xref: /linux/drivers/iommu/dma-iommu.c (revision fd7d598270724cc787982ea48bbe17ad383a8b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/of_iommu.h>
27 #include <linux/pci.h>
28 #include <linux/scatterlist.h>
29 #include <linux/spinlock.h>
30 #include <linux/swiotlb.h>
31 #include <linux/vmalloc.h>
32 
33 #include "dma-iommu.h"
34 
35 struct iommu_dma_msi_page {
36 	struct list_head	list;
37 	dma_addr_t		iova;
38 	phys_addr_t		phys;
39 };
40 
41 enum iommu_dma_cookie_type {
42 	IOMMU_DMA_IOVA_COOKIE,
43 	IOMMU_DMA_MSI_COOKIE,
44 };
45 
46 struct iommu_dma_cookie {
47 	enum iommu_dma_cookie_type	type;
48 	union {
49 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
50 		struct {
51 			struct iova_domain	iovad;
52 
53 			struct iova_fq __percpu *fq;	/* Flush queue */
54 			/* Number of TLB flushes that have been started */
55 			atomic64_t		fq_flush_start_cnt;
56 			/* Number of TLB flushes that have been finished */
57 			atomic64_t		fq_flush_finish_cnt;
58 			/* Timer to regularily empty the flush queues */
59 			struct timer_list	fq_timer;
60 			/* 1 when timer is active, 0 when not */
61 			atomic_t		fq_timer_on;
62 		};
63 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
64 		dma_addr_t		msi_iova;
65 	};
66 	struct list_head		msi_page_list;
67 
68 	/* Domain for flush queue callback; NULL if flush queue not in use */
69 	struct iommu_domain		*fq_domain;
70 	struct mutex			mutex;
71 };
72 
73 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
74 bool iommu_dma_forcedac __read_mostly;
75 
76 static int __init iommu_dma_forcedac_setup(char *str)
77 {
78 	int ret = kstrtobool(str, &iommu_dma_forcedac);
79 
80 	if (!ret && iommu_dma_forcedac)
81 		pr_info("Forcing DAC for PCI devices\n");
82 	return ret;
83 }
84 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
85 
86 /* Number of entries per flush queue */
87 #define IOVA_FQ_SIZE	256
88 
89 /* Timeout (in ms) after which entries are flushed from the queue */
90 #define IOVA_FQ_TIMEOUT	10
91 
92 /* Flush queue entry for deferred flushing */
93 struct iova_fq_entry {
94 	unsigned long iova_pfn;
95 	unsigned long pages;
96 	struct list_head freelist;
97 	u64 counter; /* Flush counter when this entry was added */
98 };
99 
100 /* Per-CPU flush queue structure */
101 struct iova_fq {
102 	struct iova_fq_entry entries[IOVA_FQ_SIZE];
103 	unsigned int head, tail;
104 	spinlock_t lock;
105 };
106 
107 #define fq_ring_for_each(i, fq) \
108 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
109 
110 static inline bool fq_full(struct iova_fq *fq)
111 {
112 	assert_spin_locked(&fq->lock);
113 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
114 }
115 
116 static inline unsigned int fq_ring_add(struct iova_fq *fq)
117 {
118 	unsigned int idx = fq->tail;
119 
120 	assert_spin_locked(&fq->lock);
121 
122 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
123 
124 	return idx;
125 }
126 
127 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
128 {
129 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
130 	unsigned int idx;
131 
132 	assert_spin_locked(&fq->lock);
133 
134 	fq_ring_for_each(idx, fq) {
135 
136 		if (fq->entries[idx].counter >= counter)
137 			break;
138 
139 		put_pages_list(&fq->entries[idx].freelist);
140 		free_iova_fast(&cookie->iovad,
141 			       fq->entries[idx].iova_pfn,
142 			       fq->entries[idx].pages);
143 
144 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
145 	}
146 }
147 
148 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
149 {
150 	atomic64_inc(&cookie->fq_flush_start_cnt);
151 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
152 	atomic64_inc(&cookie->fq_flush_finish_cnt);
153 }
154 
155 static void fq_flush_timeout(struct timer_list *t)
156 {
157 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
158 	int cpu;
159 
160 	atomic_set(&cookie->fq_timer_on, 0);
161 	fq_flush_iotlb(cookie);
162 
163 	for_each_possible_cpu(cpu) {
164 		unsigned long flags;
165 		struct iova_fq *fq;
166 
167 		fq = per_cpu_ptr(cookie->fq, cpu);
168 		spin_lock_irqsave(&fq->lock, flags);
169 		fq_ring_free(cookie, fq);
170 		spin_unlock_irqrestore(&fq->lock, flags);
171 	}
172 }
173 
174 static void queue_iova(struct iommu_dma_cookie *cookie,
175 		unsigned long pfn, unsigned long pages,
176 		struct list_head *freelist)
177 {
178 	struct iova_fq *fq;
179 	unsigned long flags;
180 	unsigned int idx;
181 
182 	/*
183 	 * Order against the IOMMU driver's pagetable update from unmapping
184 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
185 	 * from a different CPU before we release the lock below. Full barrier
186 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
187 	 * written fq state here.
188 	 */
189 	smp_mb();
190 
191 	fq = raw_cpu_ptr(cookie->fq);
192 	spin_lock_irqsave(&fq->lock, flags);
193 
194 	/*
195 	 * First remove all entries from the flush queue that have already been
196 	 * flushed out on another CPU. This makes the fq_full() check below less
197 	 * likely to be true.
