1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iova.h> 21 #include <linux/irq.h> 22 #include <linux/list_sort.h> 23 #include <linux/memremap.h> 24 #include <linux/mm.h> 25 #include <linux/mutex.h> 26 #include <linux/pci.h> 27 #include <linux/scatterlist.h> 28 #include <linux/spinlock.h> 29 #include <linux/swiotlb.h> 30 #include <linux/vmalloc.h> 31 32 #include "dma-iommu.h" 33 34 struct iommu_dma_msi_page { 35 struct list_head list; 36 dma_addr_t iova; 37 phys_addr_t phys; 38 }; 39 40 enum iommu_dma_cookie_type { 41 IOMMU_DMA_IOVA_COOKIE, 42 IOMMU_DMA_MSI_COOKIE, 43 }; 44 45 struct iommu_dma_cookie { 46 enum iommu_dma_cookie_type type; 47 union { 48 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 49 struct { 50 struct iova_domain iovad; 51 52 struct iova_fq __percpu *fq; /* Flush queue */ 53 /* Number of TLB flushes that have been started */ 54 atomic64_t fq_flush_start_cnt; 55 /* Number of TLB flushes that have been finished */ 56 atomic64_t fq_flush_finish_cnt; 57 /* Timer to regularily empty the flush queues */ 58 struct timer_list fq_timer; 59 /* 1 when timer is active, 0 when not */ 60 atomic_t fq_timer_on; 61 }; 62 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 63 dma_addr_t msi_iova; 64 }; 65 struct list_head msi_page_list; 66 67 /* Domain for flush queue callback; NULL if flush queue not in use */ 68 struct iommu_domain *fq_domain; 69 struct mutex mutex; 70 }; 71 72 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 73 bool iommu_dma_forcedac __read_mostly; 74 75 static int __init iommu_dma_forcedac_setup(char *str) 76 { 77 int ret = kstrtobool(str, &iommu_dma_forcedac); 78 79 if (!ret && iommu_dma_forcedac) 80 pr_info("Forcing DAC for PCI devices\n"); 81 return ret; 82 } 83 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 84 85 /* Number of entries per flush queue */ 86 #define IOVA_FQ_SIZE 256 87 88 /* Timeout (in ms) after which entries are flushed from the queue */ 89 #define IOVA_FQ_TIMEOUT 10 90 91 /* Flush queue entry for deferred flushing */ 92 struct iova_fq_entry { 93 unsigned long iova_pfn; 94 unsigned long pages; 95 struct list_head freelist; 96 u64 counter; /* Flush counter when this entry was added */ 97 }; 98 99 /* Per-CPU flush queue structure */ 100 struct iova_fq { 101 struct iova_fq_entry entries[IOVA_FQ_SIZE]; 102 unsigned int head, tail; 103 spinlock_t lock; 104 }; 105 106 #define fq_ring_for_each(i, fq) \ 107 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 108 109 static inline bool fq_full(struct iova_fq *fq) 110 { 111 assert_spin_locked(&fq->lock); 112 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 113 } 114 115 static inline unsigned int fq_ring_add(struct iova_fq *fq) 116 { 117 unsigned int idx = fq->tail; 118 119 assert_spin_locked(&fq->lock); 120 121 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 122 123 return idx; 124 } 125 126 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 127 { 128 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 129 unsigned int idx; 130 131 assert_spin_locked(&fq->lock); 132 133 fq_ring_for_each(idx, fq) { 134 135 if (fq->entries[idx].counter >= counter) 136 break; 137 138 put_pages_list(&fq->entries[idx].freelist); 139 free_iova_fast(&cookie->iovad, 140 fq->entries[idx].iova_pfn, 141 fq->entries[idx].pages); 142 143 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 144 } 145 } 146 147 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 148 { 149 atomic64_inc(&cookie->fq_flush_start_cnt); 150 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 151 atomic64_inc(&cookie->fq_flush_finish_cnt); 152 } 153 154 static void fq_flush_timeout(struct timer_list *t) 155 { 156 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 157 int cpu; 158 159 atomic_set(&cookie->fq_timer_on, 0); 160 fq_flush_iotlb(cookie); 161 162 for_each_possible_cpu(cpu) { 163 unsigned long flags; 164 struct iova_fq *fq; 165 166 fq = per_cpu_ptr(cookie->fq, cpu); 167 spin_lock_irqsave(&fq->lock, flags); 168 fq_ring_free(cookie, fq); 169 spin_unlock_irqrestore(&fq->lock, flags); 170 } 171 } 172 173 static void queue_iova(struct iommu_dma_cookie *cookie, 174 unsigned long pfn, unsigned long pages, 175 struct list_head *freelist) 176 { 177 struct iova_fq *fq; 178 unsigned long flags; 179 unsigned int idx; 180 181 /* 182 * Order against the IOMMU driver's pagetable update from unmapping 183 * @pte, to guarantee that fq_flush_iotlb() observes that if called 184 * from a different CPU