1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/timer.h> 23 #include <linux/irq.h> 24 #include <linux/interrupt.h> 25 #include <linux/tboot.h> 26 #include <linux/dmi.h> 27 #include <linux/slab.h> 28 #include <linux/iommu.h> 29 #include <linux/numa.h> 30 #include <linux/limits.h> 31 #include <asm/irq_remapping.h> 32 33 #include "iommu.h" 34 #include "../irq_remapping.h" 35 #include "perf.h" 36 #include "trace.h" 37 #include "perfmon.h" 38 39 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 40 struct dmar_res_callback { 41 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 42 void *arg[ACPI_DMAR_TYPE_RESERVED]; 43 bool ignore_unhandled; 44 bool print_entry; 45 }; 46 47 /* 48 * Assumptions: 49 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 50 * before IO devices managed by that unit. 51 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 52 * after IO devices managed by that unit. 53 * 3) Hotplug events are rare. 54 * 55 * Locking rules for DMA and interrupt remapping related global data structures: 56 * 1) Use dmar_global_lock in process context 57 * 2) Use RCU in interrupt context 58 */ 59 DECLARE_RWSEM(dmar_global_lock); 60 LIST_HEAD(dmar_drhd_units); 61 62 struct acpi_table_header * __initdata dmar_tbl; 63 static int dmar_dev_scope_status = 1; 64 static DEFINE_IDA(dmar_seq_ids); 65 66 static int alloc_iommu(struct dmar_drhd_unit *drhd); 67 static void free_iommu(struct intel_iommu *iommu); 68 69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 70 { 71 /* 72 * add INCLUDE_ALL at the tail, so scan the list will find it at 73 * the very end. 74 */ 75 if (drhd->include_all) 76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 77 else 78 list_add_rcu(&drhd->list, &dmar_drhd_units); 79 } 80 81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 82 { 83 struct acpi_dmar_device_scope *scope; 84 85 *cnt = 0; 86 while (start < end) { 87 scope = start; 88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 91 (*cnt)++; 92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 94 pr_warn("Unsupported device scope\n"); 95 } 96 start += scope->length; 97 } 98 if (*cnt == 0) 99 return NULL; 100 101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 102 } 103 104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 105 { 106 int i; 107 struct device *tmp_dev; 108 109 if (*devices && *cnt) { 110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 111 put_device(tmp_dev); 112 kfree(*devices); 113 } 114 115 *devices = NULL; 116 *cnt = 0; 117 } 118 119 /* Optimize out kzalloc()/kfree() for normal cases */ 120 static char dmar_pci_notify_info_buf[64]; 121 122 static struct dmar_pci_notify_info * 123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 124 { 125 int level = 0; 126 size_t size; 127 struct pci_dev *tmp; 128 struct dmar_pci_notify_info *info; 129 130 /* 131 * Ignore devices that have a domain number higher than what can 132 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 133 */ 134 if (pci_domain_nr(dev->bus) > U16_MAX) 135 return NULL; 136 137 /* Only generate path[] for device addition event */ 138 if (event == BUS_NOTIFY_ADD_DEVICE) 139 for (tmp = dev; tmp; tmp = tmp->bus->self) 140 level++; 141 142 size = struct_size(info, path, level); 143 if (size <= sizeof(dmar_pci_notify_info_buf)) { 144 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 145 } else { 146 info = kzalloc(size, GFP_KERNEL); 147 if (!info) { 148 if (dmar_dev_scope_status == 0) 149 dmar_dev_scope_status = -ENOMEM; 150 return NULL; 151 } 152 } 153 154 info->event = event; 155 info->dev = dev; 156 info->seg = pci_domain_nr(dev->bus); 157 info->level = level; 158 if (event == BUS_NOTIFY_ADD_DEVICE) { 159 for (tmp = dev; tmp; tmp = tmp->bus->self) { 160 level--; 161 info->path[level].bus = tmp->bus->number; 162 info->path[level].device = PCI_SLOT(tmp->devfn); 163 info->path[level].function = PCI_FUNC(tmp->devfn); 164 if (pci_is_root_bus(tmp->bus)) 165 info->bus = tmp->bus->number; 166 } 167 } 168 169 return info; 170 } 171 172 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 173 { 174 if ((void *)info != dmar_pci_notify_info_buf) 175 kfree(info); 176 } 177 178 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 179 struct acpi_dmar_pci_path *path, int count) 180 { 181 int i; 182 183 if (info->bus != bus) 184 goto fallback; 185 if (info->level != count) 186 goto fallback; 187 188 for (i = 0; i < count; i++) { 189 if (path[i].device != info->path[i].device || 190 path[i].function != info->path[i].function) 191 goto fallback; 192 } 193 194 return true; 195 196 fallback: 197 198 if (count != 1) 199 return false; 200 201 i = info->level - 1; 202 if (bus == info->path[i].bus && 203 path[0].device == info->path[i].device && 204 path[0].function == info->path[i].function) { 205 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 206 bus, path[0].device, path[0].function); 207 return true; 208 } 209 210 return false; 211 } 212 213 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 214 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 215 void *start, void*end, u16 segment, 216 struct dmar_dev_scope *devices, 217 int devices_cnt) 218 { 219 int i, level; 220 struct device *tmp, *dev = &info->dev->dev; 221 struct acpi_dmar_device_scope *scope; 222 struct acpi_dmar_pci_path *path; 223 224 if (segment != info->seg) 225 return 0; 226 227 for (; start < end; start += scope->length) { 228 scope = start; 229 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 230 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 231 continue; 232 233 path = (struct acpi_dmar_pci_path *)(scope + 1); 234 level = (scope->length - sizeof(*scope)) / sizeof(*path); 235 if (!dmar_match_pci_path(info, scope->bus, path, level)) 236 continue; 237 238 /* 239 * We expect devices with endpoint scope to have normal PCI 240 * headers, and devices with bridge scope to have bridge PCI 241 * headers. However PCI NTB devices may be listed in the 242 * DMAR table with bridge scope, even though they have a 243 * normal PCI header. NTB devices are identified by class 244 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 245 * for this special case. 246 */ 247 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 248 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 249 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 250 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 251 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 252 pr_warn("Device scope type does not match for %s\n", 253 pci_name(info->dev)); 254 return -EINVAL; 255 } 256 257 for_each_dev_scope(devices, devices_cnt, i, tmp) 258 if (tmp == NULL) { 259 devices[i].bus = info->dev->bus->number; 260 devices[i].devfn = info->dev->devfn; 261 rcu_assign_pointer(devices[i].dev, 262 get_device(dev)); 263 return 1; 264 } 265 if (WARN_ON(i >= devices_cnt)) 266 return -EINVAL; 267 } 268 269 return 0; 270 } 271 272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 273 struct dmar_dev_scope *devices, int count) 274 { 275 int index; 276 struct device *tmp; 277 278 if (info->seg != segment) 279 return 0; 280 281 for_each_active_dev_scope(devices, count, index, tmp) 282 if (tmp == &info->dev->dev) { 283 RCU_INIT_POINTER(devices[index].dev, NULL); 284 synchronize_rcu(); 285 put_device(tmp); 286 return 1; 287 } 288 289 return 0; 290 } 291 292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 293 { 294 int ret = 0; 295 struct dmar_drhd_unit *dmaru; 296 struct acpi_dmar_hardware_unit *drhd; 297 298 for_each_drhd_unit(dmaru) { 299 if (dmaru->include_all) 300 continue; 301 302 drhd = container_of(dmaru->hdr, 303 struct acpi_dmar_hardware_unit, header); 304 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 305 ((void *)drhd) + drhd->header.length, 306 dmaru->segment, 307 dmaru->devices, dmaru->devices_cnt); 308 if (ret) 309 break; 310 } 311 if (ret >= 0) 312 ret = dmar_iommu_notify_scope_dev(info); 313 if (ret < 0 && dmar_dev_scope_status == 0) 314 dmar_dev_scope_status = ret; 315 316 if (ret >= 0) 317 intel_irq_remap_add_device(info); 318 319 return ret; 320 } 321 322 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 323 { 324 struct dmar_drhd_unit *dmaru; 325 326 for_each_drhd_unit(dmaru) 327 if (dmar_remove_dev_scope(info, dmaru->segment, 328 dmaru->devices, dmaru->devices_cnt)) 329 break; 330 dmar_iommu_notify_scope_dev(info); 331 } 332 333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 334 { 335 struct pci_dev *physfn = pci_physfn(pdev); 336 337 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); 338 } 339 340 static int dmar_pci_bus_notifier(struct notifier_block *nb, 341 unsigned long action, void *data) 342 { 343 struct pci_dev *pdev = to_pci_dev(data); 344 struct dmar_pci_notify_info *info; 345 346 /* Only care about add/remove events for physical functions. 