1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/timer.h> 23 #include <linux/irq.h> 24 #include <linux/interrupt.h> 25 #include <linux/tboot.h> 26 #include <linux/dmi.h> 27 #include <linux/slab.h> 28 #include <linux/iommu.h> 29 #include <linux/numa.h> 30 #include <linux/limits.h> 31 #include <asm/irq_remapping.h> 32 33 #include "iommu.h" 34 #include "../irq_remapping.h" 35 #include "../iommu-pages.h" 36 #include "perf.h" 37 #include "trace.h" 38 #include "perfmon.h" 39 40 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 41 struct dmar_res_callback { 42 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 43 void *arg[ACPI_DMAR_TYPE_RESERVED]; 44 bool ignore_unhandled; 45 bool print_entry; 46 }; 47 48 /* 49 * Assumptions: 50 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 51 * before IO devices managed by that unit. 52 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 53 * after IO devices managed by that unit. 54 * 3) Hotplug events are rare. 55 * 56 * Locking rules for DMA and interrupt remapping related global data structures: 57 * 1) Use dmar_global_lock in process context 58 * 2) Use RCU in interrupt context 59 */ 60 DECLARE_RWSEM(dmar_global_lock); 61 LIST_HEAD(dmar_drhd_units); 62 63 struct acpi_table_header * __initdata dmar_tbl; 64 static int dmar_dev_scope_status = 1; 65 static DEFINE_IDA(dmar_seq_ids); 66 67 static int alloc_iommu(struct dmar_drhd_unit *drhd); 68 static void free_iommu(struct intel_iommu *iommu); 69 70 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 71 { 72 /* 73 * add INCLUDE_ALL at the tail, so scan the list will find it at 74 * the very end. 75 */ 76 if (drhd->include_all) 77 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 78 else 79 list_add_rcu(&drhd->list, &dmar_drhd_units); 80 } 81 82 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 83 { 84 struct acpi_dmar_device_scope *scope; 85 86 *cnt = 0; 87 while (start < end) { 88 scope = start; 89 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 91 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 92 (*cnt)++; 93 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 94 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 95 pr_warn("Unsupported device scope\n"); 96 } 97 start += scope->length; 98 } 99 if (*cnt == 0) 100 return NULL; 101 102 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 103 } 104 105 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 106 { 107 int i; 108 struct device *tmp_dev; 109 110 if (*devices && *cnt) { 111 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 112 put_device(tmp_dev); 113 kfree(*devices); 114 } 115 116 *devices = NULL; 117 *cnt = 0; 118 } 119 120 /* Optimize out kzalloc()/kfree() for normal cases */ 121 static char dmar_pci_notify_info_buf[64]; 122 123 static struct dmar_pci_notify_info * 124 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 125 { 126 int level = 0; 127 size_t size; 128 struct pci_dev *tmp; 129 struct dmar_pci_notify_info *info; 130 131 /* 132 * Ignore devices that have a domain number higher than what can 133 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 134 */ 135 if (pci_domain_nr(dev->bus) > U16_MAX) 136 return NULL; 137 138 /* Only generate path[] for device addition event */ 139 if (event == BUS_NOTIFY_ADD_DEVICE) 140 for (tmp = dev; tmp; tmp = tmp->bus->self) 141 level++; 142 143 size = struct_size(info, path, level); 144 if (size <= sizeof(dmar_pci_notify_info_buf)) { 145 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 146 } else { 147 info = kzalloc(size, GFP_KERNEL); 148 if (!info) { 149 if (dmar_dev_scope_status == 0) 150 dmar_dev_scope_status = -ENOMEM; 151 return NULL; 152 } 153 } 154 155 info->event = event; 156 info->dev = dev; 157 info->seg = pci_domain_nr(dev->bus); 158 info->level = level; 159 if (event == BUS_NOTIFY_ADD_DEVICE) { 160 for (tmp = dev; tmp; tmp = tmp->bus->self) { 161 level--; 162 info->path[level].bus = tmp->bus->number; 163 info->path[level].device = PCI_SLOT(tmp->devfn); 164 info->path[level].function = PCI_FUNC(tmp->devfn); 165 if (pci_is_root_bus(tmp->bus)) 166 info->bus = tmp->bus->number; 167 } 168 } 169 170 return info; 171 } 172 173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 174 { 175 if ((void *)info != dmar_pci_notify_info_buf) 176 kfree(info); 177 } 178 179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 180 struct acpi_dmar_pci_path *path, int count) 181 { 182 int i; 183 184 if (info->bus != bus) 185 goto fallback; 186 if (info->level != count) 187 goto fallback; 188 189 for (i = 0; i < count; i++) { 190 if (path[i].device != info->path[i].device || 191 path[i].function != info->path[i].function) 192 goto fallback; 193 } 194 195 return true; 196 197 fallback: 198 199 if (count != 1) 200 return false; 201 202 i = info->level - 1; 203 if (bus == info->path[i].bus && 204 path[0].device == info->path[i].device && 205 path[0].function == info->path[i].function) { 206 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 207 bus, path[0].device, path[0].function); 208 return true; 209 } 210 211 return false; 212 } 213 214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 216 void *start, void*end, u16 segment, 217 struct dmar_dev_scope *devices, 218 int devices_cnt) 219 { 220 int i, level; 221 struct device *tmp, *dev = &info->dev->dev; 222 struct acpi_dmar_device_scope *scope; 223 struct acpi_dmar_pci_path *path; 224 225 if (segment != info->seg) 226 return 0; 227 228 for (; start < end; start += scope->length) { 229 scope = start; 230 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 231 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 232 continue; 233 234 path = (struct acpi_dmar_pci_path *)(scope + 1); 235 level = (scope->length - sizeof(*scope)) / sizeof(*path); 236 if (!dmar_match_pci_path(info, scope->bus, path, level)) 237 continue; 238 239 /* 240 * We expect devices with endpoint scope to have normal PCI 241 * headers, and devices with bridge scope to have bridge PCI 242 * headers. However PCI NTB devices may be listed in the 243 * DMAR table with bridge scope, even though they have a 244 * normal PCI header. NTB devices are identified by class 245 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 246 * for this special case. 247 */ 248 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 249 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 250 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 251 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 252 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 253 pr_warn("Device scope type does not match for %s\n", 254 pci_name(info->dev)); 255 return -EINVAL; 256 } 257 258 for_each_dev_scope(devices, devices_cnt, i, tmp) 259 if (tmp == NULL) { 260 devices[i].bus = info->dev->bus->number; 261 devices[i].devfn = info->dev->devfn; 262 rcu_assign_pointer(devices[i].dev, 263 get_device(dev)); 264 return 1; 265 } 266 if (WARN_ON(i >= devices_cnt)) 267 return -EINVAL; 268 } 269 270 return 0; 271 } 272 273 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 274 struct dmar_dev_scope *devices, int count) 275 { 276 int index; 277 struct device *tmp; 278 279 if (info->seg != segment) 280 return 0; 281 282 for_each_active_dev_scope(devices, count, index, tmp) 283 if (tmp == &info->dev->dev) { 284 RCU_INIT_POINTER(devices[index].dev, NULL); 285 synchronize_rcu(); 286 put_device(tmp); 287 return 1; 288 } 289 290 return 0; 291 } 292 293 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 294 { 295 int ret = 0; 296 struct dmar_drhd_unit *dmaru; 297 struct acpi_dmar_hardware_unit *drhd; 298 299 for_each_drhd_unit(dmaru) { 300 if (dmaru->include_all) 301 continue; 302 303 drhd = container_of(dmaru->hdr, 304 struct acpi_dmar_hardware_unit, header); 305 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 306 ((void *)drhd) + drhd->header.length, 307 dmaru->segment, 308 dmaru->devices, dmaru->devices_cnt); 309 if (ret) 310 break; 311 } 312 if (ret >= 0) 313 ret = dmar_iommu_notify_scope_dev(info); 314 if (ret < 0 && dmar_dev_scope_status == 0) 315 dmar_dev_scope_status = ret; 316 317 if (ret >= 0) 318 intel_irq_remap_add_device(info); 319 320 return ret; 321 } 322 323 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 324 { 325 struct dmar_drhd_unit *dmaru; 326 327 for_each_drhd_unit(dmaru) 328 if (dmar_remove_dev_scope(info, dmaru->segment, 329 dmaru->devices, dmaru->devices_cnt)) 330 break; 331 dmar_iommu_notify_scope_dev(info); 332 } 333 334 static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 335 { 336 struct pci_dev *physfn = pci_physfn(pdev); 337 338 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); 339 } 340 341 static int dmar_pci_bus_notifier(struct notifier_block *nb, 342 unsigned long action, void *data) 343 { 344 struct pci_dev *pdev = to_pci_dev(data); 345 struct dmar_pci_notify_info *info; 346 347 /* Only care about add/remove events for physical functions. 