198 	 */
199 	fq_ring_free(cookie, fq);
200 
201 	if (fq_full(fq)) {
202 		fq_flush_iotlb(cookie);
203 		fq_ring_free(cookie, fq);
204 	}
205 
206 	idx = fq_ring_add(fq);
207 
208 	fq->entries[idx].iova_pfn = pfn;
209 	fq->entries[idx].pages    = pages;
210 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
211 	list_splice(freelist, &fq->entries[idx].freelist);
212 
213 	spin_unlock_irqrestore(&fq->lock, flags);
214 
215 	/* Avoid false sharing as much as possible. */
216 	if (!atomic_read(&cookie->fq_timer_on) &&
217 	    !atomic_xchg(&cookie->fq_timer_on, 1))
218 		mod_timer(&cookie->fq_timer,
219 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
220 }
221 
222 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
223 {
224 	int cpu, idx;
225 
226 	if (!cookie->fq)
227 		return;
228 
229 	del_timer_sync(&cookie->fq_timer);
230 	/* The IOVAs will be torn down separately, so just free our queued pages */
231 	for_each_possible_cpu(cpu) {
232 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
233 
234 		fq_ring_for_each(idx, fq)
235 			put_pages_list(&fq->entries[idx].freelist);
236 	}
237 
238 	free_percpu(cookie->fq);
239 }
240 
241 /* sysfs updates are serialised by the mutex of the group owning @domain */
242 int iommu_dma_init_fq(struct iommu_domain *domain)
243 {
244 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
245 	struct iova_fq __percpu *queue;
246 	int i, cpu;
247 
248 	if (cookie->fq_domain)
249 		return 0;
250 
251 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
252 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
253 
254 	queue = alloc_percpu(struct iova_fq);
255 	if (!queue) {
256 		pr_warn("iova flush queue initialization failed\n");
257 		return -ENOMEM;
258 	}
259 
260 	for_each_possible_cpu(cpu) {
261 		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
262 
263 		fq->head = 0;
264 		fq->tail = 0;
265 
266 		spin_lock_init(&fq->lock);
267 
268 		for (i = 0; i < IOVA_FQ_SIZE; i++)
269 			INIT_LIST_HEAD(&fq->entries[i].freelist);
270 	}
271 
272 	cookie->fq = queue;
273 
274 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
275 	atomic_set(&cookie->fq_timer_on, 0);
276 	/*
277 	 * Prevent incomplete fq state being observable. Pairs with path from
278 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
279 	 */
280 	smp_wmb();
281 	WRITE_ONCE(cookie->fq_domain, domain);
282 	return 0;
283 }
284 
285 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
286 {
287 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
288 		return cookie->iovad.granule;
289 	return PAGE_SIZE;
290 }
291 
292 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
293 {
294 	struct iommu_dma_cookie *cookie;
295 
296 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
297 	if (cookie) {
298 		INIT_LIST_HEAD(&cookie->msi_page_list);
299 		cookie->type = type;
300 	}
301 	return cookie;
302 }
303 
304 /**
305  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
306  * @domain: IOMMU domain to prepare for DMA-API usage
307  */
308 int iommu_get_dma_cookie(struct iommu_domain *domain)
309 {
310 	if (domain->iova_cookie)
311 		return -EEXIST;
312 
313 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
314 	if (!domain->iova_cookie)
315 		return -ENOMEM;
316 
317 	mutex_init(&domain->iova_cookie->mutex);
318 	return 0;
319 }
320 
321 /**
322  * iommu_get_msi_cookie - Acquire just MSI remapping resources
323  * @domain: IOMMU domain to prepare
324  * @base: Start address of IOVA region for MSI mappings
325  *
326  * Users who manage their own IOVA allocation and do not want DMA API support,
327  * but would still like to take advantage of automatic MSI remapping, can use
328  * this to initialise their own domain appropriately. Users should reserve a
329  * contiguous IOVA region, starting at @base, large enough to accommodate the
330  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
331  * used by the devices attached to @domain.
332  */
333 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
334 {
335 	struct iommu_dma_cookie *cookie;
336 
337 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
338 		return -EINVAL;
339 
340 	if (domain->iova_cookie)
341 		return -EEXIST;
342 
343 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
344 	if (!cookie)
345 		return -ENOMEM;
346 
347 	cookie->msi_iova = base;
348 	domain->iova_cookie = cookie;
349 	return 0;
350 }
351 EXPORT_SYMBOL(iommu_get_msi_cookie);
352 
353 /**
354  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
355  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
356  *          iommu_get_msi_cookie()
357  */
358 void iommu_put_dma_cookie(struct iommu_domain *domain)
359 {
360 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
361 	struct iommu_dma_msi_page *msi, *tmp;
362 
363 	if (!cookie)
364 		return;
365 
366 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
367 		iommu_dma_free_fq(cookie);
368 		put_iova_domain(&cookie->iovad);
369 	}
370 
371 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
372 		list_del(&msi->list);
373 		kfree(msi);
374 	}
375 	kfree(cookie);
376 	domain->iova_cookie = NULL;
377 }
378 
379 /**
380  * iommu_dma_get_resv_regions - Reserved region driver helper
381  * @dev: Device from iommu_get_resv_regions()
382  * @list: Reserved region list from iommu_get_resv_regions()
383  *
384  * IOMMU drivers can use this to implement their .get_resv_regions callback
385  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
386  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
387  * reservation.
388  */
389 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
390 {
391 
392 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
393 		iort_iommu_get_resv_regions(dev, list);
394 
395 	if (dev->of_node)
396 		of_iommu_get_resv_regions(dev, list);
397 }
398 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
399 
400 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
401 		phys_addr_t start, phys_addr_t end)
402 {
403 	struct iova_domain *iovad = &cookie->iovad;
404 	struct iommu_dma_msi_page *msi_page;
405 	int i, num_pages;
406 
407 	start -= iova_offset(iovad, start);
408 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
409 
410 	for (i = 0; i < num_pages; i++) {
411 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
412 		if (!msi_page)
413 			return -ENOMEM;
414 
415 		msi_page->phys = start;
416 		msi_page->iova = start;
417 		INIT_LIST_HEAD(&msi_page->list);
418 		list_add(&msi_page->list, &cookie->msi_page_list);
419 		start += iovad->granule;
420 	}
421 
422 	return 0;
423 }
424 
425 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
426 		const struct list_head *b)
427 {
428 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
429 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
430 
431 	return res_a->res->start > res_b->res->start;
432 }
433 
434 static int iova_reserve_pci_windows(struct pci_dev *dev,
435 		struct iova_domain *iovad)
436 {
437 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
438 	struct resource_entry *window;
439 	unsigned long lo, hi;
440 	phys_addr_t start = 0, end;
441 
442 	resource_list_for_each_entry(window, &bridge->windows) {
443 		if (resource_type(window->res) != IORESOURCE_MEM)
444 			continue;
445 
446 		lo = iova_pfn(iovad, window->res->start - window->offset);