347 * For VFs we actually do the lookup based on the corresponding 348 * PF in device_to_iommu() anyway. */ 349 if (pdev->is_virtfn) { 350 /* 351 * Ensure that the VF device inherits the irq domain of the 352 * PF device. Ideally the device would inherit the domain 353 * from the bus, but DMAR can have multiple units per bus 354 * which makes this impossible. The VF 'bus' could inherit 355 * from the PF device, but that's yet another x86'sism to 356 * inflict on everybody else. 357 */ 358 if (action == BUS_NOTIFY_ADD_DEVICE) 359 vf_inherit_msi_domain(pdev); 360 return NOTIFY_DONE; 361 } 362 363 if (action != BUS_NOTIFY_ADD_DEVICE && 364 action != BUS_NOTIFY_REMOVED_DEVICE) 365 return NOTIFY_DONE; 366 367 info = dmar_alloc_pci_notify_info(pdev, action); 368 if (!info) 369 return NOTIFY_DONE; 370 371 down_write(&dmar_global_lock); 372 if (action == BUS_NOTIFY_ADD_DEVICE) 373 dmar_pci_bus_add_dev(info); 374 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 375 dmar_pci_bus_del_dev(info); 376 up_write(&dmar_global_lock); 377 378 dmar_free_pci_notify_info(info); 379 380 return NOTIFY_OK; 381 } 382 383 static struct notifier_block dmar_pci_bus_nb = { 384 .notifier_call = dmar_pci_bus_notifier, 385 .priority = 1, 386 }; 387 388 static struct dmar_drhd_unit * 389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 390 { 391 struct dmar_drhd_unit *dmaru; 392 393 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 394 dmar_rcu_check()) 395 if (dmaru->segment == drhd->segment && 396 dmaru->reg_base_addr == drhd->address) 397 return dmaru; 398 399 return NULL; 400 } 401 402 /* 403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 404 * structure which uniquely represent one DMA remapping hardware unit 405 * present in the platform 406 */ 407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 408 { 409 struct acpi_dmar_hardware_unit *drhd; 410 struct dmar_drhd_unit *dmaru; 411 int ret; 412 413 drhd = (struct acpi_dmar_hardware_unit *)header; 414 dmaru = dmar_find_dmaru(drhd); 415 if (dmaru) 416 goto out; 417 418 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 419 if (!dmaru) 420 return -ENOMEM; 421 422 /* 423 * If header is allocated from slab by ACPI _DSM method, we need to 424 * copy the content because the memory buffer will be freed on return. 425 */ 426 dmaru->hdr = (void *)(dmaru + 1); 427 memcpy(dmaru->hdr, header, header->length); 428 dmaru->reg_base_addr = drhd->address; 429 dmaru->segment = drhd->segment; 430 /* The size of the register set is 2 ^ N 4 KB pages. */ 431 dmaru->reg_size = 1UL << (drhd->size + 12); 432 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 433 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 434 ((void *)drhd) + drhd->header.length, 435 &dmaru->devices_cnt); 436 if (dmaru->devices_cnt && dmaru->devices == NULL) { 437 kfree(dmaru); 438 return -ENOMEM; 439 } 440 441 ret = alloc_iommu(dmaru); 442 if (ret) { 443 dmar_free_dev_scope(&dmaru->devices, 444 &dmaru->devices_cnt); 445 kfree(dmaru); 446 return ret; 447 } 448 dmar_register_drhd_unit(dmaru); 449 450 out: 451 if (arg) 452 (*(int *)arg)++; 453 454 return 0; 455 } 456 457 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 458 { 459 if (dmaru->devices && dmaru->devices_cnt) 460 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 461 if (dmaru->iommu) 462 free_iommu(dmaru->iommu); 463 kfree(dmaru); 464 } 465 466 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 467 void *arg) 468 { 469 struct acpi_dmar_andd *andd = (void *)header; 470 471 /* Check for NUL termination within the designated length */ 472 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 473 pr_warn(FW_BUG 474 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 475 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 476 dmi_get_system_info(DMI_BIOS_VENDOR), 477 dmi_get_system_info(DMI_BIOS_VERSION), 478 dmi_get_system_info(DMI_PRODUCT_VERSION)); 479 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 480 return -EINVAL; 481 } 482 pr_info("ANDD device: %x name: %s\n", andd->device_number, 483 andd->device_name); 484 485 return 0; 486 } 487 488 #ifdef CONFIG_ACPI_NUMA 489 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 490 { 491 struct acpi_dmar_rhsa *rhsa; 492 struct dmar_drhd_unit *drhd; 493 494 rhsa = (struct acpi_dmar_rhsa *)header; 495 for_each_drhd_unit(drhd) { 496 if (drhd->reg_base_addr == rhsa->base_address) { 497 int node = pxm_to_node(rhsa->proximity_domain); 498 499 if (node != NUMA_NO_NODE && !node_online(node)) 500 node = NUMA_NO_NODE; 501 drhd->iommu->node = node; 502 return 0; 503 } 504 } 505 pr_warn(FW_BUG 506 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 507 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 508 rhsa->base_address, 509 dmi_get_system_info(DMI_BIOS_VENDOR), 510 dmi_get_system_info(DMI_BIOS_VERSION), 511 dmi_get_system_info(DMI_PRODUCT_VERSION)); 512 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 513 514 return 0; 515 } 516 #else 517 #define dmar_parse_one_rhsa dmar_res_noop 518 #endif 519 520 static void 521 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 522 { 523 struct acpi_dmar_hardware_unit *drhd; 524 struct acpi_dmar_reserved_memory *rmrr; 525 struct acpi_dmar_atsr *atsr; 526 struct acpi_dmar_rhsa *rhsa; 527 struct acpi_dmar_satc *satc; 528 529 switch (header->type) { 530 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 531 drhd = container_of(header, struct acpi_dmar_hardware_unit, 532 header); 533 pr_info("DRHD base: %#016Lx flags: %#x\n", 534 (unsigned long long)drhd->address, drhd->flags); 535 break; 536 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 537 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 538 header); 539 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 540 (unsigned long long)rmrr->base_address, 541 (unsigned long long)rmrr->end_address); 542 break; 543 case ACPI_DMAR_TYPE_ROOT_ATS: 544 atsr = container_of(header, struct acpi_dmar_atsr, header); 545 pr_info("ATSR flags: %#x\n", atsr->flags); 546 break; 547 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 548 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 549 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 550 (unsigned long long)rhsa->base_address, 551 rhsa->proximity_domain); 552 break; 553 case ACPI_DMAR_TYPE_NAMESPACE: 554 /* We don't print this here because we need to sanity-check 555 it first. So print it in dmar_parse_one_andd() instead. */ 556 break; 557 case ACPI_DMAR_TYPE_SATC: 558 satc = container_of(header, struct acpi_dmar_satc, header); 559 pr_info("SATC flags: 0x%x\n", satc->flags); 560 break; 561 } 562 } 563 564 /** 565 * dmar_table_detect - checks to see if the platform supports DMAR devices 566 */ 567 static int __init dmar_table_detect(void) 568 { 569 acpi_status status = AE_OK; 570 571 /* if we could find DMAR table, then there are DMAR devices */ 572 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 573 574 if (ACPI_SUCCESS(status) && !dmar_tbl) { 575 pr_warn("Unable to map DMAR\n"); 576 status = AE_NOT_FOUND; 577 } 578 579 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 580 } 581 582 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 583 size_t len, struct dmar_res_callback *cb) 584 { 585 struct acpi_dmar_header *iter, *next; 586 struct acpi_dmar_header *end = ((void *)start) + len; 587 588 for (iter = start; iter < end; iter = next) { 589 next = (void *)iter + iter->length; 590 if (iter->length == 0) { 591 /* Avoid looping forever on bad ACPI tables */ 592 pr_debug(FW_BUG "Invalid 0-length structure\n"); 593 break; 594 } else if (next > end) { 595 /* Avoid passing table end */ 596 pr_warn(FW_BUG "Record passes table end\n"); 597 return -EINVAL; 598 } 599 600 if (cb->print_entry) 601 dmar_table_print_dmar_entry(iter); 602 603 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 604 /* continue for forward compatibility */ 605 pr_debug("Unknown DMAR structure type %d\n", 606 iter->type); 607 } else if (cb->cb[iter->type]) { 608 int ret; 609 610 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 611 if (ret) 612 return ret; 613 } else if (!cb->ignore_unhandled) { 614 pr_warn("No handler for DMAR structure type %d\n", 615 iter->type); 616 return -EINVAL; 617 } 618 } 619 620 return 0; 621 } 622 623 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 624 struct dmar_res_callback *cb) 625 { 626 return dmar_walk_remapping_entries((void *)(dmar + 1), 627 dmar->header.length - sizeof(*dmar), cb); 628 } 629 630 /** 631 * parse_dmar_table - parses the DMA reporting table 632 */ 633 static int __init 634 parse_dmar_table(void) 635 { 636 struct acpi_table_dmar *dmar; 637 int drhd_count = 0; 638 int ret; 639 