xref: /linux/drivers/iommu/fsl_pamu.c (revision 1e1159bb97cf4191849b4b03f77ab32977c2ece6)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright (C) 2013 Freescale Semiconductor, Inc.
16  *
17  */
18 
19 #define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
20 
21 #include <linux/init.h>
22 #include <linux/iommu.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/of_platform.h>
30 #include <linux/bootmem.h>
31 #include <linux/genalloc.h>
32 #include <asm/io.h>
33 #include <asm/bitops.h>
34 #include <asm/fsl_guts.h>
35 
36 #include "fsl_pamu.h"
37 
38 /* define indexes for each operation mapping scenario */
39 #define OMI_QMAN        0x00
40 #define OMI_FMAN        0x01
41 #define OMI_QMAN_PRIV   0x02
42 #define OMI_CAAM        0x03
43 
44 #define make64(high, low) (((u64)(high) << 32) | (low))
45 
46 struct pamu_isr_data {
47 	void __iomem *pamu_reg_base;	/* Base address of PAMU regs*/
48 	unsigned int count;		/* The number of PAMUs */
49 };
50 
51 static struct paace *ppaact;
52 static struct paace *spaact;
53 static struct ome *omt;
54 
55 /*
56  * Table for matching compatible strings, for device tree
57  * guts node, for QorIQ SOCs.
58  * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
59  * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
60  * string would be used.
61 */
62 static const struct of_device_id guts_device_ids[] = {
63 	{ .compatible = "fsl,qoriq-device-config-1.0", },
64 	{ .compatible = "fsl,qoriq-device-config-2.0", },
65 	{}
66 };
67 
68 
69 /*
70  * Table for matching compatible strings, for device tree
71  * L3 cache controller node.
72  * "fsl,t4240-l3-cache-controller" corresponds to T4,
73  * "fsl,b4860-l3-cache-controller" corresponds to B4 &
74  * "fsl,p4080-l3-cache-controller" corresponds to other,
75  * SOCs.
76 */
77 static const struct of_device_id l3_device_ids[] = {
78 	{ .compatible = "fsl,t4240-l3-cache-controller", },
79 	{ .compatible = "fsl,b4860-l3-cache-controller", },
80 	{ .compatible = "fsl,p4080-l3-cache-controller", },
81 	{}
82 };
83 
84 /* maximum subwindows permitted per liodn */
85 static u32 max_subwindow_count;
86 
87 /* Pool for fspi allocation */
88 struct gen_pool *spaace_pool;
89 
90 /**
91  * pamu_get_max_subwin_cnt() - Return the maximum supported
92  * subwindow count per liodn.
93  *
94  */
95 u32 pamu_get_max_subwin_cnt()
96 {
97 	return max_subwindow_count;
98 }
99 
100 /**
101  * pamu_get_ppaace() - Return the primary PACCE
102  * @liodn: liodn PAACT index for desired PAACE
103  *
104  * Returns the ppace pointer upon success else return
105  * null.
106  */
107 static struct paace *pamu_get_ppaace(int liodn)
108 {
109 	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
110 		pr_debug("PPAACT doesn't exist\n");
111 		return NULL;
112 	}
113 
114 	return &ppaact[liodn];
115 }
116 
117 /**
118  * pamu_enable_liodn() - Set valid bit of PACCE
119  * @liodn: liodn PAACT index for desired PAACE
120  *
121  * Returns 0 upon success else error code < 0 returned
122  */
123 int pamu_enable_liodn(int liodn)
124 {
125 	struct paace *ppaace;
126 
127 	ppaace = pamu_get_ppaace(liodn);
128 	if (!ppaace) {
129 		pr_debug("Invalid primary paace entry\n");
130 		return -ENOENT;
131 	}
132 
133 	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
134 		pr_debug("liodn %d not configured\n", liodn);
135 		return -EINVAL;
136 	}
137 
138 	/* Ensure that all other stores to the ppaace complete first */
139 	mb();
140 
141 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
142 	mb();
143 
144 	return 0;
145 }
146 
147 /**
148  * pamu_disable_liodn() - Clears valid bit of PACCE
149  * @liodn: liodn PAACT index for desired PAACE
150  *
151  * Returns 0 upon success else error code < 0 returned
152  */
153 int pamu_disable_liodn(int liodn)
154 {
155 	struct paace *ppaace;
156 
157 	ppaace = pamu_get_ppaace(liodn);
158 	if (!ppaace) {
159 		pr_debug("Invalid primary paace entry\n");
160 		return -ENOENT;
161 	}
162 
163 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
164 	mb();
165 
166 	return 0;
167 }
168 
169 /* Derive the window size encoding for a particular PAACE entry */
170 static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
171 {
172 	/* Bug if not a power of 2 */
173 	BUG_ON(!is_power_of_2(addrspace_size));
174 
175 	/* window size is 2^(WSE+1) bytes */
176 	return __ffs(addrspace_size) - 1;
177 }
178 
179 /* Derive the PAACE window count encoding for the subwindow count */
180 static unsigned int map_subwindow_cnt_to_wce(u32 subwindow_cnt)
181 {
182        /* window count is 2^(WCE+1) bytes */
183        return __ffs(subwindow_cnt) - 1;
184 }
185 
186 /*
187  * Set the PAACE type as primary and set the coherency required domain
188  * attribute
189  */
190 static void pamu_init_ppaace(struct paace *ppaace)
191 {
192 	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
193 
194 	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
195 	       PAACE_M_COHERENCE_REQ);
196 }
197 
198 /*
199  * Set the PAACE type as secondary and set the coherency required domain
200  * attribute.