447 		hi = iova_pfn(iovad, window->res->end - window->offset);
448 		reserve_iova(iovad, lo, hi);
449 	}
450 
451 	/* Get reserved DMA windows from host bridge */
452 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
453 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
454 		end = window->res->start - window->offset;
455 resv_iova:
456 		if (end > start) {
457 			lo = iova_pfn(iovad, start);
458 			hi = iova_pfn(iovad, end);
459 			reserve_iova(iovad, lo, hi);
460 		} else if (end < start) {
461 			/* DMA ranges should be non-overlapping */
462 			dev_err(&dev->dev,
463 				"Failed to reserve IOVA [%pa-%pa]\n",
464 				&start, &end);
465 			return -EINVAL;
466 		}
467 
468 		start = window->res->end - window->offset + 1;
469 		/* If window is last entry */
470 		if (window->node.next == &bridge->dma_ranges &&
471 		    end != ~(phys_addr_t)0) {
472 			end = ~(phys_addr_t)0;
473 			goto resv_iova;
474 		}
475 	}
476 
477 	return 0;
478 }
479 
480 static int iova_reserve_iommu_regions(struct device *dev,
481 		struct iommu_domain *domain)
482 {
483 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
484 	struct iova_domain *iovad = &cookie->iovad;
485 	struct iommu_resv_region *region;
486 	LIST_HEAD(resv_regions);
487 	int ret = 0;
488 
489 	if (dev_is_pci(dev)) {
490 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
491 		if (ret)
492 			return ret;
493 	}
494 
495 	iommu_get_resv_regions(dev, &resv_regions);
496 	list_for_each_entry(region, &resv_regions, list) {
497 		unsigned long lo, hi;
498 
499 		/* We ARE the software that manages these! */
500 		if (region->type == IOMMU_RESV_SW_MSI)
501 			continue;
502 
503 		lo = iova_pfn(iovad, region->start);
504 		hi = iova_pfn(iovad, region->start + region->length - 1);
505 		reserve_iova(iovad, lo, hi);
506 
507 		if (region->type == IOMMU_RESV_MSI)
508 			ret = cookie_init_hw_msi_region(cookie, region->start,
509 					region->start + region->length);
510 		if (ret)
511 			break;
512 	}
513 	iommu_put_resv_regions(dev, &resv_regions);
514 
515 	return ret;
516 }
517 
518 static bool dev_is_untrusted(struct device *dev)
519 {
520 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
521 }
522 
523 static bool dev_use_swiotlb(struct device *dev, size_t size,
524 			    enum dma_data_direction dir)
525 {
526 	return IS_ENABLED(CONFIG_SWIOTLB) &&
527 		(dev_is_untrusted(dev) ||
528 		 dma_kmalloc_needs_bounce(dev, size, dir));
529 }
530 
531 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
532 			       int nents, enum dma_data_direction dir)
533 {
534 	struct scatterlist *s;
535 	int i;
536 
537 	if (!IS_ENABLED(CONFIG_SWIOTLB))
538 		return false;
539 
540 	if (dev_is_untrusted(dev))
541 		return true;
542 
543 	/*
544 	 * If kmalloc() buffers are not DMA-safe for this device and
545 	 * direction, check the individual lengths in the sg list. If any
546 	 * element is deemed unsafe, use the swiotlb for bouncing.
547 	 */
548 	if (!dma_kmalloc_safe(dev, dir)) {
549 		for_each_sg(sg, s, nents, i)
550 			if (!dma_kmalloc_size_aligned(s->length))
551 				return true;
552 	}
553 
554 	return false;
555 }
556 
557 /**
558  * iommu_dma_init_domain - Initialise a DMA mapping domain
559  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
560  * @base: IOVA at which the mappable address space starts
561  * @limit: Last address of the IOVA space
562  * @dev: Device the domain is being initialised for
563  *
564  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
565  * avoid rounding surprises. If necessary, we reserve the page at address 0
566  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
567  * any change which could make prior IOVAs invalid will fail.
568  */
569 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
570 				 dma_addr_t limit, struct device *dev)
571 {
572 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
573 	unsigned long order, base_pfn;
574 	struct iova_domain *iovad;
575 	int ret;
576 
577 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
578 		return -EINVAL;
579 
580 	iovad = &cookie->iovad;
581 
582 	/* Use the smallest supported page size for IOVA granularity */
583 	order = __ffs(domain->pgsize_bitmap);
584 	base_pfn = max_t(unsigned long, 1, base >> order);
585 
586 	/* Check the domain allows at least some access to the device... */
587 	if (domain->geometry.force_aperture) {
588 		if (base > domain->geometry.aperture_end ||
589 		    limit < domain->geometry.aperture_start) {
590 			pr_warn("specified DMA range outside IOMMU capability\n");
591 			return -EFAULT;
592 		}
593 		/* ...then finally give it a kicking to make sure it fits */
594 		base_pfn = max_t(unsigned long, base_pfn,
595 				domain->geometry.aperture_start >> order);
596 	}
597 
598 	/* start_pfn is always nonzero for an already-initialised domain */
599 	mutex_lock(&cookie->mutex);
600 	if (iovad->start_pfn) {
601 		if (1UL << order != iovad->granule ||
602 		    base_pfn != iovad->start_pfn) {
603 			pr_warn("Incompatible range for DMA domain\n");
604 			ret = -EFAULT;
605 			goto done_unlock;
606 		}
607 
608 		ret = 0;
609 		goto done_unlock;
610 	}
611 
612 	init_iova_domain(iovad, 1UL << order, base_pfn);
613 	ret = iova_domain_init_rcaches(iovad);
614 	if (ret)
615 		goto done_unlock;
616 
617 	/* If the FQ fails we can simply fall back to strict mode */
618 	if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
619 	    (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
620 		domain->type = IOMMU_DOMAIN_DMA;
621 
622 	ret = iova_reserve_iommu_regions(dev, domain);
623 
624 done_unlock:
625 	mutex_unlock(&cookie->mutex);
626 	return ret;
627 }
628 
629 /**
630  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
631  *                    page flags.
632  * @dir: Direction of DMA transfer
633  * @coherent: Is the DMA master cache-coherent?
634  * @attrs: DMA attributes for the mapping
635  *
636  * Return: corresponding IOMMU API page protection flags
637  */
638 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
639 		     unsigned long attrs)
640 {
641 	int prot = coherent ? IOMMU_CACHE : 0;
642 
643 	if (attrs & DMA_ATTR_PRIVILEGED)
644 		prot |= IOMMU_PRIV;
645 
646 	switch (dir) {
647 	case DMA_BIDIRECTIONAL:
648 		return prot | IOMMU_READ | IOMMU_WRITE;
649 	case DMA_TO_DEVICE:
650 		return prot | IOMMU_READ;
651 	case DMA_FROM_DEVICE:
652 		return prot | IOMMU_WRITE;
653 	default:
654 		return 0;
655 	}
656 }
657 
658 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
659 		size_t size, u64 dma_limit, struct device *dev)
660 {
661 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
662 	struct iova_domain *iovad = &cookie->iovad;
663 	unsigned long shift, iova_len, iova;
664 
665 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
666 		cookie->msi_iova += size;
667 		return cookie->msi_iova - size;
668 	}
669 
670 	shift = iova_shift(iovad);
671 	iova_len = size >> shift;
672 
673 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
674 
675 	if (domain->geometry.force_aperture)
676 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
677 
678 	/*
679 	 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
680 	 * DAC reasoning loses relevance with PCIe, but enough hardware and
681 	 * firmware bugs are still lurking out there that it's safest not to
682 	 * venture into the 64-bit space until necessary.
