1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/timer.h> 23 #include <linux/irq.h> 24 #include <linux/interrupt.h> 25 #include <linux/tboot.h> 26 #include <linux/dmi.h> 27 #include <linux/slab.h> 28 #include <linux/iommu.h> 29 #include <linux/numa.h> 30 #include <linux/limits.h> 31 #include <asm/irq_remapping.h> 32 33 #include "iommu.h" 34 #include "../irq_remapping.h" 35 #include "perf.h" 36 #include "trace.h" 37 38 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 39 struct dmar_res_callback { 40 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 41 void *arg[ACPI_DMAR_TYPE_RESERVED]; 42 bool ignore_unhandled; 43 bool print_entry; 44 }; 45 46 /* 47 * Assumptions: 48 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 49 * before IO devices managed by that unit. 50 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 51 * after IO devices managed by that unit. 52 * 3) Hotplug events are rare. 53 * 54 * Locking rules for DMA and interrupt remapping related global data structures: 55 * 1) Use dmar_global_lock in process context 56 * 2) Use RCU in interrupt context 57 */ 58 DECLARE_RWSEM(dmar_global_lock); 59 LIST_HEAD(dmar_drhd_units); 60 61 struct acpi_table_header * __initdata dmar_tbl; 62 static int dmar_dev_scope_status = 1; 63 static DEFINE_IDA(dmar_seq_ids); 64 65 static int alloc_iommu(struct dmar_drhd_unit *drhd); 66 static void free_iommu(struct intel_iommu *iommu); 67 68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 69 { 70 /* 71 * add INCLUDE_ALL at the tail, so scan the list will find it at 72 * the very end. 73 */ 74 if (drhd->include_all) 75 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 76 else 77 list_add_rcu(&drhd->list, &dmar_drhd_units); 78 } 79 80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 81 { 82 struct acpi_dmar_device_scope *scope; 83 84 *cnt = 0; 85 while (start < end) { 86 scope = start; 87 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 88 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 90 (*cnt)++; 91 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 92 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 93 pr_warn("Unsupported device scope\n"); 94 } 95 start += scope->length; 96 } 97 if (*cnt == 0) 98 return NULL; 99 100 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 101 } 102 103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 104 { 105 int i; 106 struct device *tmp_dev; 107 108 if (*devices && *cnt) { 109 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 110 put_device(tmp_dev); 111 kfree(*devices); 112 } 113 114 *devices = NULL; 115 *cnt = 0; 116 } 117 118 /* Optimize out kzalloc()/kfree() for normal cases */ 119 static char dmar_pci_notify_info_buf[64]; 120 121 static struct dmar_pci_notify_info * 122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 123 { 124 int level = 0; 125 size_t size; 126 struct pci_dev *tmp; 127 struct dmar_pci_notify_info *info; 128 129 BUG_ON(dev->is_virtfn); 130 131 /* 132 * Ignore devices that have a domain number higher than what can 133 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 134 */ 135 if (pci_domain_nr(dev->bus) > U16_MAX) 136 return NULL; 137 138 /* Only generate path[] for device addition event */ 139 if (event == BUS_NOTIFY_ADD_DEVICE) 140 for (tmp = dev; tmp; tmp = tmp->bus->self) 141 level++; 142 143 size = struct_size(info, path, level); 144 if (size <= sizeof(dmar_pci_notify_info_buf)) { 145 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 146 } else { 147 info = kzalloc(size, GFP_KERNEL); 148 if (!info) { 149 if (dmar_dev_scope_status == 0) 150 dmar_dev_scope_status = -ENOMEM; 151 return NULL; 152 } 153 } 154 155 info->event = event; 156 info->dev = dev; 157 info->seg = pci_domain_nr(dev->bus); 158 info->level = level; 159 if (event == BUS_NOTIFY_ADD_DEVICE) { 160 for (tmp = dev; tmp; tmp = tmp->bus->self) { 161 level--; 162 info->path[level].bus = tmp->bus->number; 163 info->path[level].device = PCI_SLOT(tmp->devfn); 164 info->path[level].function = PCI_FUNC(tmp->devfn); 165 if (pci_is_root_bus(tmp->bus)) 166 info->bus = tmp->bus->number; 167 } 168 } 169 170 return info; 171 } 172 173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 174 { 175 if ((void *)info != dmar_pci_notify_info_buf) 176 kfree(info); 177 } 178 179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 180 struct acpi_dmar_pci_path *path, int count) 181 { 182 int i; 183 184 if (info->bus != bus) 185 goto fallback; 186 if (info->level != count) 187 goto fallback; 188 189 for (i = 0; i < count; i++) { 190 if (path[i].device != info->path[i].device || 191 path[i].function != info->path[i].function) 192 goto fallback; 193 } 194 195 return true; 196 197 fallback: 198 199 if (count != 1) 200 return false; 201 202 i = info->level - 1; 203 if (bus == info->path[i].bus && 204 path[0].device == info->path[i].device && 205 path[0].function == info->path[i].function) { 206 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 207 bus, path[0].device, path[0].function); 208 return true; 209 } 210 211 return false; 212 } 213 214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 216 void *start, void*end, u16 segment, 217 struct dmar_dev_scope *devices, 218 int devices_cnt) 219 { 220 int i, level; 221 struct device *tmp, *dev = &info->dev->dev; 222 struct acpi_dmar_device_scope *scope; 223 struct acpi_dmar_pci_path *path; 224 225 if (segment != info->seg) 226 return 0; 227 228 for (; start < end; start += scope->length) { 229 scope = start; 230 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 231 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 232 continue; 233 234 path = (struct acpi_dmar_pci_path *)(scope + 1); 235 level = (scope->length - sizeof(*scope)) / sizeof(*path); 236 if (!dmar_match_pci_path(info, scope->bus, path, level)) 237 continue; 238 239 /* 240 * We expect devices with endpoint scope to have normal PCI 241 * headers, and devices with bridge scope to have bridge PCI 242 * headers. However PCI NTB devices may be listed in the 243 * DMAR table with bridge scope, even though they have a 244 * normal PCI header. NTB devices are identified by class 245 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 246 * for this special case. 247 */ 248 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 249 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 250 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 251 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 252 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 253 pr_warn("Device scope type does not match for %s\n", 254 pci_name(info->dev)); 255 return -EINVAL; 256 } 257 258 for_each_dev_scope(devices, devices_cnt, i, tmp) 259 if (tmp == NULL) { 260 devices[i].bus = info->dev->bus->number; 261 devices[i].devfn = info->dev->devfn; 262 rcu_assign_pointer(devices[i].dev, 263 get_device(dev)); 264 return 1; 265 } 266 BUG_ON(i >= devices_cnt); 267 } 268 269 return 0; 270 } 271 272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 273 struct dmar_dev_scope *devices, int count) 274 { 275 int index; 276 struct device *tmp; 277 278 if (info->seg != segment) 279 return 0; 280 281 for_each_active_dev_scope(devices, count, index, tmp) 282 if (tmp == &info->dev->dev) { 283 RCU_INIT_POINTER(devices[index].dev, NULL); 284 synchronize_rcu(); 285 put_device(tmp); 286 return 1; 287 } 288 289 return 0; 290 } 291 292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 293 { 294 int ret = 0; 295 struct dmar_drhd_unit *dmaru; 296 struct acpi_dmar_hardware_unit *drhd; 297 298 for_each_drhd_unit(dmaru) { 299 if (dmaru->include_all) 300 continue; 301 302 drhd = container_of(dmaru->hdr, 303 struct acpi_dmar_hardware_unit, header); 304 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 305 ((void *)drhd) + drhd->header.length, 306 dmaru->segment, 307 dmaru->devices, dmaru->devices_cnt); 308 if (ret) 309 break; 310 } 311 if (ret >= 0) 312 ret = dmar_iommu_notify_scope_dev(info); 313 if (ret < 0 && dmar_dev_scope_status == 0) 314 dmar_dev_scope_status = ret; 315 316 if (ret >= 0) 317 intel_irq_remap_add_device(info); 318 319 return ret; 320 } 321 322 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 323 { 324 struct dmar_drhd_unit *dmaru; 325 326 for_each_drhd_unit(dmaru) 327 if (dmar_remove_dev_scope(info, dmaru->segment, 328 dmaru->devices, dmaru->devices_cnt)) 329 break; 330 dmar_iommu_notify_scope_dev(info); 331 } 332 333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 334 { 335 struct pci_dev *physfn = pci_physfn(pdev); 336 337 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); 338 } 339 340 static int dmar_pci_bus_notifier(struct notifier_block *nb, 341 unsigned long action, void *data) 342 { 343 struct pci_dev *pdev = to_pci_dev(data); 344 struct dmar_pci_notify_info *info; 345 346 /* Only care about add/remove events for physical functions. 