1 /* linux/drivers/iommu/exynos_iommu.c 2 * 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG 12 #define DEBUG 13 #endif 14 15 #include <linux/clk.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/err.h> 18 #include <linux/io.h> 19 #include <linux/iommu.h> 20 #include <linux/interrupt.h> 21 #include <linux/list.h> 22 #include <linux/of.h> 23 #include <linux/of_iommu.h> 24 #include <linux/of_platform.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/slab.h> 28 29 #include <asm/cacheflush.h> 30 #include <asm/dma-iommu.h> 31 #include <asm/pgtable.h> 32 33 typedef u32 sysmmu_iova_t; 34 typedef u32 sysmmu_pte_t; 35 36 /* We do not consider super section mapping (16MB) */ 37 #define SECT_ORDER 20 38 #define LPAGE_ORDER 16 39 #define SPAGE_ORDER 12 40 41 #define SECT_SIZE (1 << SECT_ORDER) 42 #define LPAGE_SIZE (1 << LPAGE_ORDER) 43 #define SPAGE_SIZE (1 << SPAGE_ORDER) 44 45 #define SECT_MASK (~(SECT_SIZE - 1)) 46 #define LPAGE_MASK (~(LPAGE_SIZE - 1)) 47 #define SPAGE_MASK (~(SPAGE_SIZE - 1)) 48 49 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \ 50 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3)) 51 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK) 52 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1) 53 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \ 54 ((*(sent) & 3) == 1)) 55 #define lv1ent_section(sent) ((*(sent) & 3) == 2) 56 57 #define lv2ent_fault(pent) ((*(pent) & 3) == 0) 58 #define lv2ent_small(pent) ((*(pent) & 2) == 2) 59 #define lv2ent_large(pent) ((*(pent) & 3) == 1) 60 61 static u32 sysmmu_page_offset(sysmmu_iova_t iova, u32 size) 62 { 63 return iova & (size - 1); 64 } 65 66 #define section_phys(sent) (*(sent) & SECT_MASK) 67 #define section_offs(iova) sysmmu_page_offset((iova), SECT_SIZE) 68 #define lpage_phys(pent) (*(pent) & LPAGE_MASK) 69 #define lpage_offs(iova) sysmmu_page_offset((iova), LPAGE_SIZE) 70 #define spage_phys(pent) (*(pent) & SPAGE_MASK) 71 #define spage_offs(iova) sysmmu_page_offset((iova), SPAGE_SIZE) 72 73 #define NUM_LV1ENTRIES 4096 74 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE) 75 76 static u32 lv1ent_offset(sysmmu_iova_t iova) 77 { 78 return iova >> SECT_ORDER; 79 } 80 81 static u32 lv2ent_offset(sysmmu_iova_t iova) 82 { 83 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1); 84 } 85 86 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t)) 87 88 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE) 89 90 #define lv2table_base(sent) (*(sent) & 0xFFFFFC00) 91 92 #define mk_lv1ent_sect(pa) ((pa) | 2) 93 #define mk_lv1ent_page(pa) ((pa) | 1) 94 #define mk_lv2ent_lpage(pa) ((pa) | 1) 95 #define mk_lv2ent_spage(pa) ((pa) | 2) 96 97 #define CTRL_ENABLE 0x5 98 #define CTRL_BLOCK 0x7 99 #define CTRL_DISABLE 0x0 100 101 #define CFG_LRU 0x1 102 #define CFG_QOS(n) ((n & 0xF) << 7) 103 #define CFG_MASK 0x0150FFFF /* Selecting bit 0-15, 20, 22 and 24 */ 104 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */ 105 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */ 106 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */ 107 108 #define REG_MMU_CTRL 0x000 109 #define REG_MMU_CFG 0x004 110 #define REG_MMU_STATUS 0x008 111 #define REG_MMU_FLUSH 0x00C 112 #define REG_MMU_FLUSH_ENTRY 0x010 113 #define REG_PT_BASE_ADDR 0x014 114 #define REG_INT_STATUS 0x018 115 #define REG_INT_CLEAR 0x01C 116 117 #define REG_PAGE_FAULT_ADDR 0x024 118 #define REG_AW_FAULT_ADDR 0x028 119 #define REG_AR_FAULT_ADDR 0x02C 120 #define REG_DEFAULT_SLAVE_ADDR 0x030 121 122 #define REG_MMU_VERSION 0x034 123 124 #define MMU_MAJ_VER(val) ((val) >> 7) 125 #define MMU_MIN_VER(val) ((val) & 0x7F) 126 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */ 127 128 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F)) 129 130 #define REG_PB0_SADDR 0x04C 131 #define REG_PB0_EADDR 0x050 132 #define REG_PB1_SADDR 0x054 133 #define REG_PB1_EADDR 0x058 134 135 #define has_sysmmu(dev) (dev->archdata.iommu != NULL) 136 137 static struct kmem_cache *lv2table_kmem_cache; 138 static sysmmu_pte_t *zero_lv2_table; 139 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table)) 140 141 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova) 142 { 143 return pgtable + lv1ent_offset(iova); 144 } 145 146 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova) 147 { 148 return (sysmmu_pte_t *)phys_to_virt( 149 lv2table_base(sent)) + lv2ent_offset(iova); 150 } 151 152 enum exynos_sysmmu_inttype { 153 SYSMMU_PAGEFAULT, 154 SYSMMU_AR_MULTIHIT, 