683 	 *
684 	 * If your device goes wrong after seeing the notice then likely either
685 	 * its driver is not setting DMA masks accurately, the hardware has
686 	 * some inherent bug in handling >32-bit addresses, or not all the
687 	 * expected address bits are wired up between the device and the IOMMU.
688 	 */
689 	if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
690 		iova = alloc_iova_fast(iovad, iova_len,
691 				       DMA_BIT_MASK(32) >> shift, false);
692 		if (iova)
693 			goto done;
694 
695 		dev->iommu->pci_32bit_workaround = false;
696 		dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
697 	}
698 
699 	iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
700 done:
701 	return (dma_addr_t)iova << shift;
702 }
703 
704 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
705 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
706 {
707 	struct iova_domain *iovad = &cookie->iovad;
708 
709 	/* The MSI case is only ever cleaning up its most recent allocation */
710 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
711 		cookie->msi_iova -= size;
712 	else if (gather && gather->queued)
713 		queue_iova(cookie, iova_pfn(iovad, iova),
714 				size >> iova_shift(iovad),
715 				&gather->freelist);
716 	else
717 		free_iova_fast(iovad, iova_pfn(iovad, iova),
718 				size >> iova_shift(iovad));
719 }
720 
721 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
722 		size_t size)
723 {
724 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
725 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
726 	struct iova_domain *iovad = &cookie->iovad;
727 	size_t iova_off = iova_offset(iovad, dma_addr);
728 	struct iommu_iotlb_gather iotlb_gather;
729 	size_t unmapped;
730 
731 	dma_addr -= iova_off;
732 	size = iova_align(iovad, size + iova_off);
733 	iommu_iotlb_gather_init(&iotlb_gather);
734 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
735 
736 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
737 	WARN_ON(unmapped != size);
738 
739 	if (!iotlb_gather.queued)
740 		iommu_iotlb_sync(domain, &iotlb_gather);
741 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
742 }
743 
744 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
745 		size_t size, int prot, u64 dma_mask)
746 {
747 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
748 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
749 	struct iova_domain *iovad = &cookie->iovad;
750 	size_t iova_off = iova_offset(iovad, phys);
751 	dma_addr_t iova;
752 
753 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
754 	    iommu_deferred_attach(dev, domain))
755 		return DMA_MAPPING_ERROR;
756 
757 	size = iova_align(iovad, size + iova_off);
758 
759 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
760 	if (!iova)
761 		return DMA_MAPPING_ERROR;
762 
763 	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
764 		iommu_dma_free_iova(cookie, iova, size, NULL);
765 		return DMA_MAPPING_ERROR;
766 	}
767 	return iova + iova_off;
768 }
769 
770 static void __iommu_dma_free_pages(struct page **pages, int count)
771 {
772 	while (count--)
773 		__free_page(pages[count]);
774 	kvfree(pages);
775 }
776 
777 static struct page **__iommu_dma_alloc_pages(struct device *dev,
778 		unsigned int count, unsigned long order_mask, gfp_t gfp)
779 {
780 	struct page **pages;
781 	unsigned int i = 0, nid = dev_to_node(dev);
782 
783 	order_mask &= GENMASK(MAX_ORDER, 0);
784 	if (!order_mask)
785 		return NULL;
786 
787 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
788 	if (!pages)
789 		return NULL;
790 
791 	/* IOMMU can map any pages, so himem can also be used here */
792 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
793 
794 	while (count) {
795 		struct page *page = NULL;
796 		unsigned int order_size;
797 
798 		/*
799 		 * Higher-order allocations are a convenience rather
800 		 * than a necessity, hence using __GFP_NORETRY until
801 		 * falling back to minimum-order allocations.
802 		 */
803 		for (order_mask &= GENMASK(__fls(count), 0);
804 		     order_mask; order_mask &= ~order_size) {
805 			unsigned int order = __fls(order_mask);
806 			gfp_t alloc_flags = gfp;
807 
808 			order_size = 1U << order;
809 			if (order_mask > order_size)
810 				alloc_flags |= __GFP_NORETRY;
811 			page = alloc_pages_node(nid, alloc_flags, order);
812 			if (!page)
813 				continue;
814 			if (order)
815 				split_page(page, order);
816 			break;
817 		}
818 		if (!page) {
819 			__iommu_dma_free_pages(pages, i);
820 			return NULL;
821 		}
822 		count -= order_size;
823 		while (order_size--)
824 			pages[i++] = page++;
825 	}
826 	return pages;
827 }
828 
829 /*
830  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
831  * but an IOMMU which supports smaller pages might not map the whole thing.
832  */
833 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
834 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
835 		unsigned long attrs)
836 {
837 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
838 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
839 	struct iova_domain *iovad = &cookie->iovad;
840 	bool coherent = dev_is_dma_coherent(dev);
841 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
842 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
843 	struct page **pages;
844 	dma_addr_t iova;
845 	ssize_t ret;
846 
847 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
848 	    iommu_deferred_attach(dev, domain))
849 		return NULL;
850 
851 	min_size = alloc_sizes & -alloc_sizes;
852 	if (min_size < PAGE_SIZE) {
853 		min_size = PAGE_SIZE;
854 		alloc_sizes |= PAGE_SIZE;
855 	} else {
856 		size = ALIGN(size, min_size);
857 	}
858 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
859 		alloc_sizes = min_size;
860 
861 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
862 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
863 					gfp);
864 	if (!pages)
865 		return NULL;
866 
867 	size = iova_align(iovad, size);
868 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
869 	if (!iova)
870 		goto out_free_pages;
871 
872 	/*
873 	 * Remove the zone/policy flags from the GFP - these are applied to the
874 	 * __iommu_dma_alloc_pages() but are not used for the supporting
875 	 * internal allocations that follow.