201  */
202 static void pamu_init_spaace(struct paace *spaace)
203 {
204 	set_bf(spaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_SECONDARY);
205 	set_bf(spaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
206 	       PAACE_M_COHERENCE_REQ);
207 }
208 
209 /*
210  * Return the spaace (corresponding to the secondary window index)
211  * for a particular ppaace.
212  */
213 static struct paace *pamu_get_spaace(struct paace *paace, u32 wnum)
214 {
215 	u32 subwin_cnt;
216 	struct paace *spaace = NULL;
217 
218 	subwin_cnt = 1UL << (get_bf(paace->impl_attr, PAACE_IA_WCE) + 1);
219 
220 	if (wnum < subwin_cnt)
221 		spaace = &spaact[paace->fspi + wnum];
222 	else
223 		pr_debug("secondary paace out of bounds\n");
224 
225 	return spaace;
226 }
227 
228 /**
229  * pamu_get_fspi_and_allocate() - Allocates fspi index and reserves subwindows
230  *                                required for primary PAACE in the secondary
231  *                                PAACE table.
232  * @subwin_cnt: Number of subwindows to be reserved.
233  *
234  * A PPAACE entry may have a number of associated subwindows. A subwindow
235  * corresponds to a SPAACE entry in the SPAACT table. Each PAACE entry stores
236  * the index (fspi) of the first SPAACE entry in the SPAACT table. This
237  * function returns the index of the first SPAACE entry. The remaining
238  * SPAACE entries are reserved contiguously from that index.
239  *
240  * Returns a valid fspi index in the range of 0 - SPAACE_NUMBER_ENTRIES on success.
241  * If no SPAACE entry is available or the allocator can not reserve the required
242  * number of contiguous entries function returns ULONG_MAX indicating a failure.
243  *
244 */
245 static unsigned long pamu_get_fspi_and_allocate(u32 subwin_cnt)
246 {
247 	unsigned long spaace_addr;
248 
249 	spaace_addr = gen_pool_alloc(spaace_pool, subwin_cnt * sizeof(struct paace));
250 	if (!spaace_addr)
251 		return ULONG_MAX;
252 
253 	return (spaace_addr - (unsigned long)spaact) / (sizeof(struct paace));
254 }
255 
256 /* Release the subwindows reserved for a particular LIODN */
257 void pamu_free_subwins(int liodn)
258 {
259 	struct paace *ppaace;
260 	u32 subwin_cnt, size;
261 
262 	ppaace = pamu_get_ppaace(liodn);
263 	if (!ppaace) {
264 		pr_debug("Invalid liodn entry\n");
265 		return;
266 	}
267 
268 	if (get_bf(ppaace->addr_bitfields, PPAACE_AF_MW)) {
269 		subwin_cnt = 1UL << (get_bf(ppaace->impl_attr, PAACE_IA_WCE) + 1);
270 		size = (subwin_cnt - 1) * sizeof(struct paace);
271 		gen_pool_free(spaace_pool, (unsigned long)&spaact[ppaace->fspi], size);
272 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
273 	}
274 }
275 
276 /*
277  * Function used for updating stash destination for the coressponding
278  * LIODN.
279  */
280 int  pamu_update_paace_stash(int liodn, u32 subwin, u32 value)
281 {
282 	struct paace *paace;
283 
284 	paace = pamu_get_ppaace(liodn);
285 	if (!paace) {
286 		pr_debug("Invalid liodn entry\n");
287 		return -ENOENT;
288 	}
289 	if (subwin) {
290 		paace = pamu_get_spaace(paace, subwin - 1);
291 		if (!paace) {
292 			return -ENOENT;
293 		}
294 	}
295 	set_bf(paace->impl_attr, PAACE_IA_CID, value);
296 
297 	mb();
298 
299 	return 0;
300 }
301 
302 /* Disable a subwindow corresponding to the LIODN */
303 int pamu_disable_spaace(int liodn, u32 subwin)
304 {
305 	struct paace *paace;
306 
307 	paace = pamu_get_ppaace(liodn);
308 	if (!paace) {
309 		pr_debug("Invalid liodn entry\n");
310 		return -ENOENT;
311 	}
312 	if (subwin) {
313 		paace = pamu_get_spaace(paace, subwin - 1);
314 		if (!paace) {
315 			return -ENOENT;
316 		}
317 		set_bf(paace->addr_bitfields, PAACE_AF_V,
318 			 PAACE_V_INVALID);
319 	} else {
320 		set_bf(paace->addr_bitfields, PAACE_AF_AP,
321 			 PAACE_AP_PERMS_DENIED);
322 	}
323 
324 	mb();
325 
326 	return 0;
327 }
328 
329 
330 /**
331  * pamu_config_paace() - Sets up PPAACE entry for specified liodn
332  *
333  * @liodn: Logical IO device number
334  * @win_addr: starting address of DSA window
335  * @win-size: size of DSA window
336  * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
337  * @rpn: real (true physical) page number
338  * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
339  *	     stashid not defined
340  * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
341  *	     snoopid not defined
342  * @subwin_cnt: number of sub-windows
343  * @prot: window permissions
344  *
345  * Returns 0 upon success else error code < 0 returned
346  */
347 int pamu_config_ppaace(int liodn, phys_addr_t win_addr, phys_addr_t win_size,
348 		       u32 omi, unsigned long rpn, u32 snoopid, u32 stashid,
349 		       u32 subwin_cnt, int prot)
350 {
351 	struct paace *ppaace;
352 	unsigned long fspi;
353 
354 	if (!is_power_of_2(win_size) || win_size < PAMU_PAGE_SIZE) {
355 		pr_debug("window size too small or not a power of two %llx\n", win_size);
356 		return -EINVAL;
357 	}