155 SYSMMU_AW_MULTIHIT, 156 SYSMMU_BUSERROR, 157 SYSMMU_AR_SECURITY, 158 SYSMMU_AR_ACCESS, 159 SYSMMU_AW_SECURITY, 160 SYSMMU_AW_PROTECTION, /* 7 */ 161 SYSMMU_FAULT_UNKNOWN, 162 SYSMMU_FAULTS_NUM 163 }; 164 165 static unsigned short fault_reg_offset[SYSMMU_FAULTS_NUM] = { 166 REG_PAGE_FAULT_ADDR, 167 REG_AR_FAULT_ADDR, 168 REG_AW_FAULT_ADDR, 169 REG_DEFAULT_SLAVE_ADDR, 170 REG_AR_FAULT_ADDR, 171 REG_AR_FAULT_ADDR, 172 REG_AW_FAULT_ADDR, 173 REG_AW_FAULT_ADDR 174 }; 175 176 static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = { 177 "PAGE FAULT", 178 "AR MULTI-HIT FAULT", 179 "AW MULTI-HIT FAULT", 180 "BUS ERROR", 181 "AR SECURITY PROTECTION FAULT", 182 "AR ACCESS PROTECTION FAULT", 183 "AW SECURITY PROTECTION FAULT", 184 "AW ACCESS PROTECTION FAULT", 185 "UNKNOWN FAULT" 186 }; 187 188 /* 189 * This structure is attached to dev.archdata.iommu of the master device 190 * on device add, contains a list of SYSMMU controllers defined by device tree, 191 * which are bound to given master device. It is usually referenced by 'owner' 192 * pointer. 193 */ 194 struct exynos_iommu_owner { 195 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */ 196 }; 197 198 /* 199 * This structure exynos specific generalization of struct iommu_domain. 200 * It contains list of SYSMMU controllers from all master devices, which has 201 * been attached to this domain and page tables of IO address space defined by 202 * it. It is usually referenced by 'domain' pointer. 203 */ 204 struct exynos_iommu_domain { 205 struct list_head clients; /* list of sysmmu_drvdata.domain_node */ 206 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */ 207 short *lv2entcnt; /* free lv2 entry counter for each section */ 208 spinlock_t lock; /* lock for modyfying list of clients */ 209 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */ 210 struct iommu_domain domain; /* generic domain data structure */ 211 }; 212 213 /* 214 * This structure hold all data of a single SYSMMU controller, this includes 215 * hw resources like registers and clocks, pointers and list nodes to connect 216 * it to all other structures, internal state and parameters read from device 217 * tree. It is usually referenced by 'data' pointer. 218 */ 219 struct sysmmu_drvdata { 220 struct device *sysmmu; /* SYSMMU controller device */ 221 struct device *master; /* master device (owner) */ 222 void __iomem *sfrbase; /* our registers */ 223 struct clk *clk; /* SYSMMU's clock */ 224 struct clk *clk_master; /* master's device clock */ 225 int activations; /* number of calls to sysmmu_enable */ 226 spinlock_t lock; /* lock for modyfying state */ 227 struct exynos_iommu_domain *domain; /* domain we belong to */ 228 struct list_head domain_node; /* node for domain clients list */ 229 struct list_head owner_node; /* node for owner controllers list */ 230 phys_addr_t pgtable; /* assigned page table structure */ 231 unsigned int version; /* our version */ 232 }; 233 234 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom) 235 { 236 return container_of(dom, struct exynos_iommu_domain, domain); 237 } 238 239 static bool set_sysmmu_active(struct sysmmu_drvdata *data) 240 { 241 /* return true if the System MMU was not active previously 242 and it needs to be initialized */ 243 return ++data->activations == 1; 244 } 245 246 static bool set_sysmmu_inactive(struct sysmmu_drvdata *data) 247 { 248 /* return true if the System MMU is needed to be disabled */ 249 BUG_ON(data->activations < 1); 250 return --data->activations == 0; 251 } 252 253 static bool is_sysmmu_active(struct sysmmu_drvdata *data) 254 { 255 return data->activations > 0; 256 } 257 258 static void sysmmu_unblock(void __iomem *sfrbase) 259 { 260 __raw_writel(CTRL_ENABLE, sfrbase + REG_MMU_CTRL); 261 } 262 263 static bool sysmmu_block(void __iomem *sfrbase) 264 { 265 int i = 120; 266 267 __raw_writel(CTRL_BLOCK, sfrbase + REG_MMU_CTRL); 268 while ((i > 0) && !(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) 269 --i; 270 271 if (!