347 * For VFs we actually do the lookup based on the corresponding 348 * PF in device_to_iommu() anyway. */ 349 if (pdev->is_virtfn) { 350 /* 351 * Ensure that the VF device inherits the irq domain of the 352 * PF device. Ideally the device would inherit the domain 353 * from the bus, but DMAR can have multiple units per bus 354 * which makes this impossible. The VF 'bus' could inherit 355 * from the PF device, but that's yet another x86'sism to 356 * inflict on everybody else. 357 */ 358 if (action == BUS_NOTIFY_ADD_DEVICE) 359 vf_inherit_msi_domain(pdev); 360 return NOTIFY_DONE; 361 } 362 363 if (action != BUS_NOTIFY_ADD_DEVICE && 364 action != BUS_NOTIFY_REMOVED_DEVICE) 365 return NOTIFY_DONE; 366 367 info = dmar_alloc_pci_notify_info(pdev, action); 368 if (!info) 369 return NOTIFY_DONE; 370 371 down_write(&dmar_global_lock); 372 if (action == BUS_NOTIFY_ADD_DEVICE) 373 dmar_pci_bus_add_dev(info); 374 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 375 dmar_pci_bus_del_dev(info); 376 up_write(&dmar_global_lock); 377 378 dmar_free_pci_notify_info(info); 379 380 return NOTIFY_OK; 381 } 382 383 static struct notifier_block dmar_pci_bus_nb = { 384 .notifier_call = dmar_pci_bus_notifier, 385 .priority = 1, 386 }; 387 388 static struct dmar_drhd_unit * 389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 390 { 391 struct dmar_drhd_unit *dmaru; 392 393 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 394 dmar_rcu_check()) 395 if (dmaru->segment == drhd->segment && 396 dmaru->reg_base_addr == drhd->address) 397 return dmaru; 398 399 return NULL; 400 } 401 402 /* 403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 404 * structure which uniquely represent one DMA remapping hardware unit 405 * present in the platform 406 */ 407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 408 { 409 struct acpi_dmar_hardware_unit *drhd; 410 struct dmar_drhd_unit *dmaru; 411 int ret; 412 413 drhd = (struct acpi_dmar_hardware_unit *)header; 414 dmaru = dmar_find_dmaru(drhd); 415 if (dmaru) 416 goto out; 417 418 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 419 if (!dmaru) 420 return -ENOMEM; 421 422 /* 423 * If header is allocated from slab by ACPI _DSM method, we need to 424 * copy the content because the memory buffer will be freed on return. 425 */ 426 dmaru->hdr = (void *)(dmaru + 1); 427 memcpy(dmaru->hdr, header, header->length); 428 dmaru->reg_base_addr = drhd->address; 429 dmaru->segment = drhd->segment; 430 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 431 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 432 ((void *)drhd) + drhd->header.length, 433 &dmaru->devices_cnt); 434 if (dmaru->devices_cnt && dmaru->devices == NULL) { 435 kfree(dmaru); 436 return -ENOMEM; 437 } 438 439 ret = alloc_iommu(dmaru); 440 if (ret) { 441 dmar_free_dev_scope(&dmaru->devices, 442 &dmaru->devices_cnt); 443 kfree(dmaru); 444 return ret; 445 } 446 dmar_register_drhd_unit(dmaru); 447 448 out: 449 if (arg) 450 (*(int *)arg)++; 451 452 return 0; 453 } 454 455 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 456 { 457 if (dmaru->devices && dmaru->devices_cnt) 458 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 459 if (dmaru->iommu) 460 free_iommu(dmaru->iommu); 461 kfree(dmaru); 462 } 463 464 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 465 void *arg) 466 { 467 struct acpi_dmar_andd *andd = (void *)header; 468 469 /* Check for NUL termination within the designated length */ 470 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 471 pr_warn(FW_BUG 472 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 473 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 474 dmi_get_system_info(DMI_BIOS_VENDOR), 475 dmi_get_system_info(DMI_BIOS_VERSION), 476 dmi_get_system_info(DMI_PRODUCT_VERSION)); 477 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 478 return -EINVAL; 479 } 480 pr_info("ANDD device: %x name: %s\n", andd->device_number, 481 andd->device_name); 482 483 return 0; 484 } 485 486 #ifdef CONFIG_ACPI_NUMA 487 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 488 { 489 struct acpi_dmar_rhsa *rhsa; 490 struct dmar_drhd_unit *drhd; 491 492 rhsa = (struct acpi_dmar_rhsa *)header; 493 for_each_drhd_unit(drhd) { 494 if (drhd->reg_base_addr == rhsa->base_address) { 495 int node = pxm_to_node(rhsa->proximity_domain); 496 497 if (node != NUMA_NO_NODE && !node_online(node)) 498 node = NUMA_NO_NODE; 499 drhd->iommu->node = node; 500 return 0; 501 } 502 } 503 pr_warn(FW_BUG 504 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 505 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 506 rhsa->base_address, 507 dmi_get_system_info(DMI_BIOS_VENDOR), 508 dmi_get_system_info(DMI_BIOS_VERSION), 509 dmi_get_system_info(DMI_PRODUCT_VERSION)); 510 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 511 512 return 0; 513 } 514 #else 515 #define dmar_parse_one_rhsa dmar_res_noop 516 #endif 517 518 static void 519 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 520 { 521 struct acpi_dmar_hardware_unit *drhd; 522 struct acpi_dmar_reserved_memory *rmrr; 523 struct acpi_dmar_atsr *atsr; 524 struct acpi_dmar_rhsa *rhsa; 525 struct acpi_dmar_satc *satc; 526 527 switch (header->type) { 528 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 529 drhd = container_of(header, struct acpi_dmar_hardware_unit, 530 header); 531 pr_info("DRHD base: %#016Lx flags: %#x\n", 532 (unsigned long long)drhd->address, drhd->flags); 533 break; 534 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 535 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 536 header); 537 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 538 (unsigned long long)rmrr->base_address, 539 (unsigned long long)rmrr->end_address); 540 break; 541 case ACPI_DMAR_TYPE_ROOT_ATS: 542 atsr = container_of(header, struct acpi_dmar_atsr, header); 543 pr_info("ATSR flags: %#x\n", atsr->flags); 544 break; 545 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 546 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 547 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 548 (unsigned long long)rhsa->base_address, 549 rhsa->proximity_domain); 550 break; 551 case ACPI_DMAR_TYPE_NAMESPACE: 552 /* We don't print this here because we need to sanity-check 553 it first. So print it in dmar_parse_one_andd() instead. */ 554 break; 555 case ACPI_DMAR_TYPE_SATC: 556 satc = container_of(header, struct acpi_dmar_satc, header); 557 pr_info("SATC flags: 0x%x\n", satc->flags); 558 break; 559 } 560 } 561 562 /** 563 * dmar_table_detect - checks to see if the platform supports DMAR devices 564 */ 565 static int __init dmar_table_detect(void) 566 { 567 acpi_status status = AE_OK; 568 569 /* if we could find DMAR table, then there are DMAR devices */ 570 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 571 572 if (ACPI_SUCCESS(status) && !dmar_tbl) { 573 pr_warn("Unable to map DMAR\n"); 574 status = AE_NOT_FOUND; 575 } 576 577 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 578 } 579 580 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 581 size_t len, struct dmar_res_callback *cb) 582 { 583 struct acpi_dmar_header *iter, *next; 584 struct acpi_dmar_header *end = ((void *)start) + len; 585 586 for (iter = start; iter < end; iter = next) { 587 next = (void *)iter + iter->length; 588 if (iter->length == 0) { 589 /* Avoid looping forever on bad ACPI tables */ 590 pr_debug(FW_BUG "Invalid 0-length structure\n"); 591 break; 592 } else if (next > end) { 593 /* Avoid passing table end */ 594 pr_warn(FW_BUG "Record passes table end\n"); 595 return -EINVAL; 596 } 597 598 if (cb->print_entry) 599 dmar_table_print_dmar_entry(iter); 600 601 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 602 /* continue for forward compatibility */ 603 pr_debug("Unknown DMAR structure type %d\n", 604 iter->type); 605 } else if (cb->cb[iter->type]) { 606 int ret; 607 608 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 609 if (ret) 610 return ret; 611 } else if (!cb->ignore_unhandled) { 612 pr_warn("No handler for DMAR structure type %d\n", 613 iter->type); 614 return -EINVAL; 615 } 616 } 617 618 return 0; 619 } 620 621 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 622 struct dmar_res_callback *cb) 623 { 624 return dmar_walk_remapping_entries((void *)(dmar + 1), 625 dmar->header.length - sizeof(*dmar), cb); 626 } 627 628 /** 629 * parse_dmar_table - parses the DMA reporting table 630 */ 631 static int __init 632 parse_dmar_table(void) 