358 
359 	if (win_addr & (win_size - 1)) {
360 		pr_debug("window address is not aligned with window size\n");
361 		return -EINVAL;
362 	}
363 
364 	ppaace = pamu_get_ppaace(liodn);
365 	if (!ppaace) {
366 		return -ENOENT;
367 	}
368 
369 	/* window size is 2^(WSE+1) bytes */
370 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
371 		map_addrspace_size_to_wse(win_size));
372 
373 	pamu_init_ppaace(ppaace);
374 
375 	ppaace->wbah = win_addr >> (PAMU_PAGE_SHIFT + 20);
376 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL,
377 	       (win_addr >> PAMU_PAGE_SHIFT));
378 
379 	/* set up operation mapping if it's configured */
380 	if (omi < OME_NUMBER_ENTRIES) {
381 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
382 		ppaace->op_encode.index_ot.omi = omi;
383 	} else if (~omi != 0) {
384 		pr_debug("bad operation mapping index: %d\n", omi);
385 		return -EINVAL;
386 	}
387 
388 	/* configure stash id */
389 	if (~stashid != 0)
390 		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
391 
392 	/* configure snoop id */
393 	if (~snoopid != 0)
394 		ppaace->domain_attr.to_host.snpid = snoopid;
395 
396 	if (subwin_cnt) {
397 		/* The first entry is in the primary PAACE instead */
398 		fspi = pamu_get_fspi_and_allocate(subwin_cnt - 1);
399 		if (fspi == ULONG_MAX) {
400 			pr_debug("spaace indexes exhausted\n");
401 			return -EINVAL;
402 		}
403 
404 		/* window count is 2^(WCE+1) bytes */
405 		set_bf(ppaace->impl_attr, PAACE_IA_WCE,
406 		       map_subwindow_cnt_to_wce(subwin_cnt));
407 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0x1);
408 		ppaace->fspi = fspi;
409 	} else {
410 		set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
411 		ppaace->twbah = rpn >> 20;
412 		set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, rpn);
413 		set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
414 		set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
415 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
416 	}
417 	mb();
418 
419 	return 0;
420 }
421 
422 /**
423  * pamu_config_spaace() - Sets up SPAACE entry for specified subwindow
424  *
425  * @liodn:  Logical IO device number
426  * @subwin_cnt:  number of sub-windows associated with dma-window
427  * @subwin: subwindow index
428  * @subwin_size: size of subwindow
429  * @omi: Operation mapping index
430  * @rpn: real (true physical) page number
431  * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
432  *			  snoopid not defined
433  * @stashid: cache stash id for associated cpu
434  * @enable: enable/disable subwindow after reconfiguration
435  * @prot: sub window permissions
436  *
437  * Returns 0 upon success else error code < 0 returned
438  */
439 int pamu_config_spaace(int liodn, u32 subwin_cnt, u32 subwin,
440 		       phys_addr_t subwin_size, u32 omi, unsigned long rpn,
441 		       u32 snoopid, u32 stashid, int enable, int prot)
442 {
443 	struct paace *paace;
444 
445 
446 	/* setup sub-windows */
447 	if (!subwin_cnt) {
448 		pr_debug("Invalid subwindow count\n");
449 		return -EINVAL;
450 	}
451 
452 	paace = pamu_get_ppaace(liodn);
453 	if (subwin > 0 && subwin < subwin_cnt && paace) {
454 		paace = pamu_get_spaace(paace, subwin - 1);
455 
456 		if (paace && !(paace->addr_bitfields & PAACE_V_VALID)) {
457 			pamu_init_spaace(paace);
458 			set_bf(paace->addr_bitfields, SPAACE_AF_LIODN, liodn);
459 		}
460 	}
461 
462 	if (!paace) {
463 		pr_debug("Invalid liodn entry\n");
464 		return -ENOENT;
465 	}
466 
467 	if (!is_power_of_2(subwin_size) || subwin_size < PAMU_PAGE_SIZE) {
468 		pr_debug("subwindow size out of range, or not a power of 2\n");
469 		return -EINVAL;
470 	}
471 
472 	if (rpn == ULONG_MAX) {
473 		pr_debug("real page number out of range\n");
474 		return -EINVAL;
475 	}
476 
477 	/* window size is 2^(WSE+1) bytes */
478 	set_bf(paace->win_bitfields, PAACE_WIN_SWSE,
479 	       map_addrspace_size_to_wse(subwin_size));
480 
481 	set_bf(paace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
482 	paace->twbah = rpn >> 20;
483 	set_bf(paace->win_bitfields, PAACE_WIN_TWBAL, rpn);
484 	set_bf(paace->addr_bitfields, PAACE_AF_AP, prot);
485 
486 	/* configure snoop id */
487 	if (~snoopid != 0)
488 		paace->domain_attr.to_host.snpid = snoopid;
489 
490 	/* set up operation mapping if it's configured */
491 	if (omi < OME_NUMBER_ENTRIES) {
492 		set_bf(paace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
493 		paace->op_encode.index_ot.omi = omi;
494 	} else if (~omi != 0) {
495 		pr_debug("bad operation mapping index: %d\n", omi);
496 		return -EINVAL;
497 	}
498 
499 	if (~stashid != 0)
500 		set_bf(paace->impl_attr, PAACE_IA_CID, stashid);
501 
502 	smp_wmb();
503 
504 	if (enable)
505 		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
506 
507 	mb();
508 
509 	return 0;
510 }
511 
512 /**
513 * get_ome_index() - Returns the index in the operation mapping table
514 *                   for device.