(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) { 272 sysmmu_unblock(sfrbase); 273 return false; 274 } 275 276 return true; 277 } 278 279 static void __sysmmu_tlb_invalidate(void __iomem *sfrbase) 280 { 281 __raw_writel(0x1, sfrbase + REG_MMU_FLUSH); 282 } 283 284 static void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase, 285 sysmmu_iova_t iova, unsigned int num_inv) 286 { 287 unsigned int i; 288 289 for (i = 0; i < num_inv; i++) { 290 __raw_writel((iova & SPAGE_MASK) | 1, 291 sfrbase + REG_MMU_FLUSH_ENTRY); 292 iova += SPAGE_SIZE; 293 } 294 } 295 296 static void __sysmmu_set_ptbase(void __iomem *sfrbase, 297 phys_addr_t pgd) 298 { 299 __raw_writel(pgd, sfrbase + REG_PT_BASE_ADDR); 300 301 __sysmmu_tlb_invalidate(sfrbase); 302 } 303 304 static void show_fault_information(const char *name, 305 enum exynos_sysmmu_inttype itype, 306 phys_addr_t pgtable_base, sysmmu_iova_t fault_addr) 307 { 308 sysmmu_pte_t *ent; 309 310 if ((itype >= SYSMMU_FAULTS_NUM) || (itype < SYSMMU_PAGEFAULT)) 311 itype = SYSMMU_FAULT_UNKNOWN; 312 313 pr_err("%s occurred at %#x by %s(Page table base: %pa)\n", 314 sysmmu_fault_name[itype], fault_addr, name, &pgtable_base); 315 316 ent = section_entry(phys_to_virt(pgtable_base), fault_addr); 317 pr_err("\tLv1 entry: %#x\n", *ent); 318 319 if (lv1ent_page(ent)) { 320 ent = page_entry(ent, fault_addr); 321 pr_err("\t Lv2 entry: %#x\n", *ent); 322 } 323 } 324 325 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id) 326 { 327 /* SYSMMU is in blocked state when interrupt occurred. */ 328 struct sysmmu_drvdata *data = dev_id; 329 enum exynos_sysmmu_inttype itype; 330 sysmmu_iova_t addr = -1; 331 int ret = -ENOSYS; 332 333 WARN_ON(!is_sysmmu_active(data)); 334 335 spin_lock(&data->lock); 336 337 if (!IS_ERR(data->clk_master)) 338 clk_enable(data->clk_master); 339 340 itype = (enum exynos_sysmmu_inttype) 341 __ffs(__raw_readl(data->sfrbase + REG_INT_STATUS)); 342 if (WARN_ON(!((itype >= 0) && (itype < SYSMMU_FAULT_UNKNOWN)))) 343 itype = SYSMMU_FAULT_UNKNOWN; 344 else 345 addr = __raw_readl(data->sfrbase + fault_reg_offset[itype]); 346 347 if (itype == SYSMMU_FAULT_UNKNOWN) { 348 pr_err("%s: Fault is not occurred by System MMU '%s'!\n", 349 __func__, dev_name(data->sysmmu)); 350 pr_err("%s: Please check if IRQ is correctly configured.\n", 351 __func__); 352 BUG(); 353 } else { 354 unsigned int base = 355 __raw_readl(data->sfrbase + REG_PT_BASE_ADDR); 356 show_fault_information(dev_name(data->sysmmu), 357 itype, base, addr); 358 if (data->domain) 359 ret = report_iommu_fault(&data->domain->domain, 360 data->master, addr, itype); 361 } 362 363 /* fault is not recovered by fault handler */ 364 BUG_ON(ret != 0); 365 366 __raw_writel(1 << itype, data->sfrbase + REG_INT_CLEAR); 367 368 sysmmu_unblock(data->sfrbase); 369 370 if (!IS_ERR(data->clk_master)) 371 clk_disable(data->clk_master); 372 373 spin_unlock(&data->lock); 374 375 return IRQ_HANDLED; 376 } 377 378 static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data) 379 { 380 if (!IS_ERR(data->clk_master)) 381 clk_enable(data->clk_master); 382 383 __raw_writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL); 384 __raw_writel(0, data->sfrbase + REG_MMU_CFG); 385 386 clk_disable(data->clk); 387 if (!IS_ERR(data->clk_master)) 388 clk_disable(data->clk_master); 389 } 390 391 static bool __sysmmu_disable(struct sysmmu_drvdata *data) 392 { 393 bool disabled; 394 unsigned long flags; 395 396 spin_lock_irqsave(&data->lock, flags); 397 398 disabled = set_sysmmu_inactive(data); 399 400 if (disabled) { 401 data->pgtable = 0; 402 data->domain = NULL; 403 404 __sysmmu_disable_nocount(data); 405 406 dev_dbg(data->sysmmu, "Disabled\n"); 407 } else { 408 dev_dbg(data->sysmmu, "%d times left to disable\n", 409 data->activations); 410 } 411 412 spin_unlock_irqrestore(&data->lock, flags); 413 414 return disabled; 415 } 416 417 static void __sysmmu_init_config(struct sysmmu_drvdata *data) 418 { 419 unsigned int cfg = CFG_LRU | CFG_QOS(15); 420 unsigned int ver; 421 422 ver = MMU_RAW_VER(__raw_readl(data->sfrbase + REG_MMU_VERSION)); 423 if (MMU_MAJ_VER(ver) == 3) { 424 if (MMU_MIN_VER(ver) >= 2) { 425 cfg |= CFG_FLPDCACHE; 426 if (MMU_MIN_VER(ver) == 3) { 427 cfg |= CFG_ACGEN; 428 cfg &= ~CFG_LRU; 429 } else { 430 cfg |= CFG_SYSSEL; 431 } 432 } 433 } 434 435 __raw_writel(cfg, data->sfrbase + REG_MMU_CFG); 436 data->version = ver; 437 } 438 439 static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data) 440 { 441 if (!IS_ERR(data->clk_master)) 442 clk_enable(data->clk_master); 443 clk_enable(data->clk); 444 445 __raw_writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL); 446 447 __sysmmu_init_config(data); 448 449 __sysmmu_set_ptbase(data->sfrbase, data->pgtable); 450 451 __raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL); 452 453 if (!IS_ERR(data->clk_master)) 454 clk_disable(data->clk_master); 455 } 456 457 static int __sysmmu_enable(struct sysmmu_drvdata *data, phys_addr_t pgtable, 458 struct exynos_iommu_domain *domain) 459 { 460 int ret = 0; 461 unsigned long flags; 462 463 spin_lock_irqsave(&data->lock, flags); 464 if (set_sysmmu_active(data)) { 465 data->pgtable = pgtable; 466 data->domain = domain; 467 468 __sysmmu_enable_nocount(data); 469 470 dev_dbg(data->sysmmu, "Enabled\n"); 471 } else { 472 ret = (pgtable == data->pgtable) ? 