1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/timer.h> 23 #include <linux/irq.h> 24 #include <linux/interrupt.h> 25 #include <linux/tboot.h> 26 #include <linux/dmi.h> 27 #include <linux/slab.h> 28 #include <linux/iommu.h> 29 #include <linux/numa.h> 30 #include <linux/limits.h> 31 #include <asm/irq_remapping.h> 32 33 #include "iommu.h" 34 #include "../irq_remapping.h" 35 #include "perf.h" 36 #include "trace.h" 37 38 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 39 struct dmar_res_callback { 40 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 41 void *arg[ACPI_DMAR_TYPE_RESERVED]; 42 bool ignore_unhandled; 43 bool print_entry; 44 }; 45 46 /* 47 * Assumptions: 48 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 49 * before IO devices managed by that unit. 50 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 51 * after IO devices managed by that unit. 52 * 3) Hotplug events are rare. 53 * 54 * Locking rules for DMA and interrupt remapping related global data structures: 55 * 1) Use dmar_global_lock in process context 56 * 2) Use RCU in interrupt context 57 */ 58 DECLARE_RWSEM(dmar_global_lock); 59 LIST_HEAD(dmar_drhd_units); 60 61 struct acpi_table_header * __initdata dmar_tbl; 62 static int dmar_dev_scope_status = 1; 63 static DEFINE_IDA(dmar_seq_ids); 64 65 static int alloc_iommu(struct dmar_drhd_unit *drhd); 66 static void free_iommu(struct intel_iommu *iommu); 67 68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 69 { 70 /* 71 * add INCLUDE_ALL at the tail, so scan the list will find it at 72 * the very end. 73 */ 74 if (drhd->include_all) 75 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 76 else 77 list_add_rcu(&drhd->list, &dmar_drhd_units); 78 } 79 80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 81 { 82 struct acpi_dmar_device_scope *scope; 83 84 *cnt = 0; 85 while (start < end) { 86 scope = start; 87 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 88 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 90 (*cnt)++; 91 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 92 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 93 pr_warn("Unsupported device scope\n"); 94 } 95 start += scope->length; 96 } 97 if (*cnt == 0) 98 return NULL; 99 100 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 101 } 102 103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 104 { 105 int i; 106 struct device *tmp_dev; 107 108 if (*devices && *cnt) { 109 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 110 put_device(tmp_dev); 111 kfree(*devices); 112 } 113 114 *devices = NULL; 115 *cnt = 0; 116 } 117 118 /* Optimize out kzalloc()/kfree() for normal cases */ 119 static char dmar_pci_notify_info_buf[64]; 120 121 static struct dmar_pci_notify_info * 122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 123 { 124 int level = 0; 125 size_t size; 126 struct pci_dev *tmp; 127 struct dmar_pci_notify_info *info; 128 129 BUG_ON(dev->is_virtfn); 130 131 /* 132 * Ignore devices that have a domain number higher than what can 133 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 134 */ 135 if (pci_domain_nr(dev->bus) > U16_MAX) 136 return NULL; 137 138 /* Only generate path[] for device addition event */ 139 if (event == BUS_NOTIFY_ADD_DEVICE) 140 for (tmp = dev; tmp; tmp = tmp->bus->self) 141 level++; 142 143 size = struct_size(info, path, level); 144 if (size <= sizeof(dmar_pci_notify_info_buf)) { 145 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 146 } else { 147 info = kzalloc(size, GFP_KERNEL); 148 if (!info) { 149 if (dmar_dev_scope_status == 0) 150 dmar_dev_scope_status = -ENOMEM; 151 return NULL; 152 } 153 } 154 155 info->event = event; 156 info->dev = dev; 157 info->seg = pci_domain_nr(dev->bus); 158 info->level = level; 159 if (event == BUS_NOTIFY_ADD_DEVICE) { 160 for (tmp = dev; tmp; tmp = tmp->bus->self) { 161 level--; 162 info->path[level].bus = tmp->bus->number; 163 info->path[level].device = PCI_SLOT(tmp->devfn); 164 info->path[level].function = PCI_FUNC(tmp->devfn); 165 if (pci_is_root_bus(tmp->bus)) 166 info->bus = tmp->bus->number; 167 } 168 } 169 170 return info; 171 } 172 173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 174 { 175 if ((void *)info != dmar_pci_notify_info_buf) 176 kfree(info); 177 } 178 179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 180 struct acpi_dmar_pci_path *path, int count) 181 { 182 int i; 183 184 if (info->bus != bus) 185 goto fallback; 186 if (info->level != count) 187 goto fallback; 188 189 for (i = 0; i < count; i++) { 190 if (path[i].device != info->path[i].device || 191 path[i].function != info->path[i].function) 192 goto fallback; 193 } 194 195 return true; 196 197 fallback: 198 199 if (count != 1) 200 return false; 201 202 i = info->level - 1; 203 if (bus == info->path[i].bus && 204 path[0].device == info->path[i].device && 205 path[0].function == info->path[i].function) { 206 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 207 bus, path[0].device, path[0].function); 208 return true; 209 } 210 211 return false; 212 } 213 214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 216 void *start, void*end, u16 segment, 217 struct dmar_dev_scope *devices, 218 int devices_cnt) 219 { 220 int i, level; 221 struct device *tmp, *dev = &info->dev->dev; 222 struct acpi_dmar_device_scope *scope; 223 struct acpi_dmar_pci_path *path; 224 225 if (segment != info->seg) 226 return 0; 227 228 for (; start < end; start += scope->length) { 229 scope = start; 230 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 231 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 232 continue; 233 234 path = (struct acpi_dmar_pci_path *)(scope + 1); 235 level = (scope->length - sizeof(*scope)) / sizeof(*path); 236 if (!dmar_match_pci_path(info, scope->bus, path, level)) 237 continue; 238 239 /* 240 * We expect devices with endpoint scope to have normal PCI 241 * headers, and devices with bridge scope to have bridge PCI 242 * headers. However PCI NTB devices may be listed in the 243 * DMAR table with bridge scope, even though they have a 244 * normal PCI header. NTB devices are identified by class 245 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 246 * for this special case. 247 */ 248 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 249 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 250 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 251 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 252 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 253 pr_warn("Device scope type does not match for %s\n", 254 pci_name(info->dev)); 255 return -EINVAL; 256 } 257 258 for_each_dev_scope(devices, devices_cnt, i, tmp) 259 if (tmp == NULL) { 260 devices[i].bus = info->dev->bus->number; 261 devices[i].devfn = info->dev->devfn; 262 rcu_assign_pointer(devices[i].dev, 263 get_device(dev)); 264 return 1; 265 } 266 BUG_ON(i >= devices_cnt); 267 } 268 269 return 0; 270 } 271 272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 273 struct dmar_dev_scope *devices, int count) 274 { 275 int index; 276 struct device *tmp; 277 278 if (info->seg != segment) 279 return 0; 280 281 for_each_active_dev_scope(devices, count, index, tmp) 282 if (tmp == &info->dev->dev) { 283 RCU_INIT_POINTER(devices[index].dev, NULL); 284 synchronize_rcu(); 285 put_device(tmp); 286 return 1; 287 } 288 289 return 0; 290 } 291 292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 293 { 294 int ret = 0; 295 struct dmar_drhd_unit *dmaru; 296 struct acpi_dmar_hardware_unit *drhd; 297 298 for_each_drhd_unit(dmaru) { 299 if (dmaru->include_all) 300 continue; 301 302 drhd = container_of(dmaru->hdr, 303 struct acpi_dmar_hardware_unit, header); 304 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 305 ((void *)drhd) + drhd->header.length, 306 dmaru->segment, 307 dmaru->devices, dmaru->devices_cnt); 308 if (ret) 309 break; 310 } 311 if (ret >= 0) 312 ret = dmar_iommu_notify_scope_dev(info); 313 if (ret < 0 && dmar_dev_scope_status == 0) 314 dmar_dev_scope_status = ret; 315 316 if (ret >= 0) 317 intel_irq_remap_add_device(info); 318 319 return ret; 320 } 321 322 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 323 { 324 struct dmar_drhd_unit *dmaru; 325 326 for_each_drhd_unit(dmaru) 327 if (dmar_remove_dev_scope(info, dmaru->segment, 328 dmaru->devices, dmaru->devices_cnt)) 329 break; 330 dmar_iommu_notify_scope_dev(info); 331 } 332 333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 334 { 335 struct pci_dev *physfn = pci_physfn(pdev); 336 337 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); 338 } 339 340 static int dmar_pci_bus_notifier(struct notifier_block *nb, 341 unsigned long action, void *data) 342 { 343 struct pci_dev *pdev = to_pci_dev(data); 344 struct dmar_pci_notify_info *info; 345 346 /* Only care about add/remove events for physical functions. 