876 	 */
877 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
878 
879 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
880 		goto out_free_iova;
881 
882 	if (!(ioprot & IOMMU_CACHE)) {
883 		struct scatterlist *sg;
884 		int i;
885 
886 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
887 			arch_dma_prep_coherent(sg_page(sg), sg->length);
888 	}
889 
890 	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
891 			   gfp);
892 	if (ret < 0 || ret < size)
893 		goto out_free_sg;
894 
895 	sgt->sgl->dma_address = iova;
896 	sgt->sgl->dma_length = size;
897 	return pages;
898 
899 out_free_sg:
900 	sg_free_table(sgt);
901 out_free_iova:
902 	iommu_dma_free_iova(cookie, iova, size, NULL);
903 out_free_pages:
904 	__iommu_dma_free_pages(pages, count);
905 	return NULL;
906 }
907 
908 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
909 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
910 		unsigned long attrs)
911 {
912 	struct page **pages;
913 	struct sg_table sgt;
914 	void *vaddr;
915 
916 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
917 						attrs);
918 	if (!pages)
919 		return NULL;
920 	*dma_handle = sgt.sgl->dma_address;
921 	sg_free_table(&sgt);
922 	vaddr = dma_common_pages_remap(pages, size, prot,
923 			__builtin_return_address(0));
924 	if (!vaddr)
925 		goto out_unmap;
926 	return vaddr;
927 
928 out_unmap:
929 	__iommu_dma_unmap(dev, *dma_handle, size);
930 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
931 	return NULL;
932 }
933 
934 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
935 		size_t size, enum dma_data_direction dir, gfp_t gfp,
936 		unsigned long attrs)
937 {
938 	struct dma_sgt_handle *sh;
939 
940 	sh = kmalloc(sizeof(*sh), gfp);
941 	if (!sh)
942 		return NULL;
943 
944 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
945 						    PAGE_KERNEL, attrs);
946 	if (!sh->pages) {
947 		kfree(sh);
948 		return NULL;
949 	}
950 	return &sh->sgt;
951 }
952 
953 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
954 		struct sg_table *sgt, enum dma_data_direction dir)
955 {
956 	struct dma_sgt_handle *sh = sgt_handle(sgt);
957 
958 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
959 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
960 	sg_free_table(&sh->sgt);
961 	kfree(sh);
962 }
963 
964 static void iommu_dma_sync_single_for_cpu(struct device *dev,
965 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
966 {
967 	phys_addr_t phys;
968 
969 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
970 		return;
971 
972 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
973 	if (!dev_is_dma_coherent(dev))
974 		arch_sync_dma_for_cpu(phys, size, dir);
975 
976 	if (is_swiotlb_buffer(dev, phys))
977 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
978 }
979 
980 static void iommu_dma_sync_single_for_device(struct device *dev,
981 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
982 {
983 	phys_addr_t phys;
984 
985 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
986 		return;
987 
988 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
989 	if (is_swiotlb_buffer(dev, phys))
990 		swiotlb_sync_single_for_device(dev, phys, size, dir);
991 
992 	if (!dev_is_dma_coherent(dev))
993 		arch_sync_dma_for_device(phys, size, dir);
994 }
995 
996 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
997 		struct scatterlist *sgl, int nelems,
998 		enum dma_data_direction dir)
999 {
1000 	struct scatterlist *sg;
1001 	int i;
1002 
1003 	if (sg_dma_is_swiotlb(sgl))
1004 		for_each_sg(sgl, sg, nelems, i)
1005 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1006 						      sg->length, dir);
1007 	else if (!dev_is_dma_coherent(dev))
1008 		for_each_sg(sgl, sg, nelems, i)
1009 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
1010 }
1011 
1012 static void iommu_dma_sync_sg_for_device(struct device *dev,
1013 		struct scatterlist *sgl, int nelems,
1014 		enum dma_data_direction dir)
1015 {
1016 	struct scatterlist *sg;
1017 	int i;
1018 
1019 	if (sg_dma_is_swiotlb(sgl))
1020 		for_each_sg(sgl, sg, nelems, i)
1021 			iommu_dma_sync_single_for_device(dev,
1022 							 sg_dma_address(sg),
1023 							 sg->length, dir);
1024 	else if (!dev_is_dma_coherent(dev))
1025 		for_each_sg(sgl, sg, nelems, i)
1026 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1027 }
1028 
1029 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1030 		unsigned long offset, size_t size, enum dma_data_direction dir,
1031 		unsigned long attrs)
1032 {
1033 	phys_addr_t phys = page_to_phys(page) + offset;
1034 	bool coherent = dev_is_dma_coherent(dev);
1035 	int prot = dma_info_to_prot(dir, coherent, attrs);
1036 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1037 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1038 	struct iova_domain *iovad = &cookie->iovad;
1039 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1040 
1041 	/*
1042 	 * If both the physical buffer start address and size are
1043 	 * page aligned, we don't need to use a bounce page.
1044 	 */
1045 	if (dev_use_swiotlb(dev, size, dir) &&
1046 	    iova_offset(iovad, phys | size)) {
1047 		void *padding_start;
1048 		size_t padding_size, aligned_size;
1049 
1050 		if (!is_swiotlb_active(dev)) {
1051 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1052 			return DMA_MAPPING_ERROR;
1053 		}
1054 
1055 		aligned_size = iova_align(iovad, size);
1056 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1057 					      iova_mask(iovad), dir, attrs);
1058 
1059 		if (phys == DMA_MAPPING_ERROR)
1060 			return DMA_MAPPING_ERROR;
1061 
1062 		/* Cleanup the padding area. */
1063 		padding_start = phys_to_virt(phys);
1064 		padding_size = aligned_size;
1065 
1066 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1067 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1068 			padding_start += size;
1069 			padding_size -= size;
1070 		}
1071 
1072 		memset(padding_start, 0, padding_size);
1073 	}
1074 
1075 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1076 		arch_sync_dma_for_device(phys, size, dir);
1077 
1078 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1079 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1080 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1081 	return iova;
1082 }
1083 
1084 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1085 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1086 {
1087 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1088 	phys_addr_t phys;
1089 
1090 	phys = iommu_iova_to_phys(domain, dma_handle);
1091 	if (WARN_ON(!phys))
1092 		return;
1093 
1094 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1095 		arch_sync_dma_for_cpu(phys, size, dir);
1096 
1097 	__iommu_dma_unmap(dev, dma_handle, size);
1098 
1099 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1100 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1101 }
1102 
1103 /*
1104  * Prepare a successfully-mapped scatterlist to give back to the caller.
1105  *
1106  * At this point the segments are already laid out by iommu_dma_map_sg() to
1107  * avoid individually crossing any boundaries, so we merely need to check a
1108  * segment's start address to avoid concatenating across one.
