xref: /linux/drivers/iommu/intel/dmar.c (revision 1adf3cc20d693569ebee90fd91fa34b0570fcd6f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16 
17 #define pr_fmt(fmt)     "DMAR: " fmt
18 
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
32 
33 #include "iommu.h"
34 #include "../irq_remapping.h"
35 #include "perf.h"
36 #include "trace.h"
37 
38 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
39 struct dmar_res_callback {
40 	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
41 	void			*arg[ACPI_DMAR_TYPE_RESERVED];
42 	bool			ignore_unhandled;
43 	bool			print_entry;
44 };
45 
46 /*
47  * Assumptions:
48  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
49  *    before IO devices managed by that unit.
50  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
51  *    after IO devices managed by that unit.
52  * 3) Hotplug events are rare.
53  *
54  * Locking rules for DMA and interrupt remapping related global data structures:
55  * 1) Use dmar_global_lock in process context
56  * 2) Use RCU in interrupt context
57  */
58 DECLARE_RWSEM(dmar_global_lock);
59 LIST_HEAD(dmar_drhd_units);
60 
61 struct acpi_table_header * __initdata dmar_tbl;
62 static int dmar_dev_scope_status = 1;
63 static DEFINE_IDA(dmar_seq_ids);
64 
65 static int alloc_iommu(struct dmar_drhd_unit *drhd);
66 static void free_iommu(struct intel_iommu *iommu);
67 
68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70 	/*
71 	 * add INCLUDE_ALL at the tail, so scan the list will find it at
72 	 * the very end.
73 	 */
74 	if (drhd->include_all)
75 		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76 	else
77 		list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79 
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82 	struct acpi_dmar_device_scope *scope;
83 
84 	*cnt = 0;
85 	while (start < end) {
86 		scope = start;
87 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90 			(*cnt)++;
91 		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92 			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93 			pr_warn("Unsupported device scope\n");
94 		}
95 		start += scope->length;
96 	}
97 	if (*cnt == 0)
98 		return NULL;
99 
100 	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102 
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105 	int i;
106 	struct device *tmp_dev;
107 
108 	if (*devices && *cnt) {
109 		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110 			put_device(tmp_dev);
111 		kfree(*devices);
112 	}
113 
114 	*devices = NULL;
115 	*cnt = 0;
116 }
117 
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120 
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124 	int level = 0;
125 	size_t size;
126 	struct pci_dev *tmp;
127 	struct dmar_pci_notify_info *info;
128 
129 	BUG_ON(dev->is_virtfn);
130 
131 	/*
132 	 * Ignore devices that have a domain number higher than what can
133 	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134 	 */
135 	if (pci_domain_nr(dev->bus) > U16_MAX)
136 		return NULL;
137 
138 	/* Only generate path[] for device addition event */
139 	if (event == BUS_NOTIFY_ADD_DEVICE)
140 		for (tmp = dev; tmp; tmp = tmp->bus->self)
141 			level++;
142 
143 	size = struct_size(info, path, level);
144 	if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146 	} else {
147 		info = kzalloc(size, GFP_KERNEL);
148 		if (!info) {
149 			if (dmar_dev_scope_status == 0)
150 				dmar_dev_scope_status = -ENOMEM;
151 			return NULL;
152 		}
153 	}
154 
155 	info->event = event;
156 	info->dev = dev;
157 	info->seg = pci_domain_nr(dev->bus);
158 	info->level = level;
159 	if (event == BUS_NOTIFY_ADD_DEVICE) {
160 		for (tmp = dev; tmp; tmp = tmp->bus->self) {
161 			level--;
162 			info->path[level].bus = tmp->bus->number;
163 			info->path[level].device = PCI_SLOT(tmp->devfn);
164 			info->path[level].function = PCI_FUNC(tmp->devfn);
165 			if (pci_is_root_bus(tmp->bus))
166 				info->bus = tmp->bus->number;
167 		}
168 	}
169 
170 	return info;
171 }
172 
173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174 {
175 	if ((void *)info != dmar_pci_notify_info_buf)
176 		kfree(info);
177 }
178 
179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 				struct acpi_dmar_pci_path *path, int count)
181 {
182 	int i;
183 
184 	if (info->bus != bus)
185 		goto fallback;
186 	if (info->level != count)
187 		goto fallback;
188 
189 	for (i = 0; i < count; i++) {
190 		if (path[i].device != info->path[i].device ||
191 		    path[i].function != info->path[i].function)
192 			goto fallback;
193 	}
194 
195 	return true;
196 
197 fallback:
198 
199 	if (count != 1)
200 		return false;
201 
202 	i = info->level - 1;
203 	if (bus              == info->path[i].bus &&
204 	    path[0].device   == info->path[i].device &&
205 	    path[0].function == info->path[i].function) {
206 		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 			bus, path[0].device, path[0].function);
208 		return true;
209 	}
210 
211 	return false;
212 }
213 
214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 			  void *start, void*end, u16 segment,
217 			  struct dmar_dev_scope *devices,
218 			  int devices_cnt)
219 {
220 	int i, level;
221 	struct device *tmp, *dev = &info->dev->dev;
222 	struct acpi_dmar_device_scope *scope;
223 	struct acpi_dmar_pci_path *path;
224 
225 	if (segment != info->seg)
226 		return 0;
227 
228 	for (; start < end; start += scope->length) {
229 		scope = start;
230 		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232 			continue;
233 
234 		path = (struct acpi_dmar_pci_path *)(scope + 1);
235 		level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 		if (!dmar_match_pci_path(info, scope->bus, path, level))
237 			continue;
238 
239 		/*
240 		 * We expect devices with endpoint scope to have normal PCI
241 		 * headers, and devices with bridge scope to have bridge PCI
242 		 * headers.  However PCI NTB devices may be listed in the
243 		 * DMAR table with bridge scope, even though they have a
244 		 * normal PCI header.  NTB devices are identified by class
245 		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 		 * for this special case.
247 		 */
248 		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 			pr_warn("Device scope type does not match for %s\n",
254 				pci_name(info->dev));
255 			return -EINVAL;
256 		}
257 
258 		for_each_dev_scope(devices, devices_cnt, i, tmp)
259 			if (tmp == NULL) {
260 				devices[i].bus = info->dev->bus->number;
261 				devices[i].devfn = info->dev->devfn;
262 				rcu_assign_pointer(devices[i].dev,
263 						   get_device(dev));
264 				return 1;
265 			}
266 		BUG_ON(i >= devices_cnt);
267 	}
268 
269 	return 0;
270 }
271 
272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
273 			  struct dmar_dev_scope *devices, int count)
274 {
275 	int index;
276 	struct device *tmp;
277 
278 	if (info->seg != segment)
279 		return 0;
280 
281 	for_each_active_dev_scope(devices, count, index, tmp)
282 		if (tmp == &info->dev->dev) {
283 			RCU_INIT_POINTER(devices[index].dev, NULL);
284 			synchronize_rcu();
285 			put_device(tmp);
286 			return 1;
287 		}
288 
289 	return 0;
290 }
291 
292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
293 {
294 	int ret = 0;
295 	struct dmar_drhd_unit *dmaru;
296 	struct acpi_dmar_hardware_unit *drhd;
297 
298 	for_each_drhd_unit(dmaru) {
299 		if (dmaru->include_all)
300 			continue;
301 
302 		drhd = container_of(dmaru->hdr,
303 				    struct acpi_dmar_hardware_unit, header);
304 		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
305 				((void *)drhd) + drhd->header.length,
306 				dmaru->segment,
307 				dmaru->devices, dmaru->devices_cnt);
308 		if (ret)
309 			break;
310 	}
311 	if (ret >= 0)
312 		ret = dmar_iommu_notify_scope_dev(info);
313 	if (ret < 0 && dmar_dev_scope_status == 0)
314 		dmar_dev_scope_status = ret;
315 
316 	if (ret >= 0)
317 		intel_irq_remap_add_device(info);
318 
319 	return ret;
320 }
321 
322 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323 {
324 	struct dmar_drhd_unit *dmaru;
325 
326 	for_each_drhd_unit(dmaru)
327 		if (dmar_remove_dev_scope(info, dmaru->segment,
328 			dmaru->devices, dmaru->devices_cnt))
329 			break;
330 	dmar_iommu_notify_scope_dev(info);
331 }
332 
333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
334 {
335 	struct pci_dev *physfn = pci_physfn(pdev);
336 
337 	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
338 }
339 
340 static int dmar_pci_bus_notifier(struct notifier_block *nb,
341 				 unsigned long action, void *data)
342 {
343 	struct pci_dev *pdev = to_pci_dev(data);
344 	struct dmar_pci_notify_info *info;
345 
346 	/* Only care about add/remove events for physical functions.
347 	 * For VFs we actually do the lookup based on the corresponding
348 	 * PF in device_to_iommu() anyway. */
349 	if (pdev->is_virtfn) {
350 		/*
351 		 * Ensure that the VF device inherits the irq domain of the
352 		 * PF device. Ideally the device would inherit the domain
353 		 * from the bus, but DMAR can have multiple units per bus
354 		 * which makes this impossible. The VF 'bus' could inherit
355 		 * from the PF device, but that's yet another x86'sism to
356 		 * inflict on everybody else.