347 * For VFs we actually do the lookup based on the corresponding 348 * PF in device_to_iommu() anyway. */ 349 if (pdev->is_virtfn) { 350 /* 351 * Ensure that the VF device inherits the irq domain of the 352 * PF device. Ideally the device would inherit the domain 353 * from the bus, but DMAR can have multiple units per bus 354 * which makes this impossible. The VF 'bus' could inherit 355 * from the PF device, but that's yet another x86'sism to 356 * inflict on everybody else. 357 */ 358 if (action == BUS_NOTIFY_ADD_DEVICE) 359 vf_inherit_msi_domain(pdev); 360 return NOTIFY_DONE; 361 } 362 363 if (action != BUS_NOTIFY_ADD_DEVICE && 364 action != BUS_NOTIFY_REMOVED_DEVICE) 365 return NOTIFY_DONE; 366 367 info = dmar_alloc_pci_notify_info(pdev, action); 368 if (!info) 369 return NOTIFY_DONE; 370 371 down_write(&dmar_global_lock); 372 if (action == BUS_NOTIFY_ADD_DEVICE) 373 dmar_pci_bus_add_dev(info); 374 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 375 dmar_pci_bus_del_dev(info); 376 up_write(&dmar_global_lock); 377 378 dmar_free_pci_notify_info(info); 379 380 return NOTIFY_OK; 381 } 382 383 static struct notifier_block dmar_pci_bus_nb = { 384 .notifier_call = dmar_pci_bus_notifier, 385 .priority = 1, 386 }; 387 388 static struct dmar_drhd_unit * 389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 390 { 391 struct dmar_drhd_unit *dmaru; 392 393 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 394 dmar_rcu_check()) 395 if (dmaru->segment == drhd->segment && 396 dmaru->reg_base_addr == drhd->address) 397 return dmaru; 398 399 return NULL; 400 } 401 402 /* 403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 404 * structure which uniquely represent one DMA remapping hardware unit 405 * present in the platform 406 */ 407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 408 { 409 struct acpi_dmar_hardware_unit *drhd; 410 struct dmar_drhd_unit *dmaru; 411 int ret; 412 413 drhd = (struct acpi_dmar_hardware_unit *)header; 414 dmaru = dmar_find_dmaru(drhd); 415 if (dmaru) 416 goto out; 417 418 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 419 if (!dmaru) 420 return -ENOMEM; 421 422 /* 423 * If header is allocated from slab by ACPI _DSM method, we need to 424 * copy the content because the memory buffer will be freed on return. 425 */ 426 dmaru->hdr = (void *)(dmaru + 1); 427 memcpy(dmaru->hdr, header, header->length); 428 dmaru->reg_base_addr = drhd->address; 429 dmaru->segment = drhd->segment; 430 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 431 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 432 ((void *)drhd) + drhd->header.length, 433 &dmaru->devices_cnt); 434 if (dmaru->devices_cnt && dmaru->devices == NULL) { 435 kfree(dmaru); 436 return -ENOMEM; 437 } 438 439 ret = alloc_iommu(dmaru); 440 if (ret) { 441 dmar_free_dev_scope(&dmaru->devices, 442 &dmaru->devices_cnt); 443 kfree(dmaru); 444 return ret; 445 } 446 dmar_register_drhd_unit(dmaru); 447 448 out: 449 if (arg) 450 (*(int *)arg)++; 451 452 return 0; 453 } 454 455 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 456 { 457 if (dmaru->devices && dmaru->devices_cnt) 458 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 459 if (dmaru->iommu) 460 free_iommu(dmaru->iommu); 461 kfree(dmaru); 462 } 463 464 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 465 void *arg) 466 { 467 struct acpi_dmar_andd *andd = (void *)header; 468 469 /* Check for NUL termination within the designated length */ 470 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 471 pr_warn(FW_BUG 472 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 473 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 474 dmi_get_system_info(DMI_BIOS_VENDOR), 475 dmi_get_system_info(DMI_BIOS_VERSION), 476 dmi_get_system_info(DMI_PRODUCT_VERSION)); 477 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 478 return -EINVAL; 479 } 480 pr_info("ANDD device: %x name: %s\n", andd->device_number, 481 andd->device_name); 482 483 return 0; 484 } 485 486 #ifdef CONFIG_ACPI_NUMA 487 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 488 { 489 struct acpi_dmar_rhsa *rhsa; 490 struct dmar_drhd_unit *drhd; 491 492 rhsa = (struct acpi_dmar_rhsa *)header; 493 for_each_drhd_unit(drhd) { 494 if (drhd->reg_base_addr == rhsa->base_address) { 495 int node = pxm_to_node(rhsa->proximity_domain); 496 497 if (node != NUMA_NO_NODE && !node_online(node)) 498 node = NUMA_NO_NODE; 499 drhd->iommu->node = node; 500 return 0; 501 } 502 } 503 pr_warn(FW_BUG 504 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 505 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 506 rhsa->base_address, 507 dmi_get_system_info(DMI_BIOS_VENDOR), 508 dmi_get_system_info(DMI_BIOS_VERSION), 509 dmi_get_system_info(DMI_PRODUCT_VERSION)); 510 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 511 512 return 0; 513 } 514 #else 515 #define dmar_parse_one_rhsa dmar_res_noop 516 #endif 517 518 static void 519 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 520 { 521 struct acpi_dmar_hardware_unit *drhd; 522 struct acpi_dmar_reserved_memory *rmrr; 523 struct acpi_dmar_atsr *atsr; 524 struct acpi_dmar_rhsa *rhsa; 525 struct acpi_dmar_satc *satc; 526 527 switch (header->type) { 528 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 529 drhd = container_of(header, struct acpi_dmar_hardware_unit, 530 header); 531 pr_info("DRHD base: %#016Lx flags: %#x\n", 532 (unsigned long long)drhd->address, drhd->flags); 533 break; 534 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 535 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 536 header); 537 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 538 (unsigned long long)rmrr->base_address, 539 (unsigned long long)rmrr->end_address); 540 break; 541 case ACPI_DMAR_TYPE_ROOT_ATS: 542 atsr = container_of(header, struct acpi_dmar_atsr, header); 543 pr_info("ATSR flags: %#x\n", atsr->flags); 544 break; 545 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 546 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 547 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 548 (unsigned long long)rhsa->base_address, 549 rhsa->proximity_domain); 550 break; 551 case ACPI_DMAR_TYPE_NAMESPACE: 552 /* We don't print this here because we need to sanity-check 553 it first. So print it in dmar_parse_one_andd() instead. */ 554 break; 555 case ACPI_DMAR_TYPE_SATC: 556 satc = container_of(header, struct acpi_dmar_satc, header); 557 pr_info("SATC flags: 0x%x\n", satc->flags); 558 break; 559 } 560 } 561 562 /** 563 * dmar_table_detect - checks to see if the platform supports DMAR devices 564 */ 565 static int __init dmar_table_detect(void) 566 { 567 acpi_status status = AE_OK; 568 569 /* if we could find DMAR table, then there are DMAR devices */ 570 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 571 572 if (ACPI_SUCCESS(status) && !dmar_tbl) { 573 pr_warn("Unable to map DMAR\n"); 574 status = AE_NOT_FOUND; 575 } 576 577 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 578 } 579 580 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 581 size_t len, struct dmar_res_callback *cb) 582 { 583 struct acpi_dmar_header *iter, *next; 584 struct acpi_dmar_header *end = ((void *)start) + len; 585 586 for (iter = start; iter < end; iter = next) { 587 next = (void *)iter + iter->length; 588 if (iter->length == 0) { 589 /* Avoid looping forever on bad ACPI tables */ 590 pr_debug(FW_BUG "Invalid 0-length structure\n"); 591 break; 592 } else if (next > end) { 593 /* Avoid passing table end */ 594 pr_warn(FW_BUG "Record passes table end\n"); 595 return -EINVAL; 596 } 597 598 if (cb->print_entry) 599 dmar_table_print_dmar_entry(iter); 600 601 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 602 /* continue for forward compatibility */ 603 pr_debug("Unknown DMAR structure type %d\n", 604 iter->type); 605 } else if (cb->cb[iter->type]) { 606 int ret; 607 608 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 609 if (ret) 610 return ret; 611 } else if (!cb->ignore_unhandled) { 612 pr_warn("No handler for DMAR structure type %d\n", 613 iter->type); 614 return -EINVAL; 615 } 616 } 617 618 return 0; 619 } 620 621 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 622 struct dmar_res_callback *cb) 623 { 624 return dmar_walk_remapping_entries((void *)(dmar + 1), 625 dmar->header.length - sizeof(*dmar), cb); 626 } 627 628 /** 629 * parse_dmar_table - parses the DMA