1109  */
1110 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1111 		dma_addr_t dma_addr)
1112 {
1113 	struct scatterlist *s, *cur = sg;
1114 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1115 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1116 	int i, count = 0;
1117 
1118 	for_each_sg(sg, s, nents, i) {
1119 		/* Restore this segment's original unaligned fields first */
1120 		dma_addr_t s_dma_addr = sg_dma_address(s);
1121 		unsigned int s_iova_off = sg_dma_address(s);
1122 		unsigned int s_length = sg_dma_len(s);
1123 		unsigned int s_iova_len = s->length;
1124 
1125 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1126 		sg_dma_len(s) = 0;
1127 
1128 		if (sg_dma_is_bus_address(s)) {
1129 			if (i > 0)
1130 				cur = sg_next(cur);
1131 
1132 			sg_dma_unmark_bus_address(s);
1133 			sg_dma_address(cur) = s_dma_addr;
1134 			sg_dma_len(cur) = s_length;
1135 			sg_dma_mark_bus_address(cur);
1136 			count++;
1137 			cur_len = 0;
1138 			continue;
1139 		}
1140 
1141 		s->offset += s_iova_off;
1142 		s->length = s_length;
1143 
1144 		/*
1145 		 * Now fill in the real DMA data. If...
1146 		 * - there is a valid output segment to append to
1147 		 * - and this segment starts on an IOVA page boundary
1148 		 * - but doesn't fall at a segment boundary
1149 		 * - and wouldn't make the resulting output segment too long
1150 		 */
1151 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1152 		    (max_len - cur_len >= s_length)) {
1153 			/* ...then concatenate it with the previous one */
1154 			cur_len += s_length;
1155 		} else {
1156 			/* Otherwise start the next output segment */
1157 			if (i > 0)
1158 				cur = sg_next(cur);
1159 			cur_len = s_length;
1160 			count++;
1161 
1162 			sg_dma_address(cur) = dma_addr + s_iova_off;
1163 		}
1164 
1165 		sg_dma_len(cur) = cur_len;
1166 		dma_addr += s_iova_len;
1167 
1168 		if (s_length + s_iova_off < s_iova_len)
1169 			cur_len = 0;
1170 	}
1171 	return count;
1172 }
1173 
1174 /*
1175  * If mapping failed, then just restore the original list,
1176  * but making sure the DMA fields are invalidated.
1177  */
1178 static void __invalidate_sg(struct scatterlist *sg, int nents)
1179 {
1180 	struct scatterlist *s;
1181 	int i;
1182 
1183 	for_each_sg(sg, s, nents, i) {
1184 		if (sg_dma_is_bus_address(s)) {
1185 			sg_dma_unmark_bus_address(s);
1186 		} else {
1187 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1188 				s->offset += sg_dma_address(s);
1189 			if (sg_dma_len(s))
1190 				s->length = sg_dma_len(s);
1191 		}
1192 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1193 		sg_dma_len(s) = 0;
1194 	}
1195 }
1196 
1197 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1198 		int nents, enum dma_data_direction dir, unsigned long attrs)
1199 {
1200 	struct scatterlist *s;
1201 	int i;
1202 
1203 	for_each_sg(sg, s, nents, i)
1204 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1205 				sg_dma_len(s), dir, attrs);
1206 }
1207 
1208 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1209 		int nents, enum dma_data_direction dir, unsigned long attrs)
1210 {
1211 	struct scatterlist *s;
1212 	int i;
1213 
1214 	sg_dma_mark_swiotlb(sg);
1215 
1216 	for_each_sg(sg, s, nents, i) {
1217 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1218 				s->offset, s->length, dir, attrs);
1219 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1220 			goto out_unmap;
1221 		sg_dma_len(s) = s->length;
1222 	}
1223 
1224 	return nents;
1225 
1226 out_unmap:
1227 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1228 	return -EIO;
1229 }
1230 
1231 /*
1232  * The DMA API client is passing in a scatterlist which could describe
1233  * any old buffer layout, but the IOMMU API requires everything to be
1234  * aligned to IOMMU pages. Hence the need for this complicated bit of
1235  * impedance-matching, to be able to hand off a suitably-aligned list,
1236  * but still preserve the original offsets and sizes for the caller.
1237  */
1238 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1239 		int nents, enum dma_data_direction dir, unsigned long attrs)
1240 {
1241 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1242 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1243 	struct iova_domain *iovad = &cookie->iovad;
1244 	struct scatterlist *s, *prev = NULL;
1245 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1246 	struct pci_p2pdma_map_state p2pdma_state = {};
1247 	enum pci_p2pdma_map_type map;
1248 	dma_addr_t iova;
1249 	size_t iova_len = 0;
1250 	unsigned long mask = dma_get_seg_boundary(dev);
1251 	ssize_t ret;
1252 	int i;
1253 
1254 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1255 		ret = iommu_deferred_attach(dev, domain);
1256 		if (ret)
1257 			goto out;
1258 	}
1259 
1260 	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1261 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1262 
1263 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1264 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1265 
1266 	/*
1267 	 * Work out how much IOVA space we need, and align the segments to
1268 	 * IOVA granules for the IOMMU driver to handle. With some clever
1269 	 * trickery we can modify the list in-place, but reversibly, by
1270 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1271 	 */
1272 	for_each_sg(sg, s, nents, i) {
1273 		size_t s_iova_off = iova_offset(iovad, s->offset);
1274 		size_t s_length = s->length;
1275 		size_t pad_len = (mask - iova_len + 1) & mask;
1276 
1277 		if (is_pci_p2pdma_page(sg_page(s))) {
1278 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1279 			switch (map) {
1280 			case PCI_P2PDMA_MAP_BUS_ADDR:
1281 				/*
1282 				 * iommu_map_sg() will skip this segment as
1283 				 * it is marked as a bus address,
1284 				 * __finalise_sg() will copy the dma address
1285 				 * into the output segment.
1286 				 */
1287 				continue;
1288 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1289 				/*
1290 				 * Mapping through host bridge should be
1291 				 * mapped with regular IOVAs, thus we
1292 				 * do nothing here and continue below.
1293 				 */
1294 				break;
1295 			default:
1296 				ret = -EREMOTEIO;
1297 				goto out_restore_sg;
1298 			}
1299 		}
1300 
1301 		sg_dma_address(s) = s_iova_off;
1302 		sg_dma_len(s) = s_length;
1303 		s->offset -= s_iova_off;
1304 		s_length = iova_align(iovad, s_length + s_iova_off);
1305 		s->length = s_length;
1306 
1307 		/*
1308 		 * Due to the alignment of our single IOVA allocation, we can
1309 		 * depend on these assumptions about the segment boundary mask:
1310 		 * - If mask size >= IOVA size, then the IOVA range cannot
1311 		 *   possibly fall across a boundary, so we don't care.