515 * @*omi_index: pointer for storing the index value
516 *
517 */
518 void get_ome_index(u32 *omi_index, struct device *dev)
519 {
520 	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
521 		*omi_index = OMI_QMAN;
522 	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
523 		*omi_index = OMI_QMAN_PRIV;
524 }
525 
526 /**
527  * get_stash_id - Returns stash destination id corresponding to a
528  *                cache type and vcpu.
529  * @stash_dest_hint: L1, L2 or L3
530  * @vcpu: vpcu target for a particular cache type.
531  *
532  * Returs stash on success or ~(u32)0 on failure.
533  *
534  */
535 u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
536 {
537 	const u32 *prop;
538 	struct device_node *node;
539 	u32 cache_level;
540 	int len, found = 0;
541 	int i;
542 
543 	/* Fastpath, exit early if L3/CPC cache is target for stashing */
544 	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
545 		node = of_find_matching_node(NULL, l3_device_ids);
546 		if (node) {
547 			prop = of_get_property(node, "cache-stash-id", 0);
548 			if (!prop) {
549 				pr_debug("missing cache-stash-id at %s\n", node->full_name);
550 				of_node_put(node);
551 				return ~(u32)0;
552 			}
553 			of_node_put(node);
554 			return be32_to_cpup(prop);
555 		}
556 		return ~(u32)0;
557 	}
558 
559 	for_each_node_by_type(node, "cpu") {
560 		prop = of_get_property(node, "reg", &len);
561 		for (i = 0; i < len / sizeof(u32); i++) {
562 			if (be32_to_cpup(&prop[i]) == vcpu) {
563 				found = 1;
564 				goto found_cpu_node;
565 			}
566 		}
567 	}
568 found_cpu_node:
569 
570 	/* find the hwnode that represents the cache */
571 	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
572 		if (stash_dest_hint == cache_level) {
573 			prop = of_get_property(node, "cache-stash-id", 0);
574 			if (!prop) {
575 				pr_debug("missing cache-stash-id at %s\n", node->full_name);
576 				of_node_put(node);
577 				return ~(u32)0;
578 			}
579 			of_node_put(node);
580 			return be32_to_cpup(prop);
581 		}
582 
583 		prop = of_get_property(node, "next-level-cache", 0);
584 		if (!prop) {
585 			pr_debug("can't find next-level-cache at %s\n",
586 				node->full_name);
587 			of_node_put(node);
588 			return ~(u32)0;  /* can't traverse any further */
589 		}
590 		of_node_put(node);
591 
592 		/* advance to next node in cache hierarchy */
593 		node = of_find_node_by_phandle(*prop);
594 		if (!node) {
595 			pr_debug("Invalid node for cache hierarchy %s\n",
596 				node->full_name);
597 			return ~(u32)0;
598 		}
599 	}
600 
601 	pr_debug("stash dest not found for %d on vcpu %d\n",
602 	          stash_dest_hint, vcpu);
603 	return ~(u32)0;
604 }
605 
606 /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
607 #define QMAN_PAACE 1
608 #define QMAN_PORTAL_PAACE 2
609 #define BMAN_PAACE 3
610 
611 /**
612  * Setup operation mapping and stash destinations for QMAN and QMAN portal.
613  * Memory accesses to QMAN and BMAN private memory need not be coherent, so
614  * clear the PAACE entry coherency attribute for them.
615  */
616 static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
617 {
618 	switch (paace_type) {
619 	case QMAN_PAACE:
620 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
621 		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
622 		/* setup QMAN Private data stashing for the L3 cache */
623 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
624 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
625 		       0);
626 		break;
627 	case QMAN_PORTAL_PAACE:
628 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
629 		ppaace->op_encode.index_ot.omi = OMI_QMAN;
630 		/*Set DQRR and Frame stashing for the L3 cache */
631 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
632 		break;
633 	case BMAN_PAACE:
634 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
635 		       0);
636 		break;
637 	}
638 }
639 
640 /**
641  * Setup the operation mapping table for various devices. This is a static
642  * table where each table index corresponds to a particular device. PAMU uses
643  * this table to translate device transaction to appropriate corenet
644  * transaction.