reporting table 630 */ 631 static int __init 632 parse_dmar_table(void) 633 { 634 struct acpi_table_dmar *dmar; 635 int drhd_count = 0; 636 int ret; 637 struct dmar_res_callback cb = { 638 .print_entry = true, 639 .ignore_unhandled = true, 640 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 641 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 642 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 643 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 644 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 645 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 646 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc, 647 }; 648 649 /* 650 * Do it again, earlier dmar_tbl mapping could be mapped with 651 * fixed map. 652 */ 653 dmar_table_detect(); 654 655 /* 656 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 657 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 658 */ 659 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 660 661 dmar = (struct acpi_table_dmar *)dmar_tbl; 662 if (!dmar) 663 return -ENODEV; 664 665 if (dmar->width < PAGE_SHIFT - 1) { 666 pr_warn("Invalid DMAR haw\n"); 667 return -EINVAL; 668 } 669 670 pr_info("Host address width %d\n", dmar->width + 1); 671 ret = dmar_walk_dmar_table(dmar, &cb); 672 if (ret == 0 && drhd_count == 0) 673 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 674 675 return ret; 676 } 677 678 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 679 int cnt, struct pci_dev *dev) 680 { 681 int index; 682 struct device *tmp; 683 684 while (dev) { 685 for_each_active_dev_scope(devices, cnt, index, tmp) 686 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 687 return 1; 688 689 /* Check our parent */ 690 dev = dev->bus->self; 691 } 692 693 return 0; 694 } 695 696 struct dmar_drhd_unit * 697 dmar_find_matched_drhd_unit(struct pci_dev *dev) 698 { 699 struct dmar_drhd_unit *dmaru; 700 struct acpi_dmar_hardware_unit *drhd; 701 702 dev = pci_physfn(dev); 703 704 rcu_read_lock(); 705 for_each_drhd_unit(dmaru) { 706 drhd = container_of(dmaru->hdr, 707 struct acpi_dmar_hardware_unit, 708 header); 709 710 if (dmaru->include_all && 711 drhd->segment == pci_domain_nr(dev->bus)) 712 goto out; 713 714 if (dmar_pci_device_match(dmaru->devices, 715 dmaru->devices_cnt, dev)) 716 goto out; 717 } 718 dmaru = NULL; 719 out: 720 rcu_read_unlock(); 721 722 return dmaru; 723 } 724 725 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 726 struct acpi_device *adev) 727 { 728 struct dmar_drhd_unit *dmaru; 729 struct acpi_dmar_hardware_unit *drhd; 730 struct acpi_dmar_device_scope *scope; 731 struct device *tmp; 732 int i; 733 struct acpi_dmar_pci_path *path; 734 735 for_each_drhd_unit(dmaru) { 736 drhd = container_of(dmaru->hdr, 737 struct acpi_dmar_hardware_unit, 738 header); 739 740 for (scope = (void *)(drhd + 1); 741 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 742 scope = ((void *)scope) + scope->length) { 743 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 744 continue; 745 if (scope->enumeration_id != device_number) 746 continue; 747 748 path = (void *)(scope + 1); 749 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 750 dev_name(&adev->dev), dmaru->reg_base_addr, 751 scope->bus, path->device, path->function); 752 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 753 if (tmp == NULL) { 754 dmaru->devices[i].bus = scope->bus; 755 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 756 path->function); 757 rcu_assign_pointer(dmaru->devices[i].dev, 758 get_device(&adev->dev)); 759 return; 760 } 761 BUG_ON(i >= dmaru->devices_cnt); 762 } 763 } 764 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 765 device_number, dev_name(&adev->dev)); 766 } 767 768 static int __init dmar_acpi_dev_scope_init(void) 769 { 770 struct acpi_dmar_andd *andd; 771 772 if (dmar_tbl == NULL) 773 return -ENODEV; 774 775 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 776 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 777 andd = ((void *)andd) + andd->header.length) { 778 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 779 acpi_handle h; 780 struct acpi_device *adev; 781 782 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 783 andd->device_name, 784 &h))) { 785 pr_err("Failed to find handle for ACPI object %s\n", 786 andd->device_name); 787 continue; 788 } 789 adev = acpi_fetch_acpi_dev(h); 790 if (!adev) { 791 pr_err("Failed to get device for ACPI object %s\n", 792 andd->device_name); 793 continue; 794 } 795 dmar_acpi_insert_dev_scope(andd->device_number, adev); 796 } 797 } 798 return 0; 799 } 800 801 int __init dmar_dev_scope_init(void) 802 { 803 struct pci_dev *dev = NULL; 804 struct dmar_pci_notify_info *info; 805 806 if (dmar_dev_scope_status != 1) 807 return dmar_dev_scope_status; 808 809 if (list_empty(&dmar_drhd_units)) { 810 dmar_dev_scope_status = -ENODEV; 811 } else { 812 dmar_dev_scope_status = 0; 813 814 dmar_acpi_dev_scope_init(); 815 816 for_each_pci_dev(dev) { 817 if (dev->is_virtfn) 818 continue; 819 820 info = dmar_alloc_pci_notify_info(dev, 821 BUS_NOTIFY_ADD_DEVICE); 822 if (!info) { 823 return dmar_dev_scope_status; 824 } else { 825 dmar_pci_bus_add_dev(info); 826 dmar_free_pci_notify_info(info); 827 } 828 } 829 } 830 831 return dmar_dev_scope_status; 832 } 833 834 void __init dmar_register_bus_notifier(void) 835 { 836 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 837 } 838 839 840 int __init dmar_table_init(void) 841 { 842 static int dmar_table_initialized; 843 int ret; 844 845 if (dmar_table_initialized == 0) { 846 ret = parse_dmar_table(); 847 if (ret < 0) { 848 if (ret != -ENODEV) 849 pr_info("Parse DMAR table failure.\n"); 850 } else if (list_empty(&dmar_drhd_units)) { 851 pr_info("No DMAR devices found\n"); 852 ret = -ENODEV; 853 } 854 855 if (ret < 0) 856 dmar_table_initialized = ret; 857 else 858 dmar_table_initialized = 1; 859 } 860 861 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 862 } 863 864 static void warn_invalid_dmar(u64 addr, const char *message) 865 { 866 pr_warn_once(FW_BUG 867 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 868 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 869 addr, message, 870 dmi_get_system_info(DMI_BIOS_VENDOR), 871 dmi_get_system_info(DMI_BIOS_VERSION), 872 dmi_get_system_info(DMI_PRODUCT_VERSION)); 873 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 874 } 875 876 static int __ref 877 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 878 { 879 struct acpi_dmar_hardware_unit *drhd; 880 void __iomem *addr; 881 u64 cap, ecap; 882 883 drhd = (void *)entry; 884 if (!drhd->address) { 885 warn_invalid_dmar(0, ""); 886 return -EINVAL; 887 } 888 889 if (arg) 890 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 891 else 892 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 893 if (!addr) { 894 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 895 return -EINVAL; 896 } 897 898 cap = dmar_readq(addr + DMAR_CAP_REG); 899 ecap = dmar_readq(addr + DMAR_ECAP_REG); 900 901 if (arg) 902 iounmap(addr); 903 else 904 early_iounmap(addr, VTD_PAGE_SIZE); 905 906 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 907 warn_invalid_dmar(drhd->address, " returns all ones"); 908 return -EINVAL; 909 } 910 911 return 0; 912 } 913 914 void __init detect_intel_iommu(void) 915 { 916 int ret; 917 struct dmar_res_callback validate_drhd_cb = { 918 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 919 .ignore_unhandled = true, 920 }; 921 922 down_write(&dmar_global_lock); 923 ret = dmar_table_detect(); 924 if (!ret) 925 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 926 &validate_drhd_cb); 927 if (!ret && !no_iommu && !iommu_detected && 928 (!dmar_disabled || dmar_platform_optin())) { 929 iommu_detected = 1; 930 /* Make sure ACS will be enabled */ 931 pci_request_acs(); 932 } 933 934 #ifdef CONFIG_X86 935 if (!ret) { 936 x86_init.iommu.iommu_init = intel_iommu_init; 937 x86_platform.iommu_shutdown = intel_iommu_shutdown; 938 } 939 940 #endif 941 942 if (dmar_tbl) { 943 acpi_put_table(dmar_tbl); 944 dmar_tbl = NULL; 945 } 946 up_write(&dmar_global_lock); 947 } 948 949 static void unmap_iommu(struct intel_iommu *iommu) 950 { 951 iounmap(iommu->reg); 952 release_mem_region(iommu->reg_phys, iommu->reg_size); 953 } 954 955 /** 956 * map_iommu: map the iommu's registers 957 * @iommu: the iommu to map 958 * @phys_addr: the physical address of the base resgister 959 * 960 * Memory map the iommu's registers. Start w/ a single page, and 961 * possibly expand if that turns out to be insufficent. 