3438 pr_warn("%s: Doesn't support large page.\n", 3439 iommu->name); 3440 return -ENXIO; 3441 } 3442 3443 /* 3444 * Disable translation if already enabled prior to OS handover. 3445 */ 3446 if (iommu->gcmd & DMA_GCMD_TE) 3447 iommu_disable_translation(iommu); 3448 3449 ret = iommu_init_domains(iommu); 3450 if (ret == 0) 3451 ret = iommu_alloc_root_entry(iommu); 3452 if (ret) 3453 goto out; 3454 3455 intel_svm_check(iommu); 3456 3457 if (dmaru->ignored) { 3458 /* 3459 * we always have to disable PMRs or DMA may fail on this device 3460 */ 3461 if (force_on) 3462 iommu_disable_protect_mem_regions(iommu); 3463 return 0; 3464 } 3465 3466 intel_iommu_init_qi(iommu); 3467 iommu_flush_write_buffer(iommu); 3468 3469 #ifdef CONFIG_INTEL_IOMMU_SVM 3470 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { 3471 ret = intel_svm_enable_prq(iommu); 3472 if (ret) 3473 goto disable_iommu; 3474 } 3475 #endif 3476 ret = dmar_set_interrupt(iommu); 3477 if (ret) 3478 goto disable_iommu; 3479 3480 iommu_set_root_entry(iommu); 3481 iommu_enable_translation(iommu); 3482 3483 iommu_disable_protect_mem_regions(iommu); 3484 return 0; 3485 3486 disable_iommu: 3487 disable_dmar_iommu(iommu); 3488 out: 3489 free_dmar_iommu(iommu); 3490 return ret; 3491 } 3492 3493 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 3494 { 3495 int ret = 0; 3496 struct intel_iommu *iommu = dmaru->iommu; 3497 3498 if (!intel_iommu_enabled) 3499 return 0; 3500 if (iommu == NULL) 3501 return -EINVAL; 3502 3503 if (insert) { 3504 ret = intel_iommu_add(dmaru); 3505 } else { 3506 disable_dmar_iommu(iommu); 3507 free_dmar_iommu(iommu); 3508 } 3509 3510 return ret; 3511 } 3512 3513 static void intel_iommu_free_dmars(void) 3514 { 3515 struct dmar_rmrr_unit *rmrru, *rmrr_n; 3516 struct dmar_atsr_unit *atsru, *atsr_n; 3517 struct dmar_satc_unit *satcu, *satc_n; 3518 3519 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { 3520 list_del(&rmrru->list); 3521 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); 3522 kfree(rmrru); 3523 } 3524 3525 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { 3526 list_del(&atsru->list); 3527 intel_iommu_free_atsr(atsru); 3528 } 3529 list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) { 3530 list_del(&satcu->list); 3531 dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt); 3532 kfree(satcu); 3533 } 3534 } 3535 3536 static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev) 3537 { 3538 struct dmar_satc_unit *satcu; 3539 struct acpi_dmar_satc *satc; 3540 struct device *tmp; 3541 int i; 3542 3543 dev = pci_physfn(dev); 3544 rcu_read_lock(); 3545 3546 list_for_each_entry_rcu(satcu, &dmar_satc_units, list) { 3547 satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); 3548 if (satc->segment != pci_domain_nr(dev->bus)) 3549 continue; 3550 for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp) 3551 if (to_pci_dev(tmp) == dev) 3552 goto out; 3553 } 3554 satcu = NULL; 3555 out: 3556 rcu_read_unlock(); 3557 return satcu; 3558 } 3559 3560 static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu) 3561 { 3562 int i, ret = 1; 3563 struct pci_bus *bus; 3564 struct pci_dev *bridge = NULL; 3565 struct device *tmp; 3566 struct acpi_dmar_atsr *atsr; 3567 struct dmar_atsr_unit *atsru; 3568 struct dmar_satc_unit *satcu; 3569 3570 dev = pci_physfn(dev); 3571 satcu = dmar_find_matched_satc_unit(dev); 3572 if (satcu) 3573 /* 3574 * This device supports ATS as it is in SATC table. 3575 * When IOMMU is in legacy mode, enabling ATS is done 3576 * automatically by HW for the device that requires 3577 * ATS, hence OS should not enable this device ATS 3578 * to avoid duplicated TLB invalidation. 3579 */ 3580 return !(satcu->atc_required && !sm_supported(iommu)); 3581 3582 for (bus = dev->bus; bus; bus = bus->parent) { 3583 bridge = bus->self; 3584 /* If it's an integrated device, allow ATS */ 3585 if (!bridge) 3586 return 1; 3587 /* Connected via non-PCIe: no ATS */ 3588 if (!pci_is_pcie(bridge) || 3589 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) 3590 return 0; 3591 /* If we found the root port, look it up in the ATSR */ 3592 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) 3593 break; 3594 } 3595 3596 rcu_read_lock(); 3597 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { 3598 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); 3599 if (atsr->segment != pci_domain_nr(dev->bus)) 3600 continue; 3601 3602 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) 3603 if (tmp == &bridge->dev) 3604 goto out; 3605 3606 if (atsru->include_all) 3607 goto out; 3608 } 3609 ret = 0; 3610 out: 3611 rcu_read_unlock(); 3612 3613 return ret; 3614 } 3615 3616 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) 3617 { 3618 int ret; 3619 struct dmar_rmrr_unit *rmrru; 3620 struct dmar_atsr_unit *atsru; 3621 struct dmar_satc_unit *satcu; 3622 struct acpi_dmar_atsr *atsr; 3623 struct acpi_dmar_reserved_memory *rmrr; 3624 struct acpi_dmar_satc *satc; 3625 3626 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING) 3627 return 0; 3628 3629 list_for_each_entry(rmrru, &dmar_rmrr_units, list) { 3630 rmrr = container_of(rmrru->hdr, 3631 struct acpi_dmar_reserved_memory, header); 3632 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 3633 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), 3634 ((void *)rmrr) + rmrr->header.length, 3635 rmrr->segment, rmrru->devices, 3636 rmrru->devices_cnt); 3637 if (ret < 0) 3638 return ret; 3639 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 3640 dmar_remove_dev_scope(info, rmrr->segment, 3641 rmrru->devices, rmrru->devices_cnt); 3642 } 3643 } 3644 3645 