357 		 */
358 		if (action == BUS_NOTIFY_ADD_DEVICE)
359 			vf_inherit_msi_domain(pdev);
360 		return NOTIFY_DONE;
361 	}
362 
363 	if (action != BUS_NOTIFY_ADD_DEVICE &&
364 	    action != BUS_NOTIFY_REMOVED_DEVICE)
365 		return NOTIFY_DONE;
366 
367 	info = dmar_alloc_pci_notify_info(pdev, action);
368 	if (!info)
369 		return NOTIFY_DONE;
370 
371 	down_write(&dmar_global_lock);
372 	if (action == BUS_NOTIFY_ADD_DEVICE)
373 		dmar_pci_bus_add_dev(info);
374 	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
375 		dmar_pci_bus_del_dev(info);
376 	up_write(&dmar_global_lock);
377 
378 	dmar_free_pci_notify_info(info);
379 
380 	return NOTIFY_OK;
381 }
382 
383 static struct notifier_block dmar_pci_bus_nb = {
384 	.notifier_call = dmar_pci_bus_notifier,
385 	.priority = 1,
386 };
387 
388 static struct dmar_drhd_unit *
389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
390 {
391 	struct dmar_drhd_unit *dmaru;
392 
393 	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
394 				dmar_rcu_check())
395 		if (dmaru->segment == drhd->segment &&
396 		    dmaru->reg_base_addr == drhd->address)
397 			return dmaru;
398 
399 	return NULL;
400 }
401 
402 /*
403  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
404  * structure which uniquely represent one DMA remapping hardware unit
405  * present in the platform
406  */
407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
408 {
409 	struct acpi_dmar_hardware_unit *drhd;
410 	struct dmar_drhd_unit *dmaru;
411 	int ret;
412 
413 	drhd = (struct acpi_dmar_hardware_unit *)header;
414 	dmaru = dmar_find_dmaru(drhd);
415 	if (dmaru)
416 		goto out;
417 
418 	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
419 	if (!dmaru)
420 		return -ENOMEM;
421 
422 	/*
423 	 * If header is allocated from slab by ACPI _DSM method, we need to
424 	 * copy the content because the memory buffer will be freed on return.
425 	 */
426 	dmaru->hdr = (void *)(dmaru + 1);
427 	memcpy(dmaru->hdr, header, header->length);
428 	dmaru->reg_base_addr = drhd->address;
429 	dmaru->segment = drhd->segment;
430 	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
431 	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
432 					      ((void *)drhd) + drhd->header.length,
433 					      &dmaru->devices_cnt);
434 	if (dmaru->devices_cnt && dmaru->devices == NULL) {
435 		kfree(dmaru);
436 		return -ENOMEM;
437 	}
438 
439 	ret = alloc_iommu(dmaru);
440 	if (ret) {
441 		dmar_free_dev_scope(&dmaru->devices,
442 				    &dmaru->devices_cnt);
443 		kfree(dmaru);
444 		return ret;
445 	}
446 	dmar_register_drhd_unit(dmaru);
447 
448 out:
449 	if (arg)
450 		(*(int *)arg)++;
451 
452 	return 0;
453 }
454 
455 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
456 {
457 	if (dmaru->devices && dmaru->devices_cnt)
458 		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
459 	if (dmaru->iommu)
460 		free_iommu(dmaru->iommu);
461 	kfree(dmaru);
462 }
463 
464 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
465 				      void *arg)
466 {
467 	struct acpi_dmar_andd *andd = (void *)header;
468 
469 	/* Check for NUL termination within the designated length */
470 	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
471 		pr_warn(FW_BUG
472 			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
473 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
474 			   dmi_get_system_info(DMI_BIOS_VENDOR),
475 			   dmi_get_system_info(DMI_BIOS_VERSION),
476 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
477 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
478 		return -EINVAL;
479 	}
480 	pr_info("ANDD device: %x name: %s\n", andd->device_number,
481 		andd->device_name);
482 
483 	return 0;
484 }
485 
486 #ifdef CONFIG_ACPI_NUMA
487 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
488 {
489 	struct acpi_dmar_rhsa *rhsa;
490 	struct dmar_drhd_unit *drhd;
491 
492 	rhsa = (struct acpi_dmar_rhsa *)header;
493 	for_each_drhd_unit(drhd) {
494 		if (drhd->reg_base_addr == rhsa->base_address) {
495 			int node = pxm_to_node(rhsa->proximity_domain);
496 
497 			if (node != NUMA_NO_NODE && !node_online(node))
498 				node = NUMA_NO_NODE;
499 			drhd->iommu->node = node;
500 			return 0;
501 		}
502 	}
503 	pr_warn(FW_BUG
504 		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
505 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
506 		rhsa->base_address,
507 		dmi_get_system_info(DMI_BIOS_VENDOR),
508 		dmi_get_system_info(DMI_BIOS_VERSION),
509 		dmi_get_system_info(DMI_PRODUCT_VERSION));
510 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
511 
512 	return 0;
513 }
514 #else
515 #define	dmar_parse_one_rhsa		dmar_res_noop
516 #endif
517 
518 static void
519 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
520 {
521 	struct acpi_dmar_hardware_unit *drhd;
522 	struct acpi_dmar_reserved_memory *rmrr;
523 	struct acpi_dmar_atsr *atsr;
524 	struct acpi_dmar_rhsa *rhsa;
525 	struct acpi_dmar_satc *satc;
526 
527 	switch (header->type) {
528 	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
529 		drhd = container_of(header, struct acpi_dmar_hardware_unit,
530 				    header);
531 		pr_info("DRHD base: %#016Lx flags: %#x\n",
532 			(unsigned long long)drhd->address, drhd->flags);
533 		break;
534 	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
535 		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
536 				    header);
537 		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
538 			(unsigned long long)rmrr->base_address,
539 			(unsigned long long)rmrr->end_address);
540 		break;
541 	case ACPI_DMAR_TYPE_ROOT_ATS:
542 		atsr = container_of(header, struct acpi_dmar_atsr, header);
543 		pr_info("ATSR flags: %#x\n", atsr->flags);
544 		break;
545 	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
546 		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
547 		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
548 		       (unsigned long long)rhsa->base_address,
549 		       rhsa->proximity_domain);
550 		break;
551 	case ACPI_DMAR_TYPE_NAMESPACE:
552 		/* We don't print this here because we need to sanity-check
553 		   it first. So print it in dmar_parse_one_andd() instead. */
554 		break;
555 	case ACPI_DMAR_TYPE_SATC:
556 		satc = container_of(header, struct acpi_dmar_satc, header);
557 		pr_info("SATC flags: 0x%x\n", satc->flags);
558 		break;
559 	}
560 }
561 
562 /**
563  * dmar_table_detect - checks to see if the platform supports DMAR devices
564  */
565 static int __init dmar_table_detect(void)
566 {
567 	acpi_status status = AE_OK;
568 
569 	/* if we could find DMAR table, then there are DMAR devices */
570 	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
571 
572 	if (ACPI_SUCCESS(status) && !dmar_tbl) {
573 		pr_warn("Unable to map DMAR\n");
574 		status = AE_NOT_FOUND;
575 	}
576 
577 	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
578 }
579 
580 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
581 				       size_t len, struct dmar_res_callback *cb)
582 {
583 	struct acpi_dmar_header *iter, *next;
584 	struct acpi_dmar_header *end = ((void *)start) + len;
585 
586 	for (iter = start; iter < end; iter = next) {
587 		next = (void *)iter + iter->length;
588 		if (iter->length == 0) {
589 			/* Avoid looping forever on bad ACPI tables */
590 			pr_debug(FW_BUG "Invalid 0-length structure\n");
591 			break;
592 		} else if (next > end) {
593 			/* Avoid passing table end */
594 			pr_warn(FW_BUG "Record passes table end\n");
595 			return -EINVAL;
596 		}
597 
598 		if (cb->print_entry)
599 			dmar_table_print_dmar_entry(iter);
600 
601 		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
602 			/* continue for forward compatibility */
603 			pr_debug("Unknown DMAR structure type %d\n",
604 				 iter->type);
605 		} else if (cb->cb[iter->type]) {
606 			int ret;
607 
608 			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
609 			if (ret)
610 				return ret;
611 		} else if (!cb->ignore_unhandled) {
612 			pr_warn("No handler for DMAR structure type %d\n",
613 				iter->type);
614 			return -EINVAL;
615 		}
616 	}
617 
618 	return 0;
619 }
620 
621 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
622 				       struct dmar_res_callback *cb)
623 {
624 	return dmar_walk_remapping_entries((void *)(dmar + 1),
625 			dmar->header.length - sizeof(*dmar), cb);
626 }
627 
628 /**
629  * parse_dmar_table - parses the DMA reporting table
630  */
631 static int __init
632 parse_dmar_table(void)
633 {
634 	struct acpi_table_dmar *dmar;
635 	int drhd_count = 0;
636 	int ret;
637 	struct dmar_res_callback cb = {
638 		.print_entry = true,
639 		.ignore_unhandled = true,
640 		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
641 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
642 		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
643 		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
644 		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
645 		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
646 		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
647 	};
648 
649 	/*
650 	 * Do it again, earlier dmar_tbl mapping could be mapped with
651 	 * fixed map.