struct dmar_res_callback cb = { 640 .print_entry = true, 641 .ignore_unhandled = true, 642 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 643 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 644 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 645 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 646 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 647 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 648 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc, 649 }; 650 651 /* 652 * Do it again, earlier dmar_tbl mapping could be mapped with 653 * fixed map. 654 */ 655 dmar_table_detect(); 656 657 /* 658 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 659 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 660 */ 661 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 662 663 dmar = (struct acpi_table_dmar *)dmar_tbl; 664 if (!dmar) 665 return -ENODEV; 666 667 if (dmar->width < PAGE_SHIFT - 1) { 668 pr_warn("Invalid DMAR haw\n"); 669 return -EINVAL; 670 } 671 672 pr_info("Host address width %d\n", dmar->width + 1); 673 ret = dmar_walk_dmar_table(dmar, &cb); 674 if (ret == 0 && drhd_count == 0) 675 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 676 677 return ret; 678 } 679 680 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 681 int cnt, struct pci_dev *dev) 682 { 683 int index; 684 struct device *tmp; 685 686 while (dev) { 687 for_each_active_dev_scope(devices, cnt, index, tmp) 688 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 689 return 1; 690 691 /* Check our parent */ 692 dev = dev->bus->self; 693 } 694 695 return 0; 696 } 697 698 struct dmar_drhd_unit * 699 dmar_find_matched_drhd_unit(struct pci_dev *dev) 700 { 701 struct dmar_drhd_unit *dmaru; 702 struct acpi_dmar_hardware_unit *drhd; 703 704 dev = pci_physfn(dev); 705 706 rcu_read_lock(); 707 for_each_drhd_unit(dmaru) { 708 drhd = container_of(dmaru->hdr, 709 struct acpi_dmar_hardware_unit, 710 header); 711 712 if (dmaru->include_all && 713 drhd->segment == pci_domain_nr(dev->bus)) 714 goto out; 715 716 if (dmar_pci_device_match(dmaru->devices, 717 dmaru->devices_cnt, dev)) 718 goto out; 719 } 720 dmaru = NULL; 721 out: 722 rcu_read_unlock(); 723 724 return dmaru; 725 } 726 727 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 728 struct acpi_device *adev) 729 { 730 struct dmar_drhd_unit *dmaru; 731 struct acpi_dmar_hardware_unit *drhd; 732 struct acpi_dmar_device_scope *scope; 733 struct device *tmp; 734 int i; 735 struct acpi_dmar_pci_path *path; 736 737 for_each_drhd_unit(dmaru) { 738 drhd = container_of(dmaru->hdr, 739 struct acpi_dmar_hardware_unit, 740 header); 741 742 for (scope = (void *)(drhd + 1); 743 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 744 scope = ((void *)scope) + scope->length) { 745 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 746 continue; 747 if (scope->enumeration_id != device_number) 748 continue; 749 750 path = (void *)(scope + 1); 751 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 752 dev_name(&adev->dev), dmaru->reg_base_addr, 753 scope->bus, path->device, path->function); 754 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 755 if (tmp == NULL) { 756 dmaru->devices[i].bus = scope->bus; 757 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 758 path->function); 759 rcu_assign_pointer(dmaru->devices[i].dev, 760 get_device(&adev->dev)); 761 return; 762 } 763 BUG_ON(i >= dmaru->devices_cnt); 764 } 765 } 766 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 767 device_number, dev_name(&adev->dev)); 768 } 769 770 static int __init dmar_acpi_dev_scope_init(void) 771 { 772 struct acpi_dmar_andd *andd; 773 774 if (dmar_tbl == NULL) 775 return -ENODEV; 776 777 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 778 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 779 andd = ((void *)andd) + andd->header.length) { 780 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 781 acpi_handle h; 782 struct acpi_device *adev; 783 784 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 785 andd->device_name, 786 &h))) { 787 pr_err("Failed to find handle for ACPI object %s\n", 788 andd->device_name); 789 continue; 790 } 791 adev = acpi_fetch_acpi_dev(h); 792 if (!adev) { 793 pr_err("Failed to get device for ACPI object %s\n", 794 andd->device_name); 795 continue; 796 } 797 dmar_acpi_insert_dev_scope(andd->device_number, adev); 798 } 799 } 800 return 0; 801 } 802 803 int __init dmar_dev_scope_init(void) 804 { 805 struct pci_dev *dev = NULL; 806 struct dmar_pci_notify_info *info; 807 808 if (dmar_dev_scope_status != 1) 809 return dmar_dev_scope_status; 810 811 if (list_empty(&dmar_drhd_units)) { 812 dmar_dev_scope_status = -ENODEV; 813 } else { 814 dmar_dev_scope_status = 0; 815 816 dmar_acpi_dev_scope_init(); 817 818 for_each_pci_dev(dev) { 819 if (dev->is_virtfn) 820 continue; 821 822 info = dmar_alloc_pci_notify_info(dev, 823 BUS_NOTIFY_ADD_DEVICE); 824 if (!info) { 825 pci_dev_put(dev); 826 return dmar_dev_scope_status; 827 } else { 828 dmar_pci_bus_add_dev(info); 829 dmar_free_pci_notify_info(info); 830 } 831 } 832 } 833 834 return dmar_dev_scope_status; 835 } 836 837 void __init dmar_register_bus_notifier(void) 838 { 839 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 840 } 841 842 843 int __init dmar_table_init(void) 844 { 845 static int dmar_table_initialized; 846 int ret; 847 848 if (dmar_table_initialized == 0) { 849 ret = parse_dmar_table(); 850 if (ret < 0) { 851 if (ret != -ENODEV) 852 pr_info("Parse DMAR table failure.\n"); 853 } else if (list_empty(&dmar_drhd_units)) { 854 pr_info("No DMAR devices found\n"); 855 ret = -ENODEV; 856 } 857 858 if (ret < 0) 859 dmar_table_initialized = ret; 860 else 861 dmar_table_initialized = 1; 862 } 863 864 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 865 } 866 867 static void warn_invalid_dmar(u64 addr, const char *message) 868 { 869 pr_warn_once(FW_BUG 870 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 871 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 872 addr, message, 873 dmi_get_system_info(DMI_BIOS_VENDOR), 874 dmi_get_system_info(DMI_BIOS_VERSION), 875 dmi_get_system_info(DMI_PRODUCT_VERSION)); 876 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 877 } 878 879 static int __ref 880 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 881 { 882 struct acpi_dmar_hardware_unit *drhd; 883 void __iomem *addr; 884 u64 cap, ecap; 885 886 drhd = (void *)entry; 887 if (!drhd->address) { 888 warn_invalid_dmar(0, ""); 889 return -EINVAL; 890 } 891 892 if (arg) 893 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 894 else 895 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 896 if (!addr) { 897 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 898 return -EINVAL; 899 } 900 901 cap = dmar_readq(addr + DMAR_CAP_REG); 902 ecap = dmar_readq(addr + DMAR_ECAP_REG); 903 904 if (arg) 905 iounmap(addr); 906 else 907 early_iounmap(addr, VTD_PAGE_SIZE); 908 909 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 910 warn_invalid_dmar(drhd->address, " returns all ones"); 911 return -EINVAL; 912 } 913 914 return 0; 915 } 916 917 void __init detect_intel_iommu(void) 918 { 919 int ret; 920 struct dmar_res_callback validate_drhd_cb = { 921 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 922 .ignore_unhandled = true, 923 }; 924 925 down_write(&dmar_global_lock); 926 ret = dmar_table_detect(); 927 if (!ret) 928 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 929 &validate_drhd_cb); 930 if (!ret && !no_iommu && !iommu_detected && 931 (!dmar_disabled || dmar_platform_optin())) { 932 iommu_detected = 1; 933 /* Make sure ACS will be enabled */ 934 pci_request_acs(); 935 } 936 937 #ifdef CONFIG_X86 938 if (!ret) { 939 x86_init.iommu.iommu_init = intel_iommu_init; 940 x86_platform.iommu_shutdown = intel_iommu_shutdown; 941 } 942 943 #endif 944 945 if (dmar_tbl) { 946 acpi_put_table(dmar_tbl); 947 dmar_tbl = NULL; 948 } 949 up_write(&dmar_global_lock); 950 } 951 952 static void unmap_iommu(struct intel_iommu *iommu) 953 { 954 iounmap(iommu->reg); 955 release_mem_region(iommu->reg_phys, iommu->reg_size); 956 } 957 958 /** 959 * map_iommu: map the iommu's registers 960 * @iommu: the iommu to map 961 * @drhd: DMA remapping hardware definition structure 962 * 963 * Memory map the iommu's registers. Start w/ a single page, and 964 * possibly expand if that turns out to be insufficent. 