list_for_each_entry(atsru, &dmar_atsr_units, list) { 3646 if (atsru->include_all) 3647 continue; 3648 3649 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); 3650 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 3651 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), 3652 (void *)atsr + atsr->header.length, 3653 atsr->segment, atsru->devices, 3654 atsru->devices_cnt); 3655 if (ret > 0) 3656 break; 3657 else if (ret < 0) 3658 return ret; 3659 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 3660 if (dmar_remove_dev_scope(info, atsr->segment, 3661 atsru->devices, atsru->devices_cnt)) 3662 break; 3663 } 3664 } 3665 list_for_each_entry(satcu, &dmar_satc_units, list) { 3666 satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); 3667 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 3668 ret = dmar_insert_dev_scope(info, (void *)(satc + 1), 3669 (void *)satc + satc->header.length, 3670 satc->segment, satcu->devices, 3671 satcu->devices_cnt); 3672 if (ret > 0) 3673 break; 3674 else if (ret < 0) 3675 return ret; 3676 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 3677 if (dmar_remove_dev_scope(info, satc->segment, 3678 satcu->devices, satcu->devices_cnt)) 3679 break; 3680 } 3681 } 3682 3683 return 0; 3684 } 3685 3686 static int intel_iommu_memory_notifier(struct notifier_block *nb, 3687 unsigned long val, void *v) 3688 { 3689 struct memory_notify *mhp = v; 3690 unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn); 3691 unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn + 3692 mhp->nr_pages - 1); 3693 3694 switch (val) { 3695 case MEM_GOING_ONLINE: 3696 if (iommu_domain_identity_map(si_domain, 3697 start_vpfn, last_vpfn)) { 3698 pr_warn("Failed to build identity map for [%lx-%lx]\n", 3699 start_vpfn, last_vpfn); 3700 return NOTIFY_BAD; 3701 } 3702 break; 3703 3704 case MEM_OFFLINE: 3705 case MEM_CANCEL_ONLINE: 3706 { 3707 struct dmar_drhd_unit *drhd; 3708 struct intel_iommu *iommu; 3709 LIST_HEAD(freelist); 3710 3711 domain_unmap(si_domain, start_vpfn, last_vpfn, &freelist); 3712 3713 rcu_read_lock(); 3714 for_each_active_iommu(iommu, drhd) 3715 iommu_flush_iotlb_psi(iommu, si_domain, 3716 start_vpfn, mhp->nr_pages, 3717 list_empty(&freelist), 0); 3718 rcu_read_unlock(); 3719 put_pages_list(&freelist); 3720 } 3721 break; 3722 } 3723 3724 return NOTIFY_OK; 3725 } 3726 3727 static struct notifier_block intel_iommu_memory_nb = { 3728 .notifier_call = intel_iommu_memory_notifier, 3729 .priority = 0 3730 }; 3731 3732 static void intel_disable_iommus(void) 3733 { 3734 struct intel_iommu *iommu = NULL; 3735 struct dmar_drhd_unit *drhd; 3736 3737 for_each_iommu(iommu, drhd) 3738 iommu_disable_translation(iommu); 3739 } 3740 3741 void intel_iommu_shutdown(void) 3742 { 3743 struct dmar_drhd_unit *drhd; 3744 struct intel_iommu *iommu = NULL; 3745 3746 if (no_iommu || dmar_disabled) 3747 return; 3748 3749 down_write(&dmar_global_lock); 3750 3751 /* Disable PMRs explicitly here. */ 3752 for_each_iommu(iommu, drhd) 3753 iommu_disable_protect_mem_regions(iommu); 3754 3755 /* Make sure the IOMMUs are switched off */ 3756 intel_disable_iommus(); 3757 3758 up_write(&dmar_global_lock); 3759 } 3760 3761 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev) 3762 { 3763 struct iommu_device *iommu_dev = dev_to_iommu_device(dev); 3764 3765 return container_of(iommu_dev, struct intel_iommu, iommu); 3766 } 3767 3768 static ssize_t version_show(struct device *dev, 3769 struct device_attribute *attr, char *buf) 3770 { 3771 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3772 u32 ver = readl(iommu->reg + DMAR_VER_REG); 3773 return sprintf(buf, "%d:%d\n", 3774 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); 3775 } 3776 static DEVICE_ATTR_RO(version); 3777 3778 static ssize_t address_show(struct device *dev, 3779 struct device_attribute *attr, char *buf) 3780 { 3781 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3782 return sprintf(buf, "%llx\n", iommu->reg_phys); 3783 } 3784 static DEVICE_ATTR_RO(address); 3785 3786 static ssize_t cap_show(struct device *dev, 3787 struct device_attribute *attr, char *buf) 3788 { 3789 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3790 return sprintf(buf, "%llx\n", iommu->cap); 3791 } 3792 static DEVICE_ATTR_RO(cap); 3793 3794 static ssize_t ecap_show(struct device *dev, 3795 struct device_attribute *attr, char *buf) 3796 { 3797 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3798 return sprintf(buf, "%llx\n", iommu->ecap); 3799 } 3800 static DEVICE_ATTR_RO(ecap); 3801 3802 static ssize_t domains_supported_show(struct device *dev, 3803 struct device_attribute *attr, char *buf) 3804 { 3805 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3806 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap)); 3807 } 3808 static DEVICE_ATTR_RO(domains_supported); 3809 3810 static ssize_t domains_used_show(struct device *dev, 3811 struct device_attribute *attr, char *buf) 3812 { 3813 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3814 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids, 3815 cap_ndoms(iommu->cap))); 3816 } 3817 static DEVICE_ATTR_RO(domains_used); 3818 3819 static struct attribute *intel_iommu_attrs[] = { 3820 &dev_attr_version.attr, 3821 &dev_attr_address.attr, 3822 &dev_attr_cap.attr, 3823 &dev_attr_ecap.attr, 3824 &dev_attr_domains_supported.attr, 3825 &dev_attr_domains_used.attr, 3826 NULL, 3827 }; 3828 3829 static struct attribute_group intel_iommu_group = { 3830 .name = "intel-iommu", 3831 .attrs = intel_iommu_attrs, 3832 }; 3833 3834 const struct attribute_group *intel_iommu_groups[] = { 3835 &intel_iommu_group, 3836 NULL, 3837 }; 3838 3839 static inline bool has_external_pci(void) 3840 { 3841 struct pci_dev *pdev = NULL; 3842 3843 for_each_pci_dev(pdev) 3844 if (pdev->external_facing) 3845 return true; 3846 3847 return false; 3848 } 3849 3850 static int __init platform_optin_force_iommu(void) 3851 { 3852 if (!dmar_platform_optin() || no_platform_optin || !has_external_pci()) 3853 return 0; 3854 3855 if (no_iommu || dmar_disabled) 3856 pr_info("Intel-IOMMU force enabled due to platform opt in\n"); 3857 3858 /* 3859 * If Intel-IOMMU is disabled by default, we will apply identity 3860 * map for all devices except those marked as being untrusted. 