348 * For VFs we actually do the lookup based on the corresponding 349 * PF in device_to_iommu() anyway. */ 350 if (pdev->is_virtfn) { 351 /* 352 * Ensure that the VF device inherits the irq domain of the 353 * PF device. Ideally the device would inherit the domain 354 * from the bus, but DMAR can have multiple units per bus 355 * which makes this impossible. The VF 'bus' could inherit 356 * from the PF device, but that's yet another x86'sism to 357 * inflict on everybody else. 358 */ 359 if (action == BUS_NOTIFY_ADD_DEVICE) 360 vf_inherit_msi_domain(pdev); 361 return NOTIFY_DONE; 362 } 363 364 if (action != BUS_NOTIFY_ADD_DEVICE && 365 action != BUS_NOTIFY_REMOVED_DEVICE) 366 return NOTIFY_DONE; 367 368 info = dmar_alloc_pci_notify_info(pdev, action); 369 if (!info) 370 return NOTIFY_DONE; 371 372 down_write(&dmar_global_lock); 373 if (action == BUS_NOTIFY_ADD_DEVICE) 374 dmar_pci_bus_add_dev(info); 375 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 376 dmar_pci_bus_del_dev(info); 377 up_write(&dmar_global_lock); 378 379 dmar_free_pci_notify_info(info); 380 381 return NOTIFY_OK; 382 } 383 384 static struct notifier_block dmar_pci_bus_nb = { 385 .notifier_call = dmar_pci_bus_notifier, 386 .priority = 1, 387 }; 388 389 static struct dmar_drhd_unit * 390 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 391 { 392 struct dmar_drhd_unit *dmaru; 393 394 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 395 dmar_rcu_check()) 396 if (dmaru->segment == drhd->segment && 397 dmaru->reg_base_addr == drhd->address) 398 return dmaru; 399 400 return NULL; 401 } 402 403 /* 404 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 405 * structure which uniquely represent one DMA remapping hardware unit 406 * present in the platform 407 */ 408 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 409 { 410 struct acpi_dmar_hardware_unit *drhd; 411 struct dmar_drhd_unit *dmaru; 412 int ret; 413 414 drhd = (struct acpi_dmar_hardware_unit *)header; 415 dmaru = dmar_find_dmaru(drhd); 416 if (dmaru) 417 goto out; 418 419 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 420 if (!dmaru) 421 return -ENOMEM; 422 423 /* 424 * If header is allocated from slab by ACPI _DSM method, we need to 425 * copy the content because the memory buffer will be freed on return. 426 */ 427 dmaru->hdr = (void *)(dmaru + 1); 428 memcpy(dmaru->hdr, header, header->length); 429 dmaru->reg_base_addr = drhd->address; 430 dmaru->segment = drhd->segment; 431 /* The size of the register set is 2 ^ N 4 KB pages. */ 432 dmaru->reg_size = 1UL << (drhd->size + 12); 433 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 434 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 435 ((void *)drhd) + drhd->header.length, 436 &dmaru->devices_cnt); 437 if (dmaru->devices_cnt && dmaru->devices == NULL) { 438 kfree(dmaru); 439 return -ENOMEM; 440 } 441 442 ret = alloc_iommu(dmaru); 443 if (ret) { 444 dmar_free_dev_scope(&dmaru->devices, 445 &dmaru->devices_cnt); 446 kfree(dmaru); 447 return ret; 448 } 449 dmar_register_drhd_unit(dmaru); 450 451 out: 452 if (arg) 453 (*(int *)arg)++; 454 455 return 0; 456 } 457 458 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 459 { 460 if (dmaru->devices && dmaru->devices_cnt) 461 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 462 if (dmaru->iommu) 463 free_iommu(dmaru->iommu); 464 kfree(dmaru); 465 } 466 467 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 468 void *arg) 469 { 470 struct acpi_dmar_andd *andd = (void *)header; 471 472 /* Check for NUL termination within the designated length */ 473 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 474 pr_warn(FW_BUG 475 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 476 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 477 dmi_get_system_info(DMI_BIOS_VENDOR), 478 dmi_get_system_info(DMI_BIOS_VERSION), 479 dmi_get_system_info(DMI_PRODUCT_VERSION)); 480 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 481 return -EINVAL; 482 } 483 pr_info("ANDD device: %x name: %s\n", andd->device_number, 484 andd->device_name); 485 486 return 0; 487 } 488 489 #ifdef CONFIG_ACPI_NUMA 490 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 491 { 492 struct acpi_dmar_rhsa *rhsa; 493 struct dmar_drhd_unit *drhd; 494 495 rhsa = (struct acpi_dmar_rhsa *)header; 496 for_each_drhd_unit(drhd) { 497 if (drhd->reg_base_addr == rhsa->base_address) { 498 int node = pxm_to_node(rhsa->proximity_domain); 499 500 if (node != NUMA_NO_NODE && !node_online(node)) 501 node = NUMA_NO_NODE; 502 drhd->iommu->node = node; 503 return 0; 504 } 505 } 506 pr_warn(FW_BUG 507 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 508 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 509 rhsa->base_address, 510 dmi_get_system_info(DMI_BIOS_VENDOR), 511 dmi_get_system_info(DMI_BIOS_VERSION), 512 dmi_get_system_info(DMI_PRODUCT_VERSION)); 513 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 514 515 return 0; 516 } 517 #else 518 #define dmar_parse_one_rhsa dmar_res_noop 519 #endif 520 521 static void 522 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 523 { 524 struct acpi_dmar_hardware_unit *drhd; 525 struct acpi_dmar_reserved_memory *rmrr; 526 struct acpi_dmar_atsr *atsr; 527 struct acpi_dmar_rhsa *rhsa; 528 struct acpi_dmar_satc *satc; 529 530 switch (header->type) { 531 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 532 drhd = container_of(header, struct acpi_dmar_hardware_unit, 533 header); 534 pr_info("DRHD base: %#016Lx flags: %#x\n", 535 (unsigned long long)drhd->address, drhd->flags); 536 break; 537 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 538 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 539 header); 540 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 541 (unsigned long long)rmrr->base_address, 542 (unsigned long long)rmrr->end_address); 543 break; 544 case ACPI_DMAR_TYPE_ROOT_ATS: 545 atsr = container_of(header, struct acpi_dmar_atsr, header); 546 pr_info("ATSR flags: %#x\n", atsr->flags); 547 break; 548 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 549 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 550 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 551 (unsigned long long)rhsa->base_address, 552 rhsa->proximity_domain); 553 break; 554 case ACPI_DMAR_TYPE_NAMESPACE: 555 /* We don't print this here because we need to sanity-check 556 it first. So print it in dmar_parse_one_andd() instead. */ 557 break; 558 case ACPI_DMAR_TYPE_SATC: 559 satc = container_of(header, struct acpi_dmar_satc, header); 560 pr_info("SATC flags: 0x%x\n", satc->flags); 561 break; 562 } 563 } 564 565 /** 566 * dmar_table_detect - checks to see if the platform supports DMAR devices 567 */ 568 static int __init dmar_table_detect(void) 569 { 570 acpi_status status = AE_OK; 571 572 /* if we could find DMAR table, then there are DMAR devices */ 573 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 574 575 if (ACPI_SUCCESS(status) && !dmar_tbl) { 576 pr_warn("Unable to map DMAR\n"); 577 status = AE_NOT_FOUND; 578 } 579 580 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 581 } 582 583 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 584 size_t len, struct dmar_res_callback *cb) 585 { 586 struct acpi_dmar_header *iter, *next; 587 struct acpi_dmar_header *end = ((void *)start) + len; 588 589 for (iter = start; iter < end; iter = next) { 590 next = (void *)iter + iter->length; 591 if (iter->length == 0) { 592 /* Avoid looping forever on bad ACPI tables */ 593 pr_debug(FW_BUG "Invalid 0-length structure\n"); 594 break; 595 } else if (next > end) { 596 /* Avoid passing table end */ 597 pr_warn(FW_BUG "Record passes table end\n"); 598 return -EINVAL; 599 } 600 601 if (cb->print_entry) 602 dmar_table_print_dmar_entry(iter); 603 604 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 605 /* continue for forward compatibility */ 606 pr_debug("Unknown DMAR structure type %d\n", 607 iter->type); 608 } else if (cb->cb[iter->type]) { 609 int ret; 610 611 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 612 if (ret) 613 return ret; 614 } else if (!cb->ignore_unhandled) { 615 pr_warn("No handler for DMAR structure type %d\n", 616 iter->type); 617 return -EINVAL; 618 } 619 } 620 621 return 0; 622 } 623 624 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 625 struct dmar_res_callback *cb) 626 { 627 return dmar_walk_remapping_entries((void *)(dmar + 1), 628 dmar->header.length - sizeof(*dmar), cb); 629 } 630 631 /** 632 * parse_dmar_table - parses the DMA reporting table 633 */ 634 static int __init 635 parse_dmar_table(void) 636 { 637 struct acpi_table_dmar *dmar; 638 int drhd_count = 0; 639 int ret; 640 struct dmar_res_callback cb = { 641 .print_entry = true, 642 .ignore_unhandled = true, 643 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 644 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 645 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 646 