965 */ 966 static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd) 967 { 968 u64 phys_addr = drhd->reg_base_addr; 969 int map_size, err=0; 970 971 iommu->reg_phys = phys_addr; 972 iommu->reg_size = drhd->reg_size; 973 974 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 975 pr_err("Can't reserve memory\n"); 976 err = -EBUSY; 977 goto out; 978 } 979 980 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 981 if (!iommu->reg) { 982 pr_err("Can't map the region\n"); 983 err = -ENOMEM; 984 goto release; 985 } 986 987 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 988 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 989 990 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 991 err = -EINVAL; 992 warn_invalid_dmar(phys_addr, " returns all ones"); 993 goto unmap; 994 } 995 996 /* the registers might be more than one page */ 997 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 998 cap_max_fault_reg_offset(iommu->cap)); 999 map_size = VTD_PAGE_ALIGN(map_size); 1000 if (map_size > iommu->reg_size) { 1001 iounmap(iommu->reg); 1002 release_mem_region(iommu->reg_phys, iommu->reg_size); 1003 iommu->reg_size = map_size; 1004 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 1005 iommu->name)) { 1006 pr_err("Can't reserve memory\n"); 1007 err = -EBUSY; 1008 goto out; 1009 } 1010 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1011 if (!iommu->reg) { 1012 pr_err("Can't map the region\n"); 1013 err = -ENOMEM; 1014 goto release; 1015 } 1016 } 1017 1018 if (cap_ecmds(iommu->cap)) { 1019 int i; 1020 1021 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) { 1022 iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG + 1023 i * DMA_ECMD_REG_STEP); 1024 } 1025 } 1026 1027 err = 0; 1028 goto out; 1029 1030 unmap: 1031 iounmap(iommu->reg); 1032 release: 1033 release_mem_region(iommu->reg_phys, iommu->reg_size); 1034 out: 1035 return err; 1036 } 1037 1038 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1039 { 1040 struct intel_iommu *iommu; 1041 u32 ver, sts; 1042 int agaw = -1; 1043 int msagaw = -1; 1044 int err; 1045 1046 if (!drhd->reg_base_addr) { 1047 warn_invalid_dmar(0, ""); 1048 return -EINVAL; 1049 } 1050 1051 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1052 if (!iommu) 1053 return -ENOMEM; 1054 1055 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0, 1056 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL); 1057 if (iommu->seq_id < 0) { 1058 pr_err("Failed to allocate seq_id\n"); 1059 err = iommu->seq_id; 1060 goto error; 1061 } 1062 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1063 1064 err = map_iommu(iommu, drhd); 1065 if (err) { 1066 pr_err("Failed to map %s\n", iommu->name); 1067 goto error_free_seq_id; 1068 } 1069 1070 err = -EINVAL; 1071 if (!cap_sagaw(iommu->cap) && 1072 (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) { 1073 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1074 iommu->name); 1075 drhd->ignored = 1; 1076 } 1077 1078 if (!drhd->ignored) { 1079 agaw = iommu_calculate_agaw(iommu); 1080 if (agaw < 0) { 1081 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1082 iommu->seq_id); 1083 drhd->ignored = 1; 1084 } 1085 } 1086 if (!drhd->ignored) { 1087 msagaw = iommu_calculate_max_sagaw(iommu); 1088 if (msagaw < 0) { 1089 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1090 iommu->seq_id); 1091 drhd->ignored = 1; 1092 agaw = -1; 1093 } 1094 } 1095 iommu->agaw = agaw; 1096 iommu->msagaw = msagaw; 1097 iommu->segment = drhd->segment; 1098 1099 iommu->node = NUMA_NO_NODE; 1100 1101 ver = readl(iommu->reg + DMAR_VER_REG); 1102 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1103 iommu->name, 1104 (unsigned long long)drhd->reg_base_addr, 1105 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1106 (unsigned long long)iommu->cap, 1107 (unsigned long long)iommu->ecap); 1108 1109 /* Reflect status in gcmd */ 1110 sts = readl(iommu->reg + DMAR_GSTS_REG); 1111 if (sts & DMA_GSTS_IRES) 1112 iommu->gcmd |= DMA_GCMD_IRE; 1113 if (sts & DMA_GSTS_TES) 1114 iommu->gcmd |= DMA_GCMD_TE; 1115 if (sts & DMA_GSTS_QIES) 1116 iommu->gcmd |= DMA_GCMD_QIE; 1117 1118 if (alloc_iommu_pmu(iommu)) 1119 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id); 1120 1121 raw_spin_lock_init(&iommu->register_lock); 1122 1123 /* 1124 * A value of N in PSS field of eCap register indicates hardware 1125 * supports PASID field of N+1 bits. 1126 */ 1127 if (pasid_supported(iommu)) 1128 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap); 1129 1130 /* 1131 * This is only for hotplug; at boot time intel_iommu_enabled won't 1132 * be set yet. When intel_iommu_init() runs, it registers the units 1133 * present at boot time, then sets intel_iommu_enabled. 1134 */ 1135 if (intel_iommu_enabled && !drhd->ignored) { 1136 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1137 intel_iommu_groups, 1138 "%s", iommu->name); 1139 if (err) 1140 goto err_unmap; 1141 1142 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 1143 if (err) 1144 goto err_sysfs; 1145 1146 iommu_pmu_register(iommu); 1147 } 1148 1149 drhd->iommu = iommu; 1150 iommu->drhd = drhd; 1151 1152 return 0; 1153 1154 err_sysfs: 1155 iommu_device_sysfs_remove(&iommu->iommu); 1156 err_unmap: 1157 free_iommu_pmu(iommu); 1158 unmap_iommu(iommu); 1159 error_free_seq_id: 1160 ida_free(&dmar_seq_ids, iommu->seq_id); 1161 error: 1162 kfree(iommu); 1163 return err; 1164 } 1165 1166 static void free_iommu(struct intel_iommu *iommu) 1167 { 1168 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1169 iommu_pmu_unregister(iommu); 1170 iommu_device_unregister(&iommu->iommu); 1171 iommu_device_sysfs_remove(&iommu->iommu); 1172 } 1173 1174 free_iommu_pmu(iommu); 1175 1176 if (iommu->irq) { 1177 if (iommu->pr_irq) { 1178 free_irq(iommu->pr_irq, iommu); 1179 dmar_free_hwirq(iommu->pr_irq); 1180 iommu->pr_irq = 0; 1181 } 1182 free_irq(iommu->irq, iommu); 1183 dmar_free_hwirq(iommu->irq); 1184 iommu->irq = 0; 1185 } 1186 1187 if (iommu->qi) { 1188 free_page((unsigned long)iommu->qi->desc); 1189 kfree(iommu->qi->desc_status); 1190 kfree(iommu->qi); 1191 } 1192 1193 if (iommu->reg) 1194 unmap_iommu(iommu); 1195 1196 ida_free(&dmar_seq_ids, iommu->seq_id); 1197 kfree(iommu); 1198 } 1199 1200 /* 1201 * Reclaim all the submitted descriptors which have completed its work. 1202 */ 1203 static inline void reclaim_free_desc(struct q_inval *qi) 1204 { 1205 while (qi->desc_status[qi->free_tail] == QI_DONE || 1206 qi->desc_status[qi->free_tail] == QI_ABORT) { 1207 qi->desc_status[qi->free_tail] = QI_FREE; 1208 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1209 qi->free_cnt++; 1210 } 1211 } 1212 1213 static const char *qi_type_string(u8 type) 1214 { 1215 switch (type) { 1216 case QI_CC_TYPE: 1217 return "Context-cache Invalidation"; 1218 case QI_IOTLB_TYPE: 1219 return "IOTLB Invalidation"; 1220 case QI_DIOTLB_TYPE: 1221 return "Device-TLB Invalidation"; 1222 case QI_IEC_TYPE: 1223 return "Interrupt Entry Cache Invalidation"; 1224 case QI_IWD_TYPE: 1225 return "Invalidation Wait"; 1226 case QI_EIOTLB_TYPE: 1227 return "PASID-based IOTLB Invalidation"; 1228 case QI_PC_TYPE: 1229 return "PASID-cache Invalidation"; 1230 case QI_DEIOTLB_TYPE: 1231 return "PASID-based Device-TLB Invalidation"; 1232 case QI_PGRP_RESP_TYPE: 1233 return "Page Group Response"; 1234 default: 1235 return "UNKNOWN"; 1236 } 1237 } 1238 1239 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault) 1240 { 1241 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG); 1242 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG); 1243 struct qi_desc *desc = iommu->qi->desc + head; 1244 1245 if (fault & DMA_FSTS_IQE) 1246 pr_err("VT-d detected Invalidation Queue Error: Reason %llx", 1247 DMAR_IQER_REG_IQEI(iqe_err)); 1248 if (fault & DMA_FSTS_ITE) 1249 pr_err("VT-d detected Invalidation Time-out Error: SID %llx", 1250 DMAR_IQER_REG_ITESID(iqe_err)); 1251 if (fault & DMA_FSTS_ICE) 1252 pr_err("VT-d detected Invalidation Completion Error: SID %llx", 1253 DMAR_IQER_REG_ICESID(iqe_err)); 1254 1255 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1256 qi_type_string(desc->qw0 & 0xf), 1257 (unsigned long long)desc->qw0, 1258 (unsigned long long)desc->qw1); 1259 1260 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH; 1261 head <<= qi_shift(iommu); 1262 desc = iommu->qi->desc + head; 1263 1264 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1265 qi_type_string(desc->qw0 & 0xf), 1266 (unsigned long long)desc->qw0, 1267 (unsigned long long)desc->qw1); 1268 } 1269 1270 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1271 { 1272 u32 fault; 1273 int head, tail; 1274 struct q_inval *qi = iommu->qi; 1275 int shift = qi_shift(iommu); 1276 1277 if (qi->desc_status[wait_index] == QI_ABORT) 1278 return -EAGAIN; 1279 1280 fault = readl(iommu->reg + DMAR_FSTS_REG); 1281 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE)) 1282 qi_dump_fault(iommu, fault); 1283 1284 /* 1285 * If IQE happens, the head points to the descriptor associated 1286 * with the error. No new descriptors are fetched until the IQE 1287 * is cleared. 