1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/intel-iommu.h> 23 #include <linux/timer.h> 24 #include <linux/irq.h> 25 #include <linux/interrupt.h> 26 #include <linux/tboot.h> 27 #include <linux/dmi.h> 28 #include <linux/slab.h> 29 #include <linux/iommu.h> 30 #include <linux/numa.h> 31 #include <linux/limits.h> 32 #include <asm/irq_remapping.h> 33 #include <asm/iommu_table.h> 34 #include <trace/events/intel_iommu.h> 35 36 #include "../irq_remapping.h" 37 38 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 39 struct dmar_res_callback { 40 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 41 void *arg[ACPI_DMAR_TYPE_RESERVED]; 42 bool ignore_unhandled; 43 bool print_entry; 44 }; 45 46 /* 47 * Assumptions: 48 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 49 * before IO devices managed by that unit. 50 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 51 * after IO devices managed by that unit. 52 * 3) Hotplug events are rare. 53 * 54 * Locking rules for DMA and interrupt remapping related global data structures: 55 * 1) Use dmar_global_lock in process context 56 * 2) Use RCU in interrupt context 57 */ 58 DECLARE_RWSEM(dmar_global_lock); 59 LIST_HEAD(dmar_drhd_units); 60 61 struct acpi_table_header * __initdata dmar_tbl; 62 static int dmar_dev_scope_status = 1; 63 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)]; 64 65 static int alloc_iommu(struct dmar_drhd_unit *drhd); 66 static void free_iommu(struct intel_iommu *iommu); 67 68 extern const struct iommu_ops intel_iommu_ops; 69 70 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 71 { 72 /* 73 * add INCLUDE_ALL at the tail, so scan the list will find it at 74 * the very end. 75 */ 76 if (drhd->include_all) 77 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 78 else 79 list_add_rcu(&drhd->list, &dmar_drhd_units); 80 } 81 82 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 83 { 84 struct acpi_dmar_device_scope *scope; 85 86 *cnt = 0; 87 while (start < end) { 88 scope = start; 89 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 91 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 92 (*cnt)++; 93 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 94 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 95 pr_warn("Unsupported device scope\n"); 96 } 97 start += scope->length; 98 } 99 if (*cnt == 0) 100 return NULL; 101 102 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 103 } 104 105 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 106 { 107 int i; 108 struct device *tmp_dev; 109 110 if (*devices && *cnt) { 111 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 112 put_device(tmp_dev); 113 kfree(*devices); 114 } 115 116 *devices = NULL; 117 *cnt = 0; 118 } 119 120 /* Optimize out kzalloc()/kfree() for normal cases */ 121 static char dmar_pci_notify_info_buf[64]; 122 123 static struct dmar_pci_notify_info * 124 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 125 { 126 int level = 0; 127 size_t size; 128 struct pci_dev *tmp; 129 struct dmar_pci_notify_info *info; 130 131 BUG_ON(dev->is_virtfn); 132 133 /* 134 * Ignore devices that have a domain number higher than what can 135 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 136 */ 137 if (pci_domain_nr(dev->bus) > U16_MAX) 138 return NULL; 139 140 /* Only generate path[] for device addition event */ 141 if (event == BUS_NOTIFY_ADD_DEVICE) 142 for (tmp = dev; tmp; tmp = tmp->bus->self) 143 level++; 144 145 size = struct_size(info, path, level); 146 if (size <= sizeof(dmar_pci_notify_info_buf)) { 147 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 148 } else { 149 info = kzalloc(size, GFP_KERNEL); 150 if (!info) { 151 pr_warn("Out of memory when allocating notify_info " 152 "for %s.\n", pci_name(dev)); 153 if (dmar_dev_scope_status == 0) 154 dmar_dev_scope_status = -ENOMEM; 155 return NULL; 156 } 157 } 158 159 info->event = event; 160 info->dev = dev; 161 info->seg = pci_domain_nr(dev->bus); 162 info->level = level; 163 if (event == BUS_NOTIFY_ADD_DEVICE) { 164 for (tmp = dev; tmp; tmp = tmp->bus->self) { 165 level--; 166 info->path[level].bus = tmp->bus->number; 167 info->path[level].device = PCI_SLOT(tmp->devfn); 168 info->path[level].function = PCI_FUNC(tmp->devfn); 169 if (pci_is_root_bus(tmp->bus)) 170 info->bus = tmp->bus->number; 171 } 172 } 173 174 return info; 175 } 176 177 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 178 { 179 if ((void *)info != dmar_pci_notify_info_buf) 180 kfree(info); 181 } 182 183 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 184 struct acpi_dmar_pci_path *path, int count) 185 { 186 int i; 187 188 if (info->bus != bus) 189 goto fallback; 190 if (info->level != count) 191 goto fallback; 192 193 for (i = 0; i < count; i++) { 194 if (path[i].device != info->path[i].device || 195 path[i].function != info->path[i].function) 196 goto fallback; 197 } 198 199 return true; 200 201 fallback: 202 203 if (count != 1) 204 return false; 205 206 i = info->level - 1; 207 if (bus == info->path[i].bus && 208 path[0].device == info->path[i].device && 209 path[0].function == info->path[i].function) { 210 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 211 bus, path[0].device, path[0].function); 212 return true; 213 } 214 215 return false; 216 } 217 218 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 219 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 220 void *start, void*end, u16 segment, 221 struct dmar_dev_scope *devices, 222 int devices_cnt) 223 { 224 int i, level; 225 struct device *tmp, *dev = &info->dev->dev; 226 struct acpi_dmar_device_scope *scope; 227 struct acpi_dmar_pci_path *path; 228 229 if (segment != info->seg) 230 return 0; 231 232 for (; start < end; start += scope->length) { 233 scope = start; 234 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 235 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 236 continue; 237 238 path = (struct acpi_dmar_pci_path *)(scope + 1); 239 level = (scope->length - sizeof(*scope)) / sizeof(*path); 240 if (!dmar_match_pci_path(info, scope->bus, path, level)) 241 continue; 242 243 /* 244 * We expect devices with endpoint scope to have normal PCI 245 * headers, and devices with bridge scope to have bridge PCI 246 * headers. However PCI NTB devices may be listed in the 247 * DMAR table with bridge scope, even though they have a 248 * normal PCI header. NTB devices are identified by class 249 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 250 * for this special case. 251 */ 252 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 253 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 254 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 255 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 256 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 257 pr_warn("Device scope type does not match for %s\n", 258 pci_name(info->dev)); 259 return -EINVAL; 260 } 261 262 for_each_dev_scope(devices, devices_cnt, i, tmp) 263 if (tmp == NULL) { 264 devices[i].bus = info->dev->bus->number; 265 devices[i].devfn = info->dev->devfn; 266 rcu_assign_pointer(devices[i].dev, 267 get_device(dev)); 268 return 1; 269 } 270 BUG_ON(i >= devices_cnt); 271 } 272 273 return 0; 274 } 275 276 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 277 struct dmar_dev_scope *devices, int count) 278 { 279 int index; 280 struct device *tmp; 281 282 if (info->seg != segment) 283 return 0; 284 285 for_each_active_dev_scope(devices, count, index, tmp) 286 if (tmp == &info->dev->dev) { 287 RCU_INIT_POINTER(devices[index].dev, NULL); 288 synchronize_rcu(); 289 put_device(tmp); 290 return 1; 291 } 292 293 return 0; 294 } 295 296 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 297 { 298 int ret = 0; 299 struct dmar_drhd_unit *dmaru; 300 struct acpi_dmar_hardware_unit *drhd; 301 302 for_each_drhd_unit(dmaru) { 303 if (dmaru->include_all) 304 continue; 305 306 drhd = container_of(dmaru->hdr, 307 struct acpi_dmar_hardware_unit, header); 308 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 309 ((void *)drhd) + drhd->header.length, 310 dmaru->segment, 311 dmaru->devices, dmaru->devices_cnt); 312 if (ret) 313 break; 314 } 315 if (ret >= 0) 316 ret = dmar_iommu_notify_scope_dev(info); 317 if (ret < 0 && dmar_dev_scope_status == 0) 318 dmar_dev_scope_status = ret; 319 320 if (ret >= 0) 321 intel_irq_remap_add_device(info); 322 323 return ret; 324 } 325 326 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 327 { 328 struct dmar_drhd_unit *dmaru; 329 330 for_each_drhd_unit(dmaru) 331 if (dmar_remove_dev_scope(info, dmaru->segment, 332 dmaru->devices, dmaru->devices_cnt)) 333 break; 334 dmar_iommu_notify_scope_dev(info); 335 } 336 337 static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 338 { 339 struct pci_dev *physfn = pci_physfn(pdev); 340 341 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); 342 } 343 344 static int dmar_pci_bus_notifier(struct notifier_block *nb, 345 unsigned long action, void *data) 346 { 347 struct pci_dev *pdev = to_pci_dev(data); 348 struct dmar_pci_notify_info *info; 349 350 /* Only care about add/remove events for physical functions. 