962 */ 963 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) 964 { 965 int map_size, err=0; 966 967 iommu->reg_phys = phys_addr; 968 iommu->reg_size = VTD_PAGE_SIZE; 969 970 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 971 pr_err("Can't reserve memory\n"); 972 err = -EBUSY; 973 goto out; 974 } 975 976 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 977 if (!iommu->reg) { 978 pr_err("Can't map the region\n"); 979 err = -ENOMEM; 980 goto release; 981 } 982 983 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 984 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 985 986 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 987 err = -EINVAL; 988 warn_invalid_dmar(phys_addr, " returns all ones"); 989 goto unmap; 990 } 991 if (ecap_vcs(iommu->ecap)) 992 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); 993 994 /* the registers might be more than one page */ 995 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 996 cap_max_fault_reg_offset(iommu->cap)); 997 map_size = VTD_PAGE_ALIGN(map_size); 998 if (map_size > iommu->reg_size) { 999 iounmap(iommu->reg); 1000 release_mem_region(iommu->reg_phys, iommu->reg_size); 1001 iommu->reg_size = map_size; 1002 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 1003 iommu->name)) { 1004 pr_err("Can't reserve memory\n"); 1005 err = -EBUSY; 1006 goto out; 1007 } 1008 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1009 if (!iommu->reg) { 1010 pr_err("Can't map the region\n"); 1011 err = -ENOMEM; 1012 goto release; 1013 } 1014 } 1015 err = 0; 1016 goto out; 1017 1018 unmap: 1019 iounmap(iommu->reg); 1020 release: 1021 release_mem_region(iommu->reg_phys, iommu->reg_size); 1022 out: 1023 return err; 1024 } 1025 1026 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1027 { 1028 struct intel_iommu *iommu; 1029 u32 ver, sts; 1030 int agaw = -1; 1031 int msagaw = -1; 1032 int err; 1033 1034 if (!drhd->reg_base_addr) { 1035 warn_invalid_dmar(0, ""); 1036 return -EINVAL; 1037 } 1038 1039 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1040 if (!iommu) 1041 return -ENOMEM; 1042 1043 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0, 1044 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL); 1045 if (iommu->seq_id < 0) { 1046 pr_err("Failed to allocate seq_id\n"); 1047 err = iommu->seq_id; 1048 goto error; 1049 } 1050 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1051 1052 err = map_iommu(iommu, drhd->reg_base_addr); 1053 if (err) { 1054 pr_err("Failed to map %s\n", iommu->name); 1055 goto error_free_seq_id; 1056 } 1057 1058 err = -EINVAL; 1059 if (cap_sagaw(iommu->cap) == 0) { 1060 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1061 iommu->name); 1062 drhd->ignored = 1; 1063 } 1064 1065 if (!drhd->ignored) { 1066 agaw = iommu_calculate_agaw(iommu); 1067 if (agaw < 0) { 1068 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1069 iommu->seq_id); 1070 drhd->ignored = 1; 1071 } 1072 } 1073 if (!drhd->ignored) { 1074 msagaw = iommu_calculate_max_sagaw(iommu); 1075 if (msagaw < 0) { 1076 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1077 iommu->seq_id); 1078 drhd->ignored = 1; 1079 agaw = -1; 1080 } 1081 } 1082 iommu->agaw = agaw; 1083 iommu->msagaw = msagaw; 1084 iommu->segment = drhd->segment; 1085 1086 iommu->node = NUMA_NO_NODE; 1087 1088 ver = readl(iommu->reg + DMAR_VER_REG); 1089 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1090 iommu->name, 1091 (unsigned long long)drhd->reg_base_addr, 1092 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1093 (unsigned long long)iommu->cap, 1094 (unsigned long long)iommu->ecap); 1095 1096 /* Reflect status in gcmd */ 1097 sts = readl(iommu->reg + DMAR_GSTS_REG); 1098 if (sts & DMA_GSTS_IRES) 1099 iommu->gcmd |= DMA_GCMD_IRE; 1100 if (sts & DMA_GSTS_TES) 1101 iommu->gcmd |= DMA_GCMD_TE; 1102 if (sts & DMA_GSTS_QIES) 1103 iommu->gcmd |= DMA_GCMD_QIE; 1104 1105 raw_spin_lock_init(&iommu->register_lock); 1106 1107 /* 1108 * This is only for hotplug; at boot time intel_iommu_enabled won't 1109 * be set yet. When intel_iommu_init() runs, it registers the units 1110 * present at boot time, then sets intel_iommu_enabled. 1111 */ 1112 if (intel_iommu_enabled && !drhd->ignored) { 1113 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1114 intel_iommu_groups, 1115 "%s", iommu->name); 1116 if (err) 1117 goto err_unmap; 1118 1119 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 1120 if (err) 1121 goto err_sysfs; 1122 } 1123 1124 drhd->iommu = iommu; 1125 iommu->drhd = drhd; 1126 1127 return 0; 1128 1129 err_sysfs: 1130 iommu_device_sysfs_remove(&iommu->iommu); 1131 err_unmap: 1132 unmap_iommu(iommu); 1133 error_free_seq_id: 1134 ida_free(&dmar_seq_ids, iommu->seq_id); 1135 error: 1136 kfree(iommu); 1137 return err; 1138 } 1139 1140 static void free_iommu(struct intel_iommu *iommu) 1141 { 1142 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1143 iommu_device_unregister(&iommu->iommu); 1144 iommu_device_sysfs_remove(&iommu->iommu); 1145 } 1146 1147 if (iommu->irq) { 1148 if (iommu->pr_irq) { 1149 free_irq(iommu->pr_irq, iommu); 1150 dmar_free_hwirq(iommu->pr_irq); 1151 iommu->pr_irq = 0; 1152 } 1153 free_irq(iommu->irq, iommu); 1154 dmar_free_hwirq(iommu->irq); 1155 iommu->irq = 0; 1156 } 1157 1158 if (iommu->qi) { 1159 free_page((unsigned long)iommu->qi->desc); 1160 kfree(iommu->qi->desc_status); 1161 kfree(iommu->qi); 1162 } 1163 1164 if (iommu->reg) 1165 unmap_iommu(iommu); 1166 1167 ida_free(&dmar_seq_ids, iommu->seq_id); 1168 kfree(iommu); 1169 } 1170 1171 /* 1172 * Reclaim all the submitted descriptors which have completed its work. 1173 */ 1174 static inline void reclaim_free_desc(struct q_inval *qi) 1175 { 1176 while (qi->desc_status[qi->free_tail] == QI_DONE || 1177 qi->desc_status[qi->free_tail] == QI_ABORT) { 1178 qi->desc_status[qi->free_tail] = QI_FREE; 1179 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1180 qi->free_cnt++; 1181 } 1182 } 1183 1184 static const char *qi_type_string(u8 type) 1185 { 1186 switch (type) { 1187 case QI_CC_TYPE: 1188 return "Context-cache Invalidation"; 1189 case QI_IOTLB_TYPE: 1190 return "IOTLB Invalidation"; 1191 case QI_DIOTLB_TYPE: 1192 return "Device-TLB Invalidation"; 1193 case QI_IEC_TYPE: 1194 return "Interrupt Entry Cache Invalidation"; 1195 case QI_IWD_TYPE: 1196 return "Invalidation Wait"; 1197 case QI_EIOTLB_TYPE: 1198 return "PASID-based IOTLB Invalidation"; 1199 case QI_PC_TYPE: 1200 return "PASID-cache Invalidation"; 1201 case QI_DEIOTLB_TYPE: 1202 return "PASID-based Device-TLB Invalidation"; 1203 case QI_PGRP_RESP_TYPE: 1204 return "Page Group Response"; 1205 default: 1206 return "UNKNOWN"; 1207 } 1208 } 1209 1210 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault) 1211 { 1212 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG); 1213 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG); 1214 struct qi_desc *desc = iommu->qi->desc + head; 1215 1216 if (fault & DMA_FSTS_IQE) 1217 pr_err("VT-d detected Invalidation Queue Error: Reason %llx", 1218 DMAR_IQER_REG_IQEI(iqe_err)); 1219 if (fault & DMA_FSTS_ITE) 1220 pr_err("VT-d detected Invalidation Time-out Error: SID %llx", 1221 DMAR_IQER_REG_ITESID(iqe_err)); 1222 if (fault & DMA_FSTS_ICE) 1223 pr_err("VT-d detected Invalidation Completion Error: SID %llx", 1224 DMAR_IQER_REG_ICESID(iqe_err)); 1225 1226 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1227 qi_type_string(desc->qw0 & 0xf), 1228 (unsigned long long)desc->qw0, 1229 (unsigned long long)desc->qw1); 1230 1231 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH; 1232 head <<= qi_shift(iommu); 1233 desc = iommu->qi->desc + head; 1234 1235 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1236 qi_type_string(desc->qw0 & 0xf), 1237 (unsigned long long)desc->qw0, 1238 (unsigned long long)desc->qw1); 1239 } 1240 1241 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1242 { 1243 u32 fault; 1244 int head, tail; 1245 struct q_inval *qi = iommu->qi; 1246 int shift = qi_shift(iommu); 1247 1248 if (qi->desc_status[wait_index] == QI_ABORT) 1249 return -EAGAIN; 1250 1251 fault = readl(iommu->reg + DMAR_FSTS_REG); 1252 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE)) 1253 qi_dump_fault(iommu, fault); 1254 1255 /* 1256 * If IQE happens, the head points to the descriptor associated 1257 * with the error. No new descriptors are fetched until the IQE 1258 * is cleared. 1259 */ 1260 if (fault & DMA_FSTS_IQE) { 1261 head = readl(iommu->reg + DMAR_IQH_REG); 1262 if ((head >> shift) == index) { 1263 struct qi_desc *desc = qi->desc + head; 1264 1265 /* 1266 * desc->qw2 and desc->qw3 are either reserved or 1267 * used by software as private data. We won't print 1268 * out these two qw's for security consideration. 