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 647 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 648 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 649 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc, 650 }; 651 652 /* 653 * Do it again, earlier dmar_tbl mapping could be mapped with 654 * fixed map. 655 */ 656 dmar_table_detect(); 657 658 /* 659 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 660 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 661 */ 662 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 663 664 dmar = (struct acpi_table_dmar *)dmar_tbl; 665 if (!dmar) 666 return -ENODEV; 667 668 if (dmar->width < PAGE_SHIFT - 1) { 669 pr_warn("Invalid DMAR haw\n"); 670 return -EINVAL; 671 } 672 673 pr_info("Host address width %d\n", dmar->width + 1); 674 ret = dmar_walk_dmar_table(dmar, &cb); 675 if (ret == 0 && drhd_count == 0) 676 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 677 678 return ret; 679 } 680 681 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 682 int cnt, struct pci_dev *dev) 683 { 684 int index; 685 struct device *tmp; 686 687 while (dev) { 688 for_each_active_dev_scope(devices, cnt, index, tmp) 689 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 690 return 1; 691 692 /* Check our parent */ 693 dev = dev->bus->self; 694 } 695 696 return 0; 697 } 698 699 struct dmar_drhd_unit * 700 dmar_find_matched_drhd_unit(struct pci_dev *dev) 701 { 702 struct dmar_drhd_unit *dmaru; 703 struct acpi_dmar_hardware_unit *drhd; 704 705 dev = pci_physfn(dev); 706 707 rcu_read_lock(); 708 for_each_drhd_unit(dmaru) { 709 drhd = container_of(dmaru->hdr, 710 struct acpi_dmar_hardware_unit, 711 header); 712 713 if (dmaru->include_all && 714 drhd->segment == pci_domain_nr(dev->bus)) 715 goto out; 716 717 if (dmar_pci_device_match(dmaru->devices, 718 dmaru->devices_cnt, dev)) 719 goto out; 720 } 721 dmaru = NULL; 722 out: 723 rcu_read_unlock(); 724 725 return dmaru; 726 } 727 728 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 729 struct acpi_device *adev) 730 { 731 struct dmar_drhd_unit *dmaru; 732 struct acpi_dmar_hardware_unit *drhd; 733 struct acpi_dmar_device_scope *scope; 734 struct device *tmp; 735 int i; 736 struct acpi_dmar_pci_path *path; 737 738 for_each_drhd_unit(dmaru) { 739 drhd = container_of(dmaru->hdr, 740 struct acpi_dmar_hardware_unit, 741 header); 742 743 for (scope = (void *)(drhd + 1); 744 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 745 scope = ((void *)scope) + scope->length) { 746 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 747 continue; 748 if (scope->enumeration_id != device_number) 749 continue; 750 751 path = (void *)(scope + 1); 752 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 753 dev_name(&adev->dev), dmaru->reg_base_addr, 754 scope->bus, path->device, path->function); 755 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 756 if (tmp == NULL) { 757 dmaru->devices[i].bus = scope->bus; 758 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 759 path->function); 760 rcu_assign_pointer(dmaru->devices[i].dev, 761 get_device(&adev->dev)); 762 return; 763 } 764 BUG_ON(i >= dmaru->devices_cnt); 765 } 766 } 767 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 768 device_number, dev_name(&adev->dev)); 769 } 770 771 static int __init dmar_acpi_dev_scope_init(void) 772 { 773 struct acpi_dmar_andd *andd; 774 775 if (dmar_tbl == NULL) 776 return -ENODEV; 777 778 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 779 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 780 andd = ((void *)andd) + andd->header.length) { 781 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 782 acpi_handle h; 783 struct acpi_device *adev; 784 785 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 786 andd->device_name, 787 &h))) { 788 pr_err("Failed to find handle for ACPI object %s\n", 789 andd->device_name); 790 continue; 791 } 792 adev = acpi_fetch_acpi_dev(h); 793 if (!adev) { 794 pr_err("Failed to get device for ACPI object %s\n", 795 andd->device_name); 796 continue; 797 } 798 dmar_acpi_insert_dev_scope(andd->device_number, adev); 799 } 800 } 801 return 0; 802 } 803 804 int __init dmar_dev_scope_init(void) 805 { 806 struct pci_dev *dev = NULL; 807 struct dmar_pci_notify_info *info; 808 809 if (dmar_dev_scope_status != 1) 810 return dmar_dev_scope_status; 811 812 if (list_empty(&dmar_drhd_units)) { 813 dmar_dev_scope_status = -ENODEV; 814 } else { 815 dmar_dev_scope_status = 0; 816 817 dmar_acpi_dev_scope_init(); 818 819 for_each_pci_dev(dev) { 820 if (dev->is_virtfn) 821 continue; 822 823 info = dmar_alloc_pci_notify_info(dev, 824 BUS_NOTIFY_ADD_DEVICE); 825 if (!info) { 826 pci_dev_put(dev); 827 return dmar_dev_scope_status; 828 } else { 829 dmar_pci_bus_add_dev(info); 830 dmar_free_pci_notify_info(info); 831 } 832 } 833 } 834 835 return dmar_dev_scope_status; 836 } 837 838 void __init dmar_register_bus_notifier(void) 839 { 840 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 841 } 842 843 844 int __init dmar_table_init(void) 845 { 846 static int dmar_table_initialized; 847 int ret; 848 849 if (dmar_table_initialized == 0) { 850 ret = parse_dmar_table(); 851 if (ret < 0) { 852 if (ret != -ENODEV) 853 pr_info("Parse DMAR table failure.\n"); 854 } else if (list_empty(&dmar_drhd_units)) { 855 pr_info("No DMAR devices found\n"); 856 ret = -ENODEV; 857 } 858 859 if (ret < 0) 860 dmar_table_initialized = ret; 861 else 862 dmar_table_initialized = 1; 863 } 864 865 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 866 } 867 868 static void warn_invalid_dmar(u64 addr, const char *message) 869 { 870 pr_warn_once(FW_BUG 871 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 872 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 873 addr, message, 874 dmi_get_system_info(DMI_BIOS_VENDOR), 875 dmi_get_system_info(DMI_BIOS_VERSION), 876 dmi_get_system_info(DMI_PRODUCT_VERSION)); 877 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 878 } 879 880 static int __ref 881 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 882 { 883 struct acpi_dmar_hardware_unit *drhd; 884 void __iomem *addr; 885 u64 cap, ecap; 886 887 drhd = (void *)entry; 888 if (!drhd->address) { 889 warn_invalid_dmar(0, ""); 890 return -EINVAL; 891 } 892 893 if (arg) 894 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 895 else 896 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 897 if (!addr) { 898 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 899 return -EINVAL; 900 } 901 902 cap = dmar_readq(addr + DMAR_CAP_REG); 903 ecap = dmar_readq(addr + DMAR_ECAP_REG); 904 905 if (arg) 906 iounmap(addr); 907 else 908 early_iounmap(addr, VTD_PAGE_SIZE); 909 910 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 911 warn_invalid_dmar(drhd->address, " returns all ones"); 912 return -EINVAL; 913 } 914 915 return 0; 916 } 917 918 void __init detect_intel_iommu(void) 919 { 920 int ret; 921 struct dmar_res_callback validate_drhd_cb = { 922 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 923 .ignore_unhandled = true, 924 }; 925 926 down_write(&dmar_global_lock); 927 ret = dmar_table_detect(); 928 if (!ret) 929 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 930 &validate_drhd_cb); 931 if (!ret && !no_iommu && !iommu_detected && 932 (!dmar_disabled || dmar_platform_optin())) { 933 iommu_detected = 1; 934 /* Make sure ACS will be enabled */ 935 pci_request_acs(); 936 } 937 938 #ifdef CONFIG_X86 939 if (!ret) { 940 x86_init.iommu.iommu_init = intel_iommu_init; 941 x86_platform.iommu_shutdown = intel_iommu_shutdown; 942 } 943 944 #endif 945 946 if (dmar_tbl) { 947 acpi_put_table(dmar_tbl); 948 dmar_tbl = NULL; 949 } 950 up_write(&dmar_global_lock); 951 } 952 953 static void unmap_iommu(struct intel_iommu *iommu) 954 { 955 iounmap(iommu->reg); 956 release_mem_region(iommu->reg_phys, iommu->reg_size); 957 } 958 959 /** 960 * map_iommu: map the iommu's registers 961 * @iommu: the iommu to map 962 * @drhd: DMA remapping hardware definition structure 963 * 964 * Memory map the iommu's registers. Start w/ a single page, and 965 * possibly expand if that turns out to be insufficent. 