652 	 */
653 	dmar_table_detect();
654 
655 	/*
656 	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
657 	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
658 	 */
659 	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
660 
661 	dmar = (struct acpi_table_dmar *)dmar_tbl;
662 	if (!dmar)
663 		return -ENODEV;
664 
665 	if (dmar->width < PAGE_SHIFT - 1) {
666 		pr_warn("Invalid DMAR haw\n");
667 		return -EINVAL;
668 	}
669 
670 	pr_info("Host address width %d\n", dmar->width + 1);
671 	ret = dmar_walk_dmar_table(dmar, &cb);
672 	if (ret == 0 && drhd_count == 0)
673 		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
674 
675 	return ret;
676 }
677 
678 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
679 				 int cnt, struct pci_dev *dev)
680 {
681 	int index;
682 	struct device *tmp;
683 
684 	while (dev) {
685 		for_each_active_dev_scope(devices, cnt, index, tmp)
686 			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
687 				return 1;
688 
689 		/* Check our parent */
690 		dev = dev->bus->self;
691 	}
692 
693 	return 0;
694 }
695 
696 struct dmar_drhd_unit *
697 dmar_find_matched_drhd_unit(struct pci_dev *dev)
698 {
699 	struct dmar_drhd_unit *dmaru;
700 	struct acpi_dmar_hardware_unit *drhd;
701 
702 	dev = pci_physfn(dev);
703 
704 	rcu_read_lock();
705 	for_each_drhd_unit(dmaru) {
706 		drhd = container_of(dmaru->hdr,
707 				    struct acpi_dmar_hardware_unit,
708 				    header);
709 
710 		if (dmaru->include_all &&
711 		    drhd->segment == pci_domain_nr(dev->bus))
712 			goto out;
713 
714 		if (dmar_pci_device_match(dmaru->devices,
715 					  dmaru->devices_cnt, dev))
716 			goto out;
717 	}
718 	dmaru = NULL;
719 out:
720 	rcu_read_unlock();
721 
722 	return dmaru;
723 }
724 
725 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
726 					      struct acpi_device *adev)
727 {
728 	struct dmar_drhd_unit *dmaru;
729 	struct acpi_dmar_hardware_unit *drhd;
730 	struct acpi_dmar_device_scope *scope;
731 	struct device *tmp;
732 	int i;
733 	struct acpi_dmar_pci_path *path;
734 
735 	for_each_drhd_unit(dmaru) {
736 		drhd = container_of(dmaru->hdr,
737 				    struct acpi_dmar_hardware_unit,
738 				    header);
739 
740 		for (scope = (void *)(drhd + 1);
741 		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
742 		     scope = ((void *)scope) + scope->length) {
743 			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
744 				continue;
745 			if (scope->enumeration_id != device_number)
746 				continue;
747 
748 			path = (void *)(scope + 1);
749 			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
750 				dev_name(&adev->dev), dmaru->reg_base_addr,
751 				scope->bus, path->device, path->function);
752 			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
753 				if (tmp == NULL) {
754 					dmaru->devices[i].bus = scope->bus;
755 					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
756 									    path->function);
757 					rcu_assign_pointer(dmaru->devices[i].dev,
758 							   get_device(&adev->dev));
759 					return;
760 				}
761 			BUG_ON(i >= dmaru->devices_cnt);
762 		}
763 	}
764 	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
765 		device_number, dev_name(&adev->dev));
766 }
767 
768 static int __init dmar_acpi_dev_scope_init(void)
769 {
770 	struct acpi_dmar_andd *andd;
771 
772 	if (dmar_tbl == NULL)
773 		return -ENODEV;
774 
775 	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
776 	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
777 	     andd = ((void *)andd) + andd->header.length) {
778 		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
779 			acpi_handle h;
780 			struct acpi_device *adev;
781 
782 			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
783 							  andd->device_name,
784 							  &h))) {
785 				pr_err("Failed to find handle for ACPI object %s\n",
786 				       andd->device_name);
787 				continue;
788 			}
789 			adev = acpi_fetch_acpi_dev(h);
790 			if (!adev) {
791 				pr_err("Failed to get device for ACPI object %s\n",
792 				       andd->device_name);
793 				continue;
794 			}
795 			dmar_acpi_insert_dev_scope(andd->device_number, adev);
796 		}
797 	}
798 	return 0;
799 }
800 
801 int __init dmar_dev_scope_init(void)
802 {
803 	struct pci_dev *dev = NULL;
804 	struct dmar_pci_notify_info *info;
805 
806 	if (dmar_dev_scope_status != 1)
807 		return dmar_dev_scope_status;
808 
809 	if (list_empty(&dmar_drhd_units)) {
810 		dmar_dev_scope_status = -ENODEV;
811 	} else {
812 		dmar_dev_scope_status = 0;
813 
814 		dmar_acpi_dev_scope_init();
815 
816 		for_each_pci_dev(dev) {
817 			if (dev->is_virtfn)
818 				continue;
819 
820 			info = dmar_alloc_pci_notify_info(dev,
821 					BUS_NOTIFY_ADD_DEVICE);
822 			if (!info) {
823 				return dmar_dev_scope_status;
824 			} else {
825 				dmar_pci_bus_add_dev(info);
826 				dmar_free_pci_notify_info(info);
827 			}
828 		}
829 	}
830 
831 	return dmar_dev_scope_status;
832 }
833 
834 void __init dmar_register_bus_notifier(void)
835 {
836 	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
837 }
838 
839 
840 int __init dmar_table_init(void)
841 {
842 	static int dmar_table_initialized;
843 	int ret;
844 
845 	if (dmar_table_initialized == 0) {
846 		ret = parse_dmar_table();
847 		if (ret < 0) {
848 			if (ret != -ENODEV)
849 				pr_info("Parse DMAR table failure.\n");
850 		} else  if (list_empty(&dmar_drhd_units)) {
851 			pr_info("No DMAR devices found\n");
852 			ret = -ENODEV;
853 		}
854 
855 		if (ret < 0)
856 			dmar_table_initialized = ret;
857 		else
858 			dmar_table_initialized = 1;
859 	}
860 
861 	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
862 }
863 
864 static void warn_invalid_dmar(u64 addr, const char *message)
865 {
866 	pr_warn_once(FW_BUG
867 		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
868 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
869 		addr, message,
870 		dmi_get_system_info(DMI_BIOS_VENDOR),
871 		dmi_get_system_info(DMI_BIOS_VERSION),
872 		dmi_get_system_info(DMI_PRODUCT_VERSION));
873 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
874 }
875 
876 static int __ref
877 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
878 {
879 	struct acpi_dmar_hardware_unit *drhd;
880 	void __iomem *addr;
881 	u64 cap, ecap;
882 
883 	drhd = (void *)entry;
884 	if (!drhd->address) {
885 		warn_invalid_dmar(0, "");
886 		return -EINVAL;
887 	}
888 
889 	if (arg)
890 		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
891 	else
892 		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
893 	if (!addr) {
894 		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
895 		return -EINVAL;
896 	}
897 
898 	cap = dmar_readq(addr + DMAR_CAP_REG);
899 	ecap = dmar_readq(addr + DMAR_ECAP_REG);
900 
901 	if (arg)
902 		iounmap(addr);
903 	else
904 		early_iounmap(addr, VTD_PAGE_SIZE);
905 
906 	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
907 		warn_invalid_dmar(drhd->address, " returns all ones");
908 		return -EINVAL;
909 	}
910 
911 	return 0;
912 }
913 
914 void __init detect_intel_iommu(void)
915 {
916 	int ret;
917 	struct dmar_res_callback validate_drhd_cb = {
918 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
919 		.ignore_unhandled = true,
920 	};
921 
922 	down_write(&dmar_global_lock);
923 	ret = dmar_table_detect();
924 	if (!ret)
925 		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
926 					   &validate_drhd_cb);
927 	if (!ret && !no_iommu && !iommu_detected &&
928 	    (!dmar_disabled || dmar_platform_optin())) {
929 		iommu_detected = 1;
930 		/* Make sure ACS will be enabled */
931 		pci_request_acs();
932 	}
933 
934 #ifdef CONFIG_X86
935 	if (!ret) {
936 		x86_init.iommu.iommu_init = intel_iommu_init;
937 		x86_platform.iommu_shutdown = intel_iommu_shutdown;
938 	}
939 
940 #endif
941 
942 	if (dmar_tbl) {
943 		acpi_put_table(dmar_tbl);
944 		dmar_tbl = NULL;
945 	}
946 	up_write(&dmar_global_lock);
947 }
948 
949 static void unmap_iommu(struct intel_iommu *iommu)
950 {
951 	iounmap(iommu->reg);
952 	release_mem_region(iommu->reg_phys, iommu->reg_size);
953 }
954 
955 /**
956  * map_iommu: map the iommu's registers
957  * @iommu: the iommu to map
958  * @phys_addr: the physical address of the base resgister
959  *
960  * Memory map the iommu's registers.  Start w/ a single page, and
961  * possibly expand if that turns out to be insufficent.