3861 */ 3862 if (dmar_disabled) 3863 iommu_set_default_passthrough(false); 3864 3865 dmar_disabled = 0; 3866 no_iommu = 0; 3867 3868 return 1; 3869 } 3870 3871 static int __init probe_acpi_namespace_devices(void) 3872 { 3873 struct dmar_drhd_unit *drhd; 3874 /* To avoid a -Wunused-but-set-variable warning. */ 3875 struct intel_iommu *iommu __maybe_unused; 3876 struct device *dev; 3877 int i, ret = 0; 3878 3879 for_each_active_iommu(iommu, drhd) { 3880 for_each_active_dev_scope(drhd->devices, 3881 drhd->devices_cnt, i, dev) { 3882 struct acpi_device_physical_node *pn; 3883 struct iommu_group *group; 3884 struct acpi_device *adev; 3885 3886 if (dev->bus != &acpi_bus_type) 3887 continue; 3888 3889 adev = to_acpi_device(dev); 3890 mutex_lock(&adev->physical_node_lock); 3891 list_for_each_entry(pn, 3892 &adev->physical_node_list, node) { 3893 group = iommu_group_get(pn->dev); 3894 if (group) { 3895 iommu_group_put(group); 3896 continue; 3897 } 3898 3899 pn->dev->bus->iommu_ops = &intel_iommu_ops; 3900 ret = iommu_probe_device(pn->dev); 3901 if (ret) 3902 break; 3903 } 3904 mutex_unlock(&adev->physical_node_lock); 3905 3906 if (ret) 3907 return ret; 3908 } 3909 } 3910 3911 return 0; 3912 } 3913 3914 static __init int tboot_force_iommu(void) 3915 { 3916 if (!tboot_enabled()) 3917 return 0; 3918 3919 if (no_iommu || dmar_disabled) 3920 pr_warn("Forcing Intel-IOMMU to enabled\n"); 3921 3922 dmar_disabled = 0; 3923 no_iommu = 0; 3924 3925 return 1; 3926 } 3927 3928 int __init intel_iommu_init(void) 3929 { 3930 int ret = -ENODEV; 3931 struct dmar_drhd_unit *drhd; 3932 struct intel_iommu *iommu; 3933 3934 /* 3935 * Intel IOMMU is required for a TXT/tboot launch or platform 3936 * opt in, so enforce that. 3937 */ 3938 force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) || 3939 platform_optin_force_iommu(); 3940 3941 down_write(&dmar_global_lock); 3942 if (dmar_table_init()) { 3943 if (force_on) 3944 panic("tboot: Failed to initialize DMAR table\n"); 3945 goto out_free_dmar; 3946 } 3947 3948 if (dmar_dev_scope_init() < 0) { 3949 if (force_on) 3950 panic("tboot: Failed to initialize DMAR device scope\n"); 3951 goto out_free_dmar; 3952 } 3953 3954 up_write(&dmar_global_lock); 3955 3956 /* 3957 * The bus notifier takes the dmar_global_lock, so lockdep will 3958 * complain later when we register it under the lock. 3959 */ 3960 dmar_register_bus_notifier(); 3961 3962 down_write(&dmar_global_lock); 3963 3964 if (!no_iommu) 3965 intel_iommu_debugfs_init(); 3966 3967 if (no_iommu || dmar_disabled) { 3968 /* 3969 * We exit the function here to ensure IOMMU's remapping and 3970 * mempool aren't setup, which means that the IOMMU's PMRs 3971 * won't be disabled via the call to init_dmars(). So disable 3972 * it explicitly here. The PMRs were setup by tboot prior to 3973 * calling SENTER, but the kernel is expected to reset/tear 3974 * down the PMRs. 3975 */ 3976 if (intel_iommu_tboot_noforce) { 3977 for_each_iommu(iommu, drhd) 3978 iommu_disable_protect_mem_regions(iommu); 3979 } 3980 3981 /* 3982 * Make sure the IOMMUs are switched off, even when we 3983 * boot into a kexec kernel and the previous kernel left 3984 * them enabled 3985 */ 3986 intel_disable_iommus(); 3987 goto out_free_dmar; 3988 } 3989 3990 if (list_empty(&dmar_rmrr_units)) 3991 pr_info("No RMRR found\n"); 3992 3993 if (list_empty(&dmar_atsr_units)) 3994 pr_info("No ATSR found\n"); 3995 3996 if (list_empty(&dmar_satc_units)) 3997 pr_info("No SATC found\n"); 3998 3999 init_no_remapping_devices(); 4000 4001 ret = init_dmars(); 4002 if (ret) { 4003 if (force_on) 4004 panic("tboot: Failed to initialize DMARs\n"); 4005 pr_err("Initialization failed\n"); 4006 goto out_free_dmar; 4007 } 4008 up_write(&dmar_global_lock); 4009 4010 init_iommu_pm_ops(); 4011 4012 down_read(&dmar_global_lock); 4013 for_each_active_iommu(iommu, drhd) { 4014 /* 4015 * The flush queue implementation does not perform 4016 * page-selective invalidations that are required for efficient 4017 * TLB flushes in virtual environments. The benefit of batching 4018 * is likely to be much lower than the overhead of synchronizing 4019 * the virtual and physical IOMMU page-tables. 