966 */ 967 static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd) 968 { 969 u64 phys_addr = drhd->reg_base_addr; 970 int map_size, err=0; 971 972 iommu->reg_phys = phys_addr; 973 iommu->reg_size = drhd->reg_size; 974 975 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 976 pr_err("Can't reserve memory\n"); 977 err = -EBUSY; 978 goto out; 979 } 980 981 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 982 if (!iommu->reg) { 983 pr_err("Can't map the region\n"); 984 err = -ENOMEM; 985 goto release; 986 } 987 988 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 989 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 990 991 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 992 err = -EINVAL; 993 warn_invalid_dmar(phys_addr, " returns all ones"); 994 goto unmap; 995 } 996 997 /* the registers might be more than one page */ 998 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 999 cap_max_fault_reg_offset(iommu->cap)); 1000 map_size = VTD_PAGE_ALIGN(map_size); 1001 if (map_size > iommu->reg_size) { 1002 iounmap(iommu->reg); 1003 release_mem_region(iommu->reg_phys, iommu->reg_size); 1004 iommu->reg_size = map_size; 1005 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 1006 iommu->name)) { 1007 pr_err("Can't reserve memory\n"); 1008 err = -EBUSY; 1009 goto out; 1010 } 1011 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1012 if (!iommu->reg) { 1013 pr_err("Can't map the region\n"); 1014 err = -ENOMEM; 1015 goto release; 1016 } 1017 } 1018 1019 if (cap_ecmds(iommu->cap)) { 1020 int i; 1021 1022 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) { 1023 iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG + 1024 i * DMA_ECMD_REG_STEP); 1025 } 1026 } 1027 1028 err = 0; 1029 goto out; 1030 1031 unmap: 1032 iounmap(iommu->reg); 1033 release: 1034 release_mem_region(iommu->reg_phys, iommu->reg_size); 1035 out: 1036 return err; 1037 } 1038 1039 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1040 { 1041 struct intel_iommu *iommu; 1042 u32 ver, sts; 1043 int agaw = -1; 1044 int msagaw = -1; 1045 int err; 1046 1047 if (!drhd->reg_base_addr) { 1048 warn_invalid_dmar(0, ""); 1049 return -EINVAL; 1050 } 1051 1052 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1053 if (!iommu) 1054 return -ENOMEM; 1055 1056 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0, 1057 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL); 1058 if (iommu->seq_id < 0) { 1059 pr_err("Failed to allocate seq_id\n"); 1060 err = iommu->seq_id; 1061 goto error; 1062 } 1063 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1064 1065 err = map_iommu(iommu, drhd); 1066 if (err) { 1067 pr_err("Failed to map %s\n", iommu->name); 1068 goto error_free_seq_id; 1069 } 1070 1071 if (!cap_sagaw(iommu->cap) && 1072 (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) { 1073 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1074 iommu->name); 1075 drhd->ignored = 1; 1076 } 1077 1078 if (!drhd->ignored) { 1079 agaw = iommu_calculate_agaw(iommu); 1080 if (agaw < 0) { 1081 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1082 iommu->seq_id); 1083 drhd->ignored = 1; 1084 } 1085 } 1086 if (!drhd->ignored) { 1087 msagaw = iommu_calculate_max_sagaw(iommu); 1088 if (msagaw < 0) { 1089 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1090 iommu->seq_id); 1091 drhd->ignored = 1; 1092 agaw = -1; 1093 } 1094 } 1095 iommu->agaw = agaw; 1096 iommu->msagaw = msagaw; 1097 iommu->segment = drhd->segment; 1098 iommu->device_rbtree = RB_ROOT; 1099 spin_lock_init(&iommu->device_rbtree_lock); 1100 mutex_init(&iommu->iopf_lock); 1101 iommu->node = NUMA_NO_NODE; 1102 1103 ver = readl(iommu->reg + DMAR_VER_REG); 1104 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1105 iommu->name, 1106 (unsigned long long)drhd->reg_base_addr, 1107 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1108 (unsigned long long)iommu->cap, 1109 (unsigned long long)iommu->ecap); 1110 1111 /* Reflect status in gcmd */ 1112 sts = readl(iommu->reg + DMAR_GSTS_REG); 1113 if (sts & DMA_GSTS_IRES) 1114 iommu->gcmd |= DMA_GCMD_IRE; 1115 if (sts & DMA_GSTS_TES) 1116 iommu->gcmd |= DMA_GCMD_TE; 1117 if (sts & DMA_GSTS_QIES) 1118 iommu->gcmd |= DMA_GCMD_QIE; 1119 1120 if (alloc_iommu_pmu(iommu)) 1121 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id); 1122 1123 raw_spin_lock_init(&iommu->register_lock); 1124 1125 /* 1126 * A value of N in PSS field of eCap register indicates hardware 1127 * supports PASID field of N+1 bits. 1128 */ 1129 if (pasid_supported(iommu)) 1130 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap); 1131 1132 /* 1133 * This is only for hotplug; at boot time intel_iommu_enabled won't 1134 * be set yet. When intel_iommu_init() runs, it registers the units 1135 * present at boot time, then sets intel_iommu_enabled. 1136 */ 1137 if (intel_iommu_enabled && !drhd->ignored) { 1138 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1139 intel_iommu_groups, 1140 "%s", iommu->name); 1141 if (err) 1142 goto err_unmap; 1143 1144 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 1145 if (err) 1146 goto err_sysfs; 1147 1148 iommu_pmu_register(iommu); 1149 } 1150 1151 drhd->iommu = iommu; 1152 iommu->drhd = drhd; 1153 1154 return 0; 1155 1156 err_sysfs: 1157 iommu_device_sysfs_remove(&iommu->iommu); 1158 err_unmap: 1159 free_iommu_pmu(iommu); 1160 unmap_iommu(iommu); 1161 error_free_seq_id: 1162 ida_free(&dmar_seq_ids, iommu->seq_id); 1163 error: 1164 kfree(iommu); 1165 return err; 1166 } 1167 1168 static void free_iommu(struct intel_iommu *iommu) 1169 { 1170 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1171 iommu_pmu_unregister(iommu); 1172 iommu_device_unregister(&iommu->iommu); 1173 iommu_device_sysfs_remove(&iommu->iommu); 1174 } 1175 1176 free_iommu_pmu(iommu); 1177 1178 if (iommu->irq) { 1179 if (iommu->pr_irq) { 1180 free_irq(iommu->pr_irq, iommu); 1181 dmar_free_hwirq(iommu->pr_irq); 1182 iommu->pr_irq = 0; 1183 } 1184 free_irq(iommu->irq, iommu); 1185 dmar_free_hwirq(iommu->irq); 1186 iommu->irq = 0; 1187 } 1188 1189 if (iommu->qi) { 1190 iommu_free_page(iommu->qi->desc); 1191 kfree(iommu->qi->desc_status); 1192 kfree(iommu->qi); 1193 } 1194 1195 if (iommu->reg) 1196 unmap_iommu(iommu); 1197 1198 ida_free(&dmar_seq_ids, iommu->seq_id); 1199 kfree(iommu); 1200 } 1201 1202 /* 1203 * Reclaim all the submitted descriptors which have completed its work. 1204 */ 1205 static inline void reclaim_free_desc(struct q_inval *qi) 1206 { 1207 while (qi->desc_status[qi->free_tail] == QI_DONE || 1208 qi->desc_status[qi->free_tail] == QI_ABORT) { 1209 qi->desc_status[qi->free_tail] = QI_FREE; 1210 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1211 qi->free_cnt++; 1212 } 1213 } 1214 1215 static const char *qi_type_string(u8 type) 1216 { 1217 switch (type) { 1218 case QI_CC_TYPE: 1219 return "Context-cache Invalidation"; 1220 case QI_IOTLB_TYPE: 1221 return "IOTLB Invalidation"; 1222 case QI_DIOTLB_TYPE: 1223 return "Device-TLB Invalidation"; 1224 case QI_IEC_TYPE: 1225 return "Interrupt Entry Cache Invalidation"; 1226 case QI_IWD_TYPE: 1227 return "Invalidation Wait"; 1228 case QI_EIOTLB_TYPE: 1229 return "PASID-based IOTLB Invalidation"; 1230 case QI_PC_TYPE: 1231 return "PASID-cache Invalidation"; 1232 case QI_DEIOTLB_TYPE: 1233 return "PASID-based Device-TLB Invalidation"; 1234 case QI_PGRP_RESP_TYPE: 1235 return "Page Group Response"; 1236 default: 1237 return "UNKNOWN"; 1238 } 1239 } 1240 1241 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault) 1242 { 1243 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG); 1244 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG); 1245 struct qi_desc *desc = iommu->qi->desc + head; 1246 1247 if (fault & DMA_FSTS_IQE) 1248 pr_err("VT-d detected Invalidation Queue Error: Reason %llx", 1249 DMAR_IQER_REG_IQEI(iqe_err)); 1250 if (fault & DMA_FSTS_ITE) 1251 pr_err("VT-d detected Invalidation Time-out Error: SID %llx", 1252 DMAR_IQER_REG_ITESID(iqe_err)); 1253 if (fault & DMA_FSTS_ICE) 1254 pr_err("VT-d detected Invalidation Completion Error: SID %llx", 1255 DMAR_IQER_REG_ICESID(iqe_err)); 1256 1257 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1258 qi_type_string(desc->qw0 & 0xf), 1259 (unsigned long long)desc->qw0, 1260 (unsigned long long)desc->qw1); 1261 1262 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH; 1263 head <<= qi_shift(iommu); 1264 desc = iommu->qi->desc + head; 1265 1266 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1267 qi_type_string(desc->qw0 & 0xf), 1268 (unsigned long long)desc->qw0, 1269 (unsigned long long)desc->qw1); 1270 } 1271 1272 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1273 { 1274 u32 fault; 1275 int head, tail; 1276 struct device *dev; 1277 u64 iqe_err, ite_sid; 1278 struct q_inval *qi = iommu->qi; 1279 int shift = qi_shift(iommu); 1280 1281 if (qi->desc_status[wait_index] == QI_ABORT) 1282 return -EAGAIN; 1283 1284 fault = readl(iommu->reg + DMAR_FSTS_REG); 1285 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE)) 1286 qi_dump_fault(iommu, fault); 1287 1288 /* 1289 * If IQE happens, the head points to the descriptor associated 1290 * with the error. No new descriptors are fetched until the IQE 1291 * is cleared. 1292 */ 1293 if (fault & DMA_FSTS_IQE) { 1294 head = readl(iommu->reg + DMAR_IQH_REG); 1295 if ((head >> shift) == index) { 1296 struct qi_desc *desc = qi->desc + head; 1297 1298 /* 1299 * desc->qw2 and desc->qw3 are either reserved or 1300 * used by software as private data. We won't print 1301 * out these two qw's for security consideration. 