1 : -EBUSY; 473 474 dev_dbg(data->sysmmu, "already enabled\n"); 475 } 476 477 if (WARN_ON(ret < 0)) 478 set_sysmmu_inactive(data); /* decrement count */ 479 480 spin_unlock_irqrestore(&data->lock, flags); 481 482 return ret; 483 } 484 485 static void __sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data, 486 sysmmu_iova_t iova) 487 { 488 if (data->version == MAKE_MMU_VER(3, 3)) 489 __raw_writel(iova | 0x1, data->sfrbase + REG_MMU_FLUSH_ENTRY); 490 } 491 492 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data, 493 sysmmu_iova_t iova) 494 { 495 unsigned long flags; 496 497 if (!IS_ERR(data->clk_master)) 498 clk_enable(data->clk_master); 499 500 spin_lock_irqsave(&data->lock, flags); 501 if (is_sysmmu_active(data)) 502 __sysmmu_tlb_invalidate_flpdcache(data, iova); 503 spin_unlock_irqrestore(&data->lock, flags); 504 505 if (!IS_ERR(data->clk_master)) 506 clk_disable(data->clk_master); 507 } 508 509 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data, 510 sysmmu_iova_t iova, size_t size) 511 { 512 unsigned long flags; 513 514 spin_lock_irqsave(&data->lock, flags); 515 if (is_sysmmu_active(data)) { 516 unsigned int num_inv = 1; 517 518 if (!IS_ERR(data->clk_master)) 519 clk_enable(data->clk_master); 520 521 /* 522 * L2TLB invalidation required 523 * 4KB page: 1 invalidation 524 * 64KB page: 16 invalidations 525 * 1MB page: 64 invalidations 526 * because it is set-associative TLB 527 * with 8-way and 64 sets. 528 * 1MB page can be cached in one of all sets. 529 * 64KB page can be one of 16 consecutive sets. 530 */ 531 if (MMU_MAJ_VER(data->version) == 2) 532 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64); 533 534 if (sysmmu_block(data->sfrbase)) { 535 __sysmmu_tlb_invalidate_entry( 536 data->sfrbase, iova, num_inv); 537 sysmmu_unblock(data->sfrbase); 538 } 539 if (!IS_ERR(data->clk_master)) 540 clk_disable(data->clk_master); 541 } else { 542 dev_dbg(data->master, 543 "disabled. Skipping TLB invalidation @ %#x\n", iova); 544 } 545 spin_unlock_irqrestore(&data->lock, flags); 546 } 547 548 static int __init exynos_sysmmu_probe(struct platform_device *pdev) 549 { 550 int irq, ret; 551 struct device *dev = &pdev->dev; 552 struct sysmmu_drvdata *data; 553 struct resource *res; 554 555 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 556 if (!data) 557 return -ENOMEM; 558 559 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 560 data->sfrbase = devm_ioremap_resource(dev, res); 561 if (IS_ERR(data->sfrbase)) 562 return PTR_ERR(data->sfrbase); 563 564 irq = platform_get_irq(pdev, 0); 565 if (irq <= 0) { 566 dev_err(dev, "Unable to find IRQ resource\n"); 567 return irq; 568 } 569 570 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0, 571 dev_name(dev), data); 572 if (ret) { 573 dev_err(dev, "Unabled to register handler of irq %d\n", irq); 574 return ret; 575 } 576 577 data->clk = devm_clk_get(dev, "sysmmu"); 578 if (IS_ERR(data->clk)) { 579 dev_err(dev, "Failed to get clock!\n"); 580 return PTR_ERR(data->clk); 581 } else { 582 ret = clk_prepare(data->clk); 583 if (ret) { 584 dev_err(dev, "Failed to prepare clk\n"); 585 return ret; 586 } 587 } 588 589 data->clk_master = devm_clk_get(dev, "master"); 590 if (!IS_ERR(data->clk_master)) { 591 ret = clk_prepare(data->clk_master); 592 if (ret) { 593 clk_unprepare(data->clk); 594 dev_err(dev, "Failed to prepare master's clk\n"); 595 return ret; 596 } 597 } 598 599 data->sysmmu = dev; 600 spin_lock_init(&data->lock); 601 602 platform_set_drvdata(pdev, data); 603 604 pm_runtime_enable(dev); 605 606 return 0; 607 } 608 609 #ifdef CONFIG_PM_SLEEP 610 static int exynos_sysmmu_suspend(struct device *dev) 611 { 612 struct sysmmu_drvdata *data = dev_get_drvdata(dev); 613 614 dev_dbg(dev, "suspend\n"); 615 if (is_sysmmu_active(data)) { 616 __sysmmu_disable_nocount(data); 617 pm_runtime_put(dev); 618 } 619 return 0; 620 } 621 622 static int exynos_sysmmu_resume(struct device *dev) 623 { 624 struct sysmmu_drvdata *data = dev_get_drvdata(dev); 625 626 dev_dbg(dev, "resume\n"); 627 if (is_sysmmu_active(data)) { 628 pm_runtime_get_sync(dev); 629 __sysmmu_enable_nocount(data); 630 } 631 return 0; 632 } 633 #endif 634 635 static const struct dev_pm_ops sysmmu_pm_ops = { 636 SET_LATE_SYSTEM_SLEEP_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume) 637 }; 638 639 static const struct of_device_id sysmmu_of_match[] __initconst = { 640 { .compatible = "samsung,exynos-sysmmu", }, 641 { }, 642 }; 643 644 static struct platform_driver exynos_sysmmu_driver __refdata = { 645 .probe = exynos_sysmmu_probe, 646 .driver = { 647 .name = "exynos-sysmmu", 648 .of_match_table = sysmmu_of_match, 649 .pm = &sysmmu_pm_ops, 650 } 651 }; 652 653 static inline void pgtable_flush(void *vastart, void *vaend) 654 { 655 dmac_flush_range(vastart, vaend); 656 outer_flush_range(virt_to_phys(vastart), 657 virt_to_phys(vaend)); 658 } 659 660 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type) 661 { 662 struct exynos_iommu_domain *domain; 663 int i; 664 665 if (type != IOMMU_DOMAIN_UNMANAGED) 666 return NULL; 667 668 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 669 if (!domain) 670 return NULL; 671 672 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2); 673 if (!domain->pgtable) 674 goto err_pgtable; 675 676 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1); 677 if (!domain->lv2entcnt) 678 goto err_counter; 679 680 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */ 681 for (i = 0; i < NUM_LV1ENTRIES; i += 8) { 682 domain->pgtable[i + 0] = ZERO_LV2LINK; 683 domain->pgtable[i + 1] = ZERO_LV2LINK; 684 domain->pgtable[i + 2] = ZERO_LV2LINK; 685 domain->pgtable[i + 3] = ZERO_LV2LINK; 686 domain->pgtable[i + 4] = ZERO_LV2LINK; 687 domain->pgtable[i + 5] = ZERO_LV2LINK; 688 domain->pgtable[i + 6] = ZERO_LV2LINK; 689 domain->pgtable[i + 7] = ZERO_LV2LINK; 690 } 691 692 pgtable_flush(domain->pgtable, domain->pgtable + NUM_LV1ENTRIES); 693 694 spin_lock_init(&domain->lock); 695 spin_lock_init(&domain->pgtablelock); 696 INIT_LIST_HEAD(&domain->clients); 697 698 domain->domain.geometry.aperture_start = 0; 699 domain->domain.geometry.aperture_end = ~0UL; 700 domain->domain.geometry.force_aperture = true; 701 702 return &domain->domain; 703 704 err_counter: 705 free_pages((unsigned long)domain->pgtable, 2); 706 err_pgtable: 707 kfree(domain); 708 return NULL; 709 } 710 711 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain) 712 { 713 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 714 struct sysmmu_drvdata *data, *next; 715 unsigned long flags; 716 int i; 717 718 WARN_ON(!list_empty(&domain->clients)); 719 720 spin_lock_irqsave(&domain->lock, flags); 721 722 list_for_each_entry_safe(data, next, &domain->clients, domain_node) { 723 if (__sysmmu_disable(data)) 724 data->master = NULL; 725 list_del_init(&data->domain_node); 726 } 727 728 spin_unlock_irqrestore(&domain->lock, flags); 729 730 for (i = 0; i < NUM_LV1ENTRIES; i++) 731 if (lv1ent_page(domain->pgtable + i)) 732 kmem_cache_free(lv2table_kmem_cache, 733 phys_to_virt(lv2table_base(domain->pgtable + i))); 734 735 free_pages((unsigned long)domain->pgtable, 2); 736 free_pages((unsigned long)domain->lv2entcnt, 1); 737 kfree(domain); 738 } 739 740 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain, 741 struct device *dev) 742 { 743 struct exynos_iommu_owner *owner = dev->archdata.iommu; 744 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 745 struct sysmmu_drvdata *data; 746 phys_addr_t pagetable = virt_to_phys(domain->pgtable); 747 unsigned long flags; 748 int ret = -ENODEV; 749 750 if (!has_sysmmu(dev)) 751 return -ENODEV; 752 753 list_for_each_entry(data, &owner->controllers, owner_node) { 754 pm_runtime_get_sync(data->sysmmu); 755 ret = __sysmmu_enable(data, pagetable, domain); 756 if (ret >= 0) { 757 data->master = dev; 758 759 spin_lock_irqsave(&domain->lock, flags); 760 list_add_tail(&data->domain_node, &domain->clients); 761 spin_unlock_irqrestore(&domain->lock, flags); 762 } 763 } 764 765 if (ret < 0) { 766 dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n", 767 __func__, &pagetable); 768 return ret; 769 } 770 771 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n", 772 __func__, &pagetable, (ret == 0) ? "" : ", again"); 773 774 return ret; 775 } 776 777 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain, 778 struct device *dev) 779 { 780 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 781 phys_addr_t pagetable = virt_to_phys(domain->pgtable); 782 struct sysmmu_drvdata *data, *next; 783 unsigned long flags; 784 bool found = false; 785 786 if (!has_sysmmu(dev)) 787 return; 788 789 spin_lock_irqsave(&domain->lock, flags); 790 list_for_each_entry_safe(data, next, &domain->clients, domain_node) { 791 if (data->master == dev) { 792 if (__sysmmu_disable(data)) { 793 data->master = NULL; 794 list_del_init(&data->domain_node); 795 } 796 pm_runtime_put(data->sysmmu); 797 found = true; 798 } 799 } 800 spin_unlock_irqrestore(&domain->lock, flags); 801 802 if (found) 803 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", 804 __func__, &pagetable); 805 else 806 dev_err(dev, "%s: No IOMMU is attached\n", __func__); 807 } 808 809 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain, 810 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter) 811 { 812 if (lv1ent_section(sent)) { 813 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova); 814 return ERR_PTR(-EADDRINUSE); 815 } 816 817 if (lv1ent_fault(sent)) { 818 sysmmu_pte_t *pent; 819 bool need_flush_flpd_cache = lv1ent_zero(sent); 820 821 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC); 822 BUG_ON((unsigned int)pent & (LV2TABLE_SIZE - 1)); 823 if (!pent) 824 return ERR_PTR(-ENOMEM); 825 826 *sent = mk_lv1ent_page(virt_to_phys(pent)); 827 kmemleak_ignore(pent); 828 *pgcounter = NUM_LV2ENTRIES; 829 pgtable_flush(pent, pent + NUM_LV2ENTRIES); 830 pgtable_flush(sent, sent + 1); 831 832 /* 833 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table, 834 * FLPD cache may cache the address of zero_l2_table. This 835 * function replaces the zero_l2_table with new L2 page table 836 * to write valid mappings. 837 * Accessing the valid area may cause page fault since FLPD 838 * cache may still cache zero_l2_table for the valid area 839 * instead of new L2 page table that has the mapping 840 * information of the valid area. 841 * Thus any replacement of zero_l2_table with other valid L2 842 * page table must involve FLPD cache invalidation for System 843 * MMU v3.3. 844 * FLPD cache invalidation is performed with TLB invalidation 845 * by VPN without blocking. It is safe to invalidate TLB without 846 * blocking because the target address of TLB invalidation is 847 * not currently mapped. 848 */ 849 if (need_flush_flpd_cache) { 850 struct sysmmu_drvdata *data; 851 852 spin_lock(&domain->lock); 853 list_for_each_entry(data, &domain->clients, domain_node) 854 sysmmu_tlb_invalidate_flpdcache(data, iova); 855 spin_unlock(&domain->lock); 856 } 857 } 858 859 return page_entry(sent, iova); 860 } 861 862 static int lv1set_section(struct exynos_iommu_domain *domain, 863 sysmmu_pte_t *sent, sysmmu_iova_t iova, 864 phys_addr_t paddr, short *pgcnt) 865 { 866 if (lv1ent_section(sent)) { 867 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped", 868 iova); 869 return -EADDRINUSE; 870 } 871 872 if (lv1ent_page(sent)) { 873 if (*pgcnt != NUM_LV2ENTRIES) { 874 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped", 875 iova); 876 return -EADDRINUSE; 877 } 878 879 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0)); 880 *pgcnt = 0; 881 } 882 883 *sent = mk_lv1ent_sect(paddr); 884 885 pgtable_flush(sent, sent + 1); 886 887 spin_lock(&domain->lock); 888 if (lv1ent_page_zero(sent)) { 889 struct sysmmu_drvdata *data; 890 /* 891 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD 892 * entry by speculative prefetch of SLPD which has no mapping. 893 */ 894 list_for_each_entry(data, &domain->clients, domain_node) 895 sysmmu_tlb_invalidate_flpdcache(data, iova); 896 } 897 spin_unlock(&domain->lock); 898 899 return 0; 900 } 901 902 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size, 903 short *pgcnt) 904 { 905 if (size == SPAGE_SIZE) { 906 if (WARN_ON(!lv2ent_fault(pent))) 907 return -EADDRINUSE; 908 909 *pent = mk_lv2ent_spage(paddr); 910 pgtable_flush(pent, pent + 1); 911 *pgcnt -= 1; 912 } else { /* size == LPAGE_SIZE */ 913 int i; 914 915 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) { 916 if (WARN_ON(!lv2ent_fault(pent))) { 917 if (i > 0) 918 memset(pent - i, 0, sizeof(*pent) * i); 919 return -EADDRINUSE; 920 } 921 922 *pent = mk_lv2ent_lpage(paddr); 923 } 924 pgtable_flush(pent - SPAGES_PER_LPAGE, pent); 925 *pgcnt -= SPAGES_PER_LPAGE; 926 } 927 928 return 0; 929 } 930 931 /* 932 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu: 933 * 934 * System MMU v3.x has advanced logic to improve address translation 935 * performance with caching more page table entries by a page table walk. 936 * However, the logic has a bug that while caching faulty page table entries, 937 * System MMU reports page fault if the cached fault entry is hit even though 938 * the fault entry is updated to a valid entry after the entry is cached. 