633 { 634 struct acpi_table_dmar *dmar; 635 int drhd_count = 0; 636 int ret; 637 struct dmar_res_callback cb = { 638 .print_entry = true, 639 .ignore_unhandled = true, 640 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 641 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 642 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 643 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 644 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 645 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 646 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc, 647 }; 648 649 /* 650 * Do it again, earlier dmar_tbl mapping could be mapped with 651 * fixed map. 652 */ 653 dmar_table_detect(); 654 655 /* 656 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 657 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 658 */ 659 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 660 661 dmar = (struct acpi_table_dmar *)dmar_tbl; 662 if (!dmar) 663 return -ENODEV; 664 665 if (dmar->width < PAGE_SHIFT - 1) { 666 pr_warn("Invalid DMAR haw\n"); 667 return -EINVAL; 668 } 669 670 pr_info("Host address width %d\n", dmar->width + 1); 671 ret = dmar_walk_dmar_table(dmar, &cb); 672 if (ret == 0 && drhd_count == 0) 673 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 674 675 return ret; 676 } 677 678 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 679 int cnt, struct pci_dev *dev) 680 { 681 int index; 682 struct device *tmp; 683 684 while (dev) { 685 for_each_active_dev_scope(devices, cnt, index, tmp) 686 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 687 return 1; 688 689 /* Check our parent */ 690 dev = dev->bus->self; 691 } 692 693 return 0; 694 } 695 696 struct dmar_drhd_unit * 697 dmar_find_matched_drhd_unit(struct pci_dev *dev) 698 { 699 struct dmar_drhd_unit *dmaru; 700 struct acpi_dmar_hardware_unit *drhd; 701 702 dev = pci_physfn(dev); 703 704 rcu_read_lock(); 705 for_each_drhd_unit(dmaru) { 706 drhd = container_of(dmaru->hdr, 707 struct acpi_dmar_hardware_unit, 708 header); 709 710 if (dmaru->include_all && 711 drhd->segment == pci_domain_nr(dev->bus)) 712 goto out; 713 714 if (dmar_pci_device_match(dmaru->devices, 715 dmaru->devices_cnt, dev)) 716 goto out; 717 } 718 dmaru = NULL; 719 out: 720 rcu_read_unlock(); 721 722 return dmaru; 723 } 724 725 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 726 struct acpi_device *adev) 727 { 728 struct dmar_drhd_unit *dmaru; 729 struct acpi_dmar_hardware_unit *drhd; 730 struct acpi_dmar_device_scope *scope; 731 struct device *tmp; 732 int i; 733 struct acpi_dmar_pci_path *path; 734 735 for_each_drhd_unit(dmaru) { 736 drhd = container_of(dmaru->hdr, 737 struct acpi_dmar_hardware_unit, 738 header); 739 740 for (scope = (void *)(drhd + 1); 741 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 742 scope = ((void *)scope) + scope->length) { 743 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 744 continue; 745 if (scope->enumeration_id != device_number) 746 continue; 747 748 path = (void *)(scope + 1); 749 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 750 dev_name(&adev->dev), dmaru->reg_base_addr, 751 scope->bus, path->device, path->function); 752 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 753 if (tmp == NULL) { 754 dmaru->devices[i].bus = scope->bus; 755 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 756 path->function); 757 rcu_assign_pointer(dmaru->devices[i].dev, 758 get_device(&adev->dev)); 759 return; 760 } 761 BUG_ON(i >= dmaru->devices_cnt); 762 } 763 } 764 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 765 device_number, dev_name(&adev->dev)); 766 } 767 768 static int __init dmar_acpi_dev_scope_init(void) 769 { 770 struct acpi_dmar_andd *andd; 771 772 if (dmar_tbl == NULL) 773 return -ENODEV; 774 775 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 776 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 777 andd = ((void *)andd) + andd->header.length) { 778 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 779 acpi_handle h; 780 struct acpi_device *adev; 781 782 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 783 andd->device_name, 784 &h))) { 785 pr_err("Failed to find handle for ACPI object %s\n", 786 andd->device_name); 787 continue; 788 } 789 adev = acpi_fetch_acpi_dev(h); 790 if (!adev) { 791 pr_err("Failed to get device for ACPI object %s\n", 792 andd->device_name); 793 continue; 794 } 795 dmar_acpi_insert_dev_scope(andd->device_number, adev); 796 } 797 } 798 return 0; 799 } 800 801 int __init dmar_dev_scope_init(void) 802 { 803 struct pci_dev *dev = NULL; 804 struct dmar_pci_notify_info *info; 805 806 if (dmar_dev_scope_status != 1) 807 return dmar_dev_scope_status; 808 809 if (list_empty(&dmar_drhd_units)) { 810 dmar_dev_scope_status = -ENODEV; 811 } else { 812 dmar_dev_scope_status = 0; 813 814 dmar_acpi_dev_scope_init(); 815 816 for_each_pci_dev(dev) { 817 if (dev->is_virtfn) 818 continue; 819 820 info = dmar_alloc_pci_notify_info(dev, 821 BUS_NOTIFY_ADD_DEVICE); 822 if (!info) { 823 return dmar_dev_scope_status; 824 } else { 825 dmar_pci_bus_add_dev(info); 826 dmar_free_pci_notify_info(info); 827 } 828 } 829 } 830 831 return dmar_dev_scope_status; 832 } 833 834 void __init dmar_register_bus_notifier(void) 835 { 836 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 837 } 838 839 840 int __init dmar_table_init(void) 841 { 842 static int dmar_table_initialized; 843 int ret; 844 845 if (dmar_table_initialized == 0) { 846 ret = parse_dmar_table(); 847 if (ret < 0) { 848 if (ret != -ENODEV) 849 pr_info("Parse DMAR table failure.\n"); 850 } else if (list_empty(&dmar_drhd_units)) { 851 pr_info("No DMAR devices found\n"); 852 ret = -ENODEV; 853 } 854 855 if (ret < 0) 856 dmar_table_initialized = ret; 857 else 858 dmar_table_initialized = 1; 859 } 860 861 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 862 } 863 864 static void warn_invalid_dmar(u64 addr, const char *message) 865 { 866 pr_warn_once(FW_BUG 867 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 868 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 869 addr, message, 870 dmi_get_system_info(DMI_BIOS_VENDOR), 871 dmi_get_system_info(DMI_BIOS_VERSION), 872 dmi_get_system_info(DMI_PRODUCT_VERSION)); 873 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 874 } 875 876 static int __ref 877 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 878 { 879 struct acpi_dmar_hardware_unit *drhd; 880 void __iomem *addr; 881 u64 cap, ecap; 882 883 drhd = (void *)entry; 884 if (!drhd->address) { 885 warn_invalid_dmar(0, ""); 886 return -EINVAL; 887 } 888 889 if (arg) 890 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 891 else 892 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 893 if (!addr) { 894 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 895 return -EINVAL; 896 } 897 898 cap = dmar_readq(addr + DMAR_CAP_REG); 899 ecap = dmar_readq(addr + DMAR_ECAP_REG); 900 901 if (arg) 902 iounmap(addr); 903 else 904 early_iounmap(addr, VTD_PAGE_SIZE); 905 906 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 907 warn_invalid_dmar(drhd->address, " returns all ones"); 908 return -EINVAL; 909 } 910 911 return 0; 912 } 913 914 void __init detect_intel_iommu(void) 915 { 916 int ret; 917 struct dmar_res_callback validate_drhd_cb = { 918 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 919 .ignore_unhandled = true, 920 }; 921 922 down_write(&dmar_global_lock); 923 ret = dmar_table_detect(); 924 if (!ret) 925 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 926 &validate_drhd_cb); 927 if (!ret && !no_iommu && !iommu_detected && 928 (!dmar_disabled || dmar_platform_optin())) { 929 iommu_detected = 1; 930 /* Make sure ACS will be enabled */ 931 pci_request_acs(); 932 } 933 934 #ifdef CONFIG_X86 935 if (!ret) { 936 x86_init.iommu.iommu_init = intel_iommu_init; 937 x86_platform.iommu_shutdown = intel_iommu_shutdown; 938 } 939 940 #endif 941 942 if (dmar_tbl) { 943 acpi_put_table(dmar_tbl); 944 dmar_tbl = NULL; 945 } 946 up_write(&dmar_global_lock); 947 } 948 949 static void unmap_iommu(struct intel_iommu *iommu) 950 { 951 iounmap(iommu->reg); 952 release_mem_region(iommu->reg_phys, iommu->reg_size); 953 } 954 955 /** 956 * map_iommu: map the iommu's registers 957 * @iommu: the iommu to map 958 * @phys_addr: the physical address of the base resgister 959 * 960 * Memory map the iommu's registers. Start w/ a single page, and 961 * possibly expand if that turns out to be insufficent. 