1288 */ 1289 if (fault & DMA_FSTS_IQE) { 1290 head = readl(iommu->reg + DMAR_IQH_REG); 1291 if ((head >> shift) == index) { 1292 struct qi_desc *desc = qi->desc + head; 1293 1294 /* 1295 * desc->qw2 and desc->qw3 are either reserved or 1296 * used by software as private data. We won't print 1297 * out these two qw's for security consideration. 1298 */ 1299 memcpy(desc, qi->desc + (wait_index << shift), 1300 1 << shift); 1301 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1302 pr_info("Invalidation Queue Error (IQE) cleared\n"); 1303 return -EINVAL; 1304 } 1305 } 1306 1307 /* 1308 * If ITE happens, all pending wait_desc commands are aborted. 1309 * No new descriptors are fetched until the ITE is cleared. 1310 */ 1311 if (fault & DMA_FSTS_ITE) { 1312 head = readl(iommu->reg + DMAR_IQH_REG); 1313 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1314 head |= 1; 1315 tail = readl(iommu->reg + DMAR_IQT_REG); 1316 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1317 1318 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1319 pr_info("Invalidation Time-out Error (ITE) cleared\n"); 1320 1321 do { 1322 if (qi->desc_status[head] == QI_IN_USE) 1323 qi->desc_status[head] = QI_ABORT; 1324 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1325 } while (head != tail); 1326 1327 if (qi->desc_status[wait_index] == QI_ABORT) 1328 return -EAGAIN; 1329 } 1330 1331 if (fault & DMA_FSTS_ICE) { 1332 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1333 pr_info("Invalidation Completion Error (ICE) cleared\n"); 1334 } 1335 1336 return 0; 1337 } 1338 1339 /* 1340 * Function to submit invalidation descriptors of all types to the queued 1341 * invalidation interface(QI). Multiple descriptors can be submitted at a 1342 * time, a wait descriptor will be appended to each submission to ensure 1343 * hardware has completed the invalidation before return. Wait descriptors 1344 * can be part of the submission but it will not be polled for completion. 1345 */ 1346 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1347 unsigned int count, unsigned long options) 1348 { 1349 struct q_inval *qi = iommu->qi; 1350 s64 devtlb_start_ktime = 0; 1351 s64 iotlb_start_ktime = 0; 1352 s64 iec_start_ktime = 0; 1353 struct qi_desc wait_desc; 1354 int wait_index, index; 1355 unsigned long flags; 1356 int offset, shift; 1357 int rc, i; 1358 u64 type; 1359 1360 if (!qi) 1361 return 0; 1362 1363 type = desc->qw0 & GENMASK_ULL(3, 0); 1364 1365 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) && 1366 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB)) 1367 iotlb_start_ktime = ktime_to_ns(ktime_get()); 1368 1369 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) && 1370 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB)) 1371 devtlb_start_ktime = ktime_to_ns(ktime_get()); 1372 1373 if (type == QI_IEC_TYPE && 1374 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC)) 1375 iec_start_ktime = ktime_to_ns(ktime_get()); 1376 1377 restart: 1378 rc = 0; 1379 1380 raw_spin_lock_irqsave(&qi->q_lock, flags); 1381 /* 1382 * Check if we have enough empty slots in the queue to submit, 1383 * the calculation is based on: 1384 * # of desc + 1 wait desc + 1 space between head and tail 1385 */ 1386 while (qi->free_cnt < count + 2) { 1387 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1388 cpu_relax(); 1389 raw_spin_lock_irqsave(&qi->q_lock, flags); 1390 } 1391 1392 index = qi->free_head; 1393 wait_index = (index + count) % QI_LENGTH; 1394 shift = qi_shift(iommu); 1395 1396 for (i = 0; i < count; i++) { 1397 offset = ((index + i) % QI_LENGTH) << shift; 1398 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1399 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1400 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1, 1401 desc[i].qw2, desc[i].qw3); 1402 } 1403 qi->desc_status[wait_index] = QI_IN_USE; 1404 1405 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1406 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1407 if (options & QI_OPT_WAIT_DRAIN) 1408 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1409 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1410 wait_desc.qw2 = 0; 1411 wait_desc.qw3 = 0; 1412 1413 offset = wait_index << shift; 1414 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1415 1416 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1417 qi->free_cnt -= count + 1; 1418 1419 /* 1420 * update the HW tail register indicating the presence of 1421 * new descriptors. 1422 */ 1423 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1424 1425 while (qi->desc_status[wait_index] != QI_DONE) { 1426 /* 1427 * We will leave the interrupts disabled, to prevent interrupt 1428 * context to queue another cmd while a cmd is already submitted 1429 * and waiting for completion on this cpu. This is to avoid 1430 * a deadlock where the interrupt context can wait indefinitely 1431 * for free slots in the queue. 1432 */ 1433 rc = qi_check_fault(iommu, index, wait_index); 1434 if (rc) 1435 break; 1436 1437 raw_spin_unlock(&qi->q_lock); 1438 cpu_relax(); 1439 raw_spin_lock(&qi->q_lock); 1440 } 1441 1442 for (i = 0; i < count; i++) 1443 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1444 1445 reclaim_free_desc(qi); 1446 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1447 1448 if (rc == -EAGAIN) 1449 goto restart; 1450 1451 if (iotlb_start_ktime) 1452 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB, 1453 ktime_to_ns(ktime_get()) - iotlb_start_ktime); 1454 1455 if (devtlb_start_ktime) 1456 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB, 1457 ktime_to_ns(ktime_get()) - devtlb_start_ktime); 1458 1459 if (iec_start_ktime) 1460 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC, 1461 ktime_to_ns(ktime_get()) - iec_start_ktime); 1462 1463 return rc; 1464 } 1465 1466 /* 1467 * Flush the global interrupt entry cache. 1468 */ 1469 void qi_global_iec(struct intel_iommu *iommu) 1470 { 1471 struct qi_desc desc; 1472 1473 desc.qw0 = QI_IEC_TYPE; 1474 desc.qw1 = 0; 1475 desc.qw2 = 0; 1476 desc.qw3 = 0; 1477 1478 /* should never fail */ 1479 qi_submit_sync(iommu, &desc, 1, 0); 1480 } 1481 1482 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1483 u64 type) 1484 { 1485 struct qi_desc desc; 1486 1487 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1488 | QI_CC_GRAN(type) | QI_CC_TYPE; 1489 desc.qw1 = 0; 1490 desc.qw2 = 0; 1491 desc.qw3 = 0; 1492 1493 qi_submit_sync(iommu, &desc, 1, 0); 1494 } 1495 1496 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1497 unsigned int size_order, u64 type) 1498 { 1499 u8 dw = 0, dr = 0; 1500 1501 struct qi_desc desc; 1502 int ih = 0; 1503 1504 if (cap_write_drain(iommu->cap)) 1505 dw = 1; 1506 1507 if (cap_read_drain(iommu->cap)) 1508 dr = 1; 1509 1510 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1511 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1512 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1513 | QI_IOTLB_AM(size_order); 1514 desc.qw2 = 0; 1515 desc.qw3 = 0; 1516 1517 qi_submit_sync(iommu, &desc, 1, 0); 1518 } 1519 1520 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1521 u16 qdep, u64 addr, unsigned mask) 1522 { 1523 struct qi_desc desc; 1524 1525 if (mask) { 1526 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1527 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1528 } else 1529 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1530 1531 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1532 qdep = 0; 1533 1534 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1535 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1536 desc.qw2 = 0; 1537 desc.qw3 = 0; 1538 1539 qi_submit_sync(iommu, &desc, 1, 0); 1540 } 1541 1542 /* PASID-based IOTLB invalidation */ 1543 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1544 unsigned long npages, bool ih) 1545 { 1546 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1547 1548 /* 1549 * npages == -1 means a PASID-selective invalidation, otherwise, 1550 * a positive value for Page-selective-within-PASID invalidation. 1551 * 0 is not a valid input. 