351 * For VFs we actually do the lookup based on the corresponding 352 * PF in device_to_iommu() anyway. */ 353 if (pdev->is_virtfn) { 354 /* 355 * Ensure that the VF device inherits the irq domain of the 356 * PF device. Ideally the device would inherit the domain 357 * from the bus, but DMAR can have multiple units per bus 358 * which makes this impossible. The VF 'bus' could inherit 359 * from the PF device, but that's yet another x86'sism to 360 * inflict on everybody else. 361 */ 362 if (action == BUS_NOTIFY_ADD_DEVICE) 363 vf_inherit_msi_domain(pdev); 364 return NOTIFY_DONE; 365 } 366 367 if (action != BUS_NOTIFY_ADD_DEVICE && 368 action != BUS_NOTIFY_REMOVED_DEVICE) 369 return NOTIFY_DONE; 370 371 info = dmar_alloc_pci_notify_info(pdev, action); 372 if (!info) 373 return NOTIFY_DONE; 374 375 down_write(&dmar_global_lock); 376 if (action == BUS_NOTIFY_ADD_DEVICE) 377 dmar_pci_bus_add_dev(info); 378 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 379 dmar_pci_bus_del_dev(info); 380 up_write(&dmar_global_lock); 381 382 dmar_free_pci_notify_info(info); 383 384 return NOTIFY_OK; 385 } 386 387 static struct notifier_block dmar_pci_bus_nb = { 388 .notifier_call = dmar_pci_bus_notifier, 389 .priority = INT_MIN, 390 }; 391 392 static struct dmar_drhd_unit * 393 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 394 { 395 struct dmar_drhd_unit *dmaru; 396 397 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 398 dmar_rcu_check()) 399 if (dmaru->segment == drhd->segment && 400 dmaru->reg_base_addr == drhd->address) 401 return dmaru; 402 403 return NULL; 404 } 405 406 /* 407 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 408 * structure which uniquely represent one DMA remapping hardware unit 409 * present in the platform 410 */ 411 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 412 { 413 struct acpi_dmar_hardware_unit *drhd; 414 struct dmar_drhd_unit *dmaru; 415 int ret; 416 417 drhd = (struct acpi_dmar_hardware_unit *)header; 418 dmaru = dmar_find_dmaru(drhd); 419 if (dmaru) 420 goto out; 421 422 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 423 if (!dmaru) 424 return -ENOMEM; 425 426 /* 427 * If header is allocated from slab by ACPI _DSM method, we need to 428 * copy the content because the memory buffer will be freed on return. 429 */ 430 dmaru->hdr = (void *)(dmaru + 1); 431 memcpy(dmaru->hdr, header, header->length); 432 dmaru->reg_base_addr = drhd->address; 433 dmaru->segment = drhd->segment; 434 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 435 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 436 ((void *)drhd) + drhd->header.length, 437 &dmaru->devices_cnt); 438 if (dmaru->devices_cnt && dmaru->devices == NULL) { 439 kfree(dmaru); 440 return -ENOMEM; 441 } 442 443 ret = alloc_iommu(dmaru); 444 if (ret) { 445 dmar_free_dev_scope(&dmaru->devices, 446 &dmaru->devices_cnt); 447 kfree(dmaru); 448 return ret; 449 } 450 dmar_register_drhd_unit(dmaru); 451 452 out: 453 if (arg) 454 (*(int *)arg)++; 455 456 return 0; 457 } 458 459 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 460 { 461 if (dmaru->devices && dmaru->devices_cnt) 462 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 463 if (dmaru->iommu) 464 free_iommu(dmaru->iommu); 465 kfree(dmaru); 466 } 467 468 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 469 void *arg) 470 { 471 struct acpi_dmar_andd *andd = (void *)header; 472 473 /* Check for NUL termination within the designated length */ 474 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 475 pr_warn(FW_BUG 476 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 477 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 478 dmi_get_system_info(DMI_BIOS_VENDOR), 479 dmi_get_system_info(DMI_BIOS_VERSION), 480 dmi_get_system_info(DMI_PRODUCT_VERSION)); 481 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 482 return -EINVAL; 483 } 484 pr_info("ANDD device: %x name: %s\n", andd->device_number, 485 andd->device_name); 486 487 return 0; 488 } 489 490 #ifdef CONFIG_ACPI_NUMA 491 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 492 { 493 struct acpi_dmar_rhsa *rhsa; 494 struct dmar_drhd_unit *drhd; 495 496 rhsa = (struct acpi_dmar_rhsa *)header; 497 for_each_drhd_unit(drhd) { 498 if (drhd->reg_base_addr == rhsa->base_address) { 499 int node = pxm_to_node(rhsa->proximity_domain); 500 501 if (!node_online(node)) 502 node = NUMA_NO_NODE; 503 drhd->iommu->node = node; 504 return 0; 505 } 506 } 507 pr_warn(FW_BUG 508 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 509 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 510 rhsa->base_address, 511 dmi_get_system_info(DMI_BIOS_VENDOR), 512 dmi_get_system_info(DMI_BIOS_VERSION), 513 dmi_get_system_info(DMI_PRODUCT_VERSION)); 514 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 515 516 return 0; 517 } 518 #else 519 #define dmar_parse_one_rhsa dmar_res_noop 520 #endif 521 522 static void 523 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 524 { 525 struct acpi_dmar_hardware_unit *drhd; 526 struct acpi_dmar_reserved_memory *rmrr; 527 struct acpi_dmar_atsr *atsr; 528 struct acpi_dmar_rhsa *rhsa; 529 struct acpi_dmar_satc *satc; 530 531 switch (header->type) { 532 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 533 drhd = container_of(header, struct acpi_dmar_hardware_unit, 534 header); 535 pr_info("DRHD base: %#016Lx flags: %#x\n", 536 (unsigned long long)drhd->address, drhd->flags); 537 break; 538 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 539 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 540 header); 541 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 542 (unsigned long long)rmrr->base_address, 543 (unsigned long long)rmrr->end_address); 544 break; 545 case ACPI_DMAR_TYPE_ROOT_ATS: 546 atsr = container_of(header, struct acpi_dmar_atsr, header); 547 pr_info("ATSR flags: %#x\n", atsr->flags); 548 break; 549 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 550 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 551 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 552 (unsigned long long)rhsa->base_address, 553 rhsa->proximity_domain); 554 break; 555 case ACPI_DMAR_TYPE_NAMESPACE: 556 /* We don't print this here because we need to sanity-check 557 it first. So print it in dmar_parse_one_andd() instead. */ 558 break; 559 case ACPI_DMAR_TYPE_SATC: 560 satc = container_of(header, struct acpi_dmar_satc, header); 561 pr_info("SATC flags: 0x%x\n", satc->flags); 562 break; 563 } 564 } 565 566 /** 567 * dmar_table_detect - checks to see if the platform supports DMAR devices 568 */ 569 static int __init dmar_table_detect(void) 570 { 571 acpi_status status = AE_OK; 572 573 /* if we could find DMAR table, then there are DMAR devices */ 574 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 575 576 if (ACPI_SUCCESS(status) && !dmar_tbl) { 577 pr_warn("Unable to map DMAR\n"); 578 status = AE_NOT_FOUND; 579 } 580 581 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 582 } 583 584 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 585 size_t len, struct dmar_res_callback *cb) 586 { 587 struct acpi_dmar_header *iter, *next; 588 struct acpi_dmar_header *end = ((void *)start) + len; 589 590 for (iter = start; iter < end; iter = next) { 591 next = (void *)iter + iter->length; 592 if (iter->length == 0) { 593 /* Avoid looping forever on bad ACPI tables */ 594 pr_debug(FW_BUG "Invalid 0-length structure\n"); 595 