4020 */ 4021 if (cap_caching_mode(iommu->cap)) { 4022 pr_info_once("IOMMU batching disallowed due to virtualization\n"); 4023 iommu_set_dma_strict(); 4024 } 4025 iommu_device_sysfs_add(&iommu->iommu, NULL, 4026 intel_iommu_groups, 4027 "%s", iommu->name); 4028 iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 4029 } 4030 up_read(&dmar_global_lock); 4031 4032 bus_set_iommu(&pci_bus_type, &intel_iommu_ops); 4033 if (si_domain && !hw_pass_through) 4034 register_memory_notifier(&intel_iommu_memory_nb); 4035 4036 down_read(&dmar_global_lock); 4037 if (probe_acpi_namespace_devices()) 4038 pr_warn("ACPI name space devices didn't probe correctly\n"); 4039 4040 /* Finally, we enable the DMA remapping hardware. */ 4041 for_each_iommu(iommu, drhd) { 4042 if (!drhd->ignored && !translation_pre_enabled(iommu)) 4043 iommu_enable_translation(iommu); 4044 4045 iommu_disable_protect_mem_regions(iommu); 4046 } 4047 up_read(&dmar_global_lock); 4048 4049 pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); 4050 4051 intel_iommu_enabled = 1; 4052 4053 return 0; 4054 4055 out_free_dmar: 4056 intel_iommu_free_dmars(); 4057 up_write(&dmar_global_lock); 4058 return ret; 4059 } 4060 4061 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) 4062 { 4063 struct device_domain_info *info = opaque; 4064 4065 domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff); 4066 return 0; 4067 } 4068 4069 /* 4070 * NB - intel-iommu lacks any sort of reference counting for the users of 4071 * dependent devices. If multiple endpoints have intersecting dependent 4072 * devices, unbinding the driver from any one of them will possibly leave 4073 * the others unable to operate. 4074 */ 4075 static void domain_context_clear(struct device_domain_info *info) 4076 { 4077 if (!info->iommu || !info->dev || !dev_is_pci(info->dev)) 4078 return; 4079 4080 pci_for_each_dma_alias(to_pci_dev(info->dev), 4081 &domain_context_clear_one_cb, info); 4082 } 4083 4084 static void dmar_remove_one_dev_info(struct device *dev) 4085 { 4086 struct device_domain_info *info = dev_iommu_priv_get(dev); 4087 struct dmar_domain *domain = info->domain; 4088 struct intel_iommu *iommu = info->iommu; 4089 unsigned long flags; 4090 4091 if (!dev_is_real_dma_subdevice(info->dev)) { 4092 if (dev_is_pci(info->dev) && sm_supported(iommu)) 4093 intel_pasid_tear_down_entry(iommu, info->dev, 4094 PASID_RID2PASID, false); 4095 4096 iommu_disable_dev_iotlb(info); 4097 domain_context_clear(info); 4098 intel_pasid_free_table(info->dev); 4099 } 4100 4101 spin_lock_irqsave(&domain->lock, flags); 4102 list_del(&info->link); 4103 spin_unlock_irqrestore(&domain->lock, flags); 4104 4105 domain_detach_iommu(domain, iommu); 4106 info->domain = NULL; 4107 } 4108 4109 static int md_domain_init(struct dmar_domain *domain, int guest_width) 4110 { 4111 int adjust_width; 4112 4113 /* calculate AGAW */ 4114 domain->gaw = guest_width; 4115 adjust_width = guestwidth_to_adjustwidth(guest_width); 4116 domain->agaw = width_to_agaw(adjust_width); 4117 4118 domain->iommu_coherency = false; 4119 domain->iommu_superpage = 0; 4120 domain->max_addr = 0; 4121 4122 /* always allocate the top pgd */ 4123 domain->pgd = alloc_pgtable_page(domain->nid); 4124 if (!domain->pgd) 4125 return -ENOMEM; 4126 domain_flush_cache(domain, domain->pgd, PAGE_SIZE); 4127 return 0; 4128 } 4129 4130 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type) 4131 { 4132 struct dmar_domain *dmar_domain; 4133 struct iommu_domain *domain; 4134 4135 switch (type) { 4136 case IOMMU_DOMAIN_DMA: 4137 case IOMMU_DOMAIN_DMA_FQ: 4138 case IOMMU_DOMAIN_UNMANAGED: 4139 dmar_domain = alloc_domain(type); 4140 if (!dmar_domain) { 4141 pr_err("Can't allocate dmar_domain\n"); 4142 return NULL; 4143 } 4144 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { 4145 pr_err("Domain initialization failed\n"); 4146 domain_exit(dmar_domain); 4147 return NULL; 4148 } 4149 4150 domain = &dmar_domain->domain; 4151 domain->geometry.aperture_start = 0; 4152 domain->geometry.aperture_end = 4153 __DOMAIN_MAX_ADDR(dmar_domain->gaw); 4154 domain->geometry.force_aperture = true; 4155 4156 return domain; 4157 case IOMMU_DOMAIN_IDENTITY: 4158 return &si_domain->domain; 4159 default: 4160 return NULL; 4161 } 4162 4163 return NULL; 4164 } 4165 4166 static void intel_iommu_domain_free(struct iommu_domain *domain) 4167 { 4168 if (domain != &si_domain->domain) 4169 domain_exit(to_dmar_domain(domain)); 4170 } 4171 4172 static int prepare_domain_attach_device(struct iommu_domain *domain, 4173 struct device *dev) 4174 { 4175 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4176 struct intel_iommu *iommu; 4177 int addr_width; 4178 4179 iommu = device_to_iommu(dev, NULL, NULL); 4180 if (!iommu) 4181 return -ENODEV; 4182 4183 if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap)) 4184 return -EOPNOTSUPP; 4185 4186 /* check if this iommu agaw is sufficient for max mapped address */ 4187 addr_width = agaw_to_width(iommu->agaw); 4188 if (addr_width > cap_mgaw(iommu->cap)) 4189 addr_width = cap_mgaw(iommu->cap); 4190 4191 if (dmar_domain->max_addr > (1LL << addr_width)) { 4192 dev_err(dev, "%s: iommu width (%d) is not " 4193 "sufficient for the mapped address (%llx)\n", 4194 __func__, addr_width, dmar_domain->max_addr); 4195 return -EFAULT; 4196 } 4197 dmar_domain->gaw = addr_width; 4198 4199 /* 4200 * Knock out extra levels of page tables if necessary 4201 */ 4202 while (iommu->agaw < dmar_domain->agaw) { 4203 struct dma_pte *pte; 4204 4205 pte = dmar_domain->pgd; 4206 if (dma_pte_present(pte)) { 4207 dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte)); 4208 free_pgtable_page(pte); 4209 } 4210 dmar_domain->agaw--; 4211 } 4212 4213 return 0; 4214 } 4215 4216 static int intel_iommu_attach_device(struct iommu_domain *domain, 4217 struct device *dev) 4218 { 4219 int ret; 4220 4221 if (domain->type == IOMMU_DOMAIN_UNMANAGED && 4222 device_is_rmrr_locked(dev)) { 4223 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n"); 4224 return -EPERM; 4225 } 4226 4227 /* normally dev is not mapped */ 4228 if (unlikely(domain_context_mapped(dev))) { 4229 struct device_domain_info *info = dev_iommu_priv_get(dev); 4230 4231 if (info->domain) 4232 dmar_remove_one_dev_info(dev); 4233 } 4234 4235 ret = prepare_domain_attach_device(domain, dev); 4236 if (ret) 4237 return ret; 4238 4239 return domain_add_dev_info(to_dmar_domain(domain), dev); 4240 } 4241 4242 static void intel_iommu_detach_device(struct