1302 */ 1303 memcpy(desc, qi->desc + (wait_index << shift), 1304 1 << shift); 1305 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1306 pr_info("Invalidation Queue Error (IQE) cleared\n"); 1307 return -EINVAL; 1308 } 1309 } 1310 1311 /* 1312 * If ITE happens, all pending wait_desc commands are aborted. 1313 * No new descriptors are fetched until the ITE is cleared. 1314 */ 1315 if (fault & DMA_FSTS_ITE) { 1316 head = readl(iommu->reg + DMAR_IQH_REG); 1317 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1318 head |= 1; 1319 tail = readl(iommu->reg + DMAR_IQT_REG); 1320 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1321 1322 /* 1323 * SID field is valid only when the ITE field is Set in FSTS_REG 1324 * see Intel VT-d spec r4.1, section 11.4.9.9 1325 */ 1326 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG); 1327 ite_sid = DMAR_IQER_REG_ITESID(iqe_err); 1328 1329 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1330 pr_info("Invalidation Time-out Error (ITE) cleared\n"); 1331 1332 do { 1333 if (qi->desc_status[head] == QI_IN_USE) 1334 qi->desc_status[head] = QI_ABORT; 1335 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1336 } while (head != tail); 1337 1338 /* 1339 * If device was released or isn't present, no need to retry 1340 * the ATS invalidate request anymore. 1341 * 1342 * 0 value of ite_sid means old VT-d device, no ite_sid value. 1343 * see Intel VT-d spec r4.1, section 11.4.9.9 1344 */ 1345 if (ite_sid) { 1346 dev = device_rbtree_find(iommu, ite_sid); 1347 if (!dev || !dev_is_pci(dev) || 1348 !pci_device_is_present(to_pci_dev(dev))) 1349 return -ETIMEDOUT; 1350 } 1351 if (qi->desc_status[wait_index] == QI_ABORT) 1352 return -EAGAIN; 1353 } 1354 1355 if (fault & DMA_FSTS_ICE) { 1356 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1357 pr_info("Invalidation Completion Error (ICE) cleared\n"); 1358 } 1359 1360 return 0; 1361 } 1362 1363 /* 1364 * Function to submit invalidation descriptors of all types to the queued 1365 * invalidation interface(QI). Multiple descriptors can be submitted at a 1366 * time, a wait descriptor will be appended to each submission to ensure 1367 * hardware has completed the invalidation before return. Wait descriptors 1368 * can be part of the submission but it will not be polled for completion. 1369 */ 1370 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1371 unsigned int count, unsigned long options) 1372 { 1373 struct q_inval *qi = iommu->qi; 1374 s64 devtlb_start_ktime = 0; 1375 s64 iotlb_start_ktime = 0; 1376 s64 iec_start_ktime = 0; 1377 struct qi_desc wait_desc; 1378 int wait_index, index; 1379 unsigned long flags; 1380 int offset, shift; 1381 int rc, i; 1382 u64 type; 1383 1384 if (!qi) 1385 return 0; 1386 1387 type = desc->qw0 & GENMASK_ULL(3, 0); 1388 1389 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) && 1390 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB)) 1391 iotlb_start_ktime = ktime_to_ns(ktime_get()); 1392 1393 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) && 1394 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB)) 1395 devtlb_start_ktime = ktime_to_ns(ktime_get()); 1396 1397 if (type == QI_IEC_TYPE && 1398 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC)) 1399 iec_start_ktime = ktime_to_ns(ktime_get()); 1400 1401 restart: 1402 rc = 0; 1403 1404 raw_spin_lock_irqsave(&qi->q_lock, flags); 1405 /* 1406 * Check if we have enough empty slots in the queue to submit, 1407 * the calculation is based on: 1408 * # of desc + 1 wait desc + 1 space between head and tail 1409 */ 1410 while (qi->free_cnt < count + 2) { 1411 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1412 cpu_relax(); 1413 raw_spin_lock_irqsave(&qi->q_lock, flags); 1414 } 1415 1416 index = qi->free_head; 1417 wait_index = (index + count) % QI_LENGTH; 1418 shift = qi_shift(iommu); 1419 1420 for (i = 0; i < count; i++) { 1421 offset = ((index + i) % QI_LENGTH) << shift; 1422 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1423 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1424 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1, 1425 desc[i].qw2, desc[i].qw3); 1426 } 1427 qi->desc_status[wait_index] = QI_IN_USE; 1428 1429 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1430 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1431 if (options & QI_OPT_WAIT_DRAIN) 1432 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1433 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1434 wait_desc.qw2 = 0; 1435 wait_desc.qw3 = 0; 1436 1437 offset = wait_index << shift; 1438 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1439 1440 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1441 qi->free_cnt -= count + 1; 1442 1443 /* 1444 * update the HW tail register indicating the presence of 1445 * new descriptors. 1446 */ 1447 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1448 1449 while (READ_ONCE(qi->desc_status[wait_index]) != QI_DONE) { 1450 /* 1451 * We will leave the interrupts disabled, to prevent interrupt 1452 * context to queue another cmd while a cmd is already submitted 1453 * and waiting for completion on this cpu. This is to avoid 1454 * a deadlock where the interrupt context can wait indefinitely 1455 * for free slots in the queue. 1456 */ 1457 rc = qi_check_fault(iommu, index, wait_index); 1458 if (rc) 1459 break; 1460 1461 raw_spin_unlock(&qi->q_lock); 1462 cpu_relax(); 1463 raw_spin_lock(&qi->q_lock); 1464 } 1465 1466 for (i = 0; i < count; i++) 1467 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1468 1469 reclaim_free_desc(qi); 1470 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1471 1472 if (rc == -EAGAIN) 1473 goto restart; 1474 1475 if (iotlb_start_ktime) 1476 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB, 1477 ktime_to_ns(ktime_get()) - iotlb_start_ktime); 1478 1479 if (devtlb_start_ktime) 1480 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB, 1481 ktime_to_ns(ktime_get()) - devtlb_start_ktime); 1482 1483 if (iec_start_ktime) 1484 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC, 1485 ktime_to_ns(ktime_get()) - iec_start_ktime); 1486 1487 return rc; 1488 } 1489 1490 /* 1491 * Flush the global interrupt entry cache. 1492 */ 1493 void qi_global_iec(struct intel_iommu *iommu) 1494 { 1495 struct qi_desc desc; 1496 1497 desc.qw0 = QI_IEC_TYPE; 1498 desc.qw1 = 0; 1499 desc.qw2 = 0; 1500 desc.qw3 = 0; 1501 1502 /* should never fail */ 1503 qi_submit_sync(iommu, &desc, 1, 0); 1504 } 1505 1506 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1507 u64 type) 1508 { 1509 struct qi_desc desc; 1510 1511 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1512 | QI_CC_GRAN(type) | QI_CC_TYPE; 1513 desc.qw1 = 0; 1514 desc.qw2 = 0; 1515 desc.qw3 = 0; 1516 1517 qi_submit_sync(iommu, &desc, 1, 0); 1518 } 1519 1520 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1521 unsigned int size_order, u64 type) 1522 { 1523 u8 dw = 0, dr = 0; 1524 1525 struct qi_desc desc; 1526 int ih = 0; 1527 1528 if (cap_write_drain(iommu->cap)) 1529 dw = 1; 1530 1531 if (cap_read_drain(iommu->cap)) 1532 dr = 1; 1533 1534 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1535 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1536 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1537 | QI_IOTLB_AM(size_order); 1538 desc.qw2 = 0; 1539 desc.qw3 = 0; 1540 1541 qi_submit_sync(iommu, &desc, 1, 0); 1542 } 1543 1544 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1545 u16 qdep, u64 addr, unsigned mask) 1546 { 1547 struct qi_desc desc; 1548 1549 /* 1550 * VT-d spec, section 4.3: 1551 * 1552 * Software is recommended to not submit any Device-TLB invalidation 1553 * requests while address remapping hardware is disabled. 1554 */ 1555 if (!(iommu->gcmd & DMA_GCMD_TE)) 1556 return; 1557 1558 if (mask) { 1559 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1560 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1561 } else 1562 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1563 1564 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1565 qdep = 0; 1566 1567 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1568 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1569 desc.qw2 = 0; 1570 desc.qw3 = 0; 1571 1572 qi_submit_sync(iommu, &desc, 1, 0); 1573 } 1574 1575 /* PASID-based IOTLB invalidation */ 1576 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1577 unsigned long npages, bool ih) 1578 { 1579 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1580 1581 /* 1582 * npages == -1 means a PASID-selective invalidation, otherwise, 1583 * a positive value for Page-selective-within-PASID invalidation. 1584 * 0 is not a valid input. 