break; 596 } else if (next > end) { 597 /* Avoid passing table end */ 598 pr_warn(FW_BUG "Record passes table end\n"); 599 return -EINVAL; 600 } 601 602 if (cb->print_entry) 603 dmar_table_print_dmar_entry(iter); 604 605 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 606 /* continue for forward compatibility */ 607 pr_debug("Unknown DMAR structure type %d\n", 608 iter->type); 609 } else if (cb->cb[iter->type]) { 610 int ret; 611 612 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 613 if (ret) 614 return ret; 615 } else if (!cb->ignore_unhandled) { 616 pr_warn("No handler for DMAR structure type %d\n", 617 iter->type); 618 return -EINVAL; 619 } 620 } 621 622 return 0; 623 } 624 625 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 626 struct dmar_res_callback *cb) 627 { 628 return dmar_walk_remapping_entries((void *)(dmar + 1), 629 dmar->header.length - sizeof(*dmar), cb); 630 } 631 632 /** 633 * parse_dmar_table - parses the DMA reporting table 634 */ 635 static int __init 636 parse_dmar_table(void) 637 { 638 struct acpi_table_dmar *dmar; 639 int drhd_count = 0; 640 int ret; 641 struct dmar_res_callback cb = { 642 .print_entry = true, 643 .ignore_unhandled = true, 644 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 645 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 646 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 647 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 648 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 649 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 650 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc, 651 }; 652 653 /* 654 * Do it again, earlier dmar_tbl mapping could be mapped with 655 * fixed map. 656 */ 657 dmar_table_detect(); 658 659 /* 660 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 661 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 662 */ 663 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 664 665 dmar = (struct acpi_table_dmar *)dmar_tbl; 666 if (!dmar) 667 return -ENODEV; 668 669 if (dmar->width < PAGE_SHIFT - 1) { 670 pr_warn("Invalid DMAR haw\n"); 671 return -EINVAL; 672 } 673 674 pr_info("Host address width %d\n", dmar->width + 1); 675 ret = dmar_walk_dmar_table(dmar, &cb); 676 if (ret == 0 && drhd_count == 0) 677 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 678 679 return ret; 680 } 681 682 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 683 int cnt, struct pci_dev *dev) 684 { 685 int index; 686 struct device *tmp; 687 688 while (dev) { 689 for_each_active_dev_scope(devices, cnt, index, tmp) 690 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 691 return 1; 692 693 /* Check our parent */ 694 dev = dev->bus->self; 695 } 696 697 return 0; 698 } 699 700 struct dmar_drhd_unit * 701 dmar_find_matched_drhd_unit(struct pci_dev *dev) 702 { 703 struct dmar_drhd_unit *dmaru; 704 struct acpi_dmar_hardware_unit *drhd; 705 706 dev = pci_physfn(dev); 707 708 rcu_read_lock(); 709 for_each_drhd_unit(dmaru) { 710 drhd = container_of(dmaru->hdr, 711 struct acpi_dmar_hardware_unit, 712 header); 713 714 if (dmaru->include_all && 715 drhd->segment == pci_domain_nr(dev->bus)) 716 goto out; 717 718 if (dmar_pci_device_match(dmaru->devices, 719 dmaru->devices_cnt, dev)) 720 goto out; 721 } 722 dmaru = NULL; 723 out: 724 rcu_read_unlock(); 725 726 return dmaru; 727 } 728 729 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 730 struct acpi_device *adev) 731 { 732 struct dmar_drhd_unit *dmaru; 733 struct acpi_dmar_hardware_unit *drhd; 734 struct acpi_dmar_device_scope *scope; 735 struct device *tmp; 736 int i; 737 struct acpi_dmar_pci_path *path; 738 739 for_each_drhd_unit(dmaru) { 740 drhd = container_of(dmaru->hdr, 741 struct acpi_dmar_hardware_unit, 742 header); 743 744 for (scope = (void *)(drhd + 1); 745 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 746 scope = ((void *)scope) + scope->length) { 747 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 748 continue; 749 if (scope->enumeration_id != device_number) 750 continue; 751 752 path = (void *)(scope + 1); 753 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 754 dev_name(&adev->dev), dmaru->reg_base_addr, 755 scope->bus, path->device, path->function); 756 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 757 if (tmp == NULL) { 758 dmaru->devices[i].bus = scope->bus; 759 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 760 path->function); 761 rcu_assign_pointer(dmaru->devices[i].dev, 762 get_device(&adev->dev)); 763 return; 764 } 765 BUG_ON(i >= dmaru->devices_cnt); 766 } 767 } 768 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 769 device_number, dev_name(&adev->dev)); 770 } 771 772 static int __init dmar_acpi_dev_scope_init(void) 773 { 774 struct acpi_dmar_andd *andd; 775 776 if (dmar_tbl == NULL) 777 return -ENODEV; 778 779 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 780 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 781 andd = ((void *)andd) + andd->header.length) { 782 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 783 acpi_handle h; 784 struct acpi_device *adev; 785 786 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 787 andd->device_name, 788 &h))) { 789 pr_err("Failed to find handle for ACPI object %s\n", 790 andd->device_name); 791 continue; 792 } 793 if (acpi_bus_get_device(h, &adev)) { 794 pr_err("Failed to get device for ACPI object %s\n", 795 andd->device_name); 796 continue; 797 } 798 dmar_acpi_insert_dev_scope(andd->device_number, adev); 799 } 800 } 801 return 0; 802 } 803 804 int __init dmar_dev_scope_init(void) 805 { 806 struct pci_dev *dev = NULL; 807 struct dmar_pci_notify_info *info; 808 809 if (dmar_dev_scope_status != 1) 810 return dmar_dev_scope_status; 811 812 if (list_empty(&dmar_drhd_units)) { 813 dmar_dev_scope_status = -ENODEV; 814 } else { 815 dmar_dev_scope_status = 0; 816 817 dmar_acpi_dev_scope_init(); 818 819 for_each_pci_dev(dev) { 820 if (dev->is_virtfn) 821 continue; 822 823 info = dmar_alloc_pci_notify_info(dev, 824 BUS_NOTIFY_ADD_DEVICE); 825 if (!info) { 826 return dmar_dev_scope_status; 827 } else { 828 dmar_pci_bus_add_dev(info); 829 dmar_free_pci_notify_info(info); 830 } 831 } 832 } 833 834 return dmar_dev_scope_status; 835 } 836 837 void __init dmar_register_bus_notifier(void) 838 { 839 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 840 } 841 842 843 int __init dmar_table_init(void) 844 { 845 static int dmar_table_initialized; 846 int ret; 847 848 if (dmar_table_initialized == 0) { 849 ret = parse_dmar_table(); 850 if (ret < 0) { 851 if (ret != -ENODEV) 852 pr_info("Parse DMAR table failure.\n"); 853 } else if (list_empty(&dmar_drhd_units)) { 854 pr_info("No DMAR devices found\n"); 855 ret = -ENODEV; 856 } 857 858 if (ret < 0) 859 dmar_table_initialized = ret; 860 else 861 dmar_table_initialized = 1; 862 } 863 864 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 865 } 866 867 static void warn_invalid_dmar(u64 addr, const char *message) 868 { 869 pr_warn_once(FW_BUG 870 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 871 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 872 addr, message, 873 dmi_get_system_info(DMI_BIOS_VENDOR), 874 dmi_get_system_info(DMI_BIOS_VERSION), 875 dmi_get_system_info(DMI_PRODUCT_VERSION)); 876 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 877 } 878 879 static int __ref 880 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 881 { 882 struct acpi_dmar_hardware_unit *drhd; 883 void __iomem *addr; 884 u64 cap, ecap; 885 886 drhd = (void *)entry; 887 if (!drhd->address) { 888 warn_invalid_dmar(0, ""); 889 return -EINVAL; 890 } 891 892 if (arg) 893 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 894 else 895 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 896 if (!addr) { 897 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 898 return -EINVAL; 899 } 900 901 cap = dmar_readq(addr + DMAR_CAP_REG); 902 ecap = dmar_readq(addr + DMAR_ECAP_REG); 903 904 if (arg) 905 iounmap(addr); 906 else 907 early_iounmap(addr, VTD_PAGE_SIZE); 908 909 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 910 warn_invalid_dmar(drhd->address, " returns all ones"); 911 return -EINVAL; 912 } 913 914 return 0; 915 } 916 917 int __init detect_intel_iommu(void) 918 { 919 int ret; 920 struct