939 * To prevent caching faulty page table entries which may be updated to valid 940 * entries later, the virtual memory manager should care about the workaround 941 * for the problem. The following describes the workaround. 942 * 943 * Any two consecutive I/O virtual address regions must have a hole of 128KiB 944 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug). 945 * 946 * Precisely, any start address of I/O virtual region must be aligned with 947 * the following sizes for System MMU v3.1 and v3.2. 948 * System MMU v3.1: 128KiB 949 * System MMU v3.2: 256KiB 950 * 951 * Because System MMU v3.3 caches page table entries more aggressively, it needs 952 * more workarounds. 953 * - Any two consecutive I/O virtual regions must have a hole of size larger 954 * than or equal to 128KiB. 955 * - Start address of an I/O virtual region must be aligned by 128KiB. 956 */ 957 static int exynos_iommu_map(struct iommu_domain *iommu_domain, 958 unsigned long l_iova, phys_addr_t paddr, size_t size, 959 int prot) 960 { 961 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 962 sysmmu_pte_t *entry; 963 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova; 964 unsigned long flags; 965 int ret = -ENOMEM; 966 967 BUG_ON(domain->pgtable == NULL); 968 969 spin_lock_irqsave(&domain->pgtablelock, flags); 970 971 entry = section_entry(domain->pgtable, iova); 972 973 if (size == SECT_SIZE) { 974 ret = lv1set_section(domain, entry, iova, paddr, 975 &domain->lv2entcnt[lv1ent_offset(iova)]); 976 } else { 977 sysmmu_pte_t *pent; 978 979 pent = alloc_lv2entry(domain, entry, iova, 980 &domain->lv2entcnt[lv1ent_offset(iova)]); 981 982 if (IS_ERR(pent)) 983 ret = PTR_ERR(pent); 984 else 985 ret = lv2set_page(pent, paddr, size, 986 &domain->lv2entcnt[lv1ent_offset(iova)]); 987 } 988 989 if (ret) 990 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n", 991 __func__, ret, size, iova); 992 993 spin_unlock_irqrestore(&domain->pgtablelock, flags); 994 995 return ret; 996 } 997 998 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain, 999 sysmmu_iova_t iova, size_t size) 1000 { 1001 struct sysmmu_drvdata *data; 1002 unsigned long flags; 1003 1004 spin_lock_irqsave(&domain->lock, flags); 1005 1006 list_for_each_entry(data, &domain->clients, domain_node) 1007 sysmmu_tlb_invalidate_entry(data, iova, size); 1008 1009 spin_unlock_irqrestore(&domain->lock, flags); 1010 } 1011 1012 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain, 1013 unsigned long l_iova, size_t size) 1014 { 1015 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1016 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova; 1017 sysmmu_pte_t *ent; 1018 size_t err_pgsize; 1019 unsigned long flags; 1020 1021 BUG_ON(domain->pgtable == NULL); 1022 1023 spin_lock_irqsave(&domain->pgtablelock, flags); 1024 1025 ent = section_entry(domain->pgtable, iova); 1026 1027 if (lv1ent_section(ent)) { 1028 if (WARN_ON(size < SECT_SIZE)) { 1029 err_pgsize = SECT_SIZE; 1030 goto err; 1031 } 1032 1033 /* workaround for h/w bug in System MMU v3.3 */ 1034 *ent = ZERO_LV2LINK; 1035 pgtable_flush(ent, ent + 1); 1036 size = SECT_SIZE; 1037 goto done; 1038 } 1039 1040 if (unlikely(lv1ent_fault(ent))) { 1041 if (size > SECT_SIZE) 1042 size = SECT_SIZE; 1043 goto done; 1044 } 1045 1046 /* lv1ent_page(sent) == true here */ 1047 1048 ent = page_entry(ent, iova); 1049 1050 if (unlikely(lv2ent_fault(ent))) { 1051 size = SPAGE_SIZE; 1052 goto done; 1053 } 1054 1055 if (lv2ent_small(ent)) { 1056 *ent = 0; 1057 size = SPAGE_SIZE; 1058 pgtable_flush(ent, ent + 1); 1059 domain->lv2entcnt[lv1ent_offset(iova)] += 1; 1060 goto done; 1061 } 1062 1063 /* lv1ent_large(ent) == true here */ 1064 if (WARN_ON(size < LPAGE_SIZE)) { 1065 err_pgsize = LPAGE_SIZE; 1066 goto err; 1067 } 1068 1069 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE); 1070 pgtable_flush(ent, ent + SPAGES_PER_LPAGE); 1071 1072 size = LPAGE_SIZE; 1073 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE; 1074 done: 1075 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1076 1077 exynos_iommu_tlb_invalidate_entry(domain, iova, size); 1078 1079 return size; 1080 err: 1081 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1082 1083 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n", 1084 __func__, size, iova, err_pgsize); 1085 1086 