1552 */ 1553 if (WARN_ON(!npages)) { 1554 pr_err("Invalid input npages = %ld\n", npages); 1555 return; 1556 } 1557 1558 if (npages == -1) { 1559 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1560 QI_EIOTLB_DID(did) | 1561 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1562 QI_EIOTLB_TYPE; 1563 desc.qw1 = 0; 1564 } else { 1565 int mask = ilog2(__roundup_pow_of_two(npages)); 1566 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1567 1568 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align))) 1569 addr = ALIGN_DOWN(addr, align); 1570 1571 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1572 QI_EIOTLB_DID(did) | 1573 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1574 QI_EIOTLB_TYPE; 1575 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1576 QI_EIOTLB_IH(ih) | 1577 QI_EIOTLB_AM(mask); 1578 } 1579 1580 qi_submit_sync(iommu, &desc, 1, 0); 1581 } 1582 1583 /* PASID-based device IOTLB Invalidate */ 1584 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1585 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1586 { 1587 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1588 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1589 1590 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1591 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1592 QI_DEV_IOTLB_PFSID(pfsid); 1593 1594 /* 1595 * If S bit is 0, we only flush a single page. If S bit is set, 1596 * The least significant zero bit indicates the invalidation address 1597 * range. VT-d spec 6.5.2.6. 1598 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1599 * size order = 0 is PAGE_SIZE 4KB 1600 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1601 * ECAP. 1602 */ 1603 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order)) 1604 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1605 addr, size_order); 1606 1607 /* Take page address */ 1608 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1609 1610 if (size_order) { 1611 /* 1612 * Existing 0s in address below size_order may be the least 1613 * significant bit, we must set them to 1s to avoid having 1614 * smaller size than desired. 1615 */ 1616 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1617 VTD_PAGE_SHIFT); 1618 /* Clear size_order bit to indicate size */ 1619 desc.qw1 &= ~mask; 1620 /* Set the S bit to indicate flushing more than 1 page */ 1621 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1622 } 1623 1624 qi_submit_sync(iommu, &desc, 1, 0); 1625 } 1626 1627 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1628 u64 granu, u32 pasid) 1629 { 1630 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1631 1632 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1633 QI_PC_GRAN(granu) | QI_PC_TYPE; 1634 qi_submit_sync(iommu, &desc, 1, 0); 1635 } 1636 1637 /* 1638 * Disable Queued Invalidation interface. 1639 */ 1640 void dmar_disable_qi(struct intel_iommu *iommu) 1641 { 1642 unsigned long flags; 1643 u32 sts; 1644 cycles_t start_time = get_cycles(); 1645 1646 if (!ecap_qis(iommu->ecap)) 1647 return; 1648 1649 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1650 1651 sts = readl(iommu->reg + DMAR_GSTS_REG); 1652 if (!(sts & DMA_GSTS_QIES)) 1653 goto end; 1654 1655 /* 1656 * Give a chance to HW to complete the pending invalidation requests. 1657 */ 1658 while ((readl(iommu->reg + DMAR_IQT_REG) != 1659 readl(iommu->reg + DMAR_IQH_REG)) && 1660 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1661 cpu_relax(); 1662 1663 iommu->gcmd &= ~DMA_GCMD_QIE; 1664 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1665 1666 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1667 !(sts & DMA_GSTS_QIES), sts); 1668 end: 1669 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1670 } 1671 1672 /* 1673 * Enable queued invalidation. 1674 */ 1675 static void __dmar_enable_qi(struct intel_iommu *iommu) 1676 { 1677 u32 sts; 1678 unsigned long flags; 1679 struct q_inval *qi = iommu->qi; 1680 u64 val = virt_to_phys(qi->desc); 1681 1682 qi->free_head = qi->free_tail = 0; 1683 qi->free_cnt = QI_LENGTH; 1684 1685 /* 1686 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1687 * is present. 1688 */ 1689 if (ecap_smts(iommu->ecap)) 1690 val |= BIT_ULL(11) | BIT_ULL(0); 1691 1692 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1693 1694 /* write zero to the tail reg */ 1695 writel(0, iommu->reg + DMAR_IQT_REG); 1696 1697 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1698 1699 iommu->gcmd |= DMA_GCMD_QIE; 1700 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1701 1702 /* Make sure hardware complete it */ 1703 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1704 1705 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1706 } 1707 1708 /* 1709 * Enable Queued Invalidation interface. This is a must to support 1710 * interrupt-remapping. Also used by DMA-remapping, which replaces 1711 * register based IOTLB invalidation. 1712 */ 1713 int dmar_enable_qi(struct intel_iommu *iommu) 1714 { 1715 struct q_inval *qi; 1716 struct page *desc_page; 1717 1718 if (!ecap_qis(iommu->ecap)) 1719 return -ENOENT; 1720 1721 /* 1722 * queued invalidation is already setup and enabled. 1723 */ 1724 if (iommu->qi) 1725 return 0; 1726 1727 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1728 if (!iommu->qi) 1729 return -ENOMEM; 1730 1731 qi = iommu->qi; 1732 1733 /* 1734 * Need two pages to accommodate 256 descriptors of 256 bits each 1735 * if the remapping hardware supports scalable mode translation. 1736 */ 1737 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1738 !!ecap_smts(iommu->ecap)); 1739 if (!desc_page) { 1740 kfree(qi); 1741 iommu->qi = NULL; 1742 return -ENOMEM; 1743 } 1744 1745 qi->desc = page_address(desc_page); 1746 1747 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1748 if (!qi->desc_status) { 1749 free_page((unsigned long) qi->desc); 1750 kfree(qi); 1751 iommu->qi = NULL; 1752 return -ENOMEM; 1753 } 1754 1755 raw_spin_lock_init(&qi->q_lock); 1756 1757 __dmar_enable_qi(iommu); 1758 1759 return 0; 1760 } 1761 1762 /* iommu interrupt handling. Most stuff are MSI-like. */ 1763 1764 enum faulttype { 1765 DMA_REMAP, 1766 INTR_REMAP, 1767 UNKNOWN, 1768 }; 1769 1770 static const char *dma_remap_fault_reasons[] = 1771 { 1772 "Software", 1773 "Present bit in root entry is clear", 1774 "Present bit in context entry is clear", 1775 "Invalid context entry", 1776 "Access beyond MGAW", 1777 "PTE Write access is not set", 1778 "PTE Read access is not set", 1779 "Next page table ptr is invalid", 1780 "Root table address invalid", 1781 "Context table ptr is invalid", 1782 "non-zero reserved fields in RTP", 1783 "non-zero reserved fields in CTP", 1784 "non-zero reserved fields in PTE", 1785 "PCE for translation request specifies blocking", 1786 }; 1787 1788 static const char * const dma_remap_sm_fault_reasons[] = { 1789 "SM: Invalid Root Table Address", 1790 "SM: TTM 0 for request with PASID", 1791 "SM: TTM 0 for page group request", 1792 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1793 "SM: Error attempting to access Root Entry", 1794 "SM: Present bit in Root Entry is clear", 1795 "SM: Non-zero reserved field set in Root Entry", 1796 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1797 "SM: Error attempting to access Context Entry", 1798 "SM: Present bit in Context Entry is clear", 1799 "SM: Non-zero reserved field set in the Context Entry", 1800 "SM: Invalid Context Entry", 1801 "SM: DTE field in Context Entry is clear", 1802 "SM: PASID Enable field in Context Entry is clear", 1803 "SM: PASID is larger than the max in Context Entry", 1804 "SM: PRE field in Context-Entry is clear", 1805 "SM: RID_PASID field error in Context-Entry", 1806 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1807 "SM: Error attempting to access the PASID Directory Entry", 1808 "SM: Present bit in Directory Entry is clear", 1809 "SM: Non-zero reserved field set in PASID Directory Entry", 1810 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1811 "SM: Error attempting to access PASID Table Entry", 1812 "SM: Present bit in PASID Table Entry is clear", 1813 "SM: Non-zero reserved field set in PASID Table Entry", 1814 "SM: Invalid Scalable-Mode PASID Table Entry", 1815 "SM: ERE field is clear in PASID Table Entry", 1816 "SM: SRE field is clear in PASID Table Entry", 1817 "Unknown", "Unknown",/* 0x5E-0x5F */ 1818 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1819 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1820 "SM: Error attempting to access first-level paging entry", 1821 "SM: Present bit in first-level paging entry is clear", 1822 "SM: Non-zero reserved field set in first-level paging entry", 1823 "SM: Error attempting to access FL-PML4 entry", 1824 "SM: First-level entry address beyond MGAW in Nested translation", 1825 "SM: Read permission error in FL-PML4 entry in Nested translation", 1826 "SM: Read permission error in first-level paging entry in Nested translation", 1827 "SM: Write permission error in first-level paging entry in Nested translation", 1828 "SM: Error attempting to access second-level paging entry", 1829 "SM: Read/Write permission error in second-level paging entry", 1830 "SM: Non-zero reserved field set in second-level paging entry", 1831 "SM: Invalid second-level page table pointer", 1832 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1833 