dmar_res_callback validate_drhd_cb = { 921 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 922 .ignore_unhandled = true, 923 }; 924 925 down_write(&dmar_global_lock); 926 ret = dmar_table_detect(); 927 if (!ret) 928 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 929 &validate_drhd_cb); 930 if (!ret && !no_iommu && !iommu_detected && 931 (!dmar_disabled || dmar_platform_optin())) { 932 iommu_detected = 1; 933 /* Make sure ACS will be enabled */ 934 pci_request_acs(); 935 } 936 937 #ifdef CONFIG_X86 938 if (!ret) { 939 x86_init.iommu.iommu_init = intel_iommu_init; 940 x86_platform.iommu_shutdown = intel_iommu_shutdown; 941 } 942 943 #endif 944 945 if (dmar_tbl) { 946 acpi_put_table(dmar_tbl); 947 dmar_tbl = NULL; 948 } 949 up_write(&dmar_global_lock); 950 951 return ret ? ret : 1; 952 } 953 954 static void unmap_iommu(struct intel_iommu *iommu) 955 { 956 iounmap(iommu->reg); 957 release_mem_region(iommu->reg_phys, iommu->reg_size); 958 } 959 960 /** 961 * map_iommu: map the iommu's registers 962 * @iommu: the iommu to map 963 * @phys_addr: the physical address of the base resgister 964 * 965 * Memory map the iommu's registers. Start w/ a single page, and 966 * possibly expand if that turns out to be insufficent. 967 */ 968 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) 969 { 970 int map_size, err=0; 971 972 iommu->reg_phys = phys_addr; 973 iommu->reg_size = VTD_PAGE_SIZE; 974 975 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 976 pr_err("Can't reserve memory\n"); 977 err = -EBUSY; 978 goto out; 979 } 980 981 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 982 if (!iommu->reg) { 983 pr_err("Can't map the region\n"); 984 err = -ENOMEM; 985 goto release; 986 } 987 988 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 989 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 990 991 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 992 err = -EINVAL; 993 warn_invalid_dmar(phys_addr, " returns all ones"); 994 goto unmap; 995 } 996 if (ecap_vcs(iommu->ecap)) 997 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); 998 999 /* the registers might be more than one page */ 1000 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 1001 cap_max_fault_reg_offset(iommu->cap)); 1002 map_size = VTD_PAGE_ALIGN(map_size); 1003 if (map_size > iommu->reg_size) { 1004 iounmap(iommu->reg); 1005 release_mem_region(iommu->reg_phys, iommu->reg_size); 1006 iommu->reg_size = map_size; 1007 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 1008 iommu->name)) { 1009 pr_err("Can't reserve memory\n"); 1010 err = -EBUSY; 1011 goto out; 1012 } 1013 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1014 if (!iommu->reg) { 1015 pr_err("Can't map the region\n"); 1016 err = -ENOMEM; 1017 goto release; 1018 } 1019 } 1020 err = 0; 1021 goto out; 1022 1023 unmap: 1024 iounmap(iommu->reg); 1025 release: 1026 release_mem_region(iommu->reg_phys, iommu->reg_size); 1027 out: 1028 return err; 1029 } 1030 1031 static int dmar_alloc_seq_id(struct intel_iommu *iommu) 1032 { 1033 iommu->seq_id = find_first_zero_bit(dmar_seq_ids, 1034 DMAR_UNITS_SUPPORTED); 1035 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) { 1036 iommu->seq_id = -1; 1037 } else { 1038 set_bit(iommu->seq_id, dmar_seq_ids); 1039 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1040 } 1041 1042 return iommu->seq_id; 1043 } 1044 1045 static void dmar_free_seq_id(struct intel_iommu *iommu) 1046 { 1047 if (iommu->seq_id >= 0) { 1048 clear_bit(iommu->seq_id, dmar_seq_ids); 1049 iommu->seq_id = -1; 1050 } 1051 } 1052 1053 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1054 { 1055 struct intel_iommu *iommu; 1056 u32 ver, sts; 1057 int agaw = -1; 1058 int msagaw = -1; 1059 int err; 1060 1061 if (!drhd->reg_base_addr) { 1062 warn_invalid_dmar(0, ""); 1063 return -EINVAL; 1064 } 1065 1066 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1067 if (!iommu) 1068 return -ENOMEM; 1069 1070 if (dmar_alloc_seq_id(iommu) < 0) { 1071 pr_err("Failed to allocate seq_id\n"); 1072 err = -ENOSPC; 1073 goto error; 1074 } 1075 1076 err = map_iommu(iommu, drhd->reg_base_addr); 1077 if (err) { 1078 pr_err("Failed to map %s\n", iommu->name); 1079 goto error_free_seq_id; 1080 } 1081 1082 err = -EINVAL; 1083 if (cap_sagaw(iommu->cap) == 0) { 1084 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1085 iommu->name); 1086 drhd->ignored = 1; 1087 } 1088 1089 if (!drhd->ignored) { 1090 agaw = iommu_calculate_agaw(iommu); 1091 if (agaw < 0) { 1092 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1093 iommu->seq_id); 1094 drhd->ignored = 1; 1095 } 1096 } 1097 if (!drhd->ignored) { 1098 msagaw = iommu_calculate_max_sagaw(iommu); 1099 if (msagaw < 0) { 1100 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1101 iommu->seq_id); 1102 drhd->ignored = 1; 1103 agaw = -1; 1104 } 1105 } 1106 iommu->agaw = agaw; 1107 iommu->msagaw = msagaw; 1108 iommu->segment = drhd->segment; 1109 1110 iommu->node = NUMA_NO_NODE; 1111 1112 ver = readl(iommu->reg + DMAR_VER_REG); 1113 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1114 iommu->name, 1115 (unsigned long long)drhd->reg_base_addr, 1116 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1117 (unsigned long long)iommu->cap, 1118 (unsigned long long)iommu->ecap); 1119 1120 /* Reflect status in gcmd */ 1121 sts = readl(iommu->reg + DMAR_GSTS_REG); 1122 if (sts & DMA_GSTS_IRES) 1123 iommu->gcmd |= DMA_GCMD_IRE; 1124 if (sts & DMA_GSTS_TES) 1125 iommu->gcmd |= DMA_GCMD_TE; 1126 if (sts & DMA_GSTS_QIES) 1127 iommu->gcmd |= DMA_GCMD_QIE; 1128 1129 raw_spin_lock_init(&iommu->register_lock); 1130 1131 /* 1132 * This is only for hotplug; at boot time intel_iommu_enabled won't 1133 * be set yet. When intel_iommu_init() runs, it registers the units 1134 * present at boot time, then sets intel_iommu_enabled. 1135 */ 1136 if (intel_iommu_enabled && !drhd->ignored) { 1137 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1138 intel_iommu_groups, 1139 "%s", iommu->name); 1140 if (err) 1141 goto err_unmap; 1142 1143 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); 1144 1145 err = iommu_device_register(&iommu->iommu); 1146 if (err) 1147 goto err_unmap; 1148 } 1149 1150 drhd->iommu = iommu; 1151 iommu->drhd = drhd; 1152 1153 return 0; 1154 1155 err_unmap: 1156 unmap_iommu(iommu); 1157 error_free_seq_id: 1158 dmar_free_seq_id(iommu); 1159 error: 1160 kfree(iommu); 1161 return err; 1162 } 1163 1164 static void free_iommu(struct intel_iommu *iommu) 1165 { 1166 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1167 iommu_device_unregister(&iommu->iommu); 1168 iommu_device_sysfs_remove(&iommu->iommu); 1169 } 1170 1171 if (iommu->irq) { 1172 if (iommu->pr_irq) { 1173 free_irq(iommu->pr_irq, iommu); 1174 dmar_free_hwirq(iommu->pr_irq); 1175 iommu->pr_irq = 0; 1176 } 1177 free_irq(iommu->irq, iommu); 1178 dmar_free_hwirq(iommu->irq); 1179 iommu->irq = 0; 1180 } 1181 1182 if (iommu->qi) { 1183 free_page((unsigned long)iommu->qi->desc); 1184 kfree(iommu->qi->desc_status); 1185 kfree(iommu->qi); 1186 } 1187 1188 if (iommu->reg) 1189 unmap_iommu(iommu); 1190 1191 dmar_free_seq_id(iommu); 1192 kfree(iommu); 1193 } 1194 1195 /* 1196 * Reclaim all the submitted descriptors which have completed its work. 1197 */ 1198 static inline void reclaim_free_desc(struct q_inval *qi) 1199 { 1200 while (qi->desc_status[qi->free_tail] == QI_DONE || 1201 qi->desc_status[qi->free_tail] == QI_ABORT) { 1202 qi->desc_status[qi->free_tail] = QI_FREE; 1203 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1204 qi->free_cnt++; 1205 } 1206 } 1207 1208 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1209 { 1210 u32 fault; 1211 int head, tail; 1212 struct q_inval *qi = iommu->qi; 1213 int shift = qi_shift(iommu); 1214 1215 if (qi->desc_status[wait_index] == QI_ABORT) 1216 return -EAGAIN; 1217 1218 fault = readl(iommu->reg + DMAR_FSTS_REG); 1219 1220 /* 1221 * If IQE happens, the head points to the descriptor associated 1222 * with the error. No new descriptors are fetched until the IQE 1223 * is cleared. 1224 */ 1225 if (fault & DMA_FSTS_IQE) { 1226 head = readl(iommu->reg + DMAR_IQH_REG); 1227 if ((head >> shift) == index) { 1228 struct qi_desc *desc = qi->desc + head; 1229 1230 /* 1231 * desc->qw2 and desc->qw3 are either reserved or 1232 * used by software as private data. We won't print 1233 * out these two qw's for security consideration. 