iommu_domain *domain, 4243 struct device *dev) 4244 { 4245 dmar_remove_one_dev_info(dev); 4246 } 4247 4248 static int intel_iommu_map(struct iommu_domain *domain, 4249 unsigned long iova, phys_addr_t hpa, 4250 size_t size, int iommu_prot, gfp_t gfp) 4251 { 4252 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4253 u64 max_addr; 4254 int prot = 0; 4255 4256 if (iommu_prot & IOMMU_READ) 4257 prot |= DMA_PTE_READ; 4258 if (iommu_prot & IOMMU_WRITE) 4259 prot |= DMA_PTE_WRITE; 4260 if (dmar_domain->set_pte_snp) 4261 prot |= DMA_PTE_SNP; 4262 4263 max_addr = iova + size; 4264 if (dmar_domain->max_addr < max_addr) { 4265 u64 end; 4266 4267 /* check if minimum agaw is sufficient for mapped address */ 4268 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; 4269 if (end < max_addr) { 4270 pr_err("%s: iommu width (%d) is not " 4271 "sufficient for the mapped address (%llx)\n", 4272 __func__, dmar_domain->gaw, max_addr); 4273 return -EFAULT; 4274 } 4275 dmar_domain->max_addr = max_addr; 4276 } 4277 /* Round up size to next multiple of PAGE_SIZE, if it and 4278 the low bits of hpa would take us onto the next page */ 4279 size = aligned_nrpages(hpa, size); 4280 return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, 4281 hpa >> VTD_PAGE_SHIFT, size, prot); 4282 } 4283 4284 static int intel_iommu_map_pages(struct iommu_domain *domain, 4285 unsigned long iova, phys_addr_t paddr, 4286 size_t pgsize, size_t pgcount, 4287 int prot, gfp_t gfp, size_t *mapped) 4288 { 4289 unsigned long pgshift = __ffs(pgsize); 4290 size_t size = pgcount << pgshift; 4291 int ret; 4292 4293 if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G) 4294 return -EINVAL; 4295 4296 if (!IS_ALIGNED(iova | paddr, pgsize)) 4297 return -EINVAL; 4298 4299 ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp); 4300 if (!ret && mapped) 4301 *mapped = size; 4302 4303 return ret; 4304 } 4305 4306 static size_t intel_iommu_unmap(struct iommu_domain *domain, 4307 unsigned long iova, size_t size, 4308 struct iommu_iotlb_gather *gather) 4309 { 4310 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4311 unsigned long start_pfn, last_pfn; 4312 int level = 0; 4313 4314 /* Cope with horrid API which requires us to unmap more than the 4315 size argument if it happens to be a large-page mapping. */ 4316 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level)); 4317 4318 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) 4319 size = VTD_PAGE_SIZE << level_to_offset_bits(level); 4320 4321 start_pfn = iova >> VTD_PAGE_SHIFT; 4322 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; 4323 4324 domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist); 4325 4326 if (dmar_domain->max_addr == iova + size) 4327 dmar_domain->max_addr = iova; 4328 4329 iommu_iotlb_gather_add_page(domain, gather, iova, size); 4330 4331 return size; 4332 } 4333 4334 static size_t intel_iommu_unmap_pages(struct iommu_domain *domain, 4335 unsigned long iova, 4336 size_t pgsize, size_t pgcount, 4337 struct iommu_iotlb_gather *gather) 4338 { 4339 unsigned long pgshift = __ffs(pgsize); 4340 size_t size = pgcount << pgshift; 4341 4342 return intel_iommu_unmap(domain, iova, size, gather); 4343 } 4344 4345 static void intel_iommu_tlb_sync(struct iommu_domain *domain, 4346 struct iommu_iotlb_gather *gather) 4347 { 4348 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4349 unsigned long iova_pfn = IOVA_PFN(gather->start); 4350 size_t size = gather->end - gather->start; 4351 struct iommu_domain_info *info; 4352 unsigned long start_pfn; 4353 unsigned long nrpages; 4354 unsigned long i; 4355 4356 nrpages = aligned_nrpages(gather->start, size); 4357 start_pfn = mm_to_dma_pfn(iova_pfn); 4358 4359 xa_for_each(&dmar_domain->iommu_array, i, info) 4360 iommu_flush_iotlb_psi(info->iommu, dmar_domain, 4361 start_pfn, nrpages, 4362 list_empty(&gather->freelist), 0); 4363 4364 put_pages_list(&gather->freelist); 4365 } 4366 4367 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, 4368 dma_addr_t iova) 4369 { 4370 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4371 struct dma_pte *pte; 4372 int level = 0; 4373 u64 phys = 0; 4374 4375 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level); 4376 if (pte && dma_pte_present(pte)) 4377 phys = dma_pte_addr(pte) + 4378 (iova & (BIT_MASK(level_to_offset_bits(level) + 4379 VTD_PAGE_SHIFT) - 1)); 4380 4381 return phys; 4382 } 4383 4384 static bool domain_support_force_snooping(struct dmar_domain *domain) 4385 { 4386 struct device_domain_info *info; 4387 bool support = true; 4388 4389 assert_spin_locked(&domain->lock); 4390 list_for_each_entry(info, &domain->devices, link) { 4391 if (!ecap_sc_support(info->iommu->ecap)) { 4392 support = false; 4393 break; 4394 } 4395 } 4396 4397 return support; 4398 } 4399 4400 static void domain_set_force_snooping(struct dmar_domain *domain) 4401 { 4402 struct device_domain_info *info; 4403 4404 assert_spin_locked(&domain->lock); 4405 /* 4406 * Second level page table supports per-PTE snoop control. The 4407 * iommu_map() interface will handle this by setting SNP bit. 4408 */ 4409 if (!domain_use_first_level(domain)) { 4410 domain->set_pte_snp = true; 4411 return; 4412 } 4413 4414 list_for_each_entry(info, &domain->devices, link) 4415 intel_pasid_setup_page_snoop_control(info->iommu, info->dev, 4416 PASID_RID2PASID); 4417 } 4418 4419 static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain) 4420 { 4421 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4422 unsigned long flags; 4423 4424 if (dmar_domain->force_snooping) 4425 return true; 4426 4427 spin_lock_irqsave(&dmar_domain->lock, flags); 4428 if (!domain_support_force_snooping(dmar_domain)) { 4429 spin_unlock_irqrestore(&dmar_domain->lock, flags); 4430 return false; 4431 } 4432 4433 domain_set_force_snooping(dmar_domain); 4434 dmar_domain->force_snooping = true; 4435 spin_unlock_irqrestore(&dmar_domain->lock, flags); 4436 4437 return true; 4438 } 4439 4440 static bool intel_iommu_capable(enum iommu_cap cap) 4441 { 4442 if (cap == IOMMU_CAP_CACHE_COHERENCY) 4443 return true; 4444 if (cap == IOMMU_CAP_INTR_REMAP) 4445 return irq_remapping_enabled == 1; 4446 if (cap == IOMMU_CAP_PRE_BOOT_PROTECTION) 4447 return dmar_platform_optin(); 4448 4449 return false; 4450 } 4451 4452 static struct iommu_device *intel_iommu_probe_device(struct device *dev) 4453 { 4454 struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL; 4455 struct device_domain_info *info; 4456 struct intel_iommu *iommu; 4457 u8 bus, devfn; 4458 4459 iommu = device_to_iommu(dev, &bus, &devfn); 4460 if (!iommu) 4461 return ERR_PTR(-ENODEV); 4462 4463 info = kzalloc(sizeof(*info), GFP_KERNEL); 4464 if (!info) 4465 return ERR_PTR(-ENOMEM); 4466 4467 if (dev_is_real_dma_subdevice(dev)) { 4468 info->bus = pdev->bus->number; 4469 info->devfn = pdev->devfn; 4470 info->segment = pci_domain_nr(pdev->bus); 4471 } else { 4472 info->bus = bus; 4473 info->devfn = devfn; 4474 info->segment = iommu->segment; 4475 } 4476 4477 info->dev = dev; 4478 info->iommu = iommu; 4479 if (dev_is_pci(dev)) { 4480 if (ecap_dev_iotlb_support(iommu->ecap) && 4481 pci_ats_supported(pdev) && 4482 dmar_ats_supported(pdev, iommu)) 4483 info->ats_supported = 1; 4484 4485 if (sm_supported(iommu)) { 4486 if (pasid_supported(iommu)) { 4487 int features = pci_pasid_features(pdev); 4488 4489 if (features >= 0) 4490 info->pasid_supported = features | 1; 4491 } 4492 4493 if (info->ats_supported && ecap_prs(iommu->ecap) && 4494 pci_pri_supported(pdev)) 4495 info->pri_supported = 1; 4496 } 4497 } 4498 4499 dev_iommu_priv_set(dev, info); 4500 4501 return &iommu->iommu; 4502 } 4503 4504 static void intel_iommu_release_device(struct device *dev) 4505 { 4506 struct device_domain_info *info = dev_iommu_priv_get(dev); 4507 4508 dmar_remove_one_dev_info(dev); 4509 dev_iommu_priv_set(dev, NULL); 4510 kfree(info); 4511 set_dma_ops(dev, NULL); 4512 } 4513 4514 static void intel_iommu_probe_finalize(struct device *dev) 4515 { 4516 set_dma_ops(dev, NULL); 4517 iommu_setup_dma_ops(dev, 0, U64_MAX); 4518 } 4519 4520 static void intel_iommu_get_resv_regions(struct device *device, 4521 struct list_head *head) 4522 { 4523 int prot = DMA_PTE_READ | DMA_PTE_WRITE; 4524 struct iommu_resv_region *reg; 4525 struct dmar_rmrr_unit *rmrr; 4526 struct device *i_dev; 4527 int i; 4528 4529 down_read(&dmar_global_lock); 4530 for_each_rmrr_units(rmrr) { 4531 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, 4532 i, i_dev) { 4533 struct iommu_resv_region *resv; 4534 enum iommu_resv_type type; 4535 size_t length; 4536 4537 if (i_dev != device && 4538 !is_downstream_to_pci_bridge(device, i_dev)) 4539 continue; 4540 4541 length = rmrr->end_address - rmrr->base_address + 1; 4542 4543 type = device_rmrr_is_relaxable(device) ? 4544 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT; 4545 4546 resv = iommu_alloc_resv_region(rmrr->base_address, 4547 length, prot, type); 4548 if (!resv) 4549 break; 4550 4551 list_add_tail(&resv->list, head); 4552 } 4553 } 4554 up_read(&dmar_global_lock); 4555 4556 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA 4557 if (dev_is_pci(device)) { 4558 struct pci_dev *pdev = to_pci_dev(device); 4559 4560 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) { 4561 reg = iommu_alloc_resv_region(0, 1UL << 24, prot, 4562 IOMMU_RESV_DIRECT_RELAXABLE); 4563 if (reg) 4564 list_add_tail(®->list, head); 4565 } 4566 } 4567 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */ 4568 4569 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, 4570 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, 4571 0, IOMMU_RESV_MSI); 4572 if (!reg) 4573 return; 4574 list_add_tail(®->list, head); 4575 } 4576 4577 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev) 4578 { 4579 struct device_domain_info *info = dev_iommu_priv_get(dev); 4580 struct context_entry *context; 4581 struct dmar_domain *domain; 4582 u64 ctx_lo; 4583 int ret; 4584 4585 domain = info->domain; 4586 if (!domain) 4587 return -EINVAL; 4588 4589 spin_lock(&iommu->lock); 4590 ret = -EINVAL; 4591 if (!info->pasid_supported) 4592 goto out; 4593 4594 context = iommu_context_addr(iommu, info->bus, info->devfn, 0); 4595 if (WARN_ON(!context)) 4596 goto out; 4597 4598 ctx_lo = context[0].lo; 4599 4600 if (!(ctx_lo & CONTEXT_PASIDE)) { 4601 ctx_lo |= CONTEXT_PASIDE; 4602 context[0].lo = ctx_lo; 4603 wmb(); 4604 iommu->flush.flush_context(iommu, 4605 domain_id_iommu(domain, iommu), 4606 PCI_DEVID(info->bus, info->devfn), 4607 DMA_CCMD_MASK_NOBIT, 4608 DMA_CCMD_DEVICE_INVL); 4609 } 4610 4611 /* Enable PASID support in the device, if it wasn't already */ 4612 if (!info->pasid_enabled) 4613 iommu_enable_dev_iotlb(info); 4614 4615 ret = 0; 4616 4617 out: 4618 spin_unlock(&iommu->lock); 4619 4620 return ret; 4621 } 4622 4623 static struct iommu_group *intel_iommu_device_group(struct device *dev) 4624 { 4625 if (dev_is_pci(dev)) 4626 return pci_device_group(dev); 4627 return generic_device_group(dev); 4628 } 4629 4630 static int intel_iommu_enable_sva(struct device *dev) 4631 { 4632 struct device_domain_info *info = dev_iommu_priv_get(dev); 4633 struct intel_iommu *iommu; 4634 int ret; 4635 4636 if (!info || dmar_disabled) 4637 return -EINVAL; 4638 4639 iommu = info->iommu; 4640 if (!iommu) 4641 