1269 */ 1270 memcpy(desc, qi->desc + (wait_index << shift), 1271 1 << shift); 1272 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1273 pr_info("Invalidation Queue Error (IQE) cleared\n"); 1274 return -EINVAL; 1275 } 1276 } 1277 1278 /* 1279 * If ITE happens, all pending wait_desc commands are aborted. 1280 * No new descriptors are fetched until the ITE is cleared. 1281 */ 1282 if (fault & DMA_FSTS_ITE) { 1283 head = readl(iommu->reg + DMAR_IQH_REG); 1284 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1285 head |= 1; 1286 tail = readl(iommu->reg + DMAR_IQT_REG); 1287 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1288 1289 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1290 pr_info("Invalidation Time-out Error (ITE) cleared\n"); 1291 1292 do { 1293 if (qi->desc_status[head] == QI_IN_USE) 1294 qi->desc_status[head] = QI_ABORT; 1295 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1296 } while (head != tail); 1297 1298 if (qi->desc_status[wait_index] == QI_ABORT) 1299 return -EAGAIN; 1300 } 1301 1302 if (fault & DMA_FSTS_ICE) { 1303 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1304 pr_info("Invalidation Completion Error (ICE) cleared\n"); 1305 } 1306 1307 return 0; 1308 } 1309 1310 /* 1311 * Function to submit invalidation descriptors of all types to the queued 1312 * invalidation interface(QI). Multiple descriptors can be submitted at a 1313 * time, a wait descriptor will be appended to each submission to ensure 1314 * hardware has completed the invalidation before return. Wait descriptors 1315 * can be part of the submission but it will not be polled for completion. 1316 */ 1317 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1318 unsigned int count, unsigned long options) 1319 { 1320 struct q_inval *qi = iommu->qi; 1321 s64 devtlb_start_ktime = 0; 1322 s64 iotlb_start_ktime = 0; 1323 s64 iec_start_ktime = 0; 1324 struct qi_desc wait_desc; 1325 int wait_index, index; 1326 unsigned long flags; 1327 int offset, shift; 1328 int rc, i; 1329 u64 type; 1330 1331 if (!qi) 1332 return 0; 1333 1334 type = desc->qw0 & GENMASK_ULL(3, 0); 1335 1336 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) && 1337 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB)) 1338 iotlb_start_ktime = ktime_to_ns(ktime_get()); 1339 1340 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) && 1341 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB)) 1342 devtlb_start_ktime = ktime_to_ns(ktime_get()); 1343 1344 if (type == QI_IEC_TYPE && 1345 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC)) 1346 iec_start_ktime = ktime_to_ns(ktime_get()); 1347 1348 restart: 1349 rc = 0; 1350 1351 raw_spin_lock_irqsave(&qi->q_lock, flags); 1352 /* 1353 * Check if we have enough empty slots in the queue to submit, 1354 * the calculation is based on: 1355 * # of desc + 1 wait desc + 1 space between head and tail 1356 */ 1357 while (qi->free_cnt < count + 2) { 1358 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1359 cpu_relax(); 1360 raw_spin_lock_irqsave(&qi->q_lock, flags); 1361 } 1362 1363 index = qi->free_head; 1364 wait_index = (index + count) % QI_LENGTH; 1365 shift = qi_shift(iommu); 1366 1367 for (i = 0; i < count; i++) { 1368 offset = ((index + i) % QI_LENGTH) << shift; 1369 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1370 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1371 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1, 1372 desc[i].qw2, desc[i].qw3); 1373 } 1374 qi->desc_status[wait_index] = QI_IN_USE; 1375 1376 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1377 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1378 if (options & QI_OPT_WAIT_DRAIN) 1379 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1380 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1381 wait_desc.qw2 = 0; 1382 wait_desc.qw3 = 0; 1383 1384 offset = wait_index << shift; 1385 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1386 1387 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1388 qi->free_cnt -= count + 1; 1389 1390 /* 1391 * update the HW tail register indicating the presence of 1392 * new descriptors. 1393 */ 1394 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1395 1396 while (qi->desc_status[wait_index] != QI_DONE) { 1397 /* 1398 * We will leave the interrupts disabled, to prevent interrupt 1399 * context to queue another cmd while a cmd is already submitted 1400 * and waiting for completion on this cpu. This is to avoid 1401 * a deadlock where the interrupt context can wait indefinitely 1402 * for free slots in the queue. 1403 */ 1404 rc = qi_check_fault(iommu, index, wait_index); 1405 if (rc) 1406 break; 1407 1408 raw_spin_unlock(&qi->q_lock); 1409 cpu_relax(); 1410 raw_spin_lock(&qi->q_lock); 1411 } 1412 1413 for (i = 0; i < count; i++) 1414 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1415 1416 reclaim_free_desc(qi); 1417 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1418 1419 if (rc == -EAGAIN) 1420 goto restart; 1421 1422 if (iotlb_start_ktime) 1423 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB, 1424 ktime_to_ns(ktime_get()) - iotlb_start_ktime); 1425 1426 if (devtlb_start_ktime) 1427 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB, 1428 ktime_to_ns(ktime_get()) - devtlb_start_ktime); 1429 1430 if (iec_start_ktime) 1431 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC, 1432 ktime_to_ns(ktime_get()) - iec_start_ktime); 1433 1434 return rc; 1435 } 1436 1437 /* 1438 * Flush the global interrupt entry cache. 1439 */ 1440 void qi_global_iec(struct intel_iommu *iommu) 1441 { 1442 struct qi_desc desc; 1443 1444 desc.qw0 = QI_IEC_TYPE; 1445 desc.qw1 = 0; 1446 desc.qw2 = 0; 1447 desc.qw3 = 0; 1448 1449 /* should never fail */ 1450 qi_submit_sync(iommu, &desc, 1, 0); 1451 } 1452 1453 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1454 u64 type) 1455 { 1456 struct qi_desc desc; 1457 1458 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1459 | QI_CC_GRAN(type) | QI_CC_TYPE; 1460 desc.qw1 = 0; 1461 desc.qw2 = 0; 1462 desc.qw3 = 0; 1463 1464 qi_submit_sync(iommu, &desc, 1, 0); 1465 } 1466 1467 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1468 unsigned int size_order, u64 type) 1469 { 1470 u8 dw = 0, dr = 0; 1471 1472 struct qi_desc desc; 1473 int ih = 0; 1474 1475 if (cap_write_drain(iommu->cap)) 1476 dw = 1; 1477 1478 if (cap_read_drain(iommu->cap)) 1479 dr = 1; 1480 1481 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1482 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1483 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1484 | QI_IOTLB_AM(size_order); 1485 desc.qw2 = 0; 1486 desc.qw3 = 0; 1487 1488 qi_submit_sync(iommu, &desc, 1, 0); 1489 } 1490 1491 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1492 u16 qdep, u64 addr, unsigned mask) 1493 { 1494 struct qi_desc desc; 1495 1496 if (mask) { 1497 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1498 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1499 } else 1500 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1501 1502 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1503 qdep = 0; 1504 1505 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1506 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1507 desc.qw2 = 0; 1508 desc.qw3 = 0; 1509 1510 qi_submit_sync(iommu, &desc, 1, 0); 1511 } 1512 1513 /* PASID-based IOTLB invalidation */ 1514 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1515 unsigned long npages, bool ih) 1516 { 1517 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1518 1519 /* 1520 * npages == -1 means a PASID-selective invalidation, otherwise, 1521 * a positive value for Page-selective-within-PASID invalidation. 1522 * 0 is not a valid input. 1523 */ 1524 if (WARN_ON(!npages)) { 1525 pr_err("Invalid input npages = %ld\n", npages); 1526 return; 1527 } 1528 1529 if (npages == -1) { 1530 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1531 QI_EIOTLB_DID(did) | 1532 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1533 QI_EIOTLB_TYPE; 1534 desc.qw1 = 0; 1535 } else { 1536 int mask = ilog2(__roundup_pow_of_two(npages)); 1537 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1538 1539 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align))) 1540 addr = ALIGN_DOWN(addr, align); 1541 1542 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1543 QI_EIOTLB_DID(did) | 1544 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1545 QI_EIOTLB_TYPE; 1546 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1547 QI_EIOTLB_IH(ih) | 1548 QI_EIOTLB_AM(mask); 1549 } 1550 1551 qi_submit_sync(iommu, &desc, 1, 0); 1552 } 1553 1554 /* PASID-based device IOTLB Invalidate */ 1555 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1556 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1557 { 1558 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1559 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1560 1561 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1562 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1563 QI_DEV_IOTLB_PFSID(pfsid); 1564 1565 /* 1566 * If S bit is 0, we only flush a single page. If S bit is set, 1567 * The least significant zero bit indicates the invalidation address 1568 * range. VT-d spec 6.5.2.6. 