before we release the lock below. Full barrier 185 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 186 * written fq state here. 187 */ 188 smp_mb(); 189 190 fq = raw_cpu_ptr(cookie->fq); 191 spin_lock_irqsave(&fq->lock, flags); 192 193 /* 194 * First remove all entries from the flush queue that have already been 195 * flushed out on another CPU. This makes the fq_full() check below less 196 * likely to be true. 197 */ 198 fq_ring_free(cookie, fq); 199 200 if (fq_full(fq)) { 201 fq_flush_iotlb(cookie); 202 fq_ring_free(cookie, fq); 203 } 204 205 idx = fq_ring_add(fq); 206 207 fq->entries[idx].iova_pfn = pfn; 208 fq->entries[idx].pages = pages; 209 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 210 list_splice(freelist, &fq->entries[idx].freelist); 211 212 spin_unlock_irqrestore(&fq->lock, flags); 213 214 /* Avoid false sharing as much as possible. */ 215 if (!atomic_read(&cookie->fq_timer_on) && 216 !atomic_xchg(&cookie->fq_timer_on, 1)) 217 mod_timer(&cookie->fq_timer, 218 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 219 } 220 221 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 222 { 223 int cpu, idx; 224 225 if (!cookie->fq) 226 return; 227 228 del_timer_sync(&cookie->fq_timer); 229 /* The IOVAs will be torn down separately, so just free our queued pages */ 230 for_each_possible_cpu(cpu) { 231 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu); 232 233 fq_ring_for_each(idx, fq) 234 put_pages_list(&fq->entries[idx].freelist); 235 } 236 237 free_percpu(cookie->fq); 238 } 239 240 /* sysfs updates are serialised by the mutex of the group owning @domain */ 241 int iommu_dma_init_fq(struct iommu_domain *domain) 242 { 243 struct iommu_dma_cookie *cookie = domain->iova_cookie; 244 struct iova_fq __percpu *queue; 245 int i, cpu; 246 247 if (cookie->fq_domain) 248 return 0; 249 250 atomic64_set(&cookie->fq_flush_start_cnt, 0); 251 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 252 253 queue = alloc_percpu(struct iova_fq); 254 if (!queue) { 255 pr_warn("iova flush queue initialization failed\n"); 256 return -ENOMEM; 257 } 258 259 for_each_possible_cpu(cpu) { 260 struct iova_fq *fq = per_cpu_ptr(queue, cpu); 261 262 fq->head = 0; 263 fq->tail = 0; 264 265 spin_lock_init(&fq->lock); 266 267 for (i = 0; i < IOVA_FQ_SIZE; i++) 268 INIT_LIST_HEAD(&fq->entries[i].freelist); 269 } 270 271 cookie->fq = queue; 272 273 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 274 atomic_set(&cookie->fq_timer_on, 0); 275 /* 276 * Prevent incomplete fq state being observable. Pairs with path from 277 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 278 */ 279 smp_wmb(); 280 WRITE_ONCE(cookie->fq_domain, domain); 281 return 0; 282 } 283 284 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 285 { 286 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 287 return cookie->iovad.granule; 288 return PAGE_SIZE; 289 } 290 291 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 292 { 293 struct iommu_dma_cookie *cookie; 294 295 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 296 if (cookie) { 297 INIT_LIST_HEAD(&cookie->msi_page_list); 298 cookie->type = type; 299 } 300 return cookie; 301 } 302 303 /** 304 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 305 * @domain: IOMMU domain to prepare for DMA-API usage 306 */ 307 int iommu_get_dma_cookie(struct iommu_domain *domain) 308 { 309 if (domain->iova_cookie) 310 return -EEXIST; 311 312 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 313 if (!domain->iova_cookie) 314 return -ENOMEM; 315 316 mutex_init(&domain->iova_cookie->mutex); 317 return 0; 318 } 319 320 /** 321 * iommu_get_msi_cookie - Acquire just MSI remapping resources 322 * @domain: IOMMU domain to prepare 323 * @base: Start address of IOVA region for MSI mappings 324 * 325 * Users who manage their own IOVA allocation and do not want DMA API support, 326 * but would still like to take advantage of automatic MSI remapping, can use 327 * this to initialise their own domain appropriately. Users should reserve a 328 * contiguous IOVA region, starting at @base, large enough to accommodate the 329 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 330 * used by the devices attached to @domain. 