962 */ 963 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) 964 { 965 int map_size, err=0; 966 967 iommu->reg_phys = phys_addr; 968 iommu->reg_size = VTD_PAGE_SIZE; 969 970 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 971 pr_err("Can't reserve memory\n"); 972 err = -EBUSY; 973 goto out; 974 } 975 976 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 977 if (!iommu->reg) { 978 pr_err("Can't map the region\n"); 979 err = -ENOMEM; 980 goto release; 981 } 982 983 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 984 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 985 986 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 987 err = -EINVAL; 988 warn_invalid_dmar(phys_addr, " returns all ones"); 989 goto unmap; 990 } 991 if (ecap_vcs(iommu->ecap)) 992 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); 993 994 /* the registers might be more than one page */ 995 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 996 cap_max_fault_reg_offset(iommu->cap)); 997 map_size = VTD_PAGE_ALIGN(map_size); 998 if (map_size > iommu->reg_size) { 999 iounmap(iommu->reg); 1000 release_mem_region(iommu->reg_phys, iommu->reg_size); 1001 iommu->reg_size = map_size; 1002 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 1003 iommu->name)) { 1004 pr_err("Can't reserve memory\n"); 1005 err = -EBUSY; 1006 goto out; 1007 } 1008 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1009 if (!iommu->reg) { 1010 pr_err("Can't map the region\n"); 1011 err = -ENOMEM; 1012 goto release; 1013 } 1014 } 1015 err = 0; 1016 goto out; 1017 1018 unmap: 1019 iounmap(iommu->reg); 1020 release: 1021 release_mem_region(iommu->reg_phys, iommu->reg_size); 1022 out: 1023 return err; 1024 } 1025 1026 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1027 { 1028 struct intel_iommu *iommu; 1029 u32 ver, sts; 1030 int agaw = -1; 1031 int msagaw = -1; 1032 int err; 1033 1034 if (!drhd->reg_base_addr) { 1035 warn_invalid_dmar(0, ""); 1036 return -EINVAL; 1037 } 1038 1039 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1040 if (!iommu) 1041 return -ENOMEM; 1042 1043 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0, 1044 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL); 1045 if (iommu->seq_id < 0) { 1046 pr_err("Failed to allocate seq_id\n"); 1047 err = iommu->seq_id; 1048 goto error; 1049 } 1050 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1051 1052 err = map_iommu(iommu, drhd->reg_base_addr); 1053 if (err) { 1054 pr_err("Failed to map %s\n", iommu->name); 1055 goto error_free_seq_id; 1056 } 1057 1058 err = -EINVAL; 1059 if (cap_sagaw(iommu->cap) == 0) { 1060 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1061 iommu->name); 1062 drhd->ignored = 1; 1063 } 1064 1065 if (!drhd->ignored) { 1066 agaw = iommu_calculate_agaw(iommu); 1067 if (agaw < 0) { 1068 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1069 iommu->seq_id); 1070 drhd->ignored = 1; 1071 } 1072 } 1073 if (!drhd->ignored) { 1074 msagaw = iommu_calculate_max_sagaw(iommu); 1075 if (msagaw < 0) { 1076 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1077 iommu->seq_id); 1078 drhd->ignored = 1; 1079 agaw = -1; 1080 } 1081 } 1082 iommu->agaw = agaw; 1083 iommu->msagaw = msagaw; 1084 iommu->segment = drhd->segment; 1085 1086 iommu->node = NUMA_NO_NODE; 1087 1088 ver = readl(iommu->reg + DMAR_VER_REG); 1089 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1090 iommu->name, 1091 (unsigned long long)drhd->reg_base_addr, 1092 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1093 (unsigned long long)iommu->cap, 1094 (unsigned long long)iommu->ecap); 1095 1096 /* Reflect status in gcmd */ 1097 sts = readl(iommu->reg + DMAR_GSTS_REG); 1098 if (sts & DMA_GSTS_IRES) 1099 iommu->gcmd |= DMA_GCMD_IRE; 1100 if (sts & DMA_GSTS_TES) 1101 iommu->gcmd |= DMA_GCMD_TE; 1102 if (sts & DMA_GSTS_QIES) 1103 iommu->gcmd |= DMA_GCMD_QIE; 1104 1105 raw_spin_lock_init(&iommu->register_lock); 1106 1107 /* 1108 * A value of N in PSS field of eCap register indicates hardware 1109 * supports PASID field of N+1 bits. 1110 */ 1111 if (pasid_supported(iommu)) 1112 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap); 1113 1114 /* 1115 * This is only for hotplug; at boot time intel_iommu_enabled won't 1116 * be set yet. When intel_iommu_init() runs, it registers the units 1117 * present at boot time, then sets intel_iommu_enabled. 1118 */ 1119 if (intel_iommu_enabled && !drhd->ignored) { 1120 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1121 intel_iommu_groups, 1122 "%s", iommu->name); 1123 if (err) 1124 goto err_unmap; 1125 1126 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 1127 if (err) 1128 goto err_sysfs; 1129 } 1130 1131 drhd->iommu = iommu; 1132 iommu->drhd = drhd; 1133 1134 return 0; 1135 1136 err_sysfs: 1137 iommu_device_sysfs_remove(&iommu->iommu); 1138 err_unmap: 1139 unmap_iommu(iommu); 1140 error_free_seq_id: 1141 ida_free(&dmar_seq_ids, iommu->seq_id); 1142 error: 1143 kfree(iommu); 1144 return err; 1145 } 1146 1147 static void free_iommu(struct intel_iommu *iommu) 1148 { 1149 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1150 iommu_device_unregister(&iommu->iommu); 1151 iommu_device_sysfs_remove(&iommu->iommu); 1152 } 1153 1154 if (iommu->irq) { 1155 if (iommu->pr_irq) { 1156 free_irq(iommu->pr_irq, iommu); 1157 dmar_free_hwirq(iommu->pr_irq); 1158 iommu->pr_irq = 0; 1159 } 1160 free_irq(iommu->irq, iommu); 1161 dmar_free_hwirq(iommu->irq); 1162 iommu->irq = 0; 1163 } 1164 1165 if (iommu->qi) { 1166 free_page((unsigned long)iommu->qi->desc); 1167 kfree(iommu->qi->desc_status); 1168 kfree(iommu->qi); 1169 } 1170 1171 if (iommu->reg) 1172 unmap_iommu(iommu); 1173 1174 ida_free(&dmar_seq_ids, iommu->seq_id); 1175 kfree(iommu); 1176 } 1177 1178 /* 1179 * Reclaim all the submitted descriptors which have completed its work. 1180 */ 1181 static inline void reclaim_free_desc(struct q_inval *qi) 1182 { 1183 while (qi->desc_status[qi->free_tail] == QI_DONE || 1184 qi->desc_status[qi->free_tail] == QI_ABORT) { 1185 qi->desc_status[qi->free_tail] = QI_FREE; 1186 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1187 qi->free_cnt++; 1188 } 1189 } 1190 1191 static const char *qi_type_string(u8 type) 1192 { 1193 switch (type) { 1194 case QI_CC_TYPE: 1195 return "Context-cache Invalidation"; 1196 case QI_IOTLB_TYPE: 1197 return "IOTLB Invalidation"; 1198 case QI_DIOTLB_TYPE: 1199 return "Device-TLB Invalidation"; 1200 case QI_IEC_TYPE: 1201 return "Interrupt Entry Cache Invalidation"; 1202 case QI_IWD_TYPE: 1203 return "Invalidation Wait"; 1204 case QI_EIOTLB_TYPE: 1205 return "PASID-based IOTLB Invalidation"; 1206 case QI_PC_TYPE: 1207 return "PASID-cache Invalidation"; 1208 case QI_DEIOTLB_TYPE: 1209 return "PASID-based Device-TLB Invalidation"; 1210 case QI_PGRP_RESP_TYPE: 1211 return "Page Group Response"; 1212 default: 1213 return "UNKNOWN"; 1214 } 1215 } 1216 1217 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault) 1218 { 1219 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG); 1220 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG); 1221 struct qi_desc *desc = iommu->qi->desc + head; 1222 1223 if (fault & DMA_FSTS_IQE) 1224 pr_err("VT-d detected Invalidation Queue Error: Reason %llx", 1225 DMAR_IQER_REG_IQEI(iqe_err)); 1226 if (fault & DMA_FSTS_ITE) 1227 pr_err("VT-d detected Invalidation Time-out Error: SID %llx", 1228 DMAR_IQER_REG_ITESID(iqe_err)); 1229 if (fault & DMA_FSTS_ICE) 1230 pr_err("VT-d detected Invalidation Completion Error: SID %llx", 1231 DMAR_IQER_REG_ICESID(iqe_err)); 1232 1233 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1234 qi_type_string(desc->qw0 & 0xf), 1235 (unsigned long long)desc->qw0, 1236 (unsigned long long)desc->qw1); 1237 1238 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH; 1239 head <<= qi_shift(iommu); 1240 desc = iommu->qi->desc + head; 1241 1242 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1243 qi_type_string(desc->qw0 & 0xf), 1244 (unsigned long long)desc->qw0, 1245 (unsigned long long)desc->qw1); 1246 } 1247 1248 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1249 { 1250 u32 fault; 1251 int head, tail; 1252 struct q_inval *qi = iommu->qi; 1253 int shift = qi_shift(iommu); 1254 1255 if (qi->desc_status[wait_index] == QI_ABORT) 1256 return -EAGAIN; 1257 1258 fault = readl(iommu->reg + DMAR_FSTS_REG); 1259 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE)) 1260 qi_dump_fault(iommu, fault); 1261 1262 /* 1263 * If IQE happens, the head points to the descriptor associated 1264 * with the error. No new descriptors are fetched until the IQE 1265 * is cleared. 1266 */ 1267 if (fault & DMA_FSTS_IQE) { 1268 head = readl(iommu->reg + DMAR_IQH_REG); 1269 if ((head >> shift) == index) { 1270 struct qi_desc *desc = qi->desc + head; 1271 1272 /* 1273 * desc->qw2 and desc->qw3 are either reserved or 1274 * used by software as private data. We won't print 1275 * out these two qw's for security consideration. 