1569 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1570 * size order = 0 is PAGE_SIZE 4KB 1571 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1572 * ECAP. 1573 */ 1574 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order)) 1575 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1576 addr, size_order); 1577 1578 /* Take page address */ 1579 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1580 1581 if (size_order) { 1582 /* 1583 * Existing 0s in address below size_order may be the least 1584 * significant bit, we must set them to 1s to avoid having 1585 * smaller size than desired. 1586 */ 1587 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1588 VTD_PAGE_SHIFT); 1589 /* Clear size_order bit to indicate size */ 1590 desc.qw1 &= ~mask; 1591 /* Set the S bit to indicate flushing more than 1 page */ 1592 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1593 } 1594 1595 qi_submit_sync(iommu, &desc, 1, 0); 1596 } 1597 1598 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1599 u64 granu, u32 pasid) 1600 { 1601 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1602 1603 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1604 QI_PC_GRAN(granu) | QI_PC_TYPE; 1605 qi_submit_sync(iommu, &desc, 1, 0); 1606 } 1607 1608 /* 1609 * Disable Queued Invalidation interface. 1610 */ 1611 void dmar_disable_qi(struct intel_iommu *iommu) 1612 { 1613 unsigned long flags; 1614 u32 sts; 1615 cycles_t start_time = get_cycles(); 1616 1617 if (!ecap_qis(iommu->ecap)) 1618 return; 1619 1620 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1621 1622 sts = readl(iommu->reg + DMAR_GSTS_REG); 1623 if (!(sts & DMA_GSTS_QIES)) 1624 goto end; 1625 1626 /* 1627 * Give a chance to HW to complete the pending invalidation requests. 1628 */ 1629 while ((readl(iommu->reg + DMAR_IQT_REG) != 1630 readl(iommu->reg + DMAR_IQH_REG)) && 1631 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1632 cpu_relax(); 1633 1634 iommu->gcmd &= ~DMA_GCMD_QIE; 1635 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1636 1637 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1638 !(sts & DMA_GSTS_QIES), sts); 1639 end: 1640 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1641 } 1642 1643 /* 1644 * Enable queued invalidation. 1645 */ 1646 static void __dmar_enable_qi(struct intel_iommu *iommu) 1647 { 1648 u32 sts; 1649 unsigned long flags; 1650 struct q_inval *qi = iommu->qi; 1651 u64 val = virt_to_phys(qi->desc); 1652 1653 qi->free_head = qi->free_tail = 0; 1654 qi->free_cnt = QI_LENGTH; 1655 1656 /* 1657 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1658 * is present. 1659 */ 1660 if (ecap_smts(iommu->ecap)) 1661 val |= (1 << 11) | 1; 1662 1663 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1664 1665 /* write zero to the tail reg */ 1666 writel(0, iommu->reg + DMAR_IQT_REG); 1667 1668 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1669 1670 iommu->gcmd |= DMA_GCMD_QIE; 1671 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1672 1673 /* Make sure hardware complete it */ 1674 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1675 1676 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1677 } 1678 1679 /* 1680 * Enable Queued Invalidation interface. This is a must to support 1681 * interrupt-remapping. Also used by DMA-remapping, which replaces 1682 * register based IOTLB invalidation. 1683 */ 1684 int dmar_enable_qi(struct intel_iommu *iommu) 1685 { 1686 struct q_inval *qi; 1687 struct page *desc_page; 1688 1689 if (!ecap_qis(iommu->ecap)) 1690 return -ENOENT; 1691 1692 /* 1693 * queued invalidation is already setup and enabled. 1694 */ 1695 if (iommu->qi) 1696 return 0; 1697 1698 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1699 if (!iommu->qi) 1700 return -ENOMEM; 1701 1702 qi = iommu->qi; 1703 1704 /* 1705 * Need two pages to accommodate 256 descriptors of 256 bits each 1706 * if the remapping hardware supports scalable mode translation. 1707 */ 1708 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1709 !!ecap_smts(iommu->ecap)); 1710 if (!desc_page) { 1711 kfree(qi); 1712 iommu->qi = NULL; 1713 return -ENOMEM; 1714 } 1715 1716 qi->desc = page_address(desc_page); 1717 1718 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1719 if (!qi->desc_status) { 1720 free_page((unsigned long) qi->desc); 1721 kfree(qi); 1722 iommu->qi = NULL; 1723 return -ENOMEM; 1724 } 1725 1726 raw_spin_lock_init(&qi->q_lock); 1727 1728 __dmar_enable_qi(iommu); 1729 1730 return 0; 1731 } 1732 1733 /* iommu interrupt handling. Most stuff are MSI-like. */ 1734 1735 enum faulttype { 1736 DMA_REMAP, 1737 INTR_REMAP, 1738 UNKNOWN, 1739 }; 1740 1741 static const char *dma_remap_fault_reasons[] = 1742 { 1743 "Software", 1744 "Present bit in root entry is clear", 1745 "Present bit in context entry is clear", 1746 "Invalid context entry", 1747 "Access beyond MGAW", 1748 "PTE Write access is not set", 1749 "PTE Read access is not set", 1750 "Next page table ptr is invalid", 1751 "Root table address invalid", 1752 "Context table ptr is invalid", 1753 "non-zero reserved fields in RTP", 1754 "non-zero reserved fields in CTP", 1755 "non-zero reserved fields in PTE", 1756 "PCE for translation request specifies blocking", 1757 }; 1758 1759 static const char * const dma_remap_sm_fault_reasons[] = { 1760 "SM: Invalid Root Table Address", 1761 "SM: TTM 0 for request with PASID", 1762 "SM: TTM 0 for page group request", 1763 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1764 "SM: Error attempting to access Root Entry", 1765 "SM: Present bit in Root Entry is clear", 1766 "SM: Non-zero reserved field set in Root Entry", 1767 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1768 "SM: Error attempting to access Context Entry", 1769 "SM: Present bit in Context Entry is clear", 1770 "SM: Non-zero reserved field set in the Context Entry", 1771 "SM: Invalid Context Entry", 1772 "SM: DTE field in Context Entry is clear", 1773 "SM: PASID Enable field in Context Entry is clear", 1774 "SM: PASID is larger than the max in Context Entry", 1775 "SM: PRE field in Context-Entry is clear", 1776 "SM: RID_PASID field error in Context-Entry", 1777 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1778 "SM: Error attempting to access the PASID Directory Entry", 1779 "SM: Present bit in Directory Entry is clear", 1780 "SM: Non-zero reserved field set in PASID Directory Entry", 1781 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1782 "SM: Error attempting to access PASID Table Entry", 1783 "SM: Present bit in PASID Table Entry is clear", 1784 "SM: Non-zero reserved field set in PASID Table Entry", 1785 "SM: Invalid Scalable-Mode PASID Table Entry", 1786 "SM: ERE field is clear in PASID Table Entry", 1787 "SM: SRE field is clear in PASID Table Entry", 1788 "Unknown", "Unknown",/* 0x5E-0x5F */ 1789 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1790 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1791 "SM: Error attempting to access first-level paging entry", 1792 "SM: Present bit in first-level paging entry is clear", 1793 "SM: Non-zero reserved field set in first-level paging entry", 1794 "SM: Error attempting to access FL-PML4 entry", 1795 "SM: First-level entry address beyond MGAW in Nested translation", 1796 "SM: Read permission error in FL-PML4 entry in Nested translation", 1797 "SM: Read permission error in first-level paging entry in Nested translation", 1798 "SM: Write permission error in first-level paging entry in Nested translation", 1799 "SM: Error attempting to access second-level paging entry", 1800 "SM: Read/Write permission error in second-level paging entry", 1801 "SM: Non-zero reserved field set in second-level paging entry", 1802 "SM: Invalid second-level page table pointer", 1803 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1804 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1805 "SM: Address in first-level translation is not canonical", 1806 "SM: U/S set 0 for first-level translation