1585 */ 1586 if (WARN_ON(!npages)) { 1587 pr_err("Invalid input npages = %ld\n", npages); 1588 return; 1589 } 1590 1591 if (npages == -1) { 1592 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1593 QI_EIOTLB_DID(did) | 1594 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1595 QI_EIOTLB_TYPE; 1596 desc.qw1 = 0; 1597 } else { 1598 int mask = ilog2(__roundup_pow_of_two(npages)); 1599 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1600 1601 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align))) 1602 addr = ALIGN_DOWN(addr, align); 1603 1604 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1605 QI_EIOTLB_DID(did) | 1606 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1607 QI_EIOTLB_TYPE; 1608 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1609 QI_EIOTLB_IH(ih) | 1610 QI_EIOTLB_AM(mask); 1611 } 1612 1613 qi_submit_sync(iommu, &desc, 1, 0); 1614 } 1615 1616 /* PASID-based device IOTLB Invalidate */ 1617 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1618 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1619 { 1620 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1621 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1622 1623 /* 1624 * VT-d spec, section 4.3: 1625 * 1626 * Software is recommended to not submit any Device-TLB invalidation 1627 * requests while address remapping hardware is disabled. 1628 */ 1629 if (!(iommu->gcmd & DMA_GCMD_TE)) 1630 return; 1631 1632 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1633 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1634 QI_DEV_IOTLB_PFSID(pfsid); 1635 1636 /* 1637 * If S bit is 0, we only flush a single page. If S bit is set, 1638 * The least significant zero bit indicates the invalidation address 1639 * range. VT-d spec 6.5.2.6. 1640 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1641 * size order = 0 is PAGE_SIZE 4KB 1642 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1643 * ECAP. 1644 */ 1645 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order)) 1646 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1647 addr, size_order); 1648 1649 /* Take page address */ 1650 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1651 1652 if (size_order) { 1653 /* 1654 * Existing 0s in address below size_order may be the least 1655 * significant bit, we must set them to 1s to avoid having 1656 * smaller size than desired. 1657 */ 1658 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1659 VTD_PAGE_SHIFT); 1660 /* Clear size_order bit to indicate size */ 1661 desc.qw1 &= ~mask; 1662 /* Set the S bit to indicate flushing more than 1 page */ 1663 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1664 } 1665 1666 qi_submit_sync(iommu, &desc, 1, 0); 1667 } 1668 1669 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1670 u64 granu, u32 pasid) 1671 { 1672 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1673 1674 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1675 QI_PC_GRAN(granu) | QI_PC_TYPE; 1676 qi_submit_sync(iommu, &desc, 1, 0); 1677 } 1678 1679 /* 1680 * Disable Queued Invalidation interface. 1681 */ 1682 void dmar_disable_qi(struct intel_iommu *iommu) 1683 { 1684 unsigned long flags; 1685 u32 sts; 1686 cycles_t start_time = get_cycles(); 1687 1688 if (!ecap_qis(iommu->ecap)) 1689 return; 1690 1691 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1692 1693 sts = readl(iommu->reg + DMAR_GSTS_REG); 1694 if (!(sts & DMA_GSTS_QIES)) 1695 goto end; 1696 1697 /* 1698 * Give a chance to HW to complete the pending invalidation requests. 1699 */ 1700 while ((readl(iommu->reg + DMAR_IQT_REG) != 1701 readl(iommu->reg + DMAR_IQH_REG)) && 1702 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1703 cpu_relax(); 1704 1705 iommu->gcmd &= ~DMA_GCMD_QIE; 1706 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1707 1708 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1709 !(sts & DMA_GSTS_QIES), sts); 1710 end: 1711 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1712 } 1713 1714 /* 1715 * Enable queued invalidation. 1716 */ 1717 static void __dmar_enable_qi(struct intel_iommu *iommu) 1718 { 1719 u32 sts; 1720 unsigned long flags; 1721 struct q_inval *qi = iommu->qi; 1722 u64 val = virt_to_phys(qi->desc); 1723 1724 qi->free_head = qi->free_tail = 0; 1725 qi->free_cnt = QI_LENGTH; 1726 1727 /* 1728 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1729 * is present. 1730 */ 1731 if (ecap_smts(iommu->ecap)) 1732 val |= BIT_ULL(11) | BIT_ULL(0); 1733 1734 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1735 1736 /* write zero to the tail reg */ 1737 writel(0, iommu->reg + DMAR_IQT_REG); 1738 1739 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1740 1741 iommu->gcmd |= DMA_GCMD_QIE; 1742 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1743 1744 /* Make sure hardware complete it */ 1745 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1746 1747 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1748 } 1749 1750 /* 1751 * Enable Queued Invalidation interface. This is a must to support 1752 * interrupt-remapping. Also used by DMA-remapping, which replaces 1753 * register based IOTLB invalidation. 1754 */ 1755 int dmar_enable_qi(struct intel_iommu *iommu) 1756 { 1757 struct q_inval *qi; 1758 void *desc; 1759 int order; 1760 1761 if (!ecap_qis(iommu->ecap)) 1762 return -ENOENT; 1763 1764 /* 1765 * queued invalidation is already setup and enabled. 1766 */ 1767 if (iommu->qi) 1768 return 0; 1769 1770 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1771 if (!iommu->qi) 1772 return -ENOMEM; 1773 1774 qi = iommu->qi; 1775 1776 /* 1777 * Need two pages to accommodate 256 descriptors of 256 bits each 1778 * if the remapping hardware supports scalable mode translation. 1779 */ 1780 order = ecap_smts(iommu->ecap) ? 1 : 0; 1781 desc = iommu_alloc_pages_node(iommu->node, GFP_ATOMIC, order); 1782 if (!desc) { 1783 kfree(qi); 1784 iommu->qi = NULL; 1785 return -ENOMEM; 1786 } 1787 1788 qi->desc = desc; 1789 1790 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1791 if (!qi->desc_status) { 1792 iommu_free_page(qi->desc); 1793 kfree(qi); 1794 iommu->qi = NULL; 1795 return -ENOMEM; 1796 } 1797 1798 raw_spin_lock_init(&qi->q_lock); 1799 1800 __dmar_enable_qi(iommu); 1801 1802 return 0; 1803 } 1804 1805 /* iommu interrupt handling. Most stuff are MSI-like. */ 1806 1807 enum faulttype { 1808 DMA_REMAP, 1809 INTR_REMAP, 1810 UNKNOWN, 1811 }; 1812 1813 static const char *dma_remap_fault_reasons[] = 1814 { 1815 "Software", 1816 "Present bit in root entry is clear", 1817 "Present bit in context entry is clear", 1818 "Invalid context entry", 1819 "Access beyond MGAW", 1820 "PTE Write access is not set", 1821 "PTE Read access is not set", 1822 "Next page table ptr is invalid", 1823 "Root table address invalid", 1824 "Context table ptr is invalid", 1825 "non-zero reserved fields in RTP", 1826 "non-zero reserved fields in CTP", 1827 "non-zero reserved fields in PTE", 1828 "PCE for translation request specifies blocking", 1829 }; 1830 1831 static const char * const dma_remap_sm_fault_reasons[] = { 1832 "SM: Invalid Root Table Address", 1833 "SM: TTM 0 for request with PASID", 1834 "SM: TTM 0 for page group request", 1835 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1836 "SM: Error attempting to access Root Entry", 1837 "SM: Present bit in Root Entry is clear", 1838 "SM: Non-zero reserved field set in Root Entry", 1839 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1840 "SM: Error attempting to access Context Entry", 1841 "SM: Present bit in Context Entry is clear", 1842 "SM: Non-zero reserved field set in the Context Entry", 1843 "SM: Invalid Context Entry", 1844 "SM: DTE field in Context Entry is clear", 1845 "SM: PASID Enable field in Context Entry is clear", 1846 "SM: PASID is larger than the max in Context Entry", 1847 "SM: PRE field in Context-Entry is clear", 1848 "SM: RID_PASID field error in Context-Entry", 1849 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1850 "SM: Error attempting to access the PASID Directory Entry", 1851 "SM: Present bit in Directory Entry is clear", 1852 "SM: Non-zero reserved field set in PASID Directory Entry", 1853 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1854 "SM: Error attempting to access PASID Table Entry", 1855 "SM: Present bit in PASID Table Entry is clear", 1856 "SM: Non-zero reserved field set in PASID Table Entry", 1857 "SM: Invalid Scalable-Mode PASID Table Entry", 1858 "SM: ERE field is clear in PASID Table Entry", 1859 "SM: SRE field is clear in PASID Table Entry", 1860 "Unknown", "Unknown",/* 0x5E-0x5F */ 1861 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1862 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1863 "SM: Error attempting to access first-level paging entry", 1864 "SM: Present bit in first-level paging entry is clear", 1865 "SM: Non-zero reserved field set in first-level paging entry", 1866 "SM: Error attempting to access FL-PML4 entry", 1867 "SM: First-level entry address beyond MGAW in Nested translation", 1868 "SM: Read permission error in FL-PML4 entry in Nested translation", 1869 "SM: Read permission error in first-level paging entry in Nested translation", 1870 "SM: Write permission error in first-level paging entry in Nested translation", 1871 "SM: Error attempting to access