331 */ 332 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 333 { 334 struct iommu_dma_cookie *cookie; 335 336 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 337 return -EINVAL; 338 339 if (domain->iova_cookie) 340 return -EEXIST; 341 342 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 343 if (!cookie) 344 return -ENOMEM; 345 346 cookie->msi_iova = base; 347 domain->iova_cookie = cookie; 348 return 0; 349 } 350 EXPORT_SYMBOL(iommu_get_msi_cookie); 351 352 /** 353 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 354 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 355 * iommu_get_msi_cookie() 356 */ 357 void iommu_put_dma_cookie(struct iommu_domain *domain) 358 { 359 struct iommu_dma_cookie *cookie = domain->iova_cookie; 360 struct iommu_dma_msi_page *msi, *tmp; 361 362 if (!cookie) 363 return; 364 365 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { 366 iommu_dma_free_fq(cookie); 367 put_iova_domain(&cookie->iovad); 368 } 369 370 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 371 list_del(&msi->list); 372 kfree(msi); 373 } 374 kfree(cookie); 375 domain->iova_cookie = NULL; 376 } 377 378 /** 379 * iommu_dma_get_resv_regions - Reserved region driver helper 380 * @dev: Device from iommu_get_resv_regions() 381 * @list: Reserved region list from iommu_get_resv_regions() 382 * 383 * IOMMU drivers can use this to implement their .get_resv_regions callback 384 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 385 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 386 * reservation. 387 */ 388 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 389 { 390 391 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 392 iort_iommu_get_resv_regions(dev, list); 393 394 } 395 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 396 397 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 398 phys_addr_t start, phys_addr_t end) 399 { 400 struct iova_domain *iovad = &cookie->iovad; 401 struct iommu_dma_msi_page *msi_page; 402 int i, num_pages; 403 404 start -= iova_offset(iovad, start); 405 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 406 407 for (i = 0; i < num_pages; i++) { 408 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 409 if (!msi_page) 410 return -ENOMEM; 411 412 msi_page->phys = start; 413 msi_page->iova = start; 414 INIT_LIST_HEAD(&msi_page->list); 415 list_add(&msi_page->list, &cookie->msi_page_list); 416 start += iovad->granule; 417 } 418 419 return 0; 420 } 421 422 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 423 const struct list_head *b) 424 { 425 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 426 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 427 428 return res_a->res->start > res_b->res->start; 429 } 430 431 static int iova_reserve_pci_windows(struct pci_dev *dev, 432 struct iova_domain *iovad) 433 { 434 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 435 struct resource_entry *window; 436 unsigned long lo, hi; 437 phys_addr_t start = 0, end; 438 439 resource_list_for_each_entry(window, &bridge->windows) { 440 if (resource_type(window->res) != IORESOURCE_MEM) 441 continue; 442 443 lo = iova_pfn(iovad, window->res->start - window->offset); 444 hi = iova_pfn(iovad, window->res->end - window->offset); 445 reserve_iova(iovad, lo, hi); 446 } 447 448 /* Get reserved DMA windows from host bridge */ 449 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 450 resource_list_for_each_entry(window, &bridge->dma_ranges) { 451 end = window->res->start - window->offset; 452 resv_iova: 453 if (end > start) { 454 lo = iova_pfn(iovad, start); 455 hi = iova_pfn(iovad, end); 456 reserve_iova(iovad, lo, hi); 457 } else if (end < start) { 458 /* DMA ranges should be non-overlapping */ 459 dev_err(&dev->dev, 460 "Failed to reserve IOVA [%pa-%pa]\n", 461 &start, &end); 462 return -EINVAL; 463 } 464 465 start = window->res->end - window->offset + 1; 466 /* If window is last entry */ 467 if (window->node.next == &bridge->dma_ranges && 468 end != ~(phys_addr_t)0) { 469 end = ~(phys_addr_t)0; 470 goto resv_iova; 471 } 472 } 473 474 return 0; 475 } 476 477 static int iova_reserve_iommu_regions(struct device *dev, 478 struct iommu_domain *domain) 479 { 480 struct iommu_dma_cookie *cookie = domain->iova_cookie; 481 struct iova_domain *iovad = &cookie->iovad; 482 struct iommu_resv_region *region; 483 LIST_HEAD(resv_regions); 484 int ret = 0; 485 486 if (dev_is_pci(dev)) { 487 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 488 if (ret) 489 return ret; 490 } 491 492 iommu_get_resv_regions(dev, &resv_regions); 493 list_for_each_entry(region, &resv_regions, list) { 494 unsigned long lo, hi; 495 496 /* We ARE the software that manages