with user privilege", 1807 "SM: No execute permission for request with PASID and ER=1", 1808 "SM: Address beyond the DMA hardware max", 1809 "SM: Second-level entry address beyond the max", 1810 "SM: No write permission for Write/AtomicOp request", 1811 "SM: No read permission for Read/AtomicOp request", 1812 "SM: Invalid address-interrupt address", 1813 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1814 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1815 }; 1816 1817 static const char *irq_remap_fault_reasons[] = 1818 { 1819 "Detected reserved fields in the decoded interrupt-remapped request", 1820 "Interrupt index exceeded the interrupt-remapping table size", 1821 "Present field in the IRTE entry is clear", 1822 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1823 "Detected reserved fields in the IRTE entry", 1824 "Blocked a compatibility format interrupt request", 1825 "Blocked an interrupt request due to source-id verification failure", 1826 }; 1827 1828 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1829 { 1830 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1831 ARRAY_SIZE(irq_remap_fault_reasons))) { 1832 *fault_type = INTR_REMAP; 1833 return irq_remap_fault_reasons[fault_reason - 0x20]; 1834 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1835 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1836 *fault_type = DMA_REMAP; 1837 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1838 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1839 *fault_type = DMA_REMAP; 1840 return dma_remap_fault_reasons[fault_reason]; 1841 } else { 1842 *fault_type = UNKNOWN; 1843 return "Unknown"; 1844 } 1845 } 1846 1847 1848 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1849 { 1850 if (iommu->irq == irq) 1851 return DMAR_FECTL_REG; 1852 else if (iommu->pr_irq == irq) 1853 return DMAR_PECTL_REG; 1854 else 1855 BUG(); 1856 } 1857 1858 void dmar_msi_unmask(struct irq_data *data) 1859 { 1860 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1861 int reg = dmar_msi_reg(iommu, data->irq); 1862 unsigned long flag; 1863 1864 /* unmask it */ 1865 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1866 writel(0, iommu->reg + reg); 1867 /* Read a reg to force flush the post write */ 1868 readl(iommu->reg + reg); 1869 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1870 } 1871 1872 void dmar_msi_mask(struct irq_data *data) 1873 { 1874 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1875 int reg = dmar_msi_reg(iommu, data->irq); 1876 unsigned long flag; 1877 1878 /* mask it */ 1879 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1880 writel(DMA_FECTL_IM, iommu->reg + reg); 1881 /* Read a reg to force flush the post write */ 1882 readl(iommu->reg + reg); 1883 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1884 } 1885 1886 void dmar_msi_write(int irq, struct msi_msg *msg) 1887 { 1888 struct intel_iommu *iommu = irq_get_handler_data(irq); 1889 int reg = dmar_msi_reg(iommu, irq); 1890 unsigned long flag; 1891 1892 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1893 writel(msg->data, iommu->reg + reg + 4); 1894 writel(msg->address_lo, iommu->reg + reg + 8); 1895 writel(msg->address_hi, iommu->reg + reg + 12); 1896 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1897 } 1898 1899 void dmar_msi_read(int irq, struct msi_msg *msg) 1900 { 1901 struct intel_iommu *iommu = irq_get_handler_data(irq); 1902 int reg = dmar_msi_reg(iommu, irq); 1903 unsigned long flag; 1904 1905 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1906 msg->data = readl(iommu->reg + reg + 4); 1907 msg->address_lo = readl(iommu->reg + reg + 8); 1908 msg->address_hi = readl(iommu->reg + reg + 12); 1909 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1910 } 1911 1912 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1913 u8 fault_reason, u32 pasid, u16 source_id, 1914 unsigned long long addr) 1915 { 1916 const char *reason; 1917 int fault_type; 1918 1919 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1920 1921 if (fault_type == INTR_REMAP) { 1922 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n", 1923 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1924 PCI_FUNC(source_id & 0xFF), addr >> 48, 1925 fault_reason, reason); 1926 1927 return 0; 1928 } 1929 1930 if (pasid == INVALID_IOASID) 1931 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 1932 type ? "DMA Read" : "DMA Write", 1933 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1934 PCI_FUNC(source_id & 0xFF), addr, 1935 fault_reason, reason); 1936 else 1937 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 1938 type ? "DMA Read" : "DMA Write", pasid, 1939 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1940 PCI_FUNC(source_id & 0xFF), addr, 1941 fault_reason, reason); 1942 1943 dmar_fault_dump_ptes(iommu, source_id, addr, pasid); 1944 1945 return 0; 1946 } 1947 1948 #define PRIMARY_FAULT_REG_LEN (16) 1949 irqreturn_t dmar_fault(int irq, void *dev_id) 1950 { 1951 struct intel_iommu *iommu = dev_id; 1952 int reg, fault_index; 1953 u32 fault_status; 1954 unsigned long flag; 1955 static DEFINE_RATELIMIT_STATE(rs, 1956 DEFAULT_RATELIMIT_INTERVAL, 1957 DEFAULT_RATELIMIT_BURST); 1958 1959 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1960 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1961 if (fault_status && __ratelimit(&rs)) 1962 pr_err("DRHD: handling fault status reg %x\n", fault_status); 1963 1964 /* TBD: ignore advanced fault log currently */ 1965 if (!(fault_status & DMA_FSTS_PPF)) 1966 goto unlock_exit; 1967 1968 fault_index = dma_fsts_fault_record_index(fault_status); 1969 reg = cap_fault_reg_offset(iommu->cap); 1970 while (1) { 1971 /* Disable printing, simply clear the fault when ratelimited */ 1972 bool ratelimited = !__ratelimit(&rs); 1973 u8 fault_reason; 1974 u16 source_id; 1975 u64 guest_addr; 1976 u32 pasid; 1977 int type; 1978 u32 data; 1979 bool pasid_present; 1980 1981 /* highest 32 bits */ 1982 data = readl(iommu->reg + reg + 1983 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1984 if (!(data & DMA_FRCD_F)) 1985 break; 1986 1987 if (!ratelimited) { 1988 fault_reason = dma_frcd_fault_reason(data); 1989 type = dma_frcd_type(data); 1990 1991 pasid = dma_frcd_pasid_value(data); 1992 data = readl(iommu->reg + reg + 1993 fault_index * PRIMARY_FAULT_REG_LEN + 8); 1994 source_id = dma_frcd_source_id(data); 1995 1996 pasid_present = dma_frcd_pasid_present(data); 1997 guest_addr = dmar_readq(iommu->reg + reg + 1998 fault_index * PRIMARY_FAULT_REG_LEN); 1999 guest_addr = dma_frcd_page_addr(guest_addr); 2000 } 2001 2002 /* clear the fault */ 2003 writel(DMA_FRCD_F, iommu->reg + reg + 2004 fault_index * PRIMARY_FAULT_REG_LEN + 12); 2005 2006 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2007 2008 if (!ratelimited) 2009 /* Using pasid -1 if pasid is not present */ 2010 dmar_fault_do_one(iommu, type, fault_reason, 2011 pasid_present ? pasid : INVALID_IOASID, 2012 source_id, guest_addr); 2013 2014 fault_index++; 2015 if (fault_index >= cap_num_fault_regs(iommu->cap)) 2016 fault_index = 0; 2017 raw_spin_lock_irqsave(&iommu->register_lock, flag); 2018 } 2019 2020 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 2021 iommu->reg + DMAR_FSTS_REG); 2022 2023 unlock_exit: 2024 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2025 return IRQ_HANDLED; 2026 } 2027 2028 int dmar_set_interrupt(struct intel_iommu *iommu) 2029 { 2030 int irq, ret; 2031 2032 /* 2033 * Check if the fault interrupt is already initialized. 2034 */ 2035 if (iommu->irq) 2036 return 0; 2037 2038 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 2039 if (irq > 0) { 2040 iommu->irq = irq; 2041 } else { 2042 pr_err("No free IRQ vectors\n"); 2043 return -EINVAL; 2044 } 2045 2046 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 2047 if (ret) 2048 pr_err("Can't request irq\n"); 2049 return ret; 2050 } 2051 2052 int __init enable_drhd_fault_handling(void) 2053 { 2054 struct dmar_drhd_unit *drhd; 2055 struct intel_iommu *iommu; 2056 2057 /* 2058 * Enable fault control interrupt. 2059 */ 2060 for_each_iommu(iommu, drhd) { 2061 u32 fault_status; 2062 int ret = dmar_set_interrupt(iommu); 2063 2064 if (ret) { 2065 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 2066 (unsigned long long)drhd->reg_base_addr, ret); 2067 return -1; 2068 } 2069 2070 /* 2071 * Clear any previous faults. 2072 */ 2073 dmar_fault(iommu->irq, iommu); 2074 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 2075 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 2076 } 2077 2078 return 0; 2079 } 2080 2081 /* 2082 * Re-enable Queued Invalidation interface. 