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1834 "SM: Address in first-level translation is not canonical", 1835 "SM: U/S set 0 for first-level translation with user privilege", 1836 "SM: No execute permission for request with PASID and ER=1", 1837 "SM: Address beyond the DMA hardware max", 1838 "SM: Second-level entry address beyond the max", 1839 "SM: No write permission for Write/AtomicOp request", 1840 "SM: No read permission for Read/AtomicOp request", 1841 "SM: Invalid address-interrupt address", 1842 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1843 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1844 }; 1845 1846 static const char *irq_remap_fault_reasons[] = 1847 { 1848 "Detected reserved fields in the decoded interrupt-remapped request", 1849 "Interrupt index exceeded the interrupt-remapping table size", 1850 "Present field in the IRTE entry is clear", 1851 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1852 "Detected reserved fields in the IRTE entry", 1853 "Blocked a compatibility format interrupt request", 1854 "Blocked an interrupt request due to source-id verification failure", 1855 }; 1856 1857 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1858 { 1859 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1860 ARRAY_SIZE(irq_remap_fault_reasons))) { 1861 *fault_type = INTR_REMAP; 1862 return irq_remap_fault_reasons[fault_reason - 0x20]; 1863 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1864 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1865 *fault_type = DMA_REMAP; 1866 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1867 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1868 *fault_type = DMA_REMAP; 1869 return dma_remap_fault_reasons[fault_reason]; 1870 } else { 1871 *fault_type = UNKNOWN; 1872 return "Unknown"; 1873 } 1874 } 1875 1876 1877 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1878 { 1879 if (iommu->irq == irq) 1880 return DMAR_FECTL_REG; 1881 else if (iommu->pr_irq == irq) 1882 return DMAR_PECTL_REG; 1883 else if (iommu->perf_irq == irq) 1884 return DMAR_PERFINTRCTL_REG; 1885 else 1886 BUG(); 1887 } 1888 1889 void dmar_msi_unmask(struct irq_data *data) 1890 { 1891 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1892 int reg = dmar_msi_reg(iommu, data->irq); 1893 unsigned long flag; 1894 1895 /* unmask it */ 1896 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1897 writel(0, iommu->reg + reg); 1898 /* Read a reg to force flush the post write */ 1899 readl(iommu->reg + reg); 1900 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1901 } 1902 1903 void dmar_msi_mask(struct irq_data *data) 1904 { 1905 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1906 int reg = dmar_msi_reg(iommu, data->irq); 1907 unsigned long flag; 1908 1909 /* mask it */ 1910 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1911 writel(DMA_FECTL_IM, iommu->reg + reg); 1912 /* Read a reg to force flush the post write */ 1913 readl(iommu->reg + reg); 1914 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1915 } 1916 1917 void dmar_msi_write(int irq, struct msi_msg *msg) 1918 { 1919 struct intel_iommu *iommu = irq_get_handler_data(irq); 1920 int reg = dmar_msi_reg(iommu, irq); 1921 unsigned long flag; 1922 1923 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1924 writel(msg->data, iommu->reg + reg + 4); 1925 writel(msg->address_lo, iommu->reg + reg + 8); 1926 writel(msg->address_hi, iommu->reg + reg + 12); 1927 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1928 } 1929 1930 void dmar_msi_read(int irq, struct msi_msg *msg) 1931 { 1932 struct intel_iommu *iommu = irq_get_handler_data(irq); 1933 int reg = dmar_msi_reg(iommu, irq); 1934 unsigned long flag; 1935 1936 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1937 msg->data = readl(iommu->reg + reg + 4); 1938 msg->address_lo = readl(iommu->reg + reg + 8); 1939 msg->address_hi = readl(iommu->reg + reg + 12); 1940 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1941 } 1942 1943 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1944 u8 fault_reason, u32 pasid, u16 source_id, 1945 unsigned long long addr) 1946 { 1947 const char *reason; 1948 int fault_type; 1949 1950 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1951 1952 if (fault_type == INTR_REMAP) { 1953 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n", 1954 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1955 PCI_FUNC(source_id & 0xFF), addr >> 48, 1956 fault_reason, reason); 1957 1958 return 0; 1959 } 1960 1961 if (pasid == IOMMU_PASID_INVALID) 1962 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 1963 type ? "DMA Read" : "DMA Write", 1964 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1965 PCI_FUNC(source_id & 0xFF), addr, 1966 fault_reason, reason); 1967 else 1968 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 1969 type ? "DMA Read" : "DMA Write", pasid, 1970 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1971 PCI_FUNC(source_id & 0xFF), addr, 1972 fault_reason, reason); 1973 1974 dmar_fault_dump_ptes(iommu, source_id, addr, pasid); 1975 1976 return 0; 1977 } 1978 1979 #define PRIMARY_FAULT_REG_LEN (16) 1980 irqreturn_t dmar_fault(int irq, void *dev_id) 1981 { 1982 struct intel_iommu *iommu = dev_id; 1983 int reg, fault_index; 1984 u32 fault_status; 1985 unsigned long flag; 1986 static DEFINE_RATELIMIT_STATE(rs, 1987 DEFAULT_RATELIMIT_INTERVAL, 1988 DEFAULT_RATELIMIT_BURST); 1989 1990 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1991 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1992 if (fault_status && __ratelimit(&rs)) 1993 pr_err("DRHD: handling fault status reg %x\n", fault_status); 1994 1995 /* TBD: ignore advanced fault log currently */ 1996 if (!(fault_status & DMA_FSTS_PPF)) 1997 goto unlock_exit; 1998 1999 fault_index = dma_fsts_fault_record_index(fault_status); 2000 reg = cap_fault_reg_offset(iommu->cap); 2001 while (1) { 2002 /* Disable printing, simply clear the fault when ratelimited */ 2003 bool ratelimited = !__ratelimit(&rs); 2004 u8 fault_reason; 2005 u16 source_id; 2006 u64 guest_addr; 2007 u32 pasid; 2008 int type; 2009 u32 data; 2010 bool pasid_present; 2011 2012 /* highest 32 bits */ 2013 data = readl(iommu->reg + reg + 2014 fault_index * PRIMARY_FAULT_REG_LEN + 12); 2015 if (!(data & DMA_FRCD_F)) 2016 break; 2017 2018 if (!ratelimited) { 2019 fault_reason = dma_frcd_fault_reason(data); 2020 type = dma_frcd_type(data); 2021 2022 pasid = dma_frcd_pasid_value(data); 2023 data = readl(iommu->reg + reg + 2024 fault_index * PRIMARY_FAULT_REG_LEN + 8); 2025 source_id = dma_frcd_source_id(data); 2026 2027 pasid_present = dma_frcd_pasid_present(data); 2028 guest_addr = dmar_readq(iommu->reg + reg + 2029 fault_index * PRIMARY_FAULT_REG_LEN); 2030 guest_addr = dma_frcd_page_addr(guest_addr); 2031 } 2032 2033 /* clear the fault */ 2034 writel(DMA_FRCD_F, iommu->reg + reg + 2035 fault_index * PRIMARY_FAULT_REG_LEN + 12); 2036 2037 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2038 2039 if (!ratelimited) 2040 /* Using pasid -1 if pasid is not present */ 2041 dmar_fault_do_one(iommu, type, fault_reason, 2042 pasid_present ? pasid : IOMMU_PASID_INVALID, 2043 source_id, guest_addr); 2044 2045 fault_index++; 2046 if (fault_index >= cap_num_fault_regs(iommu->cap)) 2047 fault_index = 0; 2048 raw_spin_lock_irqsave(&iommu->register_lock, flag); 2049 } 2050 2051 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 2052 iommu->reg + DMAR_FSTS_REG); 2053 2054 unlock_exit: 2055 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2056 return IRQ_HANDLED; 2057 } 2058 2059 int dmar_set_interrupt(struct intel_iommu *iommu) 2060 { 2061 int irq, ret; 2062 2063 /* 2064 * Check if the fault interrupt is already initialized. 2065 */ 2066 if (iommu->irq) 2067 return 0; 2068 2069 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 2070 if (irq > 0) { 2071 iommu->irq = irq; 2072 } else { 2073 pr_err("No free IRQ vectors\n"); 2074 return -EINVAL; 2075 } 2076 2077 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 2078 if (ret) 2079 pr_err("Can't request irq\n"); 2080 return ret; 2081 } 2082 2083 int __init enable_drhd_fault_handling(void) 2084 { 2085 struct dmar_drhd_unit *drhd; 2086 struct intel_iommu *iommu; 2087 2088 /* 2089 * Enable fault control interrupt. 2090 */ 2091 for_each_iommu(iommu, drhd) { 2092 u32 fault_status; 2093 int ret = dmar_set_interrupt(iommu); 2094 2095 if (ret) { 2096 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 2097 (unsigned long long)drhd->reg_base_addr, ret); 2098 return -1; 2099 } 2100 2101 /* 2102 * Clear any previous faults. 2103 */ 2104 dmar_fault(iommu->irq, iommu); 2105 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 2106 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 2107 } 2108 2109 return 0; 2110 } 2111 2112 /* 2113 * Re-enable Queued Invalidation interface. 