these! */ 497 if (region->type == IOMMU_RESV_SW_MSI) 498 continue; 499 500 lo = iova_pfn(iovad, region->start); 501 hi = iova_pfn(iovad, region->start + region->length - 1); 502 reserve_iova(iovad, lo, hi); 503 504 if (region->type == IOMMU_RESV_MSI) 505 ret = cookie_init_hw_msi_region(cookie, region->start, 506 region->start + region->length); 507 if (ret) 508 break; 509 } 510 iommu_put_resv_regions(dev, &resv_regions); 511 512 return ret; 513 } 514 515 static bool dev_is_untrusted(struct device *dev) 516 { 517 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 518 } 519 520 static bool dev_use_swiotlb(struct device *dev) 521 { 522 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev); 523 } 524 525 /** 526 * iommu_dma_init_domain - Initialise a DMA mapping domain 527 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 528 * @base: IOVA at which the mappable address space starts 529 * @limit: Last address of the IOVA space 530 * @dev: Device the domain is being initialised for 531 * 532 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to 533 * avoid rounding surprises. If necessary, we reserve the page at address 0 534 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 535 * any change which could make prior IOVAs invalid will fail. 536 */ 537 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 538 dma_addr_t limit, struct device *dev) 539 { 540 struct iommu_dma_cookie *cookie = domain->iova_cookie; 541 unsigned long order, base_pfn; 542 struct iova_domain *iovad; 543 int ret; 544 545 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 546 return -EINVAL; 547 548 iovad = &cookie->iovad; 549 550 /* Use the smallest supported page size for IOVA granularity */ 551 order = __ffs(domain->pgsize_bitmap); 552 base_pfn = max_t(unsigned long, 1, base >> order); 553 554 /* Check the domain allows at least some access to the device... */ 555 if (domain->geometry.force_aperture) { 556 if (base > domain->geometry.aperture_end || 557 limit < domain->geometry.aperture_start) { 558 pr_warn("specified DMA range outside IOMMU capability\n"); 559 return -EFAULT; 560 } 561 /* ...then finally give it a kicking to make sure it fits */ 562 base_pfn = max_t(unsigned long, base_pfn, 563 domain->geometry.aperture_start >> order); 564 } 565 566 /* start_pfn is always nonzero for an already-initialised domain */ 567 mutex_lock(&cookie->mutex); 568 if (iovad->start_pfn) { 569 if (1UL << order != iovad->granule || 570 base_pfn != iovad->start_pfn) { 571 pr_warn("Incompatible range for DMA domain\n"); 572 ret = -EFAULT; 573 goto done_unlock; 574 } 575 576 ret = 0; 577 goto done_unlock; 578 } 579 580 init_iova_domain(iovad, 1UL << order, base_pfn); 581 ret = iova_domain_init_rcaches(iovad); 582 if (ret) 583 goto done_unlock; 584 585 /* If the FQ fails we can simply fall back to strict mode */ 586 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain)) 587 domain->type = IOMMU_DOMAIN_DMA; 588 589 ret = iova_reserve_iommu_regions(dev, domain); 590 591 done_unlock: 592 mutex_unlock(&cookie->mutex); 593 return ret; 594 } 595 596 /** 597 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 598 * page flags. 599 * @dir: Direction of DMA transfer 600 * @coherent: Is the DMA master cache-coherent? 601 * @attrs: DMA attributes for the mapping 602 * 603 * Return: corresponding IOMMU API page protection flags 604 */ 605 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 606 unsigned long attrs) 607 { 608 int prot = coherent ? IOMMU_CACHE : 0; 609 610 if (attrs & DMA_ATTR_PRIVILEGED) 611 prot |= IOMMU_PRIV; 612 613 switch (dir) { 614 case DMA_BIDIRECTIONAL: 615 return prot | IOMMU_READ | IOMMU_WRITE; 616 case DMA_TO_DEVICE: 617 return prot | IOMMU_READ; 618 case DMA_FROM_DEVICE: 619 return prot | IOMMU_WRITE; 620 default: 621 return 0; 622 } 623 } 624 625 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 626 size_t size, u64 dma_limit, struct device *dev) 627 { 628 struct iommu_dma_cookie *cookie = domain->iova_cookie; 629 struct iova_domain *iovad = &cookie->iovad; 630 unsigned long shift, iova_len, iova = 0; 631 632 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 633 cookie->msi_iova += size; 634 return cookie->msi_iova - size; 635 } 636 637 shift = iova_shift(iovad); 638 iova_len = size >> shift; 639 640 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 641 642 if (domain->geometry.force_aperture) 643 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 644 645 /* Try to