second-level paging entry", 1872 "SM: Read/Write permission error in second-level paging entry", 1873 "SM: Non-zero reserved field set in second-level paging entry", 1874 "SM: Invalid second-level page table pointer", 1875 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1876 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1877 "SM: Address in first-level translation is not canonical", 1878 "SM: U/S set 0 for first-level translation with user privilege", 1879 "SM: No execute permission for request with PASID and ER=1", 1880 "SM: Address beyond the DMA hardware max", 1881 "SM: Second-level entry address beyond the max", 1882 "SM: No write permission for Write/AtomicOp request", 1883 "SM: No read permission for Read/AtomicOp request", 1884 "SM: Invalid address-interrupt address", 1885 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1886 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1887 }; 1888 1889 static const char *irq_remap_fault_reasons[] = 1890 { 1891 "Detected reserved fields in the decoded interrupt-remapped request", 1892 "Interrupt index exceeded the interrupt-remapping table size", 1893 "Present field in the IRTE entry is clear", 1894 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1895 "Detected reserved fields in the IRTE entry", 1896 "Blocked a compatibility format interrupt request", 1897 "Blocked an interrupt request due to source-id verification failure", 1898 }; 1899 1900 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1901 { 1902 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1903 ARRAY_SIZE(irq_remap_fault_reasons))) { 1904 *fault_type = INTR_REMAP; 1905 return irq_remap_fault_reasons[fault_reason - 0x20]; 1906 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1907 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1908 *fault_type = DMA_REMAP; 1909 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1910 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1911 *fault_type = DMA_REMAP; 1912 return dma_remap_fault_reasons[fault_reason]; 1913 } else { 1914 *fault_type = UNKNOWN; 1915 return "Unknown"; 1916 } 1917 } 1918 1919 1920 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1921 { 1922 if (iommu->irq == irq) 1923 return DMAR_FECTL_REG; 1924 else if (iommu->pr_irq == irq) 1925 return DMAR_PECTL_REG; 1926 else if (iommu->perf_irq == irq) 1927 return DMAR_PERFINTRCTL_REG; 1928 else 1929 BUG(); 1930 } 1931 1932 void dmar_msi_unmask(struct irq_data *data) 1933 { 1934 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1935 int reg = dmar_msi_reg(iommu, data->irq); 1936 unsigned long flag; 1937 1938 /* unmask it */ 1939 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1940 writel(0, iommu->reg + reg); 1941 /* Read a reg to force flush the post write */ 1942 readl(iommu->reg + reg); 1943 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1944 } 1945 1946 void dmar_msi_mask(struct irq_data *data) 1947 { 1948 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1949 int reg = dmar_msi_reg(iommu, data->irq); 1950 unsigned long flag; 1951 1952 /* mask it */ 1953 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1954 writel(DMA_FECTL_IM, iommu->reg + reg); 1955 /* Read a reg to force flush the post write */ 1956 readl(iommu->reg + reg); 1957 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1958 } 1959 1960 void dmar_msi_write(int irq, struct msi_msg *msg) 1961 { 1962 struct intel_iommu *iommu = irq_get_handler_data(irq); 1963 int reg = dmar_msi_reg(iommu, irq); 1964 unsigned long flag; 1965 1966 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1967 writel(msg->data, iommu->reg + reg + 4); 1968 writel(msg->address_lo, iommu->reg + reg + 8); 1969 writel(msg->address_hi, iommu->reg + reg + 12); 1970 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1971 } 1972 1973 void dmar_msi_read(int irq, struct msi_msg *msg) 1974 { 1975 struct intel_iommu *iommu = irq_get_handler_data(irq); 1976 int reg = dmar_msi_reg(iommu, irq); 1977 unsigned long flag; 1978 1979 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1980 msg->data = readl(iommu->reg + reg + 4); 1981 msg->address_lo = readl(iommu->reg + reg + 8); 1982 msg->address_hi = readl(iommu->reg + reg + 12); 1983 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1984 } 1985 1986 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1987 u8 fault_reason, u32 pasid, u16 source_id, 1988 unsigned long long addr) 1989 { 1990 const char *reason; 1991 int fault_type; 1992 1993 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1994 1995 if (fault_type == INTR_REMAP) { 1996 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n", 1997 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1998 PCI_FUNC(source_id & 0xFF), addr >> 48, 1999 fault_reason, reason); 2000 2001 return 0; 2002 } 2003 2004 if (pasid == IOMMU_PASID_INVALID) 2005 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 2006 type ? "DMA Read" : "DMA Write", 2007 source_id >> 8, PCI_SLOT(source_id & 0xFF), 2008 PCI_FUNC(source_id & 0xFF), addr, 2009 fault_reason, reason); 2010 else 2011 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 2012 type ? "DMA Read" : "DMA Write", pasid, 2013 source_id >> 8, PCI_SLOT(source_id & 0xFF), 2014 PCI_FUNC(source_id & 0xFF), addr, 2015 fault_reason, reason); 2016 2017 dmar_fault_dump_ptes(iommu, source_id, addr, pasid); 2018 2019 return 0; 2020 } 2021 2022 #define PRIMARY_FAULT_REG_LEN (16) 2023 irqreturn_t dmar_fault(int irq, void *dev_id) 2024 { 2025 struct intel_iommu *iommu = dev_id; 2026 int reg, fault_index; 2027 u32 fault_status; 2028 unsigned long flag; 2029 static DEFINE_RATELIMIT_STATE(rs, 2030 DEFAULT_RATELIMIT_INTERVAL, 2031 DEFAULT_RATELIMIT_BURST); 2032 2033 raw_spin_lock_irqsave(&iommu->register_lock, flag); 2034 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 2035 if (fault_status && __ratelimit(&rs)) 2036 pr_err("DRHD: handling fault status reg %x\n", fault_status); 2037 2038 /* TBD: ignore advanced fault log currently */ 2039 if (!(fault_status & DMA_FSTS_PPF)) 2040 goto unlock_exit; 2041 2042 fault_index = dma_fsts_fault_record_index(fault_status); 2043 reg = cap_fault_reg_offset(iommu->cap); 2044 while (1) { 2045 /* Disable printing, simply clear the fault when ratelimited */ 2046 bool ratelimited = !__ratelimit(&rs); 2047 u8 fault_reason; 2048 u16 source_id; 2049 u64 guest_addr; 2050 u32 pasid; 2051 int type; 2052 u32 data; 2053 bool pasid_present; 2054 2055 /* highest 32 bits */ 2056 data = readl(iommu->reg + reg + 2057 fault_index * PRIMARY_FAULT_REG_LEN + 12); 2058 if (!(data & DMA_FRCD_F)) 2059 break; 2060 2061 if (!ratelimited) { 2062 fault_reason = dma_frcd_fault_reason(data); 2063 type = dma_frcd_type(data); 2064 2065 pasid = dma_frcd_pasid_value(data); 2066 data = readl(iommu->reg + reg + 2067 fault_index * PRIMARY_FAULT_REG_LEN + 8); 2068 source_id = dma_frcd_source_id(data); 2069 2070 pasid_present = dma_frcd_pasid_present(data); 2071 guest_addr = dmar_readq(iommu->reg + reg + 2072 fault_index * PRIMARY_FAULT_REG_LEN); 2073 guest_addr = dma_frcd_page_addr(guest_addr); 2074 } 2075 2076 /* clear the fault */ 2077 writel(DMA_FRCD_F, iommu->reg + reg + 2078 fault_index * PRIMARY_FAULT_REG_LEN + 12); 2079 2080 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2081 2082 if (!ratelimited) 2083 /* Using pasid -1 if pasid is not present */ 2084 dmar_fault_do_one(iommu, type, fault_reason, 2085 pasid_present ? pasid : IOMMU_PASID_INVALID, 2086 source_id, guest_addr); 2087 2088 fault_index++; 2089 if (fault_index >= cap_num_fault_regs(iommu->cap)) 2090 fault_index = 0; 2091 raw_spin_lock_irqsave(&iommu->register_lock, flag); 2092 } 2093 2094 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 2095 iommu->reg + DMAR_FSTS_REG); 2096 2097 unlock_exit: 2098 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2099 return IRQ_HANDLED; 2100 } 2101 2102 int dmar_set_interrupt(struct intel_iommu *iommu) 2103 { 2104 int irq, ret; 2105 2106 /* 2107 * Check if the fault interrupt is already initialized. 2108 */ 2109 if (iommu->irq) 2110 return 0; 2111 2112 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 2113 if (irq > 0) { 2114 iommu->irq = irq; 2115 } else { 2116 pr_err("No free IRQ vectors\n"); 2117 return -EINVAL; 2118 } 2119 2120 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 2121 if (ret) 2122 pr_err("Can't request irq\n"); 2123 return ret; 2124 } 2125 2126 int enable_drhd_fault_handling(unsigned int cpu) 2127 { 2128 struct dmar_drhd_unit *drhd; 2129 struct intel_iommu *iommu; 2130 2131 /* 2132 * Enable fault control interrupt. 2133 */ 2134 for_each_iommu(iommu, drhd) { 2135 u32 fault_status; 2136 int ret; 2137 2138 if (iommu->irq || iommu->node != cpu_to_node(cpu)) 2139 continue; 2140 2141 ret = dmar_set_interrupt(iommu); 2142 2143 if (ret) { 2144 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 2145 (unsigned long long)drhd->reg_base_addr, ret); 2146 return -1; 2147 } 2148 2149 /* 2150 * Clear any previous faults. 