962  */
963 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
964 {
965 	int map_size, err=0;
966 
967 	iommu->reg_phys = phys_addr;
968 	iommu->reg_size = VTD_PAGE_SIZE;
969 
970 	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
971 		pr_err("Can't reserve memory\n");
972 		err = -EBUSY;
973 		goto out;
974 	}
975 
976 	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
977 	if (!iommu->reg) {
978 		pr_err("Can't map the region\n");
979 		err = -ENOMEM;
980 		goto release;
981 	}
982 
983 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
984 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
985 
986 	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
987 		err = -EINVAL;
988 		warn_invalid_dmar(phys_addr, " returns all ones");
989 		goto unmap;
990 	}
991 	if (ecap_vcs(iommu->ecap))
992 		iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
993 
994 	/* the registers might be more than one page */
995 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
996 			 cap_max_fault_reg_offset(iommu->cap));
997 	map_size = VTD_PAGE_ALIGN(map_size);
998 	if (map_size > iommu->reg_size) {
999 		iounmap(iommu->reg);
1000 		release_mem_region(iommu->reg_phys, iommu->reg_size);
1001 		iommu->reg_size = map_size;
1002 		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1003 					iommu->name)) {
1004 			pr_err("Can't reserve memory\n");
1005 			err = -EBUSY;
1006 			goto out;
1007 		}
1008 		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1009 		if (!iommu->reg) {
1010 			pr_err("Can't map the region\n");
1011 			err = -ENOMEM;
1012 			goto release;
1013 		}
1014 	}
1015 	err = 0;
1016 	goto out;
1017 
1018 unmap:
1019 	iounmap(iommu->reg);
1020 release:
1021 	release_mem_region(iommu->reg_phys, iommu->reg_size);
1022 out:
1023 	return err;
1024 }
1025 
1026 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1027 {
1028 	struct intel_iommu *iommu;
1029 	u32 ver, sts;
1030 	int agaw = -1;
1031 	int msagaw = -1;
1032 	int err;
1033 
1034 	if (!drhd->reg_base_addr) {
1035 		warn_invalid_dmar(0, "");
1036 		return -EINVAL;
1037 	}
1038 
1039 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1040 	if (!iommu)
1041 		return -ENOMEM;
1042 
1043 	iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1044 					DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1045 	if (iommu->seq_id < 0) {
1046 		pr_err("Failed to allocate seq_id\n");
1047 		err = iommu->seq_id;
1048 		goto error;
1049 	}
1050 	sprintf(iommu->name, "dmar%d", iommu->seq_id);
1051 
1052 	err = map_iommu(iommu, drhd->reg_base_addr);
1053 	if (err) {
1054 		pr_err("Failed to map %s\n", iommu->name);
1055 		goto error_free_seq_id;
1056 	}
1057 
1058 	err = -EINVAL;
1059 	if (cap_sagaw(iommu->cap) == 0) {
1060 		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1061 			iommu->name);
1062 		drhd->ignored = 1;
1063 	}
1064 
1065 	if (!drhd->ignored) {
1066 		agaw = iommu_calculate_agaw(iommu);
1067 		if (agaw < 0) {
1068 			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1069 			       iommu->seq_id);
1070 			drhd->ignored = 1;
1071 		}
1072 	}
1073 	if (!drhd->ignored) {
1074 		msagaw = iommu_calculate_max_sagaw(iommu);
1075 		if (msagaw < 0) {
1076 			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1077 			       iommu->seq_id);
1078 			drhd->ignored = 1;
1079 			agaw = -1;
1080 		}
1081 	}
1082 	iommu->agaw = agaw;
1083 	iommu->msagaw = msagaw;
1084 	iommu->segment = drhd->segment;
1085 
1086 	iommu->node = NUMA_NO_NODE;
1087 
1088 	ver = readl(iommu->reg + DMAR_VER_REG);
1089 	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1090 		iommu->name,
1091 		(unsigned long long)drhd->reg_base_addr,
1092 		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1093 		(unsigned long long)iommu->cap,
1094 		(unsigned long long)iommu->ecap);
1095 
1096 	/* Reflect status in gcmd */
1097 	sts = readl(iommu->reg + DMAR_GSTS_REG);
1098 	if (sts & DMA_GSTS_IRES)
1099 		iommu->gcmd |= DMA_GCMD_IRE;
1100 	if (sts & DMA_GSTS_TES)
1101 		iommu->gcmd |= DMA_GCMD_TE;
1102 	if (sts & DMA_GSTS_QIES)
1103 		iommu->gcmd |= DMA_GCMD_QIE;
1104 
1105 	raw_spin_lock_init(&iommu->register_lock);
1106 
1107 	/*
1108 	 * A value of N in PSS field of eCap register indicates hardware
1109 	 * supports PASID field of N+1 bits.
1110 	 */
1111 	if (pasid_supported(iommu))
1112 		iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1113 
1114 	/*
1115 	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1116 	 * be set yet. When intel_iommu_init() runs, it registers the units
1117 	 * present at boot time, then sets intel_iommu_enabled.
1118 	 */
1119 	if (intel_iommu_enabled && !drhd->ignored) {
1120 		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1121 					     intel_iommu_groups,
1122 					     "%s", iommu->name);
1123 		if (err)
1124 			goto err_unmap;
1125 
1126 		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1127 		if (err)
1128 			goto err_sysfs;
1129 	}
1130 
1131 	drhd->iommu = iommu;
1132 	iommu->drhd = drhd;
1133 
1134 	return 0;
1135 
1136 err_sysfs:
1137 	iommu_device_sysfs_remove(&iommu->iommu);
1138 err_unmap:
1139 	unmap_iommu(iommu);
1140 error_free_seq_id:
1141 	ida_free(&dmar_seq_ids, iommu->seq_id);
1142 error:
1143 	kfree(iommu);
1144 	return err;
1145 }
1146 
1147 static void free_iommu(struct intel_iommu *iommu)
1148 {
1149 	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1150 		iommu_device_unregister(&iommu->iommu);
1151 		iommu_device_sysfs_remove(&iommu->iommu);
1152 	}
1153 
1154 	if (iommu->irq) {
1155 		if (iommu->pr_irq) {
1156 			free_irq(iommu->pr_irq, iommu);
1157 			dmar_free_hwirq(iommu->pr_irq);
1158 			iommu->pr_irq = 0;
1159 		}
1160 		free_irq(iommu->irq, iommu);
1161 		dmar_free_hwirq(iommu->irq);
1162 		iommu->irq = 0;
1163 	}
1164 
1165 	if (iommu->qi) {
1166 		free_page((unsigned long)iommu->qi->desc);
1167 		kfree(iommu->qi->desc_status);
1168 		kfree(iommu->qi);
1169 	}
1170 
1171 	if (iommu->reg)
1172 		unmap_iommu(iommu);
1173 
1174 	ida_free(&dmar_seq_ids, iommu->seq_id);
1175 	kfree(iommu);
1176 }
1177 
1178 /*
1179  * Reclaim all the submitted descriptors which have completed its work.
1180  */
1181 static inline void reclaim_free_desc(struct q_inval *qi)
1182 {
1183 	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1184 	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1185 		qi->desc_status[qi->free_tail] = QI_FREE;
1186 		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1187 		qi->free_cnt++;
1188 	}
1189 }
1190 
1191 static const char *qi_type_string(u8 type)
1192 {
1193 	switch (type) {
1194 	case QI_CC_TYPE:
1195 		return "Context-cache Invalidation";
1196 	case QI_IOTLB_TYPE:
1197 		return "IOTLB Invalidation";
1198 	case QI_DIOTLB_TYPE:
1199 		return "Device-TLB Invalidation";
1200 	case QI_IEC_TYPE:
1201 		return "Interrupt Entry Cache Invalidation";
1202 	case QI_IWD_TYPE:
1203 		return "Invalidation Wait";
1204 	case QI_EIOTLB_TYPE:
1205 		return "PASID-based IOTLB Invalidation";
1206 	case QI_PC_TYPE:
1207 		return "PASID-cache Invalidation";
1208 	case QI_DEIOTLB_TYPE:
1209 		return "PASID-based Device-TLB Invalidation";
1210 	case QI_PGRP_RESP_TYPE:
1211 		return "Page Group Response";
1212 	default:
1213 		return "UNKNOWN";
1214 	}
1215 }
1216 
1217 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1218 {
1219 	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1220 	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1221 	struct qi_desc *desc = iommu->qi->desc + head;
1222 
1223 	if (fault & DMA_FSTS_IQE)
1224 		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1225 		       DMAR_IQER_REG_IQEI(iqe_err));
1226 	if (fault & DMA_FSTS_ITE)
1227 		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1228 		       DMAR_IQER_REG_ITESID(iqe_err));
1229 	if (fault & DMA_FSTS_ICE)
1230 		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1231 		       DMAR_IQER_REG_ICESID(iqe_err));
1232 
1233 	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1234 	       qi_type_string(desc->qw0 & 0xf),
1235 	       (unsigned long long)desc->qw0,
1236 	       (unsigned long long)desc->qw1);
1237 
1238 	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1239 	head <<= qi_shift(iommu);
1240 	desc = iommu->qi->desc + head;
1241 
1242 	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1243 	       qi_type_string(desc->qw0 & 0xf),
1244 	       (unsigned long long)desc->qw0,
1245 	       (unsigned long long)desc->qw1);
1246 }
1247 
1248 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1249 {
1250 	u32 fault;
1251 	int head, tail;
1252 	struct q_inval *qi = iommu->qi;
1253 	int shift = qi_shift(iommu);
1254 
1255 	if (qi->desc_status[wait_index] == QI_ABORT)
1256 		return -EAGAIN;
1257 
1258 	fault = readl(iommu->reg + DMAR_FSTS_REG);
1259 	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1260 		qi_dump_fault(iommu, fault);
1261 
1262 	/*
1263 	 * If IQE happens, the head points to the descriptor associated
1264 	 * with the error. No new descriptors are fetched until the IQE
1265 	 * is cleared.