1234 */ 1235 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n", 1236 (unsigned long long)desc->qw0, 1237 (unsigned long long)desc->qw1); 1238 memcpy(desc, qi->desc + (wait_index << shift), 1239 1 << shift); 1240 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1241 return -EINVAL; 1242 } 1243 } 1244 1245 /* 1246 * If ITE happens, all pending wait_desc commands are aborted. 1247 * No new descriptors are fetched until the ITE is cleared. 1248 */ 1249 if (fault & DMA_FSTS_ITE) { 1250 head = readl(iommu->reg + DMAR_IQH_REG); 1251 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1252 head |= 1; 1253 tail = readl(iommu->reg + DMAR_IQT_REG); 1254 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1255 1256 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1257 1258 do { 1259 if (qi->desc_status[head] == QI_IN_USE) 1260 qi->desc_status[head] = QI_ABORT; 1261 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1262 } while (head != tail); 1263 1264 if (qi->desc_status[wait_index] == QI_ABORT) 1265 return -EAGAIN; 1266 } 1267 1268 if (fault & DMA_FSTS_ICE) 1269 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1270 1271 return 0; 1272 } 1273 1274 /* 1275 * Function to submit invalidation descriptors of all types to the queued 1276 * invalidation interface(QI). Multiple descriptors can be submitted at a 1277 * time, a wait descriptor will be appended to each submission to ensure 1278 * hardware has completed the invalidation before return. Wait descriptors 1279 * can be part of the submission but it will not be polled for completion. 1280 */ 1281 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1282 unsigned int count, unsigned long options) 1283 { 1284 struct q_inval *qi = iommu->qi; 1285 struct qi_desc wait_desc; 1286 int wait_index, index; 1287 unsigned long flags; 1288 int offset, shift; 1289 int rc, i; 1290 1291 if (!qi) 1292 return 0; 1293 1294 restart: 1295 rc = 0; 1296 1297 raw_spin_lock_irqsave(&qi->q_lock, flags); 1298 /* 1299 * Check if we have enough empty slots in the queue to submit, 1300 * the calculation is based on: 1301 * # of desc + 1 wait desc + 1 space between head and tail 1302 */ 1303 while (qi->free_cnt < count + 2) { 1304 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1305 cpu_relax(); 1306 raw_spin_lock_irqsave(&qi->q_lock, flags); 1307 } 1308 1309 index = qi->free_head; 1310 wait_index = (index + count) % QI_LENGTH; 1311 shift = qi_shift(iommu); 1312 1313 for (i = 0; i < count; i++) { 1314 offset = ((index + i) % QI_LENGTH) << shift; 1315 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1316 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1317 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1, 1318 desc[i].qw2, desc[i].qw3); 1319 } 1320 qi->desc_status[wait_index] = QI_IN_USE; 1321 1322 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1323 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1324 if (options & QI_OPT_WAIT_DRAIN) 1325 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1326 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1327 wait_desc.qw2 = 0; 1328 wait_desc.qw3 = 0; 1329 1330 offset = wait_index << shift; 1331 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1332 1333 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1334 qi->free_cnt -= count + 1; 1335 1336 /* 1337 * update the HW tail register indicating the presence of 1338 * new descriptors. 1339 */ 1340 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1341 1342 while (qi->desc_status[wait_index] != QI_DONE) { 1343 /* 1344 * We will leave the interrupts disabled, to prevent interrupt 1345 * context to queue another cmd while a cmd is already submitted 1346 * and waiting for completion on this cpu. This is to avoid 1347 * a deadlock where the interrupt context can wait indefinitely 1348 * for free slots in the queue. 1349 */ 1350 rc = qi_check_fault(iommu, index, wait_index); 1351 if (rc) 1352 break; 1353 1354 raw_spin_unlock(&qi->q_lock); 1355 cpu_relax(); 1356 raw_spin_lock(&qi->q_lock); 1357 } 1358 1359 for (i = 0; i < count; i++) 1360 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1361 1362 reclaim_free_desc(qi); 1363 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1364 1365 if (rc == -EAGAIN) 1366 goto restart; 1367 1368 return rc; 1369 } 1370 1371 /* 1372 * Flush the global interrupt entry cache. 1373 */ 1374 void qi_global_iec(struct intel_iommu *iommu) 1375 { 1376 struct qi_desc desc; 1377 1378 desc.qw0 = QI_IEC_TYPE; 1379 desc.qw1 = 0; 1380 desc.qw2 = 0; 1381 desc.qw3 = 0; 1382 1383 /* should never fail */ 1384 qi_submit_sync(iommu, &desc, 1, 0); 1385 } 1386 1387 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1388 u64 type) 1389 { 1390 struct qi_desc desc; 1391 1392 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1393 | QI_CC_GRAN(type) | QI_CC_TYPE; 1394 desc.qw1 = 0; 1395 desc.qw2 = 0; 1396 desc.qw3 = 0; 1397 1398 qi_submit_sync(iommu, &desc, 1, 0); 1399 } 1400 1401 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1402 unsigned int size_order, u64 type) 1403 { 1404 u8 dw = 0, dr = 0; 1405 1406 struct qi_desc desc; 1407 int ih = 0; 1408 1409 if (cap_write_drain(iommu->cap)) 1410 dw = 1; 1411 1412 if (cap_read_drain(iommu->cap)) 1413 dr = 1; 1414 1415 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1416 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1417 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1418 | QI_IOTLB_AM(size_order); 1419 desc.qw2 = 0; 1420 desc.qw3 = 0; 1421 1422 qi_submit_sync(iommu, &desc, 1, 0); 1423 } 1424 1425 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1426 u16 qdep, u64 addr, unsigned mask) 1427 { 1428 struct qi_desc desc; 1429 1430 if (mask) { 1431 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1432 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1433 } else 1434 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1435 1436 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1437 qdep = 0; 1438 1439 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1440 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1441 desc.qw2 = 0; 1442 desc.qw3 = 0; 1443 1444 qi_submit_sync(iommu, &desc, 1, 0); 1445 } 1446 1447 /* PASID-based IOTLB invalidation */ 1448 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1449 unsigned long npages, bool ih) 1450 { 1451 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1452 1453 /* 1454 * npages == -1 means a PASID-selective invalidation, otherwise, 1455 * a positive value for Page-selective-within-PASID invalidation. 1456 * 0 is not a valid input. 1457 */ 1458 if (WARN_ON(!npages)) { 1459 pr_err("Invalid input npages = %ld\n", npages); 1460 return; 1461 } 1462 1463 if (npages == -1) { 1464 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1465 QI_EIOTLB_DID(did) | 1466 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1467 QI_EIOTLB_TYPE; 1468 desc.qw1 = 0; 1469 } else { 1470 int mask = ilog2(__roundup_pow_of_two(npages)); 1471 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1472 1473 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align))) 1474 addr = ALIGN_DOWN(addr, align); 1475 1476 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1477 QI_EIOTLB_DID(did) | 1478 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1479 QI_EIOTLB_TYPE; 1480 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1481 QI_EIOTLB_IH(ih) | 1482 QI_EIOTLB_AM(mask); 1483 } 1484 1485 qi_submit_sync(iommu, &desc, 1, 0); 1486 } 1487 1488 /* PASID-based device IOTLB Invalidate */ 1489 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1490 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1491 { 1492 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1493 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1494 1495 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1496 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1497 QI_DEV_IOTLB_PFSID(pfsid); 1498 1499 /* 1500 * If S bit is 0, we only flush a single page. If S bit is set, 1501 * The least significant zero bit indicates the invalidation address 1502 * range. VT-d spec 6.5.2.6. 