get PCI devices a SAC address */ 646 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) 647 iova = alloc_iova_fast(iovad, iova_len, 648 DMA_BIT_MASK(32) >> shift, false); 649 650 if (!iova) 651 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 652 true); 653 654 return (dma_addr_t)iova << shift; 655 } 656 657 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 658 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) 659 { 660 struct iova_domain *iovad = &cookie->iovad; 661 662 /* The MSI case is only ever cleaning up its most recent allocation */ 663 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 664 cookie->msi_iova -= size; 665 else if (gather && gather->queued) 666 queue_iova(cookie, iova_pfn(iovad, iova), 667 size >> iova_shift(iovad), 668 &gather->freelist); 669 else 670 free_iova_fast(iovad, iova_pfn(iovad, iova), 671 size >> iova_shift(iovad)); 672 } 673 674 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 675 size_t size) 676 { 677 struct iommu_domain *domain = iommu_get_dma_domain(dev); 678 struct iommu_dma_cookie *cookie = domain->iova_cookie; 679 struct iova_domain *iovad = &cookie->iovad; 680 size_t iova_off = iova_offset(iovad, dma_addr); 681 struct iommu_iotlb_gather iotlb_gather; 682 size_t unmapped; 683 684 dma_addr -= iova_off; 685 size = iova_align(iovad, size + iova_off); 686 iommu_iotlb_gather_init(&iotlb_gather); 687 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 688 689 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 690 WARN_ON(unmapped != size); 691 692 if (!iotlb_gather.queued) 693 iommu_iotlb_sync(domain, &iotlb_gather); 694 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); 695 } 696 697 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 698 size_t size, int prot, u64 dma_mask) 699 { 700 struct iommu_domain *domain = iommu_get_dma_domain(dev); 701 struct iommu_dma_cookie *cookie = domain->iova_cookie; 702 struct iova_domain *iovad = &cookie->iovad; 703 size_t iova_off = iova_offset(iovad, phys); 704 dma_addr_t iova; 705 706 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 707 iommu_deferred_attach(dev, domain)) 708 return DMA_MAPPING_ERROR; 709 710 size = iova_align(iovad, size + iova_off); 711 712 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 713 if (!iova) 714 return DMA_MAPPING_ERROR; 715 716 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { 717 iommu_dma_free_iova(cookie, iova, size, NULL); 718 return DMA_MAPPING_ERROR; 719 } 720 return iova + iova_off; 721 } 722 723 static void __iommu_dma_free_pages(struct page **pages, int count) 724 { 725 while (count--) 726 __free_page(pages[count]); 727 kvfree(pages); 728 } 729 730 static struct page **__iommu_dma_alloc_pages(struct device *dev, 731 unsigned int count, unsigned long order_mask, gfp_t gfp) 732 { 733 struct page **pages; 734 unsigned int i = 0, nid = dev_to_node(dev); 735 736 order_mask &= (2U << MAX_ORDER) - 1; 737 if (!order_mask) 738 return NULL; 739 740 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 741 if (!pages) 742 return NULL; 743 744 /* IOMMU can map any pages, so himem can also be used here */ 745 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 746 747 while (count) { 748 struct page *page = NULL; 749 unsigned int order_size; 750 751 /* 752 * Higher-order allocations are a convenience rather 753 * than a necessity, hence using __GFP_NORETRY until 754 * falling back to minimum-order allocations. 755 */ 756 for (order_mask &= (2U << __fls(count)) - 1; 757 order_mask; order_mask &= ~order_size) { 758 unsigned int order = __fls(order_mask); 759 gfp_t alloc_flags = gfp; 760 761 order_size = 1U << order; 762 if (order_mask > order_size) 763 alloc_flags |= __GFP_NORETRY; 764 page = alloc_pages_node(nid, alloc_flags, order); 765 if (!page) 766 continue; 767 if (order) 768 split_page(page, order); 769 break; 770 } 771 if (!page) { 772 __iommu_dma_free_pages(pages, i); 773 return NULL; 774 } 775 count -= order_size; 776 while (order_size--) 777 pages[i++] = page++; 778 } 779 return pages; 780 } 781 782 /* 783 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 784 * but an IOMMU which supports smaller pages might not map the whole thing. 