1276 */ 1277 memcpy(desc, qi->desc + (wait_index << shift), 1278 1 << shift); 1279 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1280 pr_info("Invalidation Queue Error (IQE) cleared\n"); 1281 return -EINVAL; 1282 } 1283 } 1284 1285 /* 1286 * If ITE happens, all pending wait_desc commands are aborted. 1287 * No new descriptors are fetched until the ITE is cleared. 1288 */ 1289 if (fault & DMA_FSTS_ITE) { 1290 head = readl(iommu->reg + DMAR_IQH_REG); 1291 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1292 head |= 1; 1293 tail = readl(iommu->reg + DMAR_IQT_REG); 1294 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1295 1296 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1297 pr_info("Invalidation Time-out Error (ITE) cleared\n"); 1298 1299 do { 1300 if (qi->desc_status[head] == QI_IN_USE) 1301 qi->desc_status[head] = QI_ABORT; 1302 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1303 } while (head != tail); 1304 1305 if (qi->desc_status[wait_index] == QI_ABORT) 1306 return -EAGAIN; 1307 } 1308 1309 if (fault & DMA_FSTS_ICE) { 1310 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1311 pr_info("Invalidation Completion Error (ICE) cleared\n"); 1312 } 1313 1314 return 0; 1315 } 1316 1317 /* 1318 * Function to submit invalidation descriptors of all types to the queued 1319 * invalidation interface(QI). Multiple descriptors can be submitted at a 1320 * time, a wait descriptor will be appended to each submission to ensure 1321 * hardware has completed the invalidation before return. Wait descriptors 1322 * can be part of the submission but it will not be polled for completion. 1323 */ 1324 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1325 unsigned int count, unsigned long options) 1326 { 1327 struct q_inval *qi = iommu->qi; 1328 s64 devtlb_start_ktime = 0; 1329 s64 iotlb_start_ktime = 0; 1330 s64 iec_start_ktime = 0; 1331 struct qi_desc wait_desc; 1332 int wait_index, index; 1333 unsigned long flags; 1334 int offset, shift; 1335 int rc, i; 1336 u64 type; 1337 1338 if (!qi) 1339 return 0; 1340 1341 type = desc->qw0 & GENMASK_ULL(3, 0); 1342 1343 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) && 1344 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB)) 1345 iotlb_start_ktime = ktime_to_ns(ktime_get()); 1346 1347 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) && 1348 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB)) 1349 devtlb_start_ktime = ktime_to_ns(ktime_get()); 1350 1351 if (type == QI_IEC_TYPE && 1352 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC)) 1353 iec_start_ktime = ktime_to_ns(ktime_get()); 1354 1355 restart: 1356 rc = 0; 1357 1358 raw_spin_lock_irqsave(&qi->q_lock, flags); 1359 /* 1360 * Check if we have enough empty slots in the queue to submit, 1361 * the calculation is based on: 1362 * # of desc + 1 wait desc + 1 space between head and tail 1363 */ 1364 while (qi->free_cnt < count + 2) { 1365 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1366 cpu_relax(); 1367 raw_spin_lock_irqsave(&qi->q_lock, flags); 1368 } 1369 1370 index = qi->free_head; 1371 wait_index = (index + count) % QI_LENGTH; 1372 shift = qi_shift(iommu); 1373 1374 for (i = 0; i < count; i++) { 1375 offset = ((index + i) % QI_LENGTH) << shift; 1376 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1377 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1378 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1, 1379 desc[i].qw2, desc[i].qw3); 1380 } 1381 qi->desc_status[wait_index] = QI_IN_USE; 1382 1383 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1384 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1385 if (options & QI_OPT_WAIT_DRAIN) 1386 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1387 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1388 wait_desc.qw2 = 0; 1389 wait_desc.qw3 = 0; 1390 1391 offset = wait_index << shift; 1392 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1393 1394 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1395 qi->free_cnt -= count + 1; 1396 1397 /* 1398 * update the HW tail register indicating the presence of 1399 * new descriptors. 1400 */ 1401 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1402 1403 while (qi->desc_status[wait_index] != QI_DONE) { 1404 /* 1405 * We will leave the interrupts disabled, to prevent interrupt 1406 * context to queue another cmd while a cmd is already submitted 1407 * and waiting for completion on this cpu. This is to avoid 1408 * a deadlock where the interrupt context can wait indefinitely 1409 * for free slots in the queue. 1410 */ 1411 rc = qi_check_fault(iommu, index, wait_index); 1412 if (rc) 1413 break; 1414 1415 raw_spin_unlock(&qi->q_lock); 1416 cpu_relax(); 1417 raw_spin_lock(&qi->q_lock); 1418 } 1419 1420 for (i = 0; i < count; i++) 1421 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1422 1423 reclaim_free_desc(qi); 1424 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1425 1426 if (rc == -EAGAIN) 1427 goto restart; 1428 1429 if (iotlb_start_ktime) 1430 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB, 1431 ktime_to_ns(ktime_get()) - iotlb_start_ktime); 1432 1433 if (devtlb_start_ktime) 1434 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB, 1435 ktime_to_ns(ktime_get()) - devtlb_start_ktime); 1436 1437 if (iec_start_ktime) 1438 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC, 1439 ktime_to_ns(ktime_get()) - iec_start_ktime); 1440 1441 return rc; 1442 } 1443 1444 /* 1445 * Flush the global interrupt entry cache. 1446 */ 1447 void qi_global_iec(struct intel_iommu *iommu) 1448 { 1449 struct qi_desc desc; 1450 1451 desc.qw0 = QI_IEC_TYPE; 1452 desc.qw1 = 0; 1453 desc.qw2 = 0; 1454 desc.qw3 = 0; 1455 1456 /* should never fail */ 1457 qi_submit_sync(iommu, &desc, 1, 0); 1458 } 1459 1460 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1461 u64 type) 1462 { 1463 struct qi_desc desc; 1464 1465 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1466 | QI_CC_GRAN(type) | QI_CC_TYPE; 1467 desc.qw1 = 0; 1468 desc.qw2 = 0; 1469 desc.qw3 = 0; 1470 1471 qi_submit_sync(iommu, &desc, 1, 0); 1472 } 1473 1474 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1475 unsigned int size_order, u64 type) 1476 { 1477 u8 dw = 0, dr = 0; 1478 1479 struct qi_desc desc; 1480 int ih = 0; 1481 1482 if (cap_write_drain(iommu->cap)) 1483 dw = 1; 1484 1485 if (cap_read_drain(iommu->cap)) 1486 dr = 1; 1487 1488 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1489 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1490 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1491 | QI_IOTLB_AM(size_order); 1492 desc.qw2 = 0; 1493 desc.qw3 = 0; 1494 1495 qi_submit_sync(iommu, &desc, 1, 0); 1496 } 1497 1498 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1499 u16 qdep, u64 addr, unsigned mask) 1500 { 1501 struct qi_desc desc; 1502 1503 if (mask) { 1504 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1505 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1506 } else 1507 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1508 1509 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1510 qdep = 0; 1511 1512 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1513 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1514 desc.qw2 = 0; 1515 desc.qw3 = 0; 1516 1517 qi_submit_sync(iommu, &desc, 1, 0); 1518 } 1519 1520 /* PASID-based IOTLB invalidation */ 1521 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1522 unsigned long npages, bool ih) 1523 { 1524 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1525 1526 /* 1527 * npages == -1 means a PASID-selective invalidation, otherwise, 1528 * a positive value for Page-selective-within-PASID invalidation. 1529 * 0 is not a valid input. 1530 */ 1531 if (WARN_ON(!npages)) { 1532 pr_err("Invalid input npages = %ld\n", npages); 1533 return; 1534 } 1535 1536 if (npages == -1) { 1537 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1538 QI_EIOTLB_DID(did) | 1539 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1540 QI_EIOTLB_TYPE; 1541 desc.qw1 = 0; 1542 } else { 1543 int mask = ilog2(__roundup_pow_of_two(npages)); 1544 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1545 1546 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align))) 1547 addr = ALIGN_DOWN(addr, align); 1548 1549 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1550 QI_EIOTLB_DID(did) | 1551 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1552 QI_EIOTLB_TYPE; 1553 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1554 QI_EIOTLB_IH(ih) | 1555 QI_EIOTLB_AM(mask); 1556 } 1557 1558 qi_submit_sync(iommu, &desc, 1, 0); 1559 } 1560 1561 /* PASID-based device IOTLB Invalidate */ 1562 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1563 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1564 { 1565 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1566 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1567 1568 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1569 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1570 QI_DEV_IOTLB_PFSID(pfsid); 1571 1572 /* 1573 * If S bit is 0, we only flush a single page. If S bit is set, 1574 * The least significant zero bit indicates the invalidation address 1575 * range. VT-d spec 6.5.2.6. 