1503 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1504 * size order = 0 is PAGE_SIZE 4KB 1505 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1506 * ECAP. 1507 */ 1508 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order)) 1509 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1510 addr, size_order); 1511 1512 /* Take page address */ 1513 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1514 1515 if (size_order) { 1516 /* 1517 * Existing 0s in address below size_order may be the least 1518 * significant bit, we must set them to 1s to avoid having 1519 * smaller size than desired. 1520 */ 1521 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1522 VTD_PAGE_SHIFT); 1523 /* Clear size_order bit to indicate size */ 1524 desc.qw1 &= ~mask; 1525 /* Set the S bit to indicate flushing more than 1 page */ 1526 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1527 } 1528 1529 qi_submit_sync(iommu, &desc, 1, 0); 1530 } 1531 1532 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1533 u64 granu, u32 pasid) 1534 { 1535 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1536 1537 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1538 QI_PC_GRAN(granu) | QI_PC_TYPE; 1539 qi_submit_sync(iommu, &desc, 1, 0); 1540 } 1541 1542 /* 1543 * Disable Queued Invalidation interface. 1544 */ 1545 void dmar_disable_qi(struct intel_iommu *iommu) 1546 { 1547 unsigned long flags; 1548 u32 sts; 1549 cycles_t start_time = get_cycles(); 1550 1551 if (!ecap_qis(iommu->ecap)) 1552 return; 1553 1554 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1555 1556 sts = readl(iommu->reg + DMAR_GSTS_REG); 1557 if (!(sts & DMA_GSTS_QIES)) 1558 goto end; 1559 1560 /* 1561 * Give a chance to HW to complete the pending invalidation requests. 1562 */ 1563 while ((readl(iommu->reg + DMAR_IQT_REG) != 1564 readl(iommu->reg + DMAR_IQH_REG)) && 1565 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1566 cpu_relax(); 1567 1568 iommu->gcmd &= ~DMA_GCMD_QIE; 1569 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1570 1571 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1572 !(sts & DMA_GSTS_QIES), sts); 1573 end: 1574 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1575 } 1576 1577 /* 1578 * Enable queued invalidation. 1579 */ 1580 static void __dmar_enable_qi(struct intel_iommu *iommu) 1581 { 1582 u32 sts; 1583 unsigned long flags; 1584 struct q_inval *qi = iommu->qi; 1585 u64 val = virt_to_phys(qi->desc); 1586 1587 qi->free_head = qi->free_tail = 0; 1588 qi->free_cnt = QI_LENGTH; 1589 1590 /* 1591 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1592 * is present. 1593 */ 1594 if (ecap_smts(iommu->ecap)) 1595 val |= (1 << 11) | 1; 1596 1597 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1598 1599 /* write zero to the tail reg */ 1600 writel(0, iommu->reg + DMAR_IQT_REG); 1601 1602 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1603 1604 iommu->gcmd |= DMA_GCMD_QIE; 1605 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1606 1607 /* Make sure hardware complete it */ 1608 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1609 1610 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1611 } 1612 1613 /* 1614 * Enable Queued Invalidation interface. This is a must to support 1615 * interrupt-remapping. Also used by DMA-remapping, which replaces 1616 * register based IOTLB invalidation. 1617 */ 1618 int dmar_enable_qi(struct intel_iommu *iommu) 1619 { 1620 struct q_inval *qi; 1621 struct page *desc_page; 1622 1623 if (!ecap_qis(iommu->ecap)) 1624 return -ENOENT; 1625 1626 /* 1627 * queued invalidation is already setup and enabled. 1628 */ 1629 if (iommu->qi) 1630 return 0; 1631 1632 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1633 if (!iommu->qi) 1634 return -ENOMEM; 1635 1636 qi = iommu->qi; 1637 1638 /* 1639 * Need two pages to accommodate 256 descriptors of 256 bits each 1640 * if the remapping hardware supports scalable mode translation. 1641 */ 1642 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1643 !!ecap_smts(iommu->ecap)); 1644 if (!desc_page) { 1645 kfree(qi); 1646 iommu->qi = NULL; 1647 return -ENOMEM; 1648 } 1649 1650 qi->desc = page_address(desc_page); 1651 1652 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1653 if (!qi->desc_status) { 1654 free_page((unsigned long) qi->desc); 1655 kfree(qi); 1656 iommu->qi = NULL; 1657 return -ENOMEM; 1658 } 1659 1660 raw_spin_lock_init(&qi->q_lock); 1661 1662 __dmar_enable_qi(iommu); 1663 1664 return 0; 1665 } 1666 1667 /* iommu interrupt handling. Most stuff are MSI-like. */ 1668 1669 enum faulttype { 1670 DMA_REMAP, 1671 INTR_REMAP, 1672 UNKNOWN, 1673 }; 1674 1675 static const char *dma_remap_fault_reasons[] = 1676 { 1677 "Software", 1678 "Present bit in root entry is clear", 1679 "Present bit in context entry is clear", 1680 "Invalid context entry", 1681 "Access beyond MGAW", 1682 "PTE Write access is not set", 1683 "PTE Read access is not set", 1684 "Next page table ptr is invalid", 1685 "Root table address invalid", 1686 "Context table ptr is invalid", 1687 "non-zero reserved fields in RTP", 1688 "non-zero reserved fields in CTP", 1689 "non-zero reserved fields in PTE", 1690 "PCE for translation request specifies blocking", 1691 }; 1692 1693 static const char * const dma_remap_sm_fault_reasons[] = { 1694 "SM: Invalid Root Table Address", 1695 "SM: TTM 0 for request with PASID", 1696 "SM: TTM 0 for page group request", 1697 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1698 "SM: Error attempting to access Root Entry", 1699 "SM: Present bit in Root Entry is clear", 1700 "SM: Non-zero reserved field set in Root Entry", 1701 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1702 "SM: Error attempting to access Context Entry", 1703 "SM: Present bit in Context Entry is clear", 1704 "SM: Non-zero reserved field set in the Context Entry", 1705 "SM: Invalid Context Entry", 1706 "SM: DTE field in Context Entry is clear", 1707 "SM: PASID Enable field in Context Entry is clear", 1708 "SM: PASID is larger than the max in Context Entry", 1709 "SM: PRE field in Context-Entry is clear", 1710 "SM: RID_PASID field error in Context-Entry", 1711 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1712 "SM: Error attempting to access the PASID Directory Entry", 1713 "SM: Present bit in Directory Entry is clear", 1714 "SM: Non-zero reserved field set in PASID Directory Entry", 1715 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1716 "SM: Error attempting to access PASID Table Entry", 1717 "SM: Present bit in PASID Table Entry is clear", 1718 "SM: Non-zero reserved field set in PASID Table Entry", 1719 "SM: Invalid Scalable-Mode PASID Table Entry", 1720 "SM: ERE field is clear in PASID Table Entry", 1721 "SM: SRE field is clear in PASID Table Entry", 1722 "Unknown", "Unknown",/* 0x5E-0x5F */ 1723 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1724 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1725 "SM: Error attempting to access first-level paging entry", 1726 "SM: Present bit in first-level paging entry is clear", 1727 "SM: Non-zero reserved field set in first-level paging entry", 1728 "SM: Error attempting to access FL-PML4 entry", 1729 "SM: First-level entry address beyond MGAW in Nested translation", 1730 "SM: Read permission error in FL-PML4 entry in Nested translation", 1731 "SM: Read permission error in first-level paging entry in Nested translation", 1732 "SM: Write permission error in first-level paging entry in Nested translation", 1733 "SM: Error attempting to access second-level paging entry", 1734 "SM: Read/Write permission error in second-level paging entry", 1735 "SM: Non-zero reserved field set in second-level paging entry", 1736 "SM: Invalid second-level page table pointer", 1737 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1738 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1739 "SM: Address in first-level translation is not canonical", 1740 "SM: U/S set 0 for first-level translation with user privilege", 1741 "SM: No execute permission for request with PASID and ER=1", 1742 "SM: Address beyond the DMA hardware max", 1743 "SM: Second-level entry address beyond the max", 1744 "SM: No write permission for Write/AtomicOp request", 1745 "SM: No read permission for Read/AtomicOp request", 1746 "SM: Invalid address-interrupt address", 1747 