1312 		 * - If mask size < IOVA size, then the IOVA range must start
1313 		 *   exactly on a boundary, therefore we can lay things out
1314 		 *   based purely on segment lengths without needing to know
1315 		 *   the actual addresses beforehand.
1316 		 * - The mask must be a power of 2, so pad_len == 0 if
1317 		 *   iova_len == 0, thus we cannot dereference prev the first
1318 		 *   time through here (i.e. before it has a meaningful value).
1319 		 */
1320 		if (pad_len && pad_len < s_length - 1) {
1321 			prev->length += pad_len;
1322 			iova_len += pad_len;
1323 		}
1324 
1325 		iova_len += s_length;
1326 		prev = s;
1327 	}
1328 
1329 	if (!iova_len)
1330 		return __finalise_sg(dev, sg, nents, 0);
1331 
1332 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1333 	if (!iova) {
1334 		ret = -ENOMEM;
1335 		goto out_restore_sg;
1336 	}
1337 
1338 	/*
1339 	 * We'll leave any physical concatenation to the IOMMU driver's
1340 	 * implementation - it knows better than we do.
1341 	 */
1342 	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1343 	if (ret < 0 || ret < iova_len)
1344 		goto out_free_iova;
1345 
1346 	return __finalise_sg(dev, sg, nents, iova);
1347 
1348 out_free_iova:
1349 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1350 out_restore_sg:
1351 	__invalidate_sg(sg, nents);
1352 out:
1353 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1354 		return -EINVAL;
1355 	return ret;
1356 }
1357 
1358 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1359 		int nents, enum dma_data_direction dir, unsigned long attrs)
1360 {
1361 	dma_addr_t end = 0, start;
1362 	struct scatterlist *tmp;
1363 	int i;
1364 
1365 	if (sg_dma_is_swiotlb(sg)) {
1366 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1367 		return;
1368 	}
1369 
1370 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1371 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1372 
1373 	/*
1374 	 * The scatterlist segments are mapped into a single
1375 	 * contiguous IOVA allocation, the start and end points
1376 	 * just have to be determined.
1377 	 */
1378 	for_each_sg(sg, tmp, nents, i) {
1379 		if (sg_dma_is_bus_address(tmp)) {
1380 			sg_dma_unmark_bus_address(tmp);
1381 			continue;
1382 		}
1383 
1384 		if (sg_dma_len(tmp) == 0)
1385 			break;
1386 
1387 		start = sg_dma_address(tmp);
1388 		break;
1389 	}
1390 
1391 	nents -= i;
1392 	for_each_sg(tmp, tmp, nents, i) {
1393 		if (sg_dma_is_bus_address(tmp)) {
1394 			sg_dma_unmark_bus_address(tmp);
1395 			continue;
1396 		}
1397 
1398 		if (sg_dma_len(tmp) == 0)
1399 			break;
1400 
1401 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1402 	}
1403 
1404 	if (end)
1405 		__iommu_dma_unmap(dev, start, end - start);
1406 }
1407 
1408 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1409 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1410 {
1411 	return __iommu_dma_map(dev, phys, size,
1412 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1413 			dma_get_mask(dev));
1414 }
1415 
1416 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1417 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1418 {
1419 	__iommu_dma_unmap(dev, handle, size);
1420 }
1421 
1422 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1423 {
1424 	size_t alloc_size = PAGE_ALIGN(size);
1425 	int count = alloc_size >> PAGE_SHIFT;
1426 	struct page *page = NULL, **pages = NULL;
1427 
1428 	/* Non-coherent atomic allocation? Easy */
1429 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1430 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1431 		return;
1432 
1433 	if (is_vmalloc_addr(cpu_addr)) {
1434 		/*
1435 		 * If it the address is remapped, then it's either non-coherent
1436 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1437 		 */
1438 		pages = dma_common_find_pages(cpu_addr);
1439 		if (!pages)
1440 			page = vmalloc_to_page(cpu_addr);
1441 		dma_common_free_remap(cpu_addr, alloc_size);
1442 	} else {
1443 		/* Lowmem means a coherent atomic or CMA allocation */
1444 		page = virt_to_page(cpu_addr);
1445 	}
1446 
1447 	if (pages)
1448 		__iommu_dma_free_pages(pages, count);
1449 	if (page)
1450 		dma_free_contiguous(dev, page, alloc_size);
1451 }
1452 
1453 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1454 		dma_addr_t handle, unsigned long attrs)
1455 {
1456 	__iommu_dma_unmap(dev, handle, size);
1457 	__iommu_dma_free(dev, size, cpu_addr);
1458 }
1459 
1460 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1461 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1462 {
1463 	bool coherent = dev_is_dma_coherent(dev);
1464 	size_t alloc_size = PAGE_ALIGN(size);
1465 	int node = dev_to_node(dev);
1466 	struct page *page = NULL;
1467 	void *cpu_addr;
1468 
1469 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1470 	if (!page)
1471 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1472 	if (!page)
1473 		return NULL;
1474 
1475 	if (!coherent || PageHighMem(page)) {
1476 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1477 
1478 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1479 				prot, __builtin_return_address(0));
1480 		if (!cpu_addr)
1481 			goto out_free_pages;
1482 
1483 		if (!coherent)
1484 			arch_dma_prep_coherent(page, size);
1485 	} else {
1486 		cpu_addr = page_address(page);
1487 	}
1488 
1489 	*pagep = page;
1490 	memset(cpu_addr, 0, alloc_size);
1491 	return cpu_addr;
1492 out_free_pages:
1493 	dma_free_contiguous(dev, page, alloc_size);
1494 	return NULL;
1495 }
1496 
1497 static void *iommu_dma_alloc(struct device *dev, size_t size,
1498 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1499 {
1500 	bool coherent = dev_is_dma_coherent(dev);
1501 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1502 	struct page *page = NULL;
1503 	void *cpu_addr;
1504 
1505 	gfp |= __GFP_ZERO;
1506 
1507 	if (gfpflags_allow_blocking(gfp) &&
1508 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1509 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1510 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1511 	}
1512 
1513 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1514 	    !gfpflags_allow_blocking(gfp) && !coherent)
1515 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1516 					       gfp, NULL);
1517 	else
1518 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1519 	if (!cpu_addr)
1520 		return NULL;
1521 
1522 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1523 			dev->coherent_dma_mask);
1524 	if (*handle == DMA_MAPPING_ERROR) {
1525 		__iommu_dma_free(dev, size, cpu_addr);
1526 		return NULL;
1527 	}
1528 
1529 	return cpu_addr;
1530 }
1531 
1532 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1533 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1534 		unsigned long attrs)
1535 {
1536 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1537 	unsigned long pfn, off = vma->vm_pgoff;
1538 	int ret;
1539 
1540 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1541 