2083 */ 2084 int dmar_reenable_qi(struct intel_iommu *iommu) 2085 { 2086 if (!ecap_qis(iommu->ecap)) 2087 return -ENOENT; 2088 2089 if (!iommu->qi) 2090 return -ENOENT; 2091 2092 /* 2093 * First disable queued invalidation. 2094 */ 2095 dmar_disable_qi(iommu); 2096 /* 2097 * Then enable queued invalidation again. Since there is no pending 2098 * invalidation requests now, it's safe to re-enable queued 2099 * invalidation. 2100 */ 2101 __dmar_enable_qi(iommu); 2102 2103 return 0; 2104 } 2105 2106 /* 2107 * Check interrupt remapping support in DMAR table description. 2108 */ 2109 int __init dmar_ir_support(void) 2110 { 2111 struct acpi_table_dmar *dmar; 2112 dmar = (struct acpi_table_dmar *)dmar_tbl; 2113 if (!dmar) 2114 return 0; 2115 return dmar->flags & 0x1; 2116 } 2117 2118 /* Check whether DMAR units are in use */ 2119 static inline bool dmar_in_use(void) 2120 { 2121 return irq_remapping_enabled || intel_iommu_enabled; 2122 } 2123 2124 static int __init dmar_free_unused_resources(void) 2125 { 2126 struct dmar_drhd_unit *dmaru, *dmaru_n; 2127 2128 if (dmar_in_use()) 2129 return 0; 2130 2131 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2132 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2133 2134 down_write(&dmar_global_lock); 2135 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2136 list_del(&dmaru->list); 2137 dmar_free_drhd(dmaru); 2138 } 2139 up_write(&dmar_global_lock); 2140 2141 return 0; 2142 } 2143 2144 late_initcall(dmar_free_unused_resources); 2145 2146 /* 2147 * DMAR Hotplug Support 2148 * For more details, please refer to Intel(R) Virtualization Technology 2149 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2150 * "Remapping Hardware Unit Hot Plug". 2151 */ 2152 static guid_t dmar_hp_guid = 2153 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2154 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2155 2156 /* 2157 * Currently there's only one revision and BIOS will not check the revision id, 2158 * so use 0 for safety. 2159 */ 2160 #define DMAR_DSM_REV_ID 0 2161 #define DMAR_DSM_FUNC_DRHD 1 2162 #define DMAR_DSM_FUNC_ATSR 2 2163 #define DMAR_DSM_FUNC_RHSA 3 2164 #define DMAR_DSM_FUNC_SATC 4 2165 2166 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2167 { 2168 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2169 } 2170 2171 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2172 dmar_res_handler_t handler, void *arg) 2173 { 2174 int ret = -ENODEV; 2175 union acpi_object *obj; 2176 struct acpi_dmar_header *start; 2177 struct dmar_res_callback callback; 2178 static int res_type[] = { 2179 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2180 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2181 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2182 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC, 2183 }; 2184 2185 if (!dmar_detect_dsm(handle, func)) 2186 return 0; 2187 2188 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2189 func, NULL, ACPI_TYPE_BUFFER); 2190 if (!obj) 2191 return -ENODEV; 2192 2193 memset(&callback, 0, sizeof(callback)); 2194 callback.cb[res_type[func]] = handler; 2195 callback.arg[res_type[func]] = arg; 2196 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2197 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2198 2199 ACPI_FREE(obj); 2200 2201 return ret; 2202 } 2203 2204 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2205 { 2206 int ret; 2207 struct dmar_drhd_unit *dmaru; 2208 2209 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2210 if (!dmaru) 2211 return -ENODEV; 2212 2213 ret = dmar_ir_hotplug(dmaru, true); 2214 if (ret == 0) 2215 ret = dmar_iommu_hotplug(dmaru, true); 2216 2217 return ret; 2218 } 2219 2220 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2221 { 2222 int i, ret; 2223 struct device *dev; 2224 struct dmar_drhd_unit *dmaru; 2225 2226 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2227 if (!dmaru) 2228 return 0; 2229 2230 /* 2231 * All PCI devices managed by this unit should have been destroyed. 2232 */ 2233 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2234 for_each_active_dev_scope(dmaru->devices, 2235 dmaru->devices_cnt, i, dev) 2236 return -EBUSY; 2237 } 2238 2239 ret = dmar_ir_hotplug(dmaru, false); 2240 if (ret == 0) 2241 ret = dmar_iommu_hotplug(dmaru, false); 2242 2243 return ret; 2244 } 2245 2246 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2247 { 2248 struct dmar_drhd_unit *dmaru; 2249 2250 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2251 if (dmaru) { 2252 list_del_rcu(&dmaru->list); 2253 synchronize_rcu(); 2254 dmar_free_drhd(dmaru); 2255 } 2256 2257 return 0; 2258 } 2259 2260 static int dmar_hotplug_insert(acpi_handle handle) 2261 { 2262 int ret; 2263 int drhd_count = 0; 2264 2265 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2266 &dmar_validate_one_drhd, (void *)1); 2267 if (ret) 2268 goto out; 2269 2270 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2271 &dmar_parse_one_drhd, (void *)&drhd_count); 2272 if (ret == 0 && drhd_count == 0) { 2273 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2274 goto out; 2275 } else if (ret) { 2276 goto release_drhd; 2277 } 2278 2279 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2280 &dmar_parse_one_rhsa, NULL); 2281 if (ret) 2282 goto release_drhd; 2283 2284 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2285 &dmar_parse_one_atsr, NULL); 2286 if (ret) 2287 goto release_atsr; 2288 2289 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2290 &dmar_hp_add_drhd, NULL); 2291 if (!ret) 2292 return 0; 2293 2294 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2295 &dmar_hp_remove_drhd, NULL); 2296 release_atsr: 2297 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2298 &dmar_release_one_atsr, NULL); 2299 release_drhd: 2300 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2301 &dmar_hp_release_drhd, NULL); 2302 out: 2303 return ret; 2304 } 2305 2306 static int dmar_hotplug_remove(acpi_handle handle) 2307 { 2308 int ret; 2309 2310 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2311 &dmar_check_one_atsr, NULL); 2312 if (ret) 2313 return ret; 2314 2315 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2316 &dmar_hp_remove_drhd, NULL); 2317 if (ret == 0) { 2318 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2319 &dmar_release_one_atsr, NULL)); 2320 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2321 &dmar_hp_release_drhd, NULL)); 2322 } else { 2323 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2324 &dmar_hp_add_drhd, NULL); 2325 } 2326 2327 return ret; 2328 } 2329 2330 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2331 void *context, void **retval) 2332 { 2333 acpi_handle *phdl = retval; 2334 2335 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2336 *phdl = handle; 2337 return AE_CTRL_TERMINATE; 2338 } 2339 2340 return AE_OK; 2341 } 2342 2343 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2344 { 2345 int ret; 2346 acpi_handle tmp = NULL; 2347 acpi_status status; 2348 2349 if (!dmar_in_use()) 2350 return 0; 2351 2352 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2353 tmp = handle; 2354 } else { 2355 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2356 ACPI_UINT32_MAX, 2357 dmar_get_dsm_handle, 2358 NULL, NULL, &tmp); 2359 if (ACPI_FAILURE(status)) { 2360 pr_warn("Failed to locate _DSM method.\n"); 2361 return -ENXIO; 2362 } 2363 } 2364 if (tmp == NULL) 2365 return 0; 2366 2367 down_write(&dmar_global_lock); 2368 if (insert) 2369 ret = dmar_hotplug_insert(tmp); 2370 else 2371 ret = dmar_hotplug_remove(tmp); 2372 up_write(&dmar_global_lock); 2373 2374 return ret; 2375 } 2376 2377 int dmar_device_add(acpi_handle handle) 2378 { 2379 return dmar_device_hotplug(handle, true); 2380 } 2381 2382 int dmar_device_remove(acpi_handle handle) 2383 { 2384 return dmar_device_hotplug(handle, false); 2385 } 2386 2387 /* 2388 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2389 * 2390 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2391 * the ACPI DMAR table. This means that the platform boot firmware has made 2392 * sure no device can issue DMA outside of RMRR regions. 2393 */ 2394 bool dmar_platform_optin(void) 2395 { 2396 struct acpi_table_dmar *dmar; 2397 acpi_status status; 2398 bool ret; 2399 2400 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2401 (struct acpi_table_header **)&dmar); 2402 if (ACPI_FAILURE(status)) 2403 return false; 2404 2405 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2406 acpi_put_table((struct acpi_table_header *)dmar); 2407 2408 return ret; 2409 } 2410 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2411