1576 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1577 * size order = 0 is PAGE_SIZE 4KB 1578 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1579 * ECAP. 1580 */ 1581 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order)) 1582 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1583 addr, size_order); 1584 1585 /* Take page address */ 1586 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1587 1588 if (size_order) { 1589 /* 1590 * Existing 0s in address below size_order may be the least 1591 * significant bit, we must set them to 1s to avoid having 1592 * smaller size than desired. 1593 */ 1594 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1595 VTD_PAGE_SHIFT); 1596 /* Clear size_order bit to indicate size */ 1597 desc.qw1 &= ~mask; 1598 /* Set the S bit to indicate flushing more than 1 page */ 1599 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1600 } 1601 1602 qi_submit_sync(iommu, &desc, 1, 0); 1603 } 1604 1605 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1606 u64 granu, u32 pasid) 1607 { 1608 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1609 1610 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1611 QI_PC_GRAN(granu) | QI_PC_TYPE; 1612 qi_submit_sync(iommu, &desc, 1, 0); 1613 } 1614 1615 /* 1616 * Disable Queued Invalidation interface. 1617 */ 1618 void dmar_disable_qi(struct intel_iommu *iommu) 1619 { 1620 unsigned long flags; 1621 u32 sts; 1622 cycles_t start_time = get_cycles(); 1623 1624 if (!ecap_qis(iommu->ecap)) 1625 return; 1626 1627 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1628 1629 sts = readl(iommu->reg + DMAR_GSTS_REG); 1630 if (!(sts & DMA_GSTS_QIES)) 1631 goto end; 1632 1633 /* 1634 * Give a chance to HW to complete the pending invalidation requests. 1635 */ 1636 while ((readl(iommu->reg + DMAR_IQT_REG) != 1637 readl(iommu->reg + DMAR_IQH_REG)) && 1638 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1639 cpu_relax(); 1640 1641 iommu->gcmd &= ~DMA_GCMD_QIE; 1642 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1643 1644 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1645 !(sts & DMA_GSTS_QIES), sts); 1646 end: 1647 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1648 } 1649 1650 /* 1651 * Enable queued invalidation. 1652 */ 1653 static void __dmar_enable_qi(struct intel_iommu *iommu) 1654 { 1655 u32 sts; 1656 unsigned long flags; 1657 struct q_inval *qi = iommu->qi; 1658 u64 val = virt_to_phys(qi->desc); 1659 1660 qi->free_head = qi->free_tail = 0; 1661 qi->free_cnt = QI_LENGTH; 1662 1663 /* 1664 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1665 * is present. 1666 */ 1667 if (ecap_smts(iommu->ecap)) 1668 val |= (1 << 11) | 1; 1669 1670 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1671 1672 /* write zero to the tail reg */ 1673 writel(0, iommu->reg + DMAR_IQT_REG); 1674 1675 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1676 1677 iommu->gcmd |= DMA_GCMD_QIE; 1678 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1679 1680 /* Make sure hardware complete it */ 1681 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1682 1683 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1684 } 1685 1686 /* 1687 * Enable Queued Invalidation interface. This is a must to support 1688 * interrupt-remapping. Also used by DMA-remapping, which replaces 1689 * register based IOTLB invalidation. 1690 */ 1691 int dmar_enable_qi(struct intel_iommu *iommu) 1692 { 1693 struct q_inval *qi; 1694 struct page *desc_page; 1695 1696 if (!ecap_qis(iommu->ecap)) 1697 return -ENOENT; 1698 1699 /* 1700 * queued invalidation is already setup and enabled. 1701 */ 1702 if (iommu->qi) 1703 return 0; 1704 1705 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1706 if (!iommu->qi) 1707 return -ENOMEM; 1708 1709 qi = iommu->qi; 1710 1711 /* 1712 * Need two pages to accommodate 256 descriptors of 256 bits each 1713 * if the remapping hardware supports scalable mode translation. 1714 */ 1715 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1716 !!ecap_smts(iommu->ecap)); 1717 if (!desc_page) { 1718 kfree(qi); 1719 iommu->qi = NULL; 1720 return -ENOMEM; 1721 } 1722 1723 qi->desc = page_address(desc_page); 1724 1725 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1726 if (!qi->desc_status) { 1727 free_page((unsigned long) qi->desc); 1728 kfree(qi); 1729 iommu->qi = NULL; 1730 return -ENOMEM; 1731 } 1732 1733 raw_spin_lock_init(&qi->q_lock); 1734 1735 __dmar_enable_qi(iommu); 1736 1737 return 0; 1738 } 1739 1740 /* iommu interrupt handling. Most stuff are MSI-like. */ 1741 1742 enum faulttype { 1743 DMA_REMAP, 1744 INTR_REMAP, 1745 UNKNOWN, 1746 }; 1747 1748 static const char *dma_remap_fault_reasons[] = 1749 { 1750 "Software", 1751 "Present bit in root entry is clear", 1752 "Present bit in context entry is clear", 1753 "Invalid context entry", 1754 "Access beyond MGAW", 1755 "PTE Write access is not set", 1756 "PTE Read access is not set", 1757 "Next page table ptr is invalid", 1758 "Root table address invalid", 1759 "Context table ptr is invalid", 1760 "non-zero reserved fields in RTP", 1761 "non-zero reserved fields in CTP", 1762 "non-zero reserved fields in PTE", 1763 "PCE for translation request specifies blocking", 1764 }; 1765 1766 static const char * const dma_remap_sm_fault_reasons[] = { 1767 "SM: Invalid Root Table Address", 1768 "SM: TTM 0 for request with PASID", 1769 "SM: TTM 0 for page group request", 1770 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1771 "SM: Error attempting to access Root Entry", 1772 "SM: Present bit in Root Entry is clear", 1773 "SM: Non-zero reserved field set in Root Entry", 1774 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1775 "SM: Error attempting to access Context Entry", 1776 "SM: Present bit in Context Entry is clear", 1777 "SM: Non-zero reserved field set in the Context Entry", 1778 "SM: Invalid Context Entry", 1779 "SM: DTE field in Context Entry is clear", 1780 "SM: PASID Enable field in Context Entry is clear", 1781 "SM: PASID is larger than the max in Context Entry", 1782 "SM: PRE field in Context-Entry is clear", 1783 "SM: RID_PASID field error in Context-Entry", 1784 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1785 "SM: Error attempting to access the PASID Directory Entry", 1786 "SM: Present bit in Directory Entry is clear", 1787 "SM: Non-zero reserved field set in PASID Directory Entry", 1788 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1789 "SM: Error attempting to access PASID Table Entry", 1790 "SM: Present bit in PASID Table Entry is clear", 1791 "SM: Non-zero reserved field set in PASID Table Entry", 1792 "SM: Invalid Scalable-Mode PASID Table Entry", 1793 "SM: ERE field is clear in PASID Table Entry", 1794 "SM: SRE field is clear in PASID Table Entry", 1795 "Unknown", "Unknown",/* 0x5E-0x5F */ 1796 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1797 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1798 "SM: Error attempting to access first-level paging entry", 1799 "SM: Present bit in first-level paging entry is clear", 1800 "SM: Non-zero reserved field set in first-level paging entry", 1801 "SM: Error attempting to access FL-PML4 entry", 1802 "SM: First-level entry address beyond MGAW in Nested translation", 1803 "SM: Read permission error in FL-PML4 entry in Nested translation", 1804 "SM: Read permission error in first-level paging entry in Nested translation", 1805 "SM: Write permission error in first-level paging entry in Nested translation", 1806 "SM: Error attempting to access second-level paging entry", 1807 "SM: Read/Write permission error in second-level paging entry", 1808 "SM: Non-zero reserved field set in second-level paging entry", 1809 "SM: Invalid second-level page table pointer", 1810 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1811 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1812 "SM: Address in first-level translation is not