2151 */ 2152 dmar_fault(iommu->irq, iommu); 2153 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 2154 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 2155 } 2156 2157 return 0; 2158 } 2159 2160 /* 2161 * Re-enable Queued Invalidation interface. 2162 */ 2163 int dmar_reenable_qi(struct intel_iommu *iommu) 2164 { 2165 if (!ecap_qis(iommu->ecap)) 2166 return -ENOENT; 2167 2168 if (!iommu->qi) 2169 return -ENOENT; 2170 2171 /* 2172 * First disable queued invalidation. 2173 */ 2174 dmar_disable_qi(iommu); 2175 /* 2176 * Then enable queued invalidation again. Since there is no pending 2177 * invalidation requests now, it's safe to re-enable queued 2178 * invalidation. 2179 */ 2180 __dmar_enable_qi(iommu); 2181 2182 return 0; 2183 } 2184 2185 /* 2186 * Check interrupt remapping support in DMAR table description. 2187 */ 2188 int __init dmar_ir_support(void) 2189 { 2190 struct acpi_table_dmar *dmar; 2191 dmar = (struct acpi_table_dmar *)dmar_tbl; 2192 if (!dmar) 2193 return 0; 2194 return dmar->flags & 0x1; 2195 } 2196 2197 /* Check whether DMAR units are in use */ 2198 static inline bool dmar_in_use(void) 2199 { 2200 return irq_remapping_enabled || intel_iommu_enabled; 2201 } 2202 2203 static int __init dmar_free_unused_resources(void) 2204 { 2205 struct dmar_drhd_unit *dmaru, *dmaru_n; 2206 2207 if (dmar_in_use()) 2208 return 0; 2209 2210 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2211 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2212 2213 down_write(&dmar_global_lock); 2214 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2215 list_del(&dmaru->list); 2216 dmar_free_drhd(dmaru); 2217 } 2218 up_write(&dmar_global_lock); 2219 2220 return 0; 2221 } 2222 2223 late_initcall(dmar_free_unused_resources); 2224 2225 /* 2226 * DMAR Hotplug Support 2227 * For more details, please refer to Intel(R) Virtualization Technology 2228 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2229 * "Remapping Hardware Unit Hot Plug". 2230 */ 2231 static guid_t dmar_hp_guid = 2232 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2233 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2234 2235 /* 2236 * Currently there's only one revision and BIOS will not check the revision id, 2237 * so use 0 for safety. 2238 */ 2239 #define DMAR_DSM_REV_ID 0 2240 #define DMAR_DSM_FUNC_DRHD 1 2241 #define DMAR_DSM_FUNC_ATSR 2 2242 #define DMAR_DSM_FUNC_RHSA 3 2243 #define DMAR_DSM_FUNC_SATC 4 2244 2245 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2246 { 2247 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2248 } 2249 2250 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2251 dmar_res_handler_t handler, void *arg) 2252 { 2253 int ret = -ENODEV; 2254 union acpi_object *obj; 2255 struct acpi_dmar_header *start; 2256 struct dmar_res_callback callback; 2257 static int res_type[] = { 2258 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2259 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2260 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2261 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC, 2262 }; 2263 2264 if (!dmar_detect_dsm(handle, func)) 2265 return 0; 2266 2267 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2268 func, NULL, ACPI_TYPE_BUFFER); 2269 if (!obj) 2270 return -ENODEV; 2271 2272 memset(&callback, 0, sizeof(callback)); 2273 callback.cb[res_type[func]] = handler; 2274 callback.arg[res_type[func]] = arg; 2275 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2276 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2277 2278 ACPI_FREE(obj); 2279 2280 return ret; 2281 } 2282 2283 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2284 { 2285 int ret; 2286 struct dmar_drhd_unit *dmaru; 2287 2288 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2289 if (!dmaru) 2290 return -ENODEV; 2291 2292 ret = dmar_ir_hotplug(dmaru, true); 2293 if (ret == 0) 2294 ret = dmar_iommu_hotplug(dmaru, true); 2295 2296 return ret; 2297 } 2298 2299 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2300 { 2301 int i, ret; 2302 struct device *dev; 2303 struct dmar_drhd_unit *dmaru; 2304 2305 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2306 if (!dmaru) 2307 return 0; 2308 2309 /* 2310 * All PCI devices managed by this unit should have been destroyed. 2311 */ 2312 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2313 for_each_active_dev_scope(dmaru->devices, 2314 dmaru->devices_cnt, i, dev) 2315 return -EBUSY; 2316 } 2317 2318 ret = dmar_ir_hotplug(dmaru, false); 2319 if (ret == 0) 2320 ret = dmar_iommu_hotplug(dmaru, false); 2321 2322 return ret; 2323 } 2324 2325 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2326 { 2327 struct dmar_drhd_unit *dmaru; 2328 2329 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2330 if (dmaru) { 2331 list_del_rcu(&dmaru->list); 2332 synchronize_rcu(); 2333 dmar_free_drhd(dmaru); 2334 } 2335 2336 return 0; 2337 } 2338 2339 static int dmar_hotplug_insert(acpi_handle handle) 2340 { 2341 int ret; 2342 int drhd_count = 0; 2343 2344 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2345 &dmar_validate_one_drhd, (void *)1); 2346 if (ret) 2347 goto out; 2348 2349 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2350 &dmar_parse_one_drhd, (void *)&drhd_count); 2351 if (ret == 0 && drhd_count == 0) { 2352 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2353 goto out; 2354 } else if (ret) { 2355 goto release_drhd; 2356 } 2357 2358 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2359 &dmar_parse_one_rhsa, NULL); 2360 if (ret) 2361 goto release_drhd; 2362 2363 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2364 &dmar_parse_one_atsr, NULL); 2365 if (ret) 2366 goto release_atsr; 2367 2368 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2369 &dmar_hp_add_drhd, NULL); 2370 if (!ret) 2371 return 0; 2372 2373 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2374 &dmar_hp_remove_drhd, NULL); 2375 release_atsr: 2376 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2377 &dmar_release_one_atsr, NULL); 2378 release_drhd: 2379 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2380 &dmar_hp_release_drhd, NULL); 2381 out: 2382 return ret; 2383 } 2384 2385 static int dmar_hotplug_remove(acpi_handle handle) 2386 { 2387 int ret; 2388 2389 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2390 &dmar_check_one_atsr, NULL); 2391 if (ret) 2392 return ret; 2393 2394 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2395 &dmar_hp_remove_drhd, NULL); 2396 if (ret == 0) { 2397 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2398 &dmar_release_one_atsr, NULL)); 2399 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2400 &dmar_hp_release_drhd, NULL)); 2401 } else { 2402 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2403 &dmar_hp_add_drhd, NULL); 2404 } 2405 2406 return ret; 2407 } 2408 2409 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2410 void *context, void **retval) 2411 { 2412 acpi_handle *phdl = retval; 2413 2414 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2415 *phdl = handle; 2416 return AE_CTRL_TERMINATE; 2417 } 2418 2419 return AE_OK; 2420 } 2421 2422 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2423 { 2424 int ret; 2425 acpi_handle tmp = NULL; 2426 acpi_status status; 2427 2428 if (!dmar_in_use()) 2429 return 0; 2430 2431 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2432 tmp = handle; 2433 } else { 2434 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2435 ACPI_UINT32_MAX, 2436 dmar_get_dsm_handle, 2437 NULL, NULL, &tmp); 2438 if (ACPI_FAILURE(status)) { 2439 pr_warn("Failed to locate _DSM method.\n"); 2440 return -ENXIO; 2441 } 2442 } 2443 if (tmp == NULL) 2444 return 0; 2445 2446 down_write(&dmar_global_lock); 2447 if (insert) 2448 ret = dmar_hotplug_insert(tmp); 2449 else 2450 ret = dmar_hotplug_remove(tmp); 2451 up_write(&dmar_global_lock); 2452 2453 return ret; 2454 } 2455 2456 int dmar_device_add(acpi_handle handle) 2457 { 2458 return dmar_device_hotplug(handle, true); 2459 } 2460 2461 int dmar_device_remove(acpi_handle handle) 2462 { 2463 return dmar_device_hotplug(handle, false); 2464 } 2465 2466 /* 2467 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2468 * 2469 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2470 * the ACPI DMAR table. This means that the platform boot firmware has made 2471 * sure no device can issue DMA outside of RMRR regions. 2472 */ 2473 bool dmar_platform_optin(void) 2474 { 2475 struct acpi_table_dmar *dmar; 2476 acpi_status status; 2477 bool ret; 2478 2479 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2480 (struct acpi_table_header **)&dmar); 2481 if (ACPI_FAILURE(status)) 2482 return false; 2483 2484 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2485 acpi_put_table((struct acpi_table_header *)dmar); 2486 2487 return ret; 2488 } 2489 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2490