return 0; 1087 } 1088 1089 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain, 1090 dma_addr_t iova) 1091 { 1092 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1093 sysmmu_pte_t *entry; 1094 unsigned long flags; 1095 phys_addr_t phys = 0; 1096 1097 spin_lock_irqsave(&domain->pgtablelock, flags); 1098 1099 entry = section_entry(domain->pgtable, iova); 1100 1101 if (lv1ent_section(entry)) { 1102 phys = section_phys(entry) + section_offs(iova); 1103 } else if (lv1ent_page(entry)) { 1104 entry = page_entry(entry, iova); 1105 1106 if (lv2ent_large(entry)) 1107 phys = lpage_phys(entry) + lpage_offs(iova); 1108 else if (lv2ent_small(entry)) 1109 phys = spage_phys(entry) + spage_offs(iova); 1110 } 1111 1112 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1113 1114 return phys; 1115 } 1116 1117 static int exynos_iommu_add_device(struct device *dev) 1118 { 1119 struct iommu_group *group; 1120 int ret; 1121 1122 if (!has_sysmmu(dev)) 1123 return -ENODEV; 1124 1125 group = iommu_group_get(dev); 1126 1127 if (!group) { 1128 group = iommu_group_alloc(); 1129 if (IS_ERR(group)) { 1130 dev_err(dev, "Failed to allocate IOMMU group\n"); 1131 return PTR_ERR(group); 1132 } 1133 } 1134 1135 ret = iommu_group_add_device(group, dev); 1136 iommu_group_put(group); 1137 1138 return ret; 1139 } 1140 1141 static void exynos_iommu_remove_device(struct device *dev) 1142 { 1143 if (!has_sysmmu(dev)) 1144 return; 1145 1146 iommu_group_remove_device(dev); 1147 } 1148 1149 static int exynos_iommu_of_xlate(struct device *dev, 1150 struct of_phandle_args *spec) 1151 { 1152 struct exynos_iommu_owner *owner = dev->archdata.iommu; 1153 struct platform_device *sysmmu = of_find_device_by_node(spec->np); 1154 struct sysmmu_drvdata *data; 1155 1156 if (!sysmmu) 1157 return -ENODEV; 1158 1159 data = platform_get_drvdata(sysmmu); 1160 if (!data) 1161 return -ENODEV; 1162 1163 if (!owner) { 1164 owner = kzalloc(sizeof(*owner), GFP_KERNEL); 1165 if (!owner) 1166 return -ENOMEM; 1167 1168 INIT_LIST_HEAD(&owner->controllers); 1169 dev->archdata.iommu = owner; 1170 } 1171 1172 list_add_tail(&data->owner_node, &owner->controllers); 1173 return 0; 1174 } 1175 1176 static struct iommu_ops exynos_iommu_ops = { 1177 .domain_alloc = exynos_iommu_domain_alloc, 1178 .domain_free = exynos_iommu_domain_free, 1179 .attach_dev = exynos_iommu_attach_device, 1180 .detach_dev = exynos_iommu_detach_device, 1181 .map = exynos_iommu_map, 1182 .unmap = exynos_iommu_unmap, 1183 .map_sg = default_iommu_map_sg, 1184 .iova_to_phys = exynos_iommu_iova_to_phys, 1185 .add_device = exynos_iommu_add_device, 1186 .remove_device = exynos_iommu_remove_device, 1187 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE, 1188 .of_xlate = exynos_iommu_of_xlate, 1189 }; 1190 1191 static bool init_done; 1192 1193 static int __init exynos_iommu_init(void) 1194 { 1195 int ret; 1196 1197 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table", 1198 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL); 1199 if (!lv2table_kmem_cache) { 1200 pr_err("%s: Failed to create kmem cache\n", __func__); 1201 return -ENOMEM; 1202 } 1203 1204 ret = platform_driver_register(&exynos_sysmmu_driver); 1205 if (ret) { 1206 pr_err("%s: Failed to register driver\n", __func__); 1207 goto err_reg_driver; 1208 } 1209 1210 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL); 1211 if (zero_lv2_table == NULL) { 1212 pr_err("%s: Failed to allocate zero level2 page table\n", 1213 __func__); 1214 ret = -ENOMEM; 1215 goto err_zero_lv2; 1216 } 1217 1218 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops); 1219 if (ret) { 1220 pr_err("%s: Failed to register exynos-iommu driver.\n", 1221 __func__); 1222 goto err_set_iommu; 1223 } 1224 1225 init_done = true; 1226 1227 return 0; 1228 err_set_iommu: 1229 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table); 1230 err_zero_lv2: 1231 platform_driver_unregister(&exynos_sysmmu_driver); 1232 err_reg_driver: 1233 kmem_cache_destroy(lv2table_kmem_cache); 1234 return ret; 1235 } 1236 1237 static int __init exynos_iommu_of_setup(struct device_node *np) 1238 { 1239 struct platform_device *pdev; 1240 1241 if (!init_done) 1242 exynos_iommu_init(); 1243 1244 pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root); 1245 if (IS_ERR(pdev)) 1246 return PTR_ERR(pdev); 1247 1248 of_iommu_set_ops(np, &exynos_iommu_ops); 1249 return 0; 1250 } 1251 1252 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu", 1253 exynos_iommu_of_setup); 1254