return -EINVAL; 4642 4643 if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE)) 4644 return -ENODEV; 4645 4646 if (intel_iommu_enable_pasid(iommu, dev)) 4647 return -ENODEV; 4648 4649 if (!info->pasid_enabled || !info->pri_enabled || !info->ats_enabled) 4650 return -EINVAL; 4651 4652 ret = iopf_queue_add_device(iommu->iopf_queue, dev); 4653 if (!ret) 4654 ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev); 4655 4656 return ret; 4657 } 4658 4659 static int intel_iommu_disable_sva(struct device *dev) 4660 { 4661 struct device_domain_info *info = dev_iommu_priv_get(dev); 4662 struct intel_iommu *iommu = info->iommu; 4663 int ret; 4664 4665 ret = iommu_unregister_device_fault_handler(dev); 4666 if (!ret) 4667 ret = iopf_queue_remove_device(iommu->iopf_queue, dev); 4668 4669 return ret; 4670 } 4671 4672 static int intel_iommu_enable_iopf(struct device *dev) 4673 { 4674 struct device_domain_info *info = dev_iommu_priv_get(dev); 4675 4676 if (info && info->pri_supported) 4677 return 0; 4678 4679 return -ENODEV; 4680 } 4681 4682 static int 4683 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat) 4684 { 4685 switch (feat) { 4686 case IOMMU_DEV_FEAT_IOPF: 4687 return intel_iommu_enable_iopf(dev); 4688 4689 case IOMMU_DEV_FEAT_SVA: 4690 return intel_iommu_enable_sva(dev); 4691 4692 default: 4693 return -ENODEV; 4694 } 4695 } 4696 4697 static int 4698 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat) 4699 { 4700 switch (feat) { 4701 case IOMMU_DEV_FEAT_IOPF: 4702 return 0; 4703 4704 case IOMMU_DEV_FEAT_SVA: 4705 return intel_iommu_disable_sva(dev); 4706 4707 default: 4708 return -ENODEV; 4709 } 4710 } 4711 4712 static bool intel_iommu_is_attach_deferred(struct device *dev) 4713 { 4714 struct device_domain_info *info = dev_iommu_priv_get(dev); 4715 4716 return translation_pre_enabled(info->iommu) && !info->domain; 4717 } 4718 4719 /* 4720 * Check that the device does not live on an external facing PCI port that is 4721 * marked as untrusted. Such devices should not be able to apply quirks and 4722 * thus not be able to bypass the IOMMU restrictions. 4723 */ 4724 static bool risky_device(struct pci_dev *pdev) 4725 { 4726 if (pdev->untrusted) { 4727 pci_info(pdev, 4728 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n", 4729 pdev->vendor, pdev->device); 4730 pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n"); 4731 return true; 4732 } 4733 return false; 4734 } 4735 4736 static void intel_iommu_iotlb_sync_map(struct iommu_domain *domain, 4737 unsigned long iova, size_t size) 4738 { 4739 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4740 unsigned long pages = aligned_nrpages(iova, size); 4741 unsigned long pfn = iova >> VTD_PAGE_SHIFT; 4742 struct iommu_domain_info *info; 4743 unsigned long i; 4744 4745 xa_for_each(&dmar_domain->iommu_array, i, info) 4746 __mapping_notify_one(info->iommu, dmar_domain, pfn, pages); 4747 } 4748 4749 const struct iommu_ops intel_iommu_ops = { 4750 .capable = intel_iommu_capable, 4751 .domain_alloc = intel_iommu_domain_alloc, 4752 .probe_device = intel_iommu_probe_device, 4753 .probe_finalize = intel_iommu_probe_finalize, 4754 .release_device = intel_iommu_release_device, 4755 .get_resv_regions = intel_iommu_get_resv_regions, 4756 .device_group = intel_iommu_device_group, 4757 .dev_enable_feat = intel_iommu_dev_enable_feat, 4758 .dev_disable_feat = intel_iommu_dev_disable_feat, 4759 .is_attach_deferred = intel_iommu_is_attach_deferred, 4760 .def_domain_type = device_def_domain_type, 4761 .pgsize_bitmap = SZ_4K, 4762 #ifdef CONFIG_INTEL_IOMMU_SVM 4763 .sva_bind = intel_svm_bind, 4764 .sva_unbind = intel_svm_unbind, 4765 .sva_get_pasid = intel_svm_get_pasid, 4766 .page_response = intel_svm_page_response, 4767 #endif 4768 .default_domain_ops = &(const struct iommu_domain_ops) { 4769 .attach_dev = intel_iommu_attach_device, 4770 .detach_dev = intel_iommu_detach_device, 4771 .map_pages = intel_iommu_map_pages, 4772 .unmap_pages = intel_iommu_unmap_pages, 4773 .iotlb_sync_map = intel_iommu_iotlb_sync_map, 4774 .flush_iotlb_all = intel_flush_iotlb_all, 4775 .iotlb_sync = intel_iommu_tlb_sync, 4776 .iova_to_phys = intel_iommu_iova_to_phys, 4777 .free = intel_iommu_domain_free, 4778 .enforce_cache_coherency = intel_iommu_enforce_cache_coherency, 4779 } 4780 }; 4781 4782 static void quirk_iommu_igfx(struct pci_dev *dev) 4783 { 4784 if (risky_device(dev)) 4785 return; 4786 4787 pci_info(dev, "Disabling IOMMU for graphics on this chipset\n"); 4788 dmar_map_gfx = 0; 4789 } 4790 4791 /* G4x/GM45 integrated gfx dmar support is totally busted. */ 4792 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx); 4793 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx); 4794 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx); 4795 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx); 4796 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx); 4797 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx); 4798 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx); 4799 4800 /* Broadwell igfx malfunctions with dmar */ 4801 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx); 4802 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx); 4803 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx); 4804 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx); 4805 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx); 4806 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx); 4807 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx); 4808 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx); 4809 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx); 