1266 	 */
1267 	if (fault & DMA_FSTS_IQE) {
1268 		head = readl(iommu->reg + DMAR_IQH_REG);
1269 		if ((head >> shift) == index) {
1270 			struct qi_desc *desc = qi->desc + head;
1271 
1272 			/*
1273 			 * desc->qw2 and desc->qw3 are either reserved or
1274 			 * used by software as private data. We won't print
1275 			 * out these two qw's for security consideration.
1276 			 */
1277 			memcpy(desc, qi->desc + (wait_index << shift),
1278 			       1 << shift);
1279 			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1280 			pr_info("Invalidation Queue Error (IQE) cleared\n");
1281 			return -EINVAL;
1282 		}
1283 	}
1284 
1285 	/*
1286 	 * If ITE happens, all pending wait_desc commands are aborted.
1287 	 * No new descriptors are fetched until the ITE is cleared.
1288 	 */
1289 	if (fault & DMA_FSTS_ITE) {
1290 		head = readl(iommu->reg + DMAR_IQH_REG);
1291 		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1292 		head |= 1;
1293 		tail = readl(iommu->reg + DMAR_IQT_REG);
1294 		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1295 
1296 		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1297 		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1298 
1299 		do {
1300 			if (qi->desc_status[head] == QI_IN_USE)
1301 				qi->desc_status[head] = QI_ABORT;
1302 			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1303 		} while (head != tail);
1304 
1305 		if (qi->desc_status[wait_index] == QI_ABORT)
1306 			return -EAGAIN;
1307 	}
1308 
1309 	if (fault & DMA_FSTS_ICE) {
1310 		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1311 		pr_info("Invalidation Completion Error (ICE) cleared\n");
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 /*
1318  * Function to submit invalidation descriptors of all types to the queued
1319  * invalidation interface(QI). Multiple descriptors can be submitted at a
1320  * time, a wait descriptor will be appended to each submission to ensure
1321  * hardware has completed the invalidation before return. Wait descriptors
1322  * can be part of the submission but it will not be polled for completion.
1323  */
1324 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1325 		   unsigned int count, unsigned long options)
1326 {
1327 	struct q_inval *qi = iommu->qi;
1328 	s64 devtlb_start_ktime = 0;
1329 	s64 iotlb_start_ktime = 0;
1330 	s64 iec_start_ktime = 0;
1331 	struct qi_desc wait_desc;
1332 	int wait_index, index;
1333 	unsigned long flags;
1334 	int offset, shift;
1335 	int rc, i;
1336 	u64 type;
1337 
1338 	if (!qi)
1339 		return 0;
1340 
1341 	type = desc->qw0 & GENMASK_ULL(3, 0);
1342 
1343 	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1344 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1345 		iotlb_start_ktime = ktime_to_ns(ktime_get());
1346 
1347 	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1348 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1349 		devtlb_start_ktime = ktime_to_ns(ktime_get());
1350 
1351 	if (type == QI_IEC_TYPE &&
1352 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1353 		iec_start_ktime = ktime_to_ns(ktime_get());
1354 
1355 restart:
1356 	rc = 0;
1357 
1358 	raw_spin_lock_irqsave(&qi->q_lock, flags);
1359 	/*
1360 	 * Check if we have enough empty slots in the queue to submit,
1361 	 * the calculation is based on:
1362 	 * # of desc + 1 wait desc + 1 space between head and tail
1363 	 */
1364 	while (qi->free_cnt < count + 2) {
1365 		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1366 		cpu_relax();
1367 		raw_spin_lock_irqsave(&qi->q_lock, flags);
1368 	}
1369 
1370 	index = qi->free_head;
1371 	wait_index = (index + count) % QI_LENGTH;
1372 	shift = qi_shift(iommu);
1373 
1374 	for (i = 0; i < count; i++) {
1375 		offset = ((index + i) % QI_LENGTH) << shift;
1376 		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1377 		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1378 		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1379 				desc[i].qw2, desc[i].qw3);
1380 	}
1381 	qi->desc_status[wait_index] = QI_IN_USE;
1382 
1383 	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1384 			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1385 	if (options & QI_OPT_WAIT_DRAIN)
1386 		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1387 	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1388 	wait_desc.qw2 = 0;
1389 	wait_desc.qw3 = 0;
1390 
1391 	offset = wait_index << shift;
1392 	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1393 
1394 	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1395 	qi->free_cnt -= count + 1;
1396 
1397 	/*
1398 	 * update the HW tail register indicating the presence of
1399 	 * new descriptors.
1400 	 */
1401 	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1402 
1403 	while (qi->desc_status[wait_index] != QI_DONE) {
1404 		/*
1405 		 * We will leave the interrupts disabled, to prevent interrupt
1406 		 * context to queue another cmd while a cmd is already submitted
1407 		 * and waiting for completion on this cpu. This is to avoid
1408 		 * a deadlock where the interrupt context can wait indefinitely
1409 		 * for free slots in the queue.
1410 		 */
1411 		rc = qi_check_fault(iommu, index, wait_index);
1412 		if (rc)
1413 			break;
1414 
1415 		raw_spin_unlock(&qi->q_lock);
1416 		cpu_relax();
1417 		raw_spin_lock(&qi->q_lock);
1418 	}
1419 
1420 	for (i = 0; i < count; i++)
1421 		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1422 
1423 	reclaim_free_desc(qi);
1424 	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1425 
1426 	if (rc == -EAGAIN)
1427 		goto restart;
1428 
1429 	if (iotlb_start_ktime)
1430 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1431 				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1432 
1433 	if (devtlb_start_ktime)
1434 		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1435 				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1436 
1437 	if (iec_start_ktime)
1438 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1439 				ktime_to_ns(ktime_get()) - iec_start_ktime);
1440 
1441 	return rc;
1442 }
1443 
1444 /*
1445  * Flush the global interrupt entry cache.
1446  */
1447 void qi_global_iec(struct intel_iommu *iommu)
1448 {
1449 	struct qi_desc desc;
1450 
1451 	desc.qw0 = QI_IEC_TYPE;
1452 	desc.qw1 = 0;
1453 	desc.qw2 = 0;
1454 	desc.qw3 = 0;
1455 
1456 	/* should never fail */
1457 	qi_submit_sync(iommu, &desc, 1, 0);
1458 }
1459 
1460 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1461 		      u64 type)
1462 {
1463 	struct qi_desc desc;
1464 
1465 	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1466 			| QI_CC_GRAN(type) | QI_CC_TYPE;
1467 	desc.qw1 = 0;
1468 	desc.qw2 = 0;
1469 	desc.qw3 = 0;
1470 
1471 	qi_submit_sync(iommu, &desc, 1, 0);
1472 }
1473 
1474 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1475 		    unsigned int size_order, u64 type)
1476 {
1477 	u8 dw = 0, dr = 0;
1478 
1479 	struct qi_desc desc;
1480 	int ih = 0;
1481 
1482 	if (cap_write_drain(iommu->cap))
1483 		dw = 1;
1484 
1485 	if (cap_read_drain(iommu->cap))
1486 		dr = 1;
1487 
1488 	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1489 		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1490 	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1491 		| QI_IOTLB_AM(size_order);
1492 	desc.qw2 = 0;
1493 	desc.qw3 = 0;
1494 
1495 	qi_submit_sync(iommu, &desc, 1, 0);
1496 }
1497 
1498 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1499 			u16 qdep, u64 addr, unsigned mask)
1500 {
1501 	struct qi_desc desc;
1502 
1503 	if (mask) {
1504 		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1505 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1506 	} else
1507 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1508 
1509 	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1510 		qdep = 0;
1511 
1512 	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1513 		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1514 	desc.qw2 = 0;
1515 	desc.qw3 = 0;
1516 
1517 	qi_submit_sync(iommu, &desc, 1, 0);
1518 }
1519 
1520 /* PASID-based IOTLB invalidation */
1521 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1522 		     unsigned long npages, bool ih)
1523 {
1524 	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1525 
1526 	/*
1527 	 * npages == -1 means a PASID-selective invalidation, otherwise,
1528 	 * a positive value for Page-selective-within-PASID invalidation.
1529 	 * 0 is not a valid input.