2114 */ 2115 int dmar_reenable_qi(struct intel_iommu *iommu) 2116 { 2117 if (!ecap_qis(iommu->ecap)) 2118 return -ENOENT; 2119 2120 if (!iommu->qi) 2121 return -ENOENT; 2122 2123 /* 2124 * First disable queued invalidation. 2125 */ 2126 dmar_disable_qi(iommu); 2127 /* 2128 * Then enable queued invalidation again. Since there is no pending 2129 * invalidation requests now, it's safe to re-enable queued 2130 * invalidation. 2131 */ 2132 __dmar_enable_qi(iommu); 2133 2134 return 0; 2135 } 2136 2137 /* 2138 * Check interrupt remapping support in DMAR table description. 2139 */ 2140 int __init dmar_ir_support(void) 2141 { 2142 struct acpi_table_dmar *dmar; 2143 dmar = (struct acpi_table_dmar *)dmar_tbl; 2144 if (!dmar) 2145 return 0; 2146 return dmar->flags & 0x1; 2147 } 2148 2149 /* Check whether DMAR units are in use */ 2150 static inline bool dmar_in_use(void) 2151 { 2152 return irq_remapping_enabled || intel_iommu_enabled; 2153 } 2154 2155 static int __init dmar_free_unused_resources(void) 2156 { 2157 struct dmar_drhd_unit *dmaru, *dmaru_n; 2158 2159 if (dmar_in_use()) 2160 return 0; 2161 2162 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2163 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2164 2165 down_write(&dmar_global_lock); 2166 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2167 list_del(&dmaru->list); 2168 dmar_free_drhd(dmaru); 2169 } 2170 up_write(&dmar_global_lock); 2171 2172 return 0; 2173 } 2174 2175 late_initcall(dmar_free_unused_resources); 2176 2177 /* 2178 * DMAR Hotplug Support 2179 * For more details, please refer to Intel(R) Virtualization Technology 2180 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2181 * "Remapping Hardware Unit Hot Plug". 2182 */ 2183 static guid_t dmar_hp_guid = 2184 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2185 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2186 2187 /* 2188 * Currently there's only one revision and BIOS will not check the revision id, 2189 * so use 0 for safety. 2190 */ 2191 #define DMAR_DSM_REV_ID 0 2192 #define DMAR_DSM_FUNC_DRHD 1 2193 #define DMAR_DSM_FUNC_ATSR 2 2194 #define DMAR_DSM_FUNC_RHSA 3 2195 #define DMAR_DSM_FUNC_SATC 4 2196 2197 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2198 { 2199 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2200 } 2201 2202 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2203 dmar_res_handler_t handler, void *arg) 2204 { 2205 int ret = -ENODEV; 2206 union acpi_object *obj; 2207 struct acpi_dmar_header *start; 2208 struct dmar_res_callback callback; 2209 static int res_type[] = { 2210 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2211 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2212 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2213 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC, 2214 }; 2215 2216 if (!dmar_detect_dsm(handle, func)) 2217 return 0; 2218 2219 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2220 func, NULL, ACPI_TYPE_BUFFER); 2221 if (!obj) 2222 return -ENODEV; 2223 2224 memset(&callback, 0, sizeof(callback)); 2225 callback.cb[res_type[func]] = handler; 2226 callback.arg[res_type[func]] = arg; 2227 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2228 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2229 2230 ACPI_FREE(obj); 2231 2232 return ret; 2233 } 2234 2235 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2236 { 2237 int ret; 2238 struct dmar_drhd_unit *dmaru; 2239 2240 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2241 if (!dmaru) 2242 return -ENODEV; 2243 2244 ret = dmar_ir_hotplug(dmaru, true); 2245 if (ret == 0) 2246 ret = dmar_iommu_hotplug(dmaru, true); 2247 2248 return ret; 2249 } 2250 2251 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2252 { 2253 int i, ret; 2254 struct device *dev; 2255 struct dmar_drhd_unit *dmaru; 2256 2257 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2258 if (!dmaru) 2259 return 0; 2260 2261 /* 2262 * All PCI devices managed by this unit should have been destroyed. 2263 */ 2264 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2265 for_each_active_dev_scope(dmaru->devices, 2266 dmaru->devices_cnt, i, dev) 2267 return -EBUSY; 2268 } 2269 2270 ret = dmar_ir_hotplug(dmaru, false); 2271 if (ret == 0) 2272 ret = dmar_iommu_hotplug(dmaru, false); 2273 2274 return ret; 2275 } 2276 2277 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2278 { 2279 struct dmar_drhd_unit *dmaru; 2280 2281 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2282 if (dmaru) { 2283 list_del_rcu(&dmaru->list); 2284 synchronize_rcu(); 2285 dmar_free_drhd(dmaru); 2286 } 2287 2288 return 0; 2289 } 2290 2291 static int dmar_hotplug_insert(acpi_handle handle) 2292 { 2293 int ret; 2294 int drhd_count = 0; 2295 2296 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2297 &dmar_validate_one_drhd, (void *)1); 2298 if (ret) 2299 goto out; 2300 2301 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2302 &dmar_parse_one_drhd, (void *)&drhd_count); 2303 if (ret == 0 && drhd_count == 0) { 2304 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2305 goto out; 2306 } else if (ret) { 2307 goto release_drhd; 2308 } 2309 2310 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2311 &dmar_parse_one_rhsa, NULL); 2312 if (ret) 2313 goto release_drhd; 2314 2315 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2316 &dmar_parse_one_atsr, NULL); 2317 if (ret) 2318 goto release_atsr; 2319 2320 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2321 &dmar_hp_add_drhd, NULL); 2322 if (!ret) 2323 return 0; 2324 2325 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2326 &dmar_hp_remove_drhd, NULL); 2327 release_atsr: 2328 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2329 &dmar_release_one_atsr, NULL); 2330 release_drhd: 2331 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2332 &dmar_hp_release_drhd, NULL); 2333 out: 2334 return ret; 2335 } 2336 2337 static int dmar_hotplug_remove(acpi_handle handle) 2338 { 2339 int ret; 2340 2341 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2342 &dmar_check_one_atsr, NULL); 2343 if (ret) 2344 return ret; 2345 2346 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2347 &dmar_hp_remove_drhd, NULL); 2348 if (ret == 0) { 2349 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2350 &dmar_release_one_atsr, NULL)); 2351 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2352 &dmar_hp_release_drhd, NULL)); 2353 } else { 2354 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2355 &dmar_hp_add_drhd, NULL); 2356 } 2357 2358 return ret; 2359 } 2360 2361 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2362 void *context, void **retval) 2363 { 2364 acpi_handle *phdl = retval; 2365 2366 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2367 *phdl = handle; 2368 return AE_CTRL_TERMINATE; 2369 } 2370 2371 return AE_OK; 2372 } 2373 2374 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2375 { 2376 int ret; 2377 acpi_handle tmp = NULL; 2378 acpi_status status; 2379 2380 if (!dmar_in_use()) 2381 return 0; 2382 2383 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2384 tmp = handle; 2385 } else { 2386 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2387 ACPI_UINT32_MAX, 2388 dmar_get_dsm_handle, 2389 NULL, NULL, &tmp); 2390 if (ACPI_FAILURE(status)) { 2391 pr_warn("Failed to locate _DSM method.\n"); 2392 return -ENXIO; 2393 } 2394 } 2395 if (tmp == NULL) 2396 return 0; 2397 2398 down_write(&dmar_global_lock); 2399 if (insert) 2400 ret = dmar_hotplug_insert(tmp); 2401 else 2402 ret = dmar_hotplug_remove(tmp); 2403 up_write(&dmar_global_lock); 2404 2405 return ret; 2406 } 2407 2408 int dmar_device_add(acpi_handle handle) 2409 { 2410 return dmar_device_hotplug(handle, true); 2411 } 2412 2413 int dmar_device_remove(acpi_handle handle) 2414 { 2415 return dmar_device_hotplug(handle, false); 2416 } 2417 2418 /* 2419 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2420 * 2421 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2422 * the ACPI DMAR table. This means that the platform boot firmware has made 2423 * sure no device can issue DMA outside of RMRR regions. 2424 */ 2425 bool dmar_platform_optin(void) 2426 { 2427 struct acpi_table_dmar *dmar; 2428 acpi_status status; 2429 bool ret; 2430 2431 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2432 (struct acpi_table_header **)&dmar); 2433 if (ACPI_FAILURE(status)) 2434 return false; 2435 2436 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2437 acpi_put_table((struct acpi_table_header *)dmar); 2438 2439 return ret; 2440 } 2441 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2442