785 */ 786 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 787 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, 788 unsigned long attrs) 789 { 790 struct iommu_domain *domain = iommu_get_dma_domain(dev); 791 struct iommu_dma_cookie *cookie = domain->iova_cookie; 792 struct iova_domain *iovad = &cookie->iovad; 793 bool coherent = dev_is_dma_coherent(dev); 794 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 795 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 796 struct page **pages; 797 dma_addr_t iova; 798 ssize_t ret; 799 800 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 801 iommu_deferred_attach(dev, domain)) 802 return NULL; 803 804 min_size = alloc_sizes & -alloc_sizes; 805 if (min_size < PAGE_SIZE) { 806 min_size = PAGE_SIZE; 807 alloc_sizes |= PAGE_SIZE; 808 } else { 809 size = ALIGN(size, min_size); 810 } 811 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 812 alloc_sizes = min_size; 813 814 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 815 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 816 gfp); 817 if (!pages) 818 return NULL; 819 820 size = iova_align(iovad, size); 821 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 822 if (!iova) 823 goto out_free_pages; 824 825 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL)) 826 goto out_free_iova; 827 828 if (!(ioprot & IOMMU_CACHE)) { 829 struct scatterlist *sg; 830 int i; 831 832 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 833 arch_dma_prep_coherent(sg_page(sg), sg->length); 834 } 835 836 ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot); 837 if (ret < 0 || ret < size) 838 goto out_free_sg; 839 840 sgt->sgl->dma_address = iova; 841 sgt->sgl->dma_length = size; 842 return pages; 843 844 out_free_sg: 845 sg_free_table(sgt); 846 out_free_iova: 847 iommu_dma_free_iova(cookie, iova, size, NULL); 848 out_free_pages: 849 __iommu_dma_free_pages(pages, count); 850 return NULL; 851 } 852 853 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 854 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 855 unsigned long attrs) 856 { 857 struct page **pages; 858 struct sg_table sgt; 859 void *vaddr; 860 861 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, 862 attrs); 863 if (!pages) 864 return NULL; 865 *dma_handle = sgt.sgl->dma_address; 866 sg_free_table(&sgt); 867 vaddr = dma_common_pages_remap(pages, size, prot, 868 __builtin_return_address(0)); 869 if (!vaddr) 870 goto out_unmap; 871 return vaddr; 872 873 out_unmap: 874 __iommu_dma_unmap(dev, *dma_handle, size); 875 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 876 return NULL; 877 } 878 879 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, 880 size_t size, enum dma_data_direction dir, gfp_t gfp, 881 unsigned long attrs) 882 { 883 struct dma_sgt_handle *sh; 884 885 sh = kmalloc(sizeof(*sh), gfp); 886 if (!sh) 887 return NULL; 888 889 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, 890 PAGE_KERNEL, attrs); 891 if (!sh->pages) { 892 kfree(sh); 893 return NULL; 894 } 895 return &sh->sgt; 896 } 897 898 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 899 struct sg_table *sgt, enum dma_data_direction dir) 900 { 901 struct dma_sgt_handle *sh = sgt_handle(sgt); 902 903 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 904 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 905 sg_free_table(&sh->sgt); 906 kfree(sh); 907 } 908 909 static void iommu_dma_sync_single_for_cpu(struct device *dev, 910 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 911 { 912 phys_addr_t phys; 913 914 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 915 return; 916 917 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 918 if (!dev_is_dma_coherent(dev)) 919 arch_sync_dma_for_cpu(phys, size, dir); 920 921 if (is_swiotlb_buffer(dev, phys)) 922 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 923 } 924 925 static void iommu_dma_sync_single_for_device(struct device *dev, 926 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 927 { 928 phys_addr_t phys; 929 930 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 931 return; 932 933 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 934 if (is_swiotlb_buffer(dev, phys)) 935 swiotlb_sync_single_for_device(dev, phys, size, dir); 936 937 if (!dev_is_dma_coherent(dev)) 938 arch_sync_dma_for_device(phys, size, dir); 939 } 940 941 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 942 struct scatterlist *sgl, int nelems, 943 enum dma_data_direction dir) 944 { 945 struct scatterlist *sg; 946 int i; 947 948 if (dev_use_swiotlb(dev)) 949 for_each_sg(sgl, sg, nelems, i) 950 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 951 sg->length, dir); 952 else if (!dev_is_dma_coherent(dev)) 953 