1530 	 */
1531 	if (WARN_ON(!npages)) {
1532 		pr_err("Invalid input npages = %ld\n", npages);
1533 		return;
1534 	}
1535 
1536 	if (npages == -1) {
1537 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1538 				QI_EIOTLB_DID(did) |
1539 				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1540 				QI_EIOTLB_TYPE;
1541 		desc.qw1 = 0;
1542 	} else {
1543 		int mask = ilog2(__roundup_pow_of_two(npages));
1544 		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1545 
1546 		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1547 			addr = ALIGN_DOWN(addr, align);
1548 
1549 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1550 				QI_EIOTLB_DID(did) |
1551 				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1552 				QI_EIOTLB_TYPE;
1553 		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1554 				QI_EIOTLB_IH(ih) |
1555 				QI_EIOTLB_AM(mask);
1556 	}
1557 
1558 	qi_submit_sync(iommu, &desc, 1, 0);
1559 }
1560 
1561 /* PASID-based device IOTLB Invalidate */
1562 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1563 			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1564 {
1565 	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1566 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1567 
1568 	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1569 		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1570 		QI_DEV_IOTLB_PFSID(pfsid);
1571 
1572 	/*
1573 	 * If S bit is 0, we only flush a single page. If S bit is set,
1574 	 * The least significant zero bit indicates the invalidation address
1575 	 * range. VT-d spec 6.5.2.6.
1576 	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1577 	 * size order = 0 is PAGE_SIZE 4KB
1578 	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1579 	 * ECAP.
1580 	 */
1581 	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1582 		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1583 				    addr, size_order);
1584 
1585 	/* Take page address */
1586 	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1587 
1588 	if (size_order) {
1589 		/*
1590 		 * Existing 0s in address below size_order may be the least
1591 		 * significant bit, we must set them to 1s to avoid having
1592 		 * smaller size than desired.
1593 		 */
1594 		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1595 					VTD_PAGE_SHIFT);
1596 		/* Clear size_order bit to indicate size */
1597 		desc.qw1 &= ~mask;
1598 		/* Set the S bit to indicate flushing more than 1 page */
1599 		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1600 	}
1601 
1602 	qi_submit_sync(iommu, &desc, 1, 0);
1603 }
1604 
1605 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1606 			  u64 granu, u32 pasid)
1607 {
1608 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1609 
1610 	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1611 			QI_PC_GRAN(granu) | QI_PC_TYPE;
1612 	qi_submit_sync(iommu, &desc, 1, 0);
1613 }
1614 
1615 /*
1616  * Disable Queued Invalidation interface.
1617  */
1618 void dmar_disable_qi(struct intel_iommu *iommu)
1619 {
1620 	unsigned long flags;
1621 	u32 sts;
1622 	cycles_t start_time = get_cycles();
1623 
1624 	if (!ecap_qis(iommu->ecap))
1625 		return;
1626 
1627 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1628 
1629 	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1630 	if (!(sts & DMA_GSTS_QIES))
1631 		goto end;
1632 
1633 	/*
1634 	 * Give a chance to HW to complete the pending invalidation requests.
1635 	 */
1636 	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1637 		readl(iommu->reg + DMAR_IQH_REG)) &&
1638 		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1639 		cpu_relax();
1640 
1641 	iommu->gcmd &= ~DMA_GCMD_QIE;
1642 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1643 
1644 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1645 		      !(sts & DMA_GSTS_QIES), sts);
1646 end:
1647 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1648 }
1649 
1650 /*
1651  * Enable queued invalidation.
1652  */
1653 static void __dmar_enable_qi(struct intel_iommu *iommu)
1654 {
1655 	u32 sts;
1656 	unsigned long flags;
1657 	struct q_inval *qi = iommu->qi;
1658 	u64 val = virt_to_phys(qi->desc);
1659 
1660 	qi->free_head = qi->free_tail = 0;
1661 	qi->free_cnt = QI_LENGTH;
1662 
1663 	/*
1664 	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1665 	 * is present.
1666 	 */
1667 	if (ecap_smts(iommu->ecap))
1668 		val |= (1 << 11) | 1;
1669 
1670 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1671 
1672 	/* write zero to the tail reg */
1673 	writel(0, iommu->reg + DMAR_IQT_REG);
1674 
1675 	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1676 
1677 	iommu->gcmd |= DMA_GCMD_QIE;
1678 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1679 
1680 	/* Make sure hardware complete it */
1681 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1682 
1683 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1684 }
1685 
1686 /*
1687  * Enable Queued Invalidation interface. This is a must to support
1688  * interrupt-remapping. Also used by DMA-remapping, which replaces
1689  * register based IOTLB invalidation.
1690  */
1691 int dmar_enable_qi(struct intel_iommu *iommu)
1692 {
1693 	struct q_inval *qi;
1694 	struct page *desc_page;
1695 
1696 	if (!ecap_qis(iommu->ecap))
1697 		return -ENOENT;
1698 
1699 	/*
1700 	 * queued invalidation is already setup and enabled.
1701 	 */
1702 	if (iommu->qi)
1703 		return 0;
1704 
1705 	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1706 	if (!iommu->qi)
1707 		return -ENOMEM;
1708 
1709 	qi = iommu->qi;
1710 
1711 	/*
1712 	 * Need two pages to accommodate 256 descriptors of 256 bits each
1713 	 * if the remapping hardware supports scalable mode translation.
1714 	 */
1715 	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1716 				     !!ecap_smts(iommu->ecap));
1717 	if (!desc_page) {
1718 		kfree(qi);
1719 		iommu->qi = NULL;
1720 		return -ENOMEM;
1721 	}
1722 
1723 	qi->desc = page_address(desc_page);
1724 
1725 	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1726 	if (!qi->desc_status) {
1727 		free_page((unsigned long) qi->desc);
1728 		kfree(qi);
1729 		iommu->qi = NULL;
1730 		return -ENOMEM;
1731 	}
1732 
1733 	raw_spin_lock_init(&qi->q_lock);
1734 
1735 	__dmar_enable_qi(iommu);
1736 
1737 	return 0;
1738 }
1739 
1740 /* iommu interrupt handling. Most stuff are MSI-like. */
1741 
1742 enum faulttype {
1743 	DMA_REMAP,
1744 	INTR_REMAP,
1745 	UNKNOWN,
1746 };
1747 
1748 static const char *dma_remap_fault_reasons[] =
1749 {
1750 	"Software",
1751 	"Present bit in root entry is clear",
1752 	"Present bit in context entry is clear",
1753 	"Invalid context entry",
1754 	"Access beyond MGAW",
1755 	"PTE Write access is not set",
1756 	"PTE Read access is not set",
1757 	"Next page table ptr is invalid",
1758 	"Root table address invalid",
1759 	"Context table ptr is invalid",
1760 	"non-zero reserved fields in RTP",
1761 	"non-zero reserved fields in CTP",
1762 	"non-zero reserved fields in PTE",
1763 	"PCE for translation request specifies blocking",
1764 };
1765 
1766 static const char * const dma_remap_sm_fault_reasons[] = {
1767 	"SM: Invalid Root Table Address",
1768 	"SM: TTM 0 for request with PASID",
1769 	"SM: TTM 0 for page group request",
1770 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1771 	"SM: Error attempting to access Root Entry",
1772 	"SM: Present bit in Root Entry is clear",
1773 	"SM: Non-zero reserved field set in Root Entry",
1774 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1775 	"SM: Error attempting to access Context Entry",
1776 	"SM: Present bit in Context Entry is clear",
1777 	"SM: Non-zero reserved field set in the Context Entry",
1778 	"SM: Invalid Context Entry",
1779 	"SM: DTE field in Context Entry is clear",
1780 	"SM: PASID Enable field in Context Entry is clear",
1781 	"SM: PASID is larger than the max in Context Entry",
1782 	"SM: PRE field in Context-Entry is clear",
1783 	"SM: RID_PASID field error in Context-Entry",
1784 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1785 	"SM: Error attempting to access the PASID Directory Entry",
1786 	"SM: Present bit in Directory Entry is clear",
1787 	"SM: Non-zero reserved field set in PASID Directory Entry",
1788 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1789 	"SM: Error attempting to access PASID Table Entry",
1790 	"SM: Present bit in PASID Table Entry is clear",
1791 	"SM: Non-zero reserved field set in PASID Table Entry",
1792 	"SM: Invalid Scalable-Mode PASID Table Entry",
1793 	"SM: ERE field is clear in PASID Table Entry",
1794 	"SM: SRE field is clear in PASID Table Entry",
1795 	"Unknown", "Unknown",/* 0x5E-0x5F */
1796 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1797 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1798 	"SM: Error attempting to access first-level paging entry",
1799 	"SM: Present bit in first-level paging entry is clear",
1800 	"SM: Non-zero reserved field set in first-level paging entry",
1801 	"SM: Error attempting to access FL-PML4 entry",
1802 	"SM: First-level entry address beyond MGAW in Nested translation",
1803 	"SM: Read permission error in FL-PML4 entry in Nested translation",
1804 	"SM: Read permission error in first-level paging entry in Nested translation",
1805 	"SM: Write permission error in first-level paging entry in Nested translation",
1806 	"SM: Error attempting to access second-level paging entry",