645  */
646 static void __init setup_omt(struct ome *omt)
647 {
648 	struct ome *ome;
649 
650 	/* Configure OMI_QMAN */
651 	ome = &omt[OMI_QMAN];
652 
653 	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
654 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
655 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
656 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
657 
658 	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
659 	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
660 
661 	/* Configure OMI_FMAN */
662 	ome = &omt[OMI_FMAN];
663 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
664 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
665 
666 	/* Configure OMI_QMAN private */
667 	ome = &omt[OMI_QMAN_PRIV];
668 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
669 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
670 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
671 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
672 
673 	/* Configure OMI_CAAM */
674 	ome = &omt[OMI_CAAM];
675 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
676 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
677 }
678 
679 /*
680  * Get the maximum number of PAACT table entries
681  * and subwindows supported by PAMU
682  */
683 static void get_pamu_cap_values(unsigned long pamu_reg_base)
684 {
685 	u32 pc_val;
686 
687 	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
688 	/* Maximum number of subwindows per liodn */
689 	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
690 }
691 
692 /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
693 int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
694 	           phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
695 		   phys_addr_t omt_phys)
696 {
697 	u32 *pc;
698 	struct pamu_mmap_regs *pamu_regs;
699 
700 	pc = (u32 *) (pamu_reg_base + PAMU_PC);
701 	pamu_regs = (struct pamu_mmap_regs *)
702 		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
703 
704 	/* set up pointers to corenet control blocks */
705 
706 	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
707 	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
708 	ppaact_phys = ppaact_phys + PAACT_SIZE;
709 	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
710 	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
711 
712 	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
713 	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
714 	spaact_phys = spaact_phys + SPAACT_SIZE;
715 	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
716 	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
717 
718 	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
719 	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
720 	omt_phys = omt_phys + OMT_SIZE;
721 	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
722 	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
723 
724 	/*
725 	 * set PAMU enable bit,
726 	 * allow ppaact & omt to be cached
727 	 * & enable PAMU access violation interrupts.
728 	 */
729 
730 	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
731 			PAMU_ACCESS_VIOLATION_ENABLE);
732 	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
733 	return 0;
734 }
735 
736 /* Enable all device LIODNS */
737 static void __init setup_liodns(void)
738 {
739 	int i, len;
740 	struct paace *ppaace;
741 	struct device_node *node = NULL;
742 	const u32 *prop;
743 
744 	for_each_node_with_property(node, "fsl,liodn") {
745 		prop = of_get_property(node, "fsl,liodn", &len);
746 		for (i = 0; i < len / sizeof(u32); i++) {
747 			int liodn;
748 
749 			liodn = be32_to_cpup(&prop[i]);
750 			if (liodn >= PAACE_NUMBER_ENTRIES) {
751 				pr_debug("Invalid LIODN value %d\n", liodn);
752 				continue;
753 			}
754 			ppaace = pamu_get_ppaace(liodn);
755 			pamu_init_ppaace(ppaace);
756 			/* window size is 2^(WSE+1) bytes */
757 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
758 			ppaace->wbah = 0;
759 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
760 			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
761 				PAACE_ATM_NO_XLATE);
762 			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
763 				PAACE_AP_PERMS_ALL);
764 			if (of_device_is_compatible(node, "fsl,qman-portal"))
765 				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
766 			if (of_device_is_compatible(node, "fsl,qman"))
767 				setup_qbman_paace(ppaace, QMAN_PAACE);
768 			if (of_device_is_compatible(node, "fsl,bman"))
769 				setup_qbman_paace(ppaace, BMAN_PAACE);
770 			mb();
771 			pamu_enable_liodn(liodn);
772 		}
773 	}
774 }
775 
776 irqreturn_t pamu_av_isr(int irq, void *arg)
777 {
778 	struct pamu_isr_data *data = arg;
779 	phys_addr_t phys;
780 	unsigned int i, j, ret;
781 
782 	pr_emerg("access violation interrupt\n");
783 
784 	for (i = 0; i < data->count; i++) {
785 		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
786 		u32 pics = in_be32(p + PAMU_PICS);
787 
788 		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
789 			u32 avs1 = in_be32(p + PAMU_AVS1);
790 			struct paace *paace;
791 
792 			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
793 			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
794 			pr_emerg("AVS1=%08x\n", avs1);
795 			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
796 			pr_emerg("AVA=%016llx\n", make64(in_be32(p + PAMU_AVAH),
797 				in_be32(p + PAMU_AVAL)));
798 			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
799 			pr_emerg("POEA=%016llx\n", make64(in_be32(p + PAMU_POEAH),
800 				in_be32(p + PAMU_POEAL)));
801 
802 			phys = make64(in_be32(p + PAMU_POEAH),
803 				in_be32(p + PAMU_POEAL));
804 
805 			/* Assume that POEA points to a PAACE */
806 			if (phys) {
807 				u32 *paace = phys_to_virt(phys);
808 
809 				/* Only the first four words are relevant */
810 				for (j = 0; j < 4; j++)
811 					pr_emerg("PAACE[%u]=%08x\n", j, in_be32(paace + j));
812 			}
813 
814 			/* clear access violation condition */
815 			out_be32((p + PAMU_AVS1), avs1 & PAMU_AV_MASK);
816 			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
817 			BUG_ON(!paace);
818 			/* check if we got a violation for a disabled LIODN */
819 			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
820 				/*
821 				 * As per hardware erratum A-003638, access
822 				 * violation can be reported for a disabled
823 				 * LIODN. If we hit that condition, disable
824 				 * access violation reporting.