canonical", 1813 "SM: U/S set 0 for first-level translation with user privilege", 1814 "SM: No execute permission for request with PASID and ER=1", 1815 "SM: Address beyond the DMA hardware max", 1816 "SM: Second-level entry address beyond the max", 1817 "SM: No write permission for Write/AtomicOp request", 1818 "SM: No read permission for Read/AtomicOp request", 1819 "SM: Invalid address-interrupt address", 1820 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1821 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1822 }; 1823 1824 static const char *irq_remap_fault_reasons[] = 1825 { 1826 "Detected reserved fields in the decoded interrupt-remapped request", 1827 "Interrupt index exceeded the interrupt-remapping table size", 1828 "Present field in the IRTE entry is clear", 1829 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1830 "Detected reserved fields in the IRTE entry", 1831 "Blocked a compatibility format interrupt request", 1832 "Blocked an interrupt request due to source-id verification failure", 1833 }; 1834 1835 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1836 { 1837 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1838 ARRAY_SIZE(irq_remap_fault_reasons))) { 1839 *fault_type = INTR_REMAP; 1840 return irq_remap_fault_reasons[fault_reason - 0x20]; 1841 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1842 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1843 *fault_type = DMA_REMAP; 1844 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1845 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1846 *fault_type = DMA_REMAP; 1847 return dma_remap_fault_reasons[fault_reason]; 1848 } else { 1849 *fault_type = UNKNOWN; 1850 return "Unknown"; 1851 } 1852 } 1853 1854 1855 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1856 { 1857 if (iommu->irq == irq) 1858 return DMAR_FECTL_REG; 1859 else if (iommu->pr_irq == irq) 1860 return DMAR_PECTL_REG; 1861 else 1862 BUG(); 1863 } 1864 1865 void dmar_msi_unmask(struct irq_data *data) 1866 { 1867 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1868 int reg = dmar_msi_reg(iommu, data->irq); 1869 unsigned long flag; 1870 1871 /* unmask it */ 1872 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1873 writel(0, iommu->reg + reg); 1874 /* Read a reg to force flush the post write */ 1875 readl(iommu->reg + reg); 1876 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1877 } 1878 1879 void dmar_msi_mask(struct irq_data *data) 1880 { 1881 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1882 int reg = dmar_msi_reg(iommu, data->irq); 1883 unsigned long flag; 1884 1885 /* mask it */ 1886 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1887 writel(DMA_FECTL_IM, iommu->reg + reg); 1888 /* Read a reg to force flush the post write */ 1889 readl(iommu->reg + reg); 1890 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1891 } 1892 1893 void dmar_msi_write(int irq, struct msi_msg *msg) 1894 { 1895 struct intel_iommu *iommu = irq_get_handler_data(irq); 1896 int reg = dmar_msi_reg(iommu, irq); 1897 unsigned long flag; 1898 1899 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1900 writel(msg->data, iommu->reg + reg + 4); 1901 writel(msg->address_lo, iommu->reg + reg + 8); 1902 writel(msg->address_hi, iommu->reg + reg + 12); 1903 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1904 } 1905 1906 void dmar_msi_read(int irq, struct msi_msg *msg) 1907 { 1908 struct intel_iommu *iommu = irq_get_handler_data(irq); 1909 int reg = dmar_msi_reg(iommu, irq); 1910 unsigned long flag; 1911 1912 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1913 msg->data = readl(iommu->reg + reg + 4); 1914 msg->address_lo = readl(iommu->reg + reg + 8); 1915 msg->address_hi = readl(iommu->reg + reg + 12); 1916 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1917 } 1918 1919 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1920 u8 fault_reason, u32 pasid, u16 source_id, 1921 unsigned long long addr) 1922 { 1923 const char *reason; 1924 int fault_type; 1925 1926 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1927 1928 if (fault_type == INTR_REMAP) { 1929 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n", 1930 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1931 PCI_FUNC(source_id & 0xFF), addr >> 48, 1932 fault_reason, reason); 1933 1934 return 0; 1935 } 1936 1937 if (pasid == INVALID_IOASID) 1938 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 1939 type ? "DMA Read" : "DMA Write", 1940 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1941 PCI_FUNC(source_id & 0xFF), addr, 1942 fault_reason, reason); 1943 else 1944 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 1945 type ? "DMA Read" : "DMA Write", pasid, 1946 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1947 PCI_FUNC(source_id & 0xFF), addr, 1948 fault_reason, reason); 1949 1950 dmar_fault_dump_ptes(iommu, source_id, addr, pasid); 1951 1952 return 0; 1953 } 1954 1955 #define PRIMARY_FAULT_REG_LEN (16) 1956 irqreturn_t dmar_fault(int irq, void *dev_id) 1957 { 1958 struct intel_iommu *iommu = dev_id; 1959 int reg, fault_index; 1960 u32 fault_status; 1961 unsigned long flag; 1962 static DEFINE_RATELIMIT_STATE(rs, 1963 DEFAULT_RATELIMIT_INTERVAL, 1964 DEFAULT_RATELIMIT_BURST); 1965 1966 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1967 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1968 if (fault_status && __ratelimit(&rs)) 1969 pr_err("DRHD: handling fault status reg %x\n", fault_status); 1970 1971 /* TBD: ignore advanced fault log currently */ 1972 if (!(fault_status & DMA_FSTS_PPF)) 1973 goto unlock_exit; 1974 1975 fault_index = dma_fsts_fault_record_index(fault_status); 1976 reg = cap_fault_reg_offset(iommu->cap); 1977 while (1) { 1978 /* Disable printing, simply clear the fault when ratelimited */ 1979 bool ratelimited = !__ratelimit(&rs); 1980 u8 fault_reason; 1981 u16 source_id; 1982 u64 guest_addr; 1983 u32 pasid; 1984 int type; 1985 u32 data; 1986 bool pasid_present; 1987 1988 /* highest 32 bits */ 1989 data = readl(iommu->reg + reg + 1990 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1991 if (!(data & DMA_FRCD_F)) 1992 break; 1993 1994 if (!ratelimited) { 1995 fault_reason = dma_frcd_fault_reason(data); 1996 type = dma_frcd_type(data); 1997 1998 pasid = dma_frcd_pasid_value(data); 1999 data = readl(iommu->reg + reg + 2000 fault_index * PRIMARY_FAULT_REG_LEN + 8); 2001 source_id = dma_frcd_source_id(data); 2002 2003 pasid_present = dma_frcd_pasid_present(data); 2004 guest_addr = dmar_readq(iommu->reg + reg + 2005 fault_index * PRIMARY_FAULT_REG_LEN); 2006 guest_addr = dma_frcd_page_addr(guest_addr); 2007 } 2008 2009 /* clear the fault */ 2010 writel(DMA_FRCD_F, iommu->reg + reg + 2011 fault_index * PRIMARY_FAULT_REG_LEN + 12); 2012 2013 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2014 2015 if (!ratelimited) 2016 /* Using pasid -1 if pasid is not present */ 2017 dmar_fault_do_one(iommu, type, fault_reason, 2018 pasid_present ? pasid : INVALID_IOASID, 2019 source_id, guest_addr); 2020 2021 fault_index++; 2022 if (fault_index >= cap_num_fault_regs(iommu->cap)) 2023 fault_index = 0; 2024 raw_spin_lock_irqsave(&iommu->register_lock, flag); 2025 } 2026 2027 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 2028 iommu->reg + DMAR_FSTS_REG); 2029 2030 unlock_exit: 2031 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2032 return IRQ_HANDLED; 2033 } 2034 2035 int dmar_set_interrupt(struct intel_iommu *iommu) 2036 { 2037 int irq, ret; 2038 2039 /* 2040 * Check if the fault interrupt is already initialized. 2041 */ 2042 if (iommu->irq) 2043 return 0; 2044 2045 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 2046 if (irq > 0) { 2047 iommu->irq = irq; 2048 } else { 2049 pr_err("No free IRQ vectors\n"); 2050 return -EINVAL; 2051 } 2052 2053 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 2054 if (ret) 2055 pr_err("Can't request irq\n"); 2056 return ret; 2057 } 2058 2059 int __init enable_drhd_fault_handling(void) 2060 { 2061 struct dmar_drhd_unit *drhd; 2062 struct intel_iommu *iommu; 2063 2064 /* 2065 * Enable fault control interrupt. 2066 */ 2067 for_each_iommu(iommu, drhd) { 2068 u32 fault_status; 2069 int ret = dmar_set_interrupt(iommu); 2070 2071 if (ret) { 2072 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 2073 (unsigned long long)drhd->reg_base_addr, ret); 2074 return -1; 2075 } 2076 2077 /* 2078 * Clear any previous faults. 2079 */ 2080 dmar_fault(iommu->irq, iommu); 2081 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 2082 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 2083 } 2084 2085 return 0; 2086 } 2087 2088 /* 2089 * Re-enable Queued Invalidation interface. 