for_each_sg(sgl, sg, nelems, i) 954 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 955 } 956 957 static void iommu_dma_sync_sg_for_device(struct device *dev, 958 struct scatterlist *sgl, int nelems, 959 enum dma_data_direction dir) 960 { 961 struct scatterlist *sg; 962 int i; 963 964 if (dev_use_swiotlb(dev)) 965 for_each_sg(sgl, sg, nelems, i) 966 iommu_dma_sync_single_for_device(dev, 967 sg_dma_address(sg), 968 sg->length, dir); 969 else if (!dev_is_dma_coherent(dev)) 970 for_each_sg(sgl, sg, nelems, i) 971 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 972 } 973 974 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 975 unsigned long offset, size_t size, enum dma_data_direction dir, 976 unsigned long attrs) 977 { 978 phys_addr_t phys = page_to_phys(page) + offset; 979 bool coherent = dev_is_dma_coherent(dev); 980 int prot = dma_info_to_prot(dir, coherent, attrs); 981 struct iommu_domain *domain = iommu_get_dma_domain(dev); 982 struct iommu_dma_cookie *cookie = domain->iova_cookie; 983 struct iova_domain *iovad = &cookie->iovad; 984 dma_addr_t iova, dma_mask = dma_get_mask(dev); 985 986 /* 987 * If both the physical buffer start address and size are 988 * page aligned, we don't need to use a bounce page. 989 */ 990 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) { 991 void *padding_start; 992 size_t padding_size, aligned_size; 993 994 if (!is_swiotlb_active(dev)) { 995 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 996 return DMA_MAPPING_ERROR; 997 } 998 999 aligned_size = iova_align(iovad, size); 1000 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, 1001 iova_mask(iovad), dir, attrs); 1002 1003 if (phys == DMA_MAPPING_ERROR) 1004 return DMA_MAPPING_ERROR; 1005 1006 /* Cleanup the padding area. */ 1007 padding_start = phys_to_virt(phys); 1008 padding_size = aligned_size; 1009 1010 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 1011 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { 1012 padding_start += size; 1013 padding_size -= size; 1014 } 1015 1016 memset(padding_start, 0, padding_size); 1017 } 1018 1019 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1020 arch_sync_dma_for_device(phys, size, dir); 1021 1022 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1023 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) 1024 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1025 return iova; 1026 } 1027 1028 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1029 size_t size, enum dma_data_direction dir, unsigned long attrs) 1030 { 1031 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1032 phys_addr_t phys; 1033 1034 phys = iommu_iova_to_phys(domain, dma_handle); 1035 if (WARN_ON(!phys)) 1036 return; 1037 1038 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1039 arch_sync_dma_for_cpu(phys, size, dir); 1040 1041 __iommu_dma_unmap(dev, dma_handle, size); 1042 1043 if (unlikely(is_swiotlb_buffer(dev, phys))) 1044 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1045 } 1046 1047 /* 1048 * Prepare a successfully-mapped scatterlist to give back to the caller. 1049 * 1050 * At this point the segments are already laid out by iommu_dma_map_sg() to 1051 * avoid individually crossing any boundaries, so we merely need to check a 1052 * segment's start address to avoid concatenating across one. 1053 */ 1054 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1055 dma_addr_t dma_addr) 1056 { 1057 struct scatterlist *s, *cur = sg; 1058 unsigned long seg_mask = dma_get_seg_boundary(dev); 1059 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1060 int i, count = 0; 1061 1062 for_each_sg(sg, s, nents, i) { 1063 /* Restore this segment's original unaligned fields first */ 1064 dma_addr_t s_dma_addr = sg_dma_address(s); 1065 unsigned int s_iova_off = sg_dma_address(s); 1066 unsigned int s_length = sg_dma_len(s); 1067 unsigned int s_iova_len = s->length; 1068 1069 sg_dma_address(s) = DMA_MAPPING_ERROR; 1070 sg_dma_len(s) = 0; 1071 1072 if (sg_is_dma_bus_address(s)) { 1073 if (i > 0) 1074 cur = sg_next(cur); 1075 1076 sg_dma_unmark_bus_address(s); 1077 sg_dma_address(cur) = s_dma_addr; 1078 sg_dma_len(cur) = s_length; 1079 sg_dma_mark_bus_address(cur); 1080 count++; 1081 cur_len = 0; 1082 continue; 1083 } 1084 1085 s->offset += s_iova_off; 1086 s->length = s_length; 1087 1088 /* 1089 * Now fill in the real DMA data. If... 1090 * - there is a valid output segment to append to 1091 * - and this segment starts on an IOVA