825 				 */
826 				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
827 			} else {
828 				/* Disable the LIODN */
829 				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
830 				BUG_ON(ret);
831 				pr_emerg("Disabling liodn %x\n", avs1 >> PAMU_AVS1_LIODN_SHIFT);
832 			}
833 			out_be32((p + PAMU_PICS), pics);
834 		}
835 	}
836 
837 
838 	return IRQ_HANDLED;
839 }
840 
841 #define LAWAR_EN		0x80000000
842 #define LAWAR_TARGET_MASK	0x0FF00000
843 #define LAWAR_TARGET_SHIFT	20
844 #define LAWAR_SIZE_MASK		0x0000003F
845 #define LAWAR_CSDID_MASK	0x000FF000
846 #define LAWAR_CSDID_SHIFT	12
847 
848 #define LAW_SIZE_4K		0xb
849 
850 struct ccsr_law {
851 	u32	lawbarh;	/* LAWn base address high */
852 	u32	lawbarl;	/* LAWn base address low */
853 	u32	lawar;		/* LAWn attributes */
854 	u32	reserved;
855 };
856 
857 /*
858  * Create a coherence subdomain for a given memory block.
859  */
860 static int __init create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
861 {
862 	struct device_node *np;
863 	const __be32 *iprop;
864 	void __iomem *lac = NULL;	/* Local Access Control registers */
865 	struct ccsr_law __iomem *law;
866 	void __iomem *ccm = NULL;
867 	u32 __iomem *csdids;
868 	unsigned int i, num_laws, num_csds;
869 	u32 law_target = 0;
870 	u32 csd_id = 0;
871 	int ret = 0;
872 
873 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
874 	if (!np)
875 		return -ENODEV;
876 
877 	iprop = of_get_property(np, "fsl,num-laws", NULL);
878 	if (!iprop) {
879 		ret = -ENODEV;
880 		goto error;
881 	}
882 
883 	num_laws = be32_to_cpup(iprop);
884 	if (!num_laws) {
885 		ret = -ENODEV;
886 		goto error;
887 	}
888 
889 	lac = of_iomap(np, 0);
890 	if (!lac) {
891 		ret = -ENODEV;
892 		goto error;
893 	}
894 
895 	/* LAW registers are at offset 0xC00 */
896 	law = lac + 0xC00;
897 
898 	of_node_put(np);
899 
900 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
901 	if (!np) {
902 		ret = -ENODEV;
903 		goto error;
904 	}
905 
906 	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
907 	if (!iprop) {
908 		ret = -ENODEV;
909 		goto error;
910 	}
911 
912 	num_csds = be32_to_cpup(iprop);
913 	if (!num_csds) {
914 		ret = -ENODEV;
915 		goto error;
916 	}
917 
918 	ccm = of_iomap(np, 0);
919 	if (!ccm) {
920 		ret = -ENOMEM;
921 		goto error;
922 	}
923 
924 	/* The undocumented CSDID registers are at offset 0x600 */
925 	csdids = ccm + 0x600;
926 
927 	of_node_put(np);
928 	np = NULL;
929 
930 	/* Find an unused coherence subdomain ID */
931 	for (csd_id = 0; csd_id < num_csds; csd_id++) {
932 		if (!csdids[csd_id])
933 			break;
934 	}
935 
936 	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
937 	csdids[csd_id] = csd_port_id;
938 
939 	/* Find the DDR LAW that maps to our buffer. */
940 	for (i = 0; i < num_laws; i++) {
941 		if (law[i].lawar & LAWAR_EN) {
942 			phys_addr_t law_start, law_end;
943 
944 			law_start = make64(law[i].lawbarh, law[i].lawbarl);
945 			law_end = law_start +
946 				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
947 
948 			if (law_start <= phys && phys < law_end) {
949 				law_target = law[i].lawar & LAWAR_TARGET_MASK;
950 				break;
951 			}
952 		}
953 	}
954 
955 	if (i == 0 || i == num_laws) {
956 		/* This should never happen*/
957 		ret = -ENOENT;
958 		goto error;
959 	}
960 
961 	/* Find a free LAW entry */
962 	while (law[--i].lawar & LAWAR_EN) {
963 		if (i == 0) {
964 			/* No higher priority LAW slots available */
965 			ret = -ENOENT;
966 			goto error;
967 		}
968 	}
969 
970 	law[i].lawbarh = upper_32_bits(phys);
971 	law[i].lawbarl = lower_32_bits(phys);
972 	wmb();
973 	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
974 		(LAW_SIZE_4K + get_order(size));
975 	wmb();
976 
977 error:
978 	if (ccm)
979 		iounmap(ccm);
980 
981 	if (lac)
982 		iounmap(lac);
983 
984 	if (np)
985 		of_node_put(np);
986 
987 	return ret;
988 }
989 
990 /*
991  * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
992  * bit map of snoopers for a given range of memory mapped by a LAW.
993  *
994  * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
995  * table should never need to be updated.  SVRs are guaranteed to be unique, so
996  * there is no worry that a future SOC will inadvertently have one of these
997  * values.