2090 */ 2091 int dmar_reenable_qi(struct intel_iommu *iommu) 2092 { 2093 if (!ecap_qis(iommu->ecap)) 2094 return -ENOENT; 2095 2096 if (!iommu->qi) 2097 return -ENOENT; 2098 2099 /* 2100 * First disable queued invalidation. 2101 */ 2102 dmar_disable_qi(iommu); 2103 /* 2104 * Then enable queued invalidation again. Since there is no pending 2105 * invalidation requests now, it's safe to re-enable queued 2106 * invalidation. 2107 */ 2108 __dmar_enable_qi(iommu); 2109 2110 return 0; 2111 } 2112 2113 /* 2114 * Check interrupt remapping support in DMAR table description. 2115 */ 2116 int __init dmar_ir_support(void) 2117 { 2118 struct acpi_table_dmar *dmar; 2119 dmar = (struct acpi_table_dmar *)dmar_tbl; 2120 if (!dmar) 2121 return 0; 2122 return dmar->flags & 0x1; 2123 } 2124 2125 /* Check whether DMAR units are in use */ 2126 static inline bool dmar_in_use(void) 2127 { 2128 return irq_remapping_enabled || intel_iommu_enabled; 2129 } 2130 2131 static int __init dmar_free_unused_resources(void) 2132 { 2133 struct dmar_drhd_unit *dmaru, *dmaru_n; 2134 2135 if (dmar_in_use()) 2136 return 0; 2137 2138 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2139 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2140 2141 down_write(&dmar_global_lock); 2142 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2143 list_del(&dmaru->list); 2144 dmar_free_drhd(dmaru); 2145 } 2146 up_write(&dmar_global_lock); 2147 2148 return 0; 2149 } 2150 2151 late_initcall(dmar_free_unused_resources); 2152 2153 /* 2154 * DMAR Hotplug Support 2155 * For more details, please refer to Intel(R) Virtualization Technology 2156 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2157 * "Remapping Hardware Unit Hot Plug". 2158 */ 2159 static guid_t dmar_hp_guid = 2160 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2161 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2162 2163 /* 2164 * Currently there's only one revision and BIOS will not check the revision id, 2165 * so use 0 for safety. 2166 */ 2167 #define DMAR_DSM_REV_ID 0 2168 #define DMAR_DSM_FUNC_DRHD 1 2169 #define DMAR_DSM_FUNC_ATSR 2 2170 #define DMAR_DSM_FUNC_RHSA 3 2171 #define DMAR_DSM_FUNC_SATC 4 2172 2173 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2174 { 2175 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2176 } 2177 2178 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2179 dmar_res_handler_t handler, void *arg) 2180 { 2181 int ret = -ENODEV; 2182 union acpi_object *obj; 2183 struct acpi_dmar_header *start; 2184 struct dmar_res_callback callback; 2185 static int res_type[] = { 2186 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2187 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2188 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2189 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC, 2190 }; 2191 2192 if (!dmar_detect_dsm(handle, func)) 2193 return 0; 2194 2195 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2196 func, NULL, ACPI_TYPE_BUFFER); 2197 if (!obj) 2198 return -ENODEV; 2199 2200 memset(&callback, 0, sizeof(callback)); 2201 callback.cb[res_type[func]] = handler; 2202 callback.arg[res_type[func]] = arg; 2203 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2204 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2205 2206 ACPI_FREE(obj); 2207 2208 return ret; 2209 } 2210 2211 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2212 { 2213 int ret; 2214 struct dmar_drhd_unit *dmaru; 2215 2216 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2217 if (!dmaru) 2218 return -ENODEV; 2219 2220 ret = dmar_ir_hotplug(dmaru, true); 2221 if (ret == 0) 2222 ret = dmar_iommu_hotplug(dmaru, true); 2223 2224 return ret; 2225 } 2226 2227 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2228 { 2229 int i, ret; 2230 struct device *dev; 2231 struct dmar_drhd_unit *dmaru; 2232 2233 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2234 if (!dmaru) 2235 return 0; 2236 2237 /* 2238 * All PCI devices managed by this unit should have been destroyed. 2239 */ 2240 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2241 for_each_active_dev_scope(dmaru->devices, 2242 dmaru->devices_cnt, i, dev) 2243 return -EBUSY; 2244 } 2245 2246 ret = dmar_ir_hotplug(dmaru, false); 2247 if (ret == 0) 2248 ret = dmar_iommu_hotplug(dmaru, false); 2249 2250 return ret; 2251 } 2252 2253 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2254 { 2255 struct dmar_drhd_unit *dmaru; 2256 2257 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2258 if (dmaru) { 2259 list_del_rcu(&dmaru->list); 2260 synchronize_rcu(); 2261 dmar_free_drhd(dmaru); 2262 } 2263 2264 return 0; 2265 } 2266 2267 static int dmar_hotplug_insert(acpi_handle handle) 2268 { 2269 int ret; 2270 int drhd_count = 0; 2271 2272 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2273 &dmar_validate_one_drhd, (void *)1); 2274 if (ret) 2275 goto out; 2276 2277 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2278 &dmar_parse_one_drhd, (void *)&drhd_count); 2279 if (ret == 0 && drhd_count == 0) { 2280 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2281 goto out; 2282 } else if (ret) { 2283 goto release_drhd; 2284 } 2285 2286 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2287 &dmar_parse_one_rhsa, NULL); 2288 if (ret) 2289 goto release_drhd; 2290 2291 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2292 &dmar_parse_one_atsr, NULL); 2293 if (ret) 2294 goto release_atsr; 2295 2296 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2297 &dmar_hp_add_drhd, NULL); 2298 if (!ret) 2299 return 0; 2300 2301 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2302 &dmar_hp_remove_drhd, NULL); 2303 release_atsr: 2304 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2305 &dmar_release_one_atsr, NULL); 2306 release_drhd: 2307 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2308 &dmar_hp_release_drhd, NULL); 2309 out: 2310 return ret; 2311 } 2312 2313 static int dmar_hotplug_remove(acpi_handle handle) 2314 { 2315 int ret; 2316 2317 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2318 &dmar_check_one_atsr, NULL); 2319 if (ret) 2320 return ret; 2321 2322 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2323 &dmar_hp_remove_drhd, NULL); 2324 if (ret == 0) { 2325 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2326 &dmar_release_one_atsr, NULL)); 2327 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2328 &dmar_hp_release_drhd, NULL)); 2329 } else { 2330 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2331 &dmar_hp_add_drhd, NULL); 2332 } 2333 2334 return ret; 2335 } 2336 2337 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2338 void *context, void **retval) 2339 { 2340 acpi_handle *phdl = retval; 2341 2342 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2343 *phdl = handle; 2344 return AE_CTRL_TERMINATE; 2345 } 2346 2347 return AE_OK; 2348 } 2349 2350 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2351 { 2352 int ret; 2353 acpi_handle tmp = NULL; 2354 acpi_status status; 2355 2356 if (!dmar_in_use()) 2357 return 0; 2358 2359 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2360 tmp = handle; 2361 } else { 2362 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2363 ACPI_UINT32_MAX, 2364 dmar_get_dsm_handle, 2365 NULL, NULL, &tmp); 2366 if (ACPI_FAILURE(status)) { 2367 pr_warn("Failed to locate _DSM method.\n"); 2368 return -ENXIO; 2369 } 2370 } 2371 if (tmp == NULL) 2372 return 0; 2373 2374 down_write(&dmar_global_lock); 2375 if (insert) 2376 ret = dmar_hotplug_insert(tmp); 2377 else 2378 ret = dmar_hotplug_remove(tmp); 2379 up_write(&dmar_global_lock); 2380 2381 return ret; 2382 } 2383 2384 int dmar_device_add(acpi_handle handle) 2385 { 2386 return dmar_device_hotplug(handle, true); 2387 } 2388 2389 int dmar_device_remove(acpi_handle handle) 2390 { 2391 return dmar_device_hotplug(handle, false); 2392 } 2393 2394 /* 2395 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2396 * 2397 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2398 * the ACPI DMAR table. This means that the platform boot firmware has made 2399 * sure no device can issue DMA outside of RMRR regions. 2400 */ 2401 bool dmar_platform_optin(void) 2402 { 2403 struct acpi_table_dmar *dmar; 2404 acpi_status status; 2405 bool ret; 2406 2407 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2408 (struct acpi_table_header **)&dmar); 2409 if (ACPI_FAILURE(status)) 2410 return false; 2411 2412 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2413 acpi_put_table((struct acpi_table_header *)dmar); 2414 2415 return ret; 2416 } 2417 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2418