1807 	"SM: Read/Write permission error in second-level paging entry",
1808 	"SM: Non-zero reserved field set in second-level paging entry",
1809 	"SM: Invalid second-level page table pointer",
1810 	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1811 	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1812 	"SM: Address in first-level translation is not canonical",
1813 	"SM: U/S set 0 for first-level translation with user privilege",
1814 	"SM: No execute permission for request with PASID and ER=1",
1815 	"SM: Address beyond the DMA hardware max",
1816 	"SM: Second-level entry address beyond the max",
1817 	"SM: No write permission for Write/AtomicOp request",
1818 	"SM: No read permission for Read/AtomicOp request",
1819 	"SM: Invalid address-interrupt address",
1820 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1821 	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1822 };
1823 
1824 static const char *irq_remap_fault_reasons[] =
1825 {
1826 	"Detected reserved fields in the decoded interrupt-remapped request",
1827 	"Interrupt index exceeded the interrupt-remapping table size",
1828 	"Present field in the IRTE entry is clear",
1829 	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1830 	"Detected reserved fields in the IRTE entry",
1831 	"Blocked a compatibility format interrupt request",
1832 	"Blocked an interrupt request due to source-id verification failure",
1833 };
1834 
1835 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1836 {
1837 	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1838 					ARRAY_SIZE(irq_remap_fault_reasons))) {
1839 		*fault_type = INTR_REMAP;
1840 		return irq_remap_fault_reasons[fault_reason - 0x20];
1841 	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1842 			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1843 		*fault_type = DMA_REMAP;
1844 		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1845 	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1846 		*fault_type = DMA_REMAP;
1847 		return dma_remap_fault_reasons[fault_reason];
1848 	} else {
1849 		*fault_type = UNKNOWN;
1850 		return "Unknown";
1851 	}
1852 }
1853 
1854 
1855 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1856 {
1857 	if (iommu->irq == irq)
1858 		return DMAR_FECTL_REG;
1859 	else if (iommu->pr_irq == irq)
1860 		return DMAR_PECTL_REG;
1861 	else
1862 		BUG();
1863 }
1864 
1865 void dmar_msi_unmask(struct irq_data *data)
1866 {
1867 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1868 	int reg = dmar_msi_reg(iommu, data->irq);
1869 	unsigned long flag;
1870 
1871 	/* unmask it */
1872 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1873 	writel(0, iommu->reg + reg);
1874 	/* Read a reg to force flush the post write */
1875 	readl(iommu->reg + reg);
1876 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1877 }
1878 
1879 void dmar_msi_mask(struct irq_data *data)
1880 {
1881 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1882 	int reg = dmar_msi_reg(iommu, data->irq);
1883 	unsigned long flag;
1884 
1885 	/* mask it */
1886 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1887 	writel(DMA_FECTL_IM, iommu->reg + reg);
1888 	/* Read a reg to force flush the post write */
1889 	readl(iommu->reg + reg);
1890 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1891 }
1892 
1893 void dmar_msi_write(int irq, struct msi_msg *msg)
1894 {
1895 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1896 	int reg = dmar_msi_reg(iommu, irq);
1897 	unsigned long flag;
1898 
1899 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1900 	writel(msg->data, iommu->reg + reg + 4);
1901 	writel(msg->address_lo, iommu->reg + reg + 8);
1902 	writel(msg->address_hi, iommu->reg + reg + 12);
1903 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1904 }
1905 
1906 void dmar_msi_read(int irq, struct msi_msg *msg)
1907 {
1908 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1909 	int reg = dmar_msi_reg(iommu, irq);
1910 	unsigned long flag;
1911 
1912 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1913 	msg->data = readl(iommu->reg + reg + 4);
1914 	msg->address_lo = readl(iommu->reg + reg + 8);
1915 	msg->address_hi = readl(iommu->reg + reg + 12);
1916 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1917 }
1918 
1919 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1920 		u8 fault_reason, u32 pasid, u16 source_id,
1921 		unsigned long long addr)
1922 {
1923 	const char *reason;
1924 	int fault_type;
1925 
1926 	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1927 
1928 	if (fault_type == INTR_REMAP) {
1929 		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1930 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1931 		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1932 		       fault_reason, reason);
1933 
1934 		return 0;
1935 	}
1936 
1937 	if (pasid == INVALID_IOASID)
1938 		pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1939 		       type ? "DMA Read" : "DMA Write",
1940 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1941 		       PCI_FUNC(source_id & 0xFF), addr,
1942 		       fault_reason, reason);
1943 	else
1944 		pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1945 		       type ? "DMA Read" : "DMA Write", pasid,
1946 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1947 		       PCI_FUNC(source_id & 0xFF), addr,
1948 		       fault_reason, reason);
1949 
1950 	dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1951 
1952 	return 0;
1953 }
1954 
1955 #define PRIMARY_FAULT_REG_LEN (16)
1956 irqreturn_t dmar_fault(int irq, void *dev_id)
1957 {
1958 	struct intel_iommu *iommu = dev_id;
1959 	int reg, fault_index;
1960 	u32 fault_status;
1961 	unsigned long flag;
1962 	static DEFINE_RATELIMIT_STATE(rs,
1963 				      DEFAULT_RATELIMIT_INTERVAL,
1964 				      DEFAULT_RATELIMIT_BURST);
1965 
1966 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1967 	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1968 	if (fault_status && __ratelimit(&rs))
1969 		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1970 
1971 	/* TBD: ignore advanced fault log currently */
1972 	if (!(fault_status & DMA_FSTS_PPF))
1973 		goto unlock_exit;
1974 
1975 	fault_index = dma_fsts_fault_record_index(fault_status);
1976 	reg = cap_fault_reg_offset(iommu->cap);
1977 	while (1) {
1978 		/* Disable printing, simply clear the fault when ratelimited */
1979 		bool ratelimited = !__ratelimit(&rs);
1980 		u8 fault_reason;
1981 		u16 source_id;
1982 		u64 guest_addr;
1983 		u32 pasid;
1984 		int type;
1985 		u32 data;
1986 		bool pasid_present;
1987 
1988 		/* highest 32 bits */
1989 		data = readl(iommu->reg + reg +
1990 				fault_index * PRIMARY_FAULT_REG_LEN + 12);
1991 		if (!(data & DMA_FRCD_F))
1992 			break;
1993 
1994 		if (!ratelimited) {
1995 			fault_reason = dma_frcd_fault_reason(data);
1996 			type = dma_frcd_type(data);
1997 
1998 			pasid = dma_frcd_pasid_value(data);
1999 			data = readl(iommu->reg + reg +
2000 				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
2001 			source_id = dma_frcd_source_id(data);
2002 
2003 			pasid_present = dma_frcd_pasid_present(data);
2004 			guest_addr = dmar_readq(iommu->reg + reg +
2005 					fault_index * PRIMARY_FAULT_REG_LEN);
2006 			guest_addr = dma_frcd_page_addr(guest_addr);
2007 		}
2008 
2009 		/* clear the fault */
2010 		writel(DMA_FRCD_F, iommu->reg + reg +
2011 			fault_index * PRIMARY_FAULT_REG_LEN + 12);
2012 
2013 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2014 
2015 		if (!ratelimited)
2016 			/* Using pasid -1 if pasid is not present */
2017 			dmar_fault_do_one(iommu, type, fault_reason,
2018 					  pasid_present ? pasid : INVALID_IOASID,
2019 					  source_id, guest_addr);
2020 
2021 		fault_index++;
2022 		if (fault_index >= cap_num_fault_regs(iommu->cap))
2023 			fault_index = 0;
2024 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2025 	}
2026 
2027 	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2028 	       iommu->reg + DMAR_FSTS_REG);
2029 
2030 unlock_exit:
2031 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2032 	return IRQ_HANDLED;
2033 }
2034 
2035 int dmar_set_interrupt(struct intel_iommu *iommu)
2036 {
2037 	int irq, ret;
2038 
2039 	/*
2040 	 * Check if the fault interrupt is already initialized.
2041 	 */
2042 	if (iommu->irq)
2043 		return 0;
2044 
2045 	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2046 	if (irq > 0) {
2047 		iommu->irq = irq;
2048 	} else {
2049 		pr_err("No free IRQ vectors\n");
2050 		return -EINVAL;
2051 	}
2052 
2053 	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2054 	if (ret)
2055 		pr_err("Can't request irq\n");
2056 	return ret;
2057 }
2058 
2059 int __init enable_drhd_fault_handling(void)
2060 {
2061 	struct dmar_drhd_unit *drhd;
2062 	struct intel_iommu *iommu;
2063 
2064 	/*
2065 	 * Enable fault control interrupt.
2066 	 */
2067 	for_each_iommu(iommu, drhd) {
2068 		u32 fault_status;
2069 		int ret = dmar_set_interrupt(iommu);
2070 
2071 		if (ret) {
2072 			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2073 			       (unsigned long long)drhd->reg_base_addr, ret);
2074 			return -1;
2075 		}
2076 
2077 		/*
2078 		 * Clear any previous faults.
2079 		 */
2080 		dmar_fault(iommu->irq, iommu);
2081 		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2082 		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 /*
2089  * Re-enable Queued Invalidation interface.