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1748 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1749 }; 1750 1751 static const char *irq_remap_fault_reasons[] = 1752 { 1753 "Detected reserved fields in the decoded interrupt-remapped request", 1754 "Interrupt index exceeded the interrupt-remapping table size", 1755 "Present field in the IRTE entry is clear", 1756 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1757 "Detected reserved fields in the IRTE entry", 1758 "Blocked a compatibility format interrupt request", 1759 "Blocked an interrupt request due to source-id verification failure", 1760 }; 1761 1762 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1763 { 1764 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1765 ARRAY_SIZE(irq_remap_fault_reasons))) { 1766 *fault_type = INTR_REMAP; 1767 return irq_remap_fault_reasons[fault_reason - 0x20]; 1768 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1769 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1770 *fault_type = DMA_REMAP; 1771 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1772 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1773 *fault_type = DMA_REMAP; 1774 return dma_remap_fault_reasons[fault_reason]; 1775 } else { 1776 *fault_type = UNKNOWN; 1777 return "Unknown"; 1778 } 1779 } 1780 1781 1782 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1783 { 1784 if (iommu->irq == irq) 1785 return DMAR_FECTL_REG; 1786 else if (iommu->pr_irq == irq) 1787 return DMAR_PECTL_REG; 1788 else 1789 BUG(); 1790 } 1791 1792 void dmar_msi_unmask(struct irq_data *data) 1793 { 1794 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1795 int reg = dmar_msi_reg(iommu, data->irq); 1796 unsigned long flag; 1797 1798 /* unmask it */ 1799 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1800 writel(0, iommu->reg + reg); 1801 /* Read a reg to force flush the post write */ 1802 readl(iommu->reg + reg); 1803 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1804 } 1805 1806 void dmar_msi_mask(struct irq_data *data) 1807 { 1808 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1809 int reg = dmar_msi_reg(iommu, data->irq); 1810 unsigned long flag; 1811 1812 /* mask it */ 1813 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1814 writel(DMA_FECTL_IM, iommu->reg + reg); 1815 /* Read a reg to force flush the post write */ 1816 readl(iommu->reg + reg); 1817 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1818 } 1819 1820 void dmar_msi_write(int irq, struct msi_msg *msg) 1821 { 1822 struct intel_iommu *iommu = irq_get_handler_data(irq); 1823 int reg = dmar_msi_reg(iommu, irq); 1824 unsigned long flag; 1825 1826 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1827 writel(msg->data, iommu->reg + reg + 4); 1828 writel(msg->address_lo, iommu->reg + reg + 8); 1829 writel(msg->address_hi, iommu->reg + reg + 12); 1830 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1831 } 1832 1833 void dmar_msi_read(int irq, struct msi_msg *msg) 1834 { 1835 struct intel_iommu *iommu = irq_get_handler_data(irq); 1836 int reg = dmar_msi_reg(iommu, irq); 1837 unsigned long flag; 1838 1839 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1840 msg->data = readl(iommu->reg + reg + 4); 1841 msg->address_lo = readl(iommu->reg + reg + 8); 1842 msg->address_hi = readl(iommu->reg + reg + 12); 1843 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1844 } 1845 1846 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1847 u8 fault_reason, u32 pasid, u16 source_id, 1848 unsigned long long addr) 1849 { 1850 const char *reason; 1851 int fault_type; 1852 1853 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1854 1855 if (fault_type == INTR_REMAP) 1856 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n", 1857 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1858 PCI_FUNC(source_id & 0xFF), addr >> 48, 1859 fault_reason, reason); 1860 else 1861 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n", 1862 type ? "DMA Read" : "DMA Write", 1863 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1864 PCI_FUNC(source_id & 0xFF), pasid, addr, 1865 fault_reason, reason); 1866 return 0; 1867 } 1868 1869 #define PRIMARY_FAULT_REG_LEN (16) 1870 irqreturn_t dmar_fault(int irq, void *dev_id) 1871 { 1872 struct intel_iommu *iommu = dev_id; 1873 int reg, fault_index; 1874 u32 fault_status; 1875 unsigned long flag; 1876 static DEFINE_RATELIMIT_STATE(rs, 1877 DEFAULT_RATELIMIT_INTERVAL, 1878 DEFAULT_RATELIMIT_BURST); 1879 1880 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1881 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1882 if (fault_status && __ratelimit(&rs)) 1883 pr_err("DRHD: handling fault status reg %x\n", fault_status); 1884 1885 /* TBD: ignore advanced fault log currently */ 1886 if (!(fault_status & DMA_FSTS_PPF)) 1887 goto unlock_exit; 1888 1889 fault_index = dma_fsts_fault_record_index(fault_status); 1890 reg = cap_fault_reg_offset(iommu->cap); 1891 while (1) { 1892 /* Disable printing, simply clear the fault when ratelimited */ 1893 bool ratelimited = !__ratelimit(&rs); 1894 u8 fault_reason; 1895 u16 source_id; 1896 u64 guest_addr; 1897 u32 pasid; 1898 int type; 1899 u32 data; 1900 bool pasid_present; 1901 1902 /* highest 32 bits */ 1903 data = readl(iommu->reg + reg + 1904 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1905 if (!(data & DMA_FRCD_F)) 1906 break; 1907 1908 if (!ratelimited) { 1909 fault_reason = dma_frcd_fault_reason(data); 1910 type = dma_frcd_type(data); 1911 1912 pasid = dma_frcd_pasid_value(data); 1913 data = readl(iommu->reg + reg + 1914 fault_index * PRIMARY_FAULT_REG_LEN + 8); 1915 source_id = dma_frcd_source_id(data); 1916 1917 pasid_present = dma_frcd_pasid_present(data); 1918 guest_addr = dmar_readq(iommu->reg + reg + 1919 fault_index * PRIMARY_FAULT_REG_LEN); 1920 guest_addr = dma_frcd_page_addr(guest_addr); 1921 } 1922 1923 /* clear the fault */ 1924 writel(DMA_FRCD_F, iommu->reg + reg + 1925 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1926 1927 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1928 1929 if (!ratelimited) 1930 /* Using pasid -1 if pasid is not present */ 1931 dmar_fault_do_one(iommu, type, fault_reason, 1932 pasid_present ? pasid : -1, 1933 source_id, guest_addr); 1934 1935 fault_index++; 1936 if (fault_index >= cap_num_fault_regs(iommu->cap)) 1937 fault_index = 0; 1938 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1939 } 1940 1941 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 1942 iommu->reg + DMAR_FSTS_REG); 1943 1944 unlock_exit: 1945 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1946 return IRQ_HANDLED; 1947 } 1948 1949 int dmar_set_interrupt(struct intel_iommu *iommu) 1950 { 1951 int irq, ret; 1952 1953 /* 1954 * Check if the fault interrupt is already initialized. 1955 */ 1956 if (iommu->irq) 1957 return 0; 1958 1959 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 1960 if (irq > 0) { 1961 iommu->irq = irq; 1962 } else { 1963 pr_err("No free IRQ vectors\n"); 1964 return -EINVAL; 1965 } 1966 1967 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 1968 if (ret) 1969 pr_err("Can't request irq\n"); 1970 return ret; 1971 } 1972 1973 int __init enable_drhd_fault_handling(void) 1974 { 1975 struct dmar_drhd_unit *drhd; 1976 struct intel_iommu *iommu; 1977 1978 /* 1979 * Enable fault control interrupt. 1980 */ 1981 for_each_iommu(iommu, drhd) { 1982 u32 fault_status; 1983 int ret = dmar_set_interrupt(iommu); 1984 1985 if (ret) { 1986 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 1987 (unsigned long long)drhd->reg_base_addr, ret); 1988 return -1; 1989 } 1990 1991 /* 1992 * Clear any previous faults. 1993 */ 1994 dmar_fault(iommu->irq, iommu); 1995 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1996 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 1997 } 1998 1999 return 0; 2000 } 2001 2002 /* 2003 * Re-enable Queued Invalidation interface. 2004 */ 2005 int dmar_reenable_qi(struct intel_iommu *iommu) 2006 { 2007 if (!ecap_qis(iommu->ecap)) 2008 return -ENOENT; 2009 2010 if (!iommu->qi) 2011 return -ENOENT; 2012 2013 /* 2014 * First disable queued invalidation. 2015 */ 2016 dmar_disable_qi(iommu); 2017 /* 2018 * Then enable queued invalidation again. Since there is no pending 2019 * invalidation requests now, it's safe to re-enable queued 2020 * invalidation. 