998  */
999 static const struct {
1000 	u32 svr;
1001 	u32 port_id;
1002 } port_id_map[] = {
1003 	{0x82100010, 0xFF000000},	/* P2040 1.0 */
1004 	{0x82100011, 0xFF000000},	/* P2040 1.1 */
1005 	{0x82100110, 0xFF000000},	/* P2041 1.0 */
1006 	{0x82100111, 0xFF000000},	/* P2041 1.1 */
1007 	{0x82110310, 0xFF000000},	/* P3041 1.0 */
1008 	{0x82110311, 0xFF000000},	/* P3041 1.1 */
1009 	{0x82010020, 0xFFF80000},	/* P4040 2.0 */
1010 	{0x82000020, 0xFFF80000},	/* P4080 2.0 */
1011 	{0x82210010, 0xFC000000},       /* P5010 1.0 */
1012 	{0x82210020, 0xFC000000},       /* P5010 2.0 */
1013 	{0x82200010, 0xFC000000},	/* P5020 1.0 */
1014 	{0x82050010, 0xFF800000},	/* P5021 1.0 */
1015 	{0x82040010, 0xFF800000},	/* P5040 1.0 */
1016 };
1017 
1018 #define SVR_SECURITY	0x80000	/* The Security (E) bit */
1019 
1020 static int __init fsl_pamu_probe(struct platform_device *pdev)
1021 {
1022 	void __iomem *pamu_regs = NULL;
1023 	struct ccsr_guts __iomem *guts_regs = NULL;
1024 	u32 pamubypenr, pamu_counter;
1025 	unsigned long pamu_reg_off;
1026 	unsigned long pamu_reg_base;
1027 	struct pamu_isr_data *data = NULL;
1028 	struct device_node *guts_node;
1029 	u64 size;
1030 	struct page *p;
1031 	int ret = 0;
1032 	int irq;
1033 	phys_addr_t ppaact_phys;
1034 	phys_addr_t spaact_phys;
1035 	phys_addr_t omt_phys;
1036 	size_t mem_size = 0;
1037 	unsigned int order = 0;
1038 	u32 csd_port_id = 0;
1039 	unsigned i;
1040 	/*
1041 	 * enumerate all PAMUs and allocate and setup PAMU tables
1042 	 * for each of them,
1043 	 * NOTE : All PAMUs share the same LIODN tables.
1044 	 */
1045 
1046 	pamu_regs = of_iomap(pdev->dev.of_node, 0);
1047 	if (!pamu_regs) {
1048 		dev_err(&pdev->dev, "ioremap of PAMU node failed\n");
1049 		return -ENOMEM;
1050 	}
1051 	of_get_address(pdev->dev.of_node, 0, &size, NULL);
1052 
1053 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1054 	if (irq == NO_IRQ) {
1055 		dev_warn(&pdev->dev, "no interrupts listed in PAMU node\n");
1056 		goto error;
1057 	}
1058 
1059 	data = kzalloc(sizeof(struct pamu_isr_data), GFP_KERNEL);
1060 	if (!data) {
1061 		dev_err(&pdev->dev, "PAMU isr data memory allocation failed\n");
1062 		ret = -ENOMEM;
1063 		goto error;
1064 	}
1065 	data->pamu_reg_base = pamu_regs;
1066 	data->count = size / PAMU_OFFSET;
1067 
1068 	/* The ISR needs access to the regs, so we won't iounmap them */
1069 	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
1070 	if (ret < 0) {
1071 		dev_err(&pdev->dev, "error %i installing ISR for irq %i\n",
1072 			ret, irq);
1073 		goto error;
1074 	}
1075 
1076 	guts_node = of_find_matching_node(NULL, guts_device_ids);
1077 	if (!guts_node) {
1078 		dev_err(&pdev->dev, "could not find GUTS node %s\n",
1079 			pdev->dev.of_node->full_name);
1080 		ret = -ENODEV;
1081 		goto error;
1082 	}
1083 
1084 	guts_regs = of_iomap(guts_node, 0);
1085 	of_node_put(guts_node);
1086 	if (!guts_regs) {
1087 		dev_err(&pdev->dev, "ioremap of GUTS node failed\n");
1088 		ret = -ENODEV;
1089 		goto error;
1090 	}
1091 
1092 	/* read in the PAMU capability registers */
1093 	get_pamu_cap_values((unsigned long)pamu_regs);
1094 	/*
1095 	 * To simplify the allocation of a coherency domain, we allocate the
1096 	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
1097 	 * wastes more memory compared to allocating the buffers separately.
1098 	 */
1099 	/* Determine how much memory we need */
1100 	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
1101 		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
1102 		(PAGE_SIZE << get_order(OMT_SIZE));
1103 	order = get_order(mem_size);
1104 
1105 	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1106 	if (!p) {
1107 		dev_err(&pdev->dev, "unable to allocate PAACT/SPAACT/OMT block\n");
1108 		ret = -ENOMEM;
1109 		goto error;
1110 	}
1111 
1112 	ppaact = page_address(p);
1113 	ppaact_phys = page_to_phys(p);
1114 
1115 	/* Make sure the memory is naturally aligned */
1116 	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
1117 		dev_err(&pdev->dev, "PAACT/OMT block is unaligned\n");
1118 		ret = -ENOMEM;
1119 		goto error;
1120 	}
1121 
1122 	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
1123 	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
1124 
1125 	dev_dbg(&pdev->dev, "ppaact virt=%p phys=0x%llx\n", ppaact,
1126 		(unsigned long long) ppaact_phys);
1127 
1128 	/* Check to see if we need to implement the work-around on this SOC */
1129 
1130 	/* Determine the Port ID for our coherence subdomain */
1131 	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
1132 		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
1133 			csd_port_id = port_id_map[i].port_id;
1134 			dev_dbg(&pdev->dev, "found matching SVR %08x\n",