page boundary 1092 * - but doesn't fall at a segment boundary 1093 * - and wouldn't make the resulting output segment too long 1094 */ 1095 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1096 (max_len - cur_len >= s_length)) { 1097 /* ...then concatenate it with the previous one */ 1098 cur_len += s_length; 1099 } else { 1100 /* Otherwise start the next output segment */ 1101 if (i > 0) 1102 cur = sg_next(cur); 1103 cur_len = s_length; 1104 count++; 1105 1106 sg_dma_address(cur) = dma_addr + s_iova_off; 1107 } 1108 1109 sg_dma_len(cur) = cur_len; 1110 dma_addr += s_iova_len; 1111 1112 if (s_length + s_iova_off < s_iova_len) 1113 cur_len = 0; 1114 } 1115 return count; 1116 } 1117 1118 /* 1119 * If mapping failed, then just restore the original list, 1120 * but making sure the DMA fields are invalidated. 1121 */ 1122 static void __invalidate_sg(struct scatterlist *sg, int nents) 1123 { 1124 struct scatterlist *s; 1125 int i; 1126 1127 for_each_sg(sg, s, nents, i) { 1128 if (sg_is_dma_bus_address(s)) { 1129 sg_dma_unmark_bus_address(s); 1130 } else { 1131 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1132 s->offset += sg_dma_address(s); 1133 if (sg_dma_len(s)) 1134 s->length = sg_dma_len(s); 1135 } 1136 sg_dma_address(s) = DMA_MAPPING_ERROR; 1137 sg_dma_len(s) = 0; 1138 } 1139 } 1140 1141 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1142 int nents, enum dma_data_direction dir, unsigned long attrs) 1143 { 1144 struct scatterlist *s; 1145 int i; 1146 1147 for_each_sg(sg, s, nents, i) 1148 iommu_dma_unmap_page(dev, sg_dma_address(s), 1149 sg_dma_len(s), dir, attrs); 1150 } 1151 1152 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1153 int nents, enum dma_data_direction dir, unsigned long attrs) 1154 { 1155 struct scatterlist *s; 1156 int i; 1157 1158 for_each_sg(sg, s, nents, i) { 1159 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1160 s->offset, s->length, dir, attrs); 1161 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1162 goto out_unmap; 1163 sg_dma_len(s) = s->length; 1164 } 1165 1166 return nents; 1167 1168 out_unmap: 1169 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1170 return -EIO; 1171 } 1172 1173 /* 1174 * The DMA API client is passing in a scatterlist which could describe 1175 * any old buffer layout, but the IOMMU API requires everything to be 1176 * aligned to IOMMU pages. Hence the need for this complicated bit of 1177 * impedance-matching, to be able to hand off a suitably-aligned list, 1178 * but still preserve the original offsets and sizes for the caller. 1179 */ 1180 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 1181 int nents, enum dma_data_direction dir, unsigned long attrs) 1182 { 1183 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1184 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1185 struct iova_domain *iovad = &cookie->iovad; 1186 struct scatterlist *s, *prev = NULL; 1187 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1188 struct pci_p2pdma_map_state p2pdma_state = {}; 1189 enum pci_p2pdma_map_type map; 1190 dma_addr_t iova; 1191 size_t iova_len = 0; 1192 unsigned long mask = dma_get_seg_boundary(dev); 1193 ssize_t ret; 1194 int i; 1195 1196 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1197 ret = iommu_deferred_attach(dev, domain); 1198 if (ret) 1199 goto out; 1200 } 1201 1202 if (dev_use_swiotlb(dev)) 1203 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1204 1205 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1206 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1207 1208 /* 1209 * Work out how much IOVA space we need, and align the segments to 1210 * IOVA granules for the IOMMU driver to handle. With some clever 1211 * trickery we can modify the list in-place, but reversibly, by 1212 * stashing the unaligned parts in the as-yet-unused DMA fields. 1213 */ 1214 for_each_sg(sg, s, nents, i) { 1215 size_t s_iova_off = iova_offset(iovad, s->offset); 1216 size_t s_length = s->length; 1217 size_t pad_len = (mask - iova_len + 1) & mask; 1218 1219 if (is_pci_p2pdma_page(sg_page(s))) { 1220 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); 1221 switch (map) { 1222 case PCI_P2PDMA_MAP_BUS_ADDR: 1223 /* 1224 * iommu_map_sg() will skip this segment as 1225 * it is marked as a bus address, 1226 * __finalise_sg() will copy the dma address 1227 * into the output segment. 1228 */ 1229 continue; 1230 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1231 /* 1