2021 */ 2022 __dmar_enable_qi(iommu); 2023 2024 return 0; 2025 } 2026 2027 /* 2028 * Check interrupt remapping support in DMAR table description. 2029 */ 2030 int __init dmar_ir_support(void) 2031 { 2032 struct acpi_table_dmar *dmar; 2033 dmar = (struct acpi_table_dmar *)dmar_tbl; 2034 if (!dmar) 2035 return 0; 2036 return dmar->flags & 0x1; 2037 } 2038 2039 /* Check whether DMAR units are in use */ 2040 static inline bool dmar_in_use(void) 2041 { 2042 return irq_remapping_enabled || intel_iommu_enabled; 2043 } 2044 2045 static int __init dmar_free_unused_resources(void) 2046 { 2047 struct dmar_drhd_unit *dmaru, *dmaru_n; 2048 2049 if (dmar_in_use()) 2050 return 0; 2051 2052 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2053 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2054 2055 down_write(&dmar_global_lock); 2056 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2057 list_del(&dmaru->list); 2058 dmar_free_drhd(dmaru); 2059 } 2060 up_write(&dmar_global_lock); 2061 2062 return 0; 2063 } 2064 2065 late_initcall(dmar_free_unused_resources); 2066 IOMMU_INIT_POST(detect_intel_iommu); 2067 2068 /* 2069 * DMAR Hotplug Support 2070 * For more details, please refer to Intel(R) Virtualization Technology 2071 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2072 * "Remapping Hardware Unit Hot Plug". 2073 */ 2074 static guid_t dmar_hp_guid = 2075 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2076 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2077 2078 /* 2079 * Currently there's only one revision and BIOS will not check the revision id, 2080 * so use 0 for safety. 2081 */ 2082 #define DMAR_DSM_REV_ID 0 2083 #define DMAR_DSM_FUNC_DRHD 1 2084 #define DMAR_DSM_FUNC_ATSR 2 2085 #define DMAR_DSM_FUNC_RHSA 3 2086 #define DMAR_DSM_FUNC_SATC 4 2087 2088 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2089 { 2090 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2091 } 2092 2093 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2094 dmar_res_handler_t handler, void *arg) 2095 { 2096 int ret = -ENODEV; 2097 union acpi_object *obj; 2098 struct acpi_dmar_header *start; 2099 struct dmar_res_callback callback; 2100 static int res_type[] = { 2101 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2102 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2103 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2104 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC, 2105 }; 2106 2107 if (!dmar_detect_dsm(handle, func)) 2108 return 0; 2109 2110 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2111 func, NULL, ACPI_TYPE_BUFFER); 2112 if (!obj) 2113 return -ENODEV; 2114 2115 memset(&callback, 0, sizeof(callback)); 2116 callback.cb[res_type[func]] = handler; 2117 callback.arg[res_type[func]] = arg; 2118 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2119 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2120 2121 ACPI_FREE(obj); 2122 2123 return ret; 2124 } 2125 2126 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2127 { 2128 int ret; 2129 struct dmar_drhd_unit *dmaru; 2130 2131 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2132 if (!dmaru) 2133 return -ENODEV; 2134 2135 ret = dmar_ir_hotplug(dmaru, true); 2136 if (ret == 0) 2137 ret = dmar_iommu_hotplug(dmaru, true); 2138 2139 return ret; 2140 } 2141 2142 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2143 { 2144 int i, ret; 2145 struct device *dev; 2146 struct dmar_drhd_unit *dmaru; 2147 2148 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2149 if (!dmaru) 2150 return 0; 2151 2152 /* 2153 * All PCI devices managed by this unit should have been destroyed. 2154 */ 2155 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2156 for_each_active_dev_scope(dmaru->devices, 2157 dmaru->devices_cnt, i, dev) 2158 return -EBUSY; 2159 } 2160 2161 ret = dmar_ir_hotplug(dmaru, false); 2162 if (ret == 0) 2163 ret = dmar_iommu_hotplug(dmaru, false); 2164 2165 return ret; 2166 } 2167 2168 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2169 { 2170 struct dmar_drhd_unit *dmaru; 2171 2172 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2173 if (dmaru) { 2174 list_del_rcu(&dmaru->list); 2175 synchronize_rcu(); 2176 dmar_free_drhd(dmaru); 2177 } 2178 2179 return 0; 2180 } 2181 2182 static int dmar_hotplug_insert(acpi_handle handle) 2183 { 2184 int ret; 2185 int drhd_count = 0; 2186 2187 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2188 &dmar_validate_one_drhd, (void *)1); 2189 if (ret) 2190 goto out; 2191 2192 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2193 &dmar_parse_one_drhd, (void *)&drhd_count); 2194 if (ret == 0 && drhd_count == 0) { 2195 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2196 goto out; 2197 } else if (ret) { 2198 goto release_drhd; 2199 } 2200 2201 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2202 &dmar_parse_one_rhsa, NULL); 2203 if (ret) 2204 goto release_drhd; 2205 2206 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2207 &dmar_parse_one_atsr, NULL); 2208 if (ret) 2209 goto release_atsr; 2210 2211 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2212 &dmar_hp_add_drhd, NULL); 2213 if (!ret) 2214 return 0; 2215 2216 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2217 &dmar_hp_remove_drhd, NULL); 2218 release_atsr: 2219 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2220 &dmar_release_one_atsr, NULL); 2221 release_drhd: 2222 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2223 &dmar_hp_release_drhd, NULL); 2224 out: 2225 return ret; 2226 } 2227 2228 static int dmar_hotplug_remove(acpi_handle handle) 2229 { 2230 int ret; 2231 2232 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2233 &dmar_check_one_atsr, NULL); 2234 if (ret) 2235 return ret; 2236 2237 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2238 &dmar_hp_remove_drhd, NULL); 2239 if (ret == 0) { 2240 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2241 &dmar_release_one_atsr, NULL)); 2242 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2243 &dmar_hp_release_drhd, NULL)); 2244 } else { 2245 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2246 &dmar_hp_add_drhd, NULL); 2247 } 2248 2249 return ret; 2250 } 2251 2252 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2253 void *context, void **retval) 2254 { 2255 acpi_handle *phdl = retval; 2256 2257 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2258 *phdl = handle; 2259 return AE_CTRL_TERMINATE; 2260 } 2261 2262 return AE_OK; 2263 } 2264 2265 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2266 { 2267 int ret; 2268 acpi_handle tmp = NULL; 2269 acpi_status status; 2270 2271 if (!dmar_in_use()) 2272 return 0; 2273 2274 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2275 tmp = handle; 2276 } else { 2277 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2278 ACPI_UINT32_MAX, 2279 dmar_get_dsm_handle, 2280 NULL, NULL, &tmp); 2281 if (ACPI_FAILURE(status)) { 2282 pr_warn("Failed to locate _DSM method.\n"); 2283 return -ENXIO; 2284 } 2285 } 2286 if (tmp == NULL) 2287 return 0; 2288 2289 down_write(&dmar_global_lock); 2290 if (insert) 2291 ret = dmar_hotplug_insert(tmp); 2292 else 2293 ret = dmar_hotplug_remove(tmp); 2294 up_write(&dmar_global_lock); 2295 2296 return ret; 2297 } 2298 2299 int dmar_device_add(acpi_handle handle) 2300 { 2301 return dmar_device_hotplug(handle, true); 2302 } 2303 2304 int dmar_device_remove(acpi_handle handle) 2305 { 2306 return dmar_device_hotplug(handle, false); 2307 } 2308 2309 /* 2310 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2311 * 2312 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2313 * the ACPI DMAR table. This means that the platform boot firmware has made 2314 * sure no device can issue DMA outside of RMRR regions. 2315 */ 2316 bool dmar_platform_optin(void) 2317 { 2318 struct acpi_table_dmar *dmar; 2319 acpi_status status; 2320 bool ret; 2321 2322 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2323 (struct acpi_table_header **)&dmar); 2324 if (ACPI_FAILURE(status)) 2325 return false; 2326 2327 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2328 acpi_put_table((struct acpi_table_header *)dmar); 2329 2330 return ret; 2331 } 2332 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2333