1542 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1543 		return ret;
1544 
1545 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1546 		return -ENXIO;
1547 
1548 	if (is_vmalloc_addr(cpu_addr)) {
1549 		struct page **pages = dma_common_find_pages(cpu_addr);
1550 
1551 		if (pages)
1552 			return vm_map_pages(vma, pages, nr_pages);
1553 		pfn = vmalloc_to_pfn(cpu_addr);
1554 	} else {
1555 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1556 	}
1557 
1558 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1559 			       vma->vm_end - vma->vm_start,
1560 			       vma->vm_page_prot);
1561 }
1562 
1563 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1564 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1565 		unsigned long attrs)
1566 {
1567 	struct page *page;
1568 	int ret;
1569 
1570 	if (is_vmalloc_addr(cpu_addr)) {
1571 		struct page **pages = dma_common_find_pages(cpu_addr);
1572 
1573 		if (pages) {
1574 			return sg_alloc_table_from_pages(sgt, pages,
1575 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1576 					0, size, GFP_KERNEL);
1577 		}
1578 
1579 		page = vmalloc_to_page(cpu_addr);
1580 	} else {
1581 		page = virt_to_page(cpu_addr);
1582 	}
1583 
1584 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1585 	if (!ret)
1586 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1587 	return ret;
1588 }
1589 
1590 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1591 {
1592 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1593 
1594 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1595 }
1596 
1597 static size_t iommu_dma_opt_mapping_size(void)
1598 {
1599 	return iova_rcache_range();
1600 }
1601 
1602 static const struct dma_map_ops iommu_dma_ops = {
1603 	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED,
1604 	.alloc			= iommu_dma_alloc,
1605 	.free			= iommu_dma_free,
1606 	.alloc_pages		= dma_common_alloc_pages,
1607 	.free_pages		= dma_common_free_pages,
1608 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1609 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1610 	.mmap			= iommu_dma_mmap,
1611 	.get_sgtable		= iommu_dma_get_sgtable,
1612 	.map_page		= iommu_dma_map_page,
1613 	.unmap_page		= iommu_dma_unmap_page,
1614 	.map_sg			= iommu_dma_map_sg,
1615 	.unmap_sg		= iommu_dma_unmap_sg,
1616 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1617 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1618 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1619 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1620 	.map_resource		= iommu_dma_map_resource,
1621 	.unmap_resource		= iommu_dma_unmap_resource,
1622 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1623 	.opt_mapping_size	= iommu_dma_opt_mapping_size,
1624 };
1625 
1626 /*
1627  * The IOMMU core code allocates the default DMA domain, which the underlying
1628  * IOMMU driver needs to support via the dma-iommu layer.
1629  */
1630 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1631 {
1632 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1633 
1634 	if (!domain)
1635 		goto out_err;
1636 
1637 	/*
1638 	 * The IOMMU core code allocates the default DMA domain, which the
1639 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1640 	 */
1641 	if (iommu_is_dma_domain(domain)) {
1642 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1643 			goto out_err;
1644 		dev->dma_ops = &iommu_dma_ops;
1645 	}
1646 
1647 	return;
1648 out_err:
1649 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1650 		 dev_name(dev));
1651 }
1652 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1653 
1654 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1655 		phys_addr_t msi_addr, struct iommu_domain *domain)
1656 {
1657 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1658 	struct iommu_dma_msi_page *msi_page;
1659 	dma_addr_t iova;
1660 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1661 	size_t size = cookie_msi_granule(cookie);
1662 
1663 	msi_addr &= ~(phys_addr_t)(size - 1);
1664 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1665 		if (msi_page->phys == msi_addr)
1666 			return msi_page;
1667 
1668 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1669 	if (!msi_page)
1670 		return NULL;
1671 
1672 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1673 	if (!iova)
1674 		goto out_free_page;
1675 
1676 	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1677 		goto out_free_iova;
1678 
1679 	INIT_LIST_HEAD(&msi_page->list);
1680 	msi_page->phys = msi_addr;
1681 	msi_page->iova = iova;
1682 	list_add(&msi_page->list, &cookie->msi_page_list);
1683 	return msi_page;
1684 
1685 out_free_iova:
1686 	iommu_dma_free_iova(cookie, iova, size, NULL);
1687 out_free_page:
1688 	kfree(msi_page);
1689 	return NULL;
1690 }
1691 
1692 /**
1693  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1694  * @desc: MSI descriptor, will store the MSI page
1695  * @msi_addr: MSI target address to be mapped
1696  *
1697  * Return: 0 on success or negative error code if the mapping failed.
1698  */
1699 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1700 {
1701 	struct device *dev = msi_desc_to_dev(desc);
1702 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1703 	struct iommu_dma_msi_page *msi_page;
1704 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1705 
1706 	if (!domain || !domain->iova_cookie) {
1707 		desc->iommu_cookie = NULL;
1708 		return 0;
1709 	}
1710 
1711 	/*
1712 	 * In fact the whole prepare operation should already be serialised by
1713 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1714 	 * on its own, so consider this locking as failsafe documentation...
1715 	 */
1716 	mutex_lock(&msi_prepare_lock);
1717 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1718 	mutex_unlock(&msi_prepare_lock);
1719 
1720 	msi_desc_set_iommu_cookie(desc, msi_page);
1721 
1722 	if (!msi_page)
1723 		return -ENOMEM;
1724 	return 0;
1725 }
1726 
1727 /**
1728  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1729  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1730  * @msg: MSI message containing target physical address
1731  */
1732 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1733 {
1734 	struct device *dev = msi_desc_to_dev(desc);
1735 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1736 	const struct iommu_dma_msi_page *msi_page;
1737 
1738 	msi_page = msi_desc_get_iommu_cookie(desc);
1739 
1740 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1741 		return;
1742 
1743 	msg->address_hi = upper_32_bits(msi_page->iova);
1744 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1745 	msg->address_lo += lower_32_bits(msi_page->iova);
1746 }
1747 
1748 static int iommu_dma_init(void)
1749 {
1750 	if (is_kdump_kernel())
1751 		static_branch_enable(&iommu_deferred_attach_enabled);
1752 
1753 	return iova_cache_get();
1754 }
1755 arch_initcall(iommu_dma_init);
1756