1135 				port_id_map[i].svr);
1136 			break;
1137 		}
1138 	}
1139 
1140 	if (csd_port_id) {
1141 		dev_dbg(&pdev->dev, "creating coherency subdomain at address "
1142 			"0x%llx, size %zu, port id 0x%08x", ppaact_phys,
1143 			mem_size, csd_port_id);
1144 
1145 		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
1146 		if (ret) {
1147 			dev_err(&pdev->dev, "could not create coherence "
1148 				"subdomain\n");
1149 			return ret;
1150 		}
1151 	}
1152 
1153 	spaact_phys = virt_to_phys(spaact);
1154 	omt_phys = virt_to_phys(omt);
1155 
1156 	spaace_pool = gen_pool_create(ilog2(sizeof(struct paace)), -1);
1157 	if (!spaace_pool) {
1158 		ret = -ENOMEM;
1159 		dev_err(&pdev->dev, "PAMU : failed to allocate spaace gen pool\n");
1160 		goto error;
1161 	}
1162 
1163 	ret = gen_pool_add(spaace_pool, (unsigned long)spaact, SPAACT_SIZE, -1);
1164 	if (ret)
1165 		goto error_genpool;
1166 
1167 	pamubypenr = in_be32(&guts_regs->pamubypenr);
1168 
1169 	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
1170 	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
1171 
1172 		pamu_reg_base = (unsigned long) pamu_regs + pamu_reg_off;
1173 		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
1174 				 spaact_phys, omt_phys);
1175 		/* Disable PAMU bypass for this PAMU */
1176 		pamubypenr &= ~pamu_counter;
1177 	}
1178 
1179 	setup_omt(omt);
1180 
1181 	/* Enable all relevant PAMU(s) */
1182 	out_be32(&guts_regs->pamubypenr, pamubypenr);
1183 
1184 	iounmap(guts_regs);
1185 
1186 	/* Enable DMA for the LIODNs in the device tree*/
1187 
1188 	setup_liodns();
1189 
1190 	return 0;
1191 
1192 error_genpool:
1193 	gen_pool_destroy(spaace_pool);
1194 
1195 error:
1196 	if (irq != NO_IRQ)
1197 		free_irq(irq, data);
1198 
1199 	if (data) {
1200 		memset(data, 0, sizeof(struct pamu_isr_data));
1201 		kfree(data);
1202 	}
1203 
1204 	if (pamu_regs)
1205 		iounmap(pamu_regs);
1206 
1207 	if (guts_regs)
1208 		iounmap(guts_regs);
1209 
1210 	if (ppaact)
1211 		free_pages((unsigned long)ppaact, order);
1212 
1213 	ppaact = NULL;
1214 
1215 	return ret;
1216 }
1217 
1218 static const struct of_device_id fsl_of_pamu_ids[] = {
1219 	{
1220 		.compatible = "fsl,p4080-pamu",
1221 	},
1222 	{
1223 		.compatible = "fsl,pamu",
1224 	},
1225 	{},
1226 };
1227 
1228 static struct platform_driver fsl_of_pamu_driver = {
1229 	.driver = {
1230 		.name = "fsl-of-pamu",
1231 		.owner = THIS_MODULE,
1232 	},
1233 	.probe = fsl_pamu_probe,
1234 };
1235 
1236 static __init int fsl_pamu_init(void)
1237 {
1238 	struct platform_device *pdev = NULL;
1239 	struct device_node *np;
1240 	int ret;
1241 
1242 	/*
1243 	 * The normal OF process calls the probe function at some
1244 	 * indeterminate later time, after most drivers have loaded.  This is
1245 	 * too late for us, because PAMU clients (like the Qman driver)
1246 	 * depend on PAMU being initialized early.
1247 	 *
1248 	 * So instead, we "manually" call our probe function by creating the
1249 	 * platform devices ourselves.
1250 	 */
1251 
1252 	/*
1253 	 * We assume that there is only one PAMU node in the device tree.  A
1254 	 * single PAMU node represents all of the PAMU devices in the SOC
1255 	 * already.   Everything else already makes that assumption, and the
1256 	 * binding for the PAMU nodes doesn't allow for any parent-child
1257 	 * relationships anyway.  In other words, support for more than one
1258 	 * PAMU node would require significant changes to a lot of code.
1259 	 */
1260 
1261 	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
1262 	if (!np) {
1263 		pr_err("could not find a PAMU node\n");
1264 		return -ENODEV;
1265 	}
1266 
1267 	ret = platform_driver_register(&fsl_of_pamu_driver);
1268 	if (ret) {
1269 		pr_err("could not register driver (err=%i)\n", ret);
1270 		goto error_driver_register;
1271 	}
1272 
1273 	pdev = platform_device_alloc("fsl-of-pamu", 0);
1274 	if (!pdev) {
1275 		pr_err("could not allocate device %s\n",
1276 		       np->full_name);
1277 		ret = -ENOMEM;
1278 		goto error_device_alloc;
1279 	}
1280 	pdev->dev.of_node = of_node_get(np);
1281 
1282 	ret = pamu_domain_init();
1283 	if (ret)
1284 		goto error_device_add;
1285 
1286 	ret = platform_device_add(pdev);
1287 	if (ret) {
1288 		pr_err("could not add device %s (err=%i)\n",
1289 		       np->full_name, ret);
1290 		goto error_device_add;
1291 	}
1292 
1293 	return 0;
1294 
1295 error_device_add:
1296 	of_node_put(pdev->dev.of_node);
1297 	pdev->dev.of_node = NULL;
1298 
1299 	platform_device_put(pdev);
1300 
1301 error_device_alloc:
1302 	platform_driver_unregister(&fsl_of_pamu_driver);
1303 
1304 error_driver_register:
1305 	of_node_put(np);
1306 
1307 	return ret;
1308 }
1309 arch_initcall(fsl_pamu_init);
1310