2090  */
2091 int dmar_reenable_qi(struct intel_iommu *iommu)
2092 {
2093 	if (!ecap_qis(iommu->ecap))
2094 		return -ENOENT;
2095 
2096 	if (!iommu->qi)
2097 		return -ENOENT;
2098 
2099 	/*
2100 	 * First disable queued invalidation.
2101 	 */
2102 	dmar_disable_qi(iommu);
2103 	/*
2104 	 * Then enable queued invalidation again. Since there is no pending
2105 	 * invalidation requests now, it's safe to re-enable queued
2106 	 * invalidation.
2107 	 */
2108 	__dmar_enable_qi(iommu);
2109 
2110 	return 0;
2111 }
2112 
2113 /*
2114  * Check interrupt remapping support in DMAR table description.
2115  */
2116 int __init dmar_ir_support(void)
2117 {
2118 	struct acpi_table_dmar *dmar;
2119 	dmar = (struct acpi_table_dmar *)dmar_tbl;
2120 	if (!dmar)
2121 		return 0;
2122 	return dmar->flags & 0x1;
2123 }
2124 
2125 /* Check whether DMAR units are in use */
2126 static inline bool dmar_in_use(void)
2127 {
2128 	return irq_remapping_enabled || intel_iommu_enabled;
2129 }
2130 
2131 static int __init dmar_free_unused_resources(void)
2132 {
2133 	struct dmar_drhd_unit *dmaru, *dmaru_n;
2134 
2135 	if (dmar_in_use())
2136 		return 0;
2137 
2138 	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2139 		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2140 
2141 	down_write(&dmar_global_lock);
2142 	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2143 		list_del(&dmaru->list);
2144 		dmar_free_drhd(dmaru);
2145 	}
2146 	up_write(&dmar_global_lock);
2147 
2148 	return 0;
2149 }
2150 
2151 late_initcall(dmar_free_unused_resources);
2152 
2153 /*
2154  * DMAR Hotplug Support
2155  * For more details, please refer to Intel(R) Virtualization Technology
2156  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2157  * "Remapping Hardware Unit Hot Plug".
2158  */
2159 static guid_t dmar_hp_guid =
2160 	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2161 		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2162 
2163 /*
2164  * Currently there's only one revision and BIOS will not check the revision id,
2165  * so use 0 for safety.
2166  */
2167 #define	DMAR_DSM_REV_ID			0
2168 #define	DMAR_DSM_FUNC_DRHD		1
2169 #define	DMAR_DSM_FUNC_ATSR		2
2170 #define	DMAR_DSM_FUNC_RHSA		3
2171 #define	DMAR_DSM_FUNC_SATC		4
2172 
2173 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2174 {
2175 	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2176 }
2177 
2178 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2179 				  dmar_res_handler_t handler, void *arg)
2180 {
2181 	int ret = -ENODEV;
2182 	union acpi_object *obj;
2183 	struct acpi_dmar_header *start;
2184 	struct dmar_res_callback callback;
2185 	static int res_type[] = {
2186 		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2187 		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2188 		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2189 		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2190 	};
2191 
2192 	if (!dmar_detect_dsm(handle, func))
2193 		return 0;
2194 
2195 	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2196 				      func, NULL, ACPI_TYPE_BUFFER);
2197 	if (!obj)
2198 		return -ENODEV;
2199 
2200 	memset(&callback, 0, sizeof(callback));
2201 	callback.cb[res_type[func]] = handler;
2202 	callback.arg[res_type[func]] = arg;
2203 	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2204 	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2205 
2206 	ACPI_FREE(obj);
2207 
2208 	return ret;
2209 }
2210 
2211 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2212 {
2213 	int ret;
2214 	struct dmar_drhd_unit *dmaru;
2215 
2216 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2217 	if (!dmaru)
2218 		return -ENODEV;
2219 
2220 	ret = dmar_ir_hotplug(dmaru, true);
2221 	if (ret == 0)
2222 		ret = dmar_iommu_hotplug(dmaru, true);
2223 
2224 	return ret;
2225 }
2226 
2227 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2228 {
2229 	int i, ret;
2230 	struct device *dev;
2231 	struct dmar_drhd_unit *dmaru;
2232 
2233 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2234 	if (!dmaru)
2235 		return 0;
2236 
2237 	/*
2238 	 * All PCI devices managed by this unit should have been destroyed.
2239 	 */
2240 	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2241 		for_each_active_dev_scope(dmaru->devices,
2242 					  dmaru->devices_cnt, i, dev)
2243 			return -EBUSY;
2244 	}
2245 
2246 	ret = dmar_ir_hotplug(dmaru, false);
2247 	if (ret == 0)
2248 		ret = dmar_iommu_hotplug(dmaru, false);
2249 
2250 	return ret;
2251 }
2252 
2253 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2254 {
2255 	struct dmar_drhd_unit *dmaru;
2256 
2257 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2258 	if (dmaru) {
2259 		list_del_rcu(&dmaru->list);
2260 		synchronize_rcu();
2261 		dmar_free_drhd(dmaru);
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 static int dmar_hotplug_insert(acpi_handle handle)
2268 {
2269 	int ret;
2270 	int drhd_count = 0;
2271 
2272 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2273 				     &dmar_validate_one_drhd, (void *)1);
2274 	if (ret)
2275 		goto out;
2276 
2277 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2278 				     &dmar_parse_one_drhd, (void *)&drhd_count);
2279 	if (ret == 0 && drhd_count == 0) {
2280 		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2281 		goto out;
2282 	} else if (ret) {
2283 		goto release_drhd;
2284 	}
2285 
2286 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2287 				     &dmar_parse_one_rhsa, NULL);
2288 	if (ret)
2289 		goto release_drhd;
2290 
2291 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2292 				     &dmar_parse_one_atsr, NULL);
2293 	if (ret)
2294 		goto release_atsr;
2295 
2296 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2297 				     &dmar_hp_add_drhd, NULL);
2298 	if (!ret)
2299 		return 0;
2300 
2301 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2302 			       &dmar_hp_remove_drhd, NULL);
2303 release_atsr:
2304 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2305 			       &dmar_release_one_atsr, NULL);
2306 release_drhd:
2307 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2308 			       &dmar_hp_release_drhd, NULL);
2309 out:
2310 	return ret;
2311 }
2312 
2313 static int dmar_hotplug_remove(acpi_handle handle)
2314 {
2315 	int ret;
2316 
2317 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2318 				     &dmar_check_one_atsr, NULL);
2319 	if (ret)
2320 		return ret;
2321 
2322 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2323 				     &dmar_hp_remove_drhd, NULL);
2324 	if (ret == 0) {
2325 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2326 					       &dmar_release_one_atsr, NULL));
2327 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2328 					       &dmar_hp_release_drhd, NULL));
2329 	} else {
2330 		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2331 				       &dmar_hp_add_drhd, NULL);
2332 	}
2333 
2334 	return ret;
2335 }
2336 
2337 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2338 				       void *context, void **retval)
2339 {
2340 	acpi_handle *phdl = retval;
2341 
2342 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2343 		*phdl = handle;
2344 		return AE_CTRL_TERMINATE;
2345 	}
2346 
2347 	return AE_OK;
2348 }
2349 
2350 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2351 {
2352 	int ret;
2353 	acpi_handle tmp = NULL;
2354 	acpi_status status;
2355 
2356 	if (!dmar_in_use())
2357 		return 0;
2358 
2359 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2360 		tmp = handle;
2361 	} else {
2362 		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2363 					     ACPI_UINT32_MAX,
2364 					     dmar_get_dsm_handle,
2365 					     NULL, NULL, &tmp);
2366 		if (ACPI_FAILURE(status)) {
2367 			pr_warn("Failed to locate _DSM method.\n");
2368 			return -ENXIO;
2369 		}
2370 	}
2371 	if (tmp == NULL)
2372 		return 0;
2373 
2374 	down_write(&dmar_global_lock);
2375 	if (insert)
2376 		ret = dmar_hotplug_insert(tmp);
2377 	else
2378 		ret = dmar_hotplug_remove(tmp);
2379 	up_write(&dmar_global_lock);
2380 
2381 	return ret;
2382 }
2383 
2384 int dmar_device_add(acpi_handle handle)
2385 {
2386 	return dmar_device_hotplug(handle, true);
2387 }
2388 
2389 int dmar_device_remove(acpi_handle handle)
2390 {
2391 	return dmar_device_hotplug(handle, false);
2392 }
2393 
2394 /*
2395  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2396  *
2397  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2398  * the ACPI DMAR table. This means that the platform boot firmware has made
2399  * sure no device can issue DMA outside of RMRR regions.
2400  */
2401 bool dmar_platform_optin(void)
2402 {
2403 	struct acpi_table_dmar *dmar;
2404 	acpi_status status;
2405 	bool ret;
2406 
2407 	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2408 				(struct acpi_table_header **)&dmar);
2409 	if (ACPI_FAILURE(status))
2410 		return false;
2411 
2412 	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2413 	acpi_put_table((struct acpi_table_header *)dmar);
2414 
2415 	return ret;
2416 }
2417 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2418