4810 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx); 4811 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx); 4812 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx); 4813 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx); 4814 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx); 4815 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx); 4816 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx); 4817 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx); 4818 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx); 4819 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx); 4820 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx); 4821 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx); 4822 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx); 4823 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx); 4824 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx); 4825 4826 static void quirk_iommu_rwbf(struct pci_dev *dev) 4827 { 4828 if (risky_device(dev)) 4829 return; 4830 4831 /* 4832 * Mobile 4 Series Chipset neglects to set RWBF capability, 4833 * but needs it. Same seems to hold for the desktop versions. 4834 */ 4835 pci_info(dev, "Forcing write-buffer flush capability\n"); 4836 rwbf_quirk = 1; 4837 } 4838 4839 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); 4840 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); 4841 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); 4842 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); 4843 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); 4844 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); 4845 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); 4846 4847 #define GGC 0x52 4848 #define GGC_MEMORY_SIZE_MASK (0xf << 8) 4849 #define GGC_MEMORY_SIZE_NONE (0x0 << 8) 4850 #define GGC_MEMORY_SIZE_1M (0x1 << 8) 4851 #define GGC_MEMORY_SIZE_2M (0x3 << 8) 4852 #define GGC_MEMORY_VT_ENABLED (0x8 << 8) 4853 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) 4854 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) 4855 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) 4856 4857 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) 4858 { 4859 unsigned short ggc; 4860 4861 if (risky_device(dev)) 4862 return; 4863 4864 if (pci_read_config_word(dev, GGC, &ggc)) 4865 return; 4866 4867 if (!(ggc & GGC_MEMORY_VT_ENABLED)) { 4868 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); 4869 dmar_map_gfx = 0; 4870 } else if (dmar_map_gfx) { 4871 /* we have to ensure the gfx device is idle before we flush */ 4872 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n"); 4873 iommu_set_dma_strict(); 4874 } 4875 } 4876 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); 4877 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); 4878 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); 4879 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); 4880 4881 static void quirk_igfx_skip_te_disable(struct pci_dev *dev) 4882 { 4883 unsigned short ver; 4884 4885 if (!IS_GFX_DEVICE(dev)) 4886 return; 4887 4888 ver = (dev->device >> 8) & 0xff; 4889 if (ver != 0x45 && ver != 0x46 && ver != 0x4c && 4890 ver != 0x4e && ver != 0x8a && ver != 0x98 && 4891 ver != 0x9a && ver != 0xa7) 4892 return; 4893 4894 if (risky_device(dev)) 4895 return; 4896 4897 pci_info(dev, "Skip IOMMU disabling for graphics\n"); 4898 iommu_skip_te_disable = 1; 4899 } 4900 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable); 4901 4902 /* On Tylersburg chipsets, some BIOSes have been known to enable the 4903 ISOCH DMAR unit for the Azalia sound device, but not give it any 4904 TLB entries, which causes it to deadlock. Check for that. We do 4905 this in a function called from init_dmars(), instead of in a PCI 4906 quirk, because we don't want to print the obnoxious "BIOS broken" 4907 message if VT-d is actually disabled. 4908 */ 4909 static void __init check_tylersburg_isoch(void) 4910 { 4911 struct pci_dev *pdev; 4912 uint32_t vtisochctrl; 4913 4914 /* If there's no Azalia in the system anyway, forget it. */ 4915 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); 4916 if (!pdev) 4917 return; 4918 4919 if (risky_device(pdev)) { 4920 pci_dev_put(pdev); 4921 return; 4922 } 4923 4924 pci_dev_put(pdev); 4925 4926 /* System Management Registers. Might be hidden, in which case 4927 we can't do the sanity check. But that's OK, because the 4928 known-broken BIOSes _don't_ actually hide it, so far. */ 4929 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); 4930 if (!pdev) 4931 return; 4932 4933 if (risky_device(pdev)) { 4934 pci_dev_put(pdev); 4935 return; 4936 } 4937 4938 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { 4939 pci_dev_put(pdev); 4940 return; 4941 } 4942 4943 pci_dev_put(pdev); 4944 4945 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ 4946 if (vtisochctrl & 1) 4947 return; 4948 4949 /* Drop all bits other than the number of TLB entries */ 4950 vtisochctrl &= 0x1c; 4951 4952 /* If we have the recommended number of TLB entries (16), fine. */ 4953 if (vtisochctrl == 0x10) 4954 return; 4955 4956 /* Zero TLB entries? You get to ride the short bus to school. */ 4957 if (!vtisochctrl) { 4958 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" 4959 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 4960 dmi_get_system_info(DMI_BIOS_VENDOR), 4961 dmi_get_system_info(DMI_BIOS_VERSION), 4962 dmi_get_system_info(DMI_PRODUCT_VERSION)); 4963 iommu_identity_mapping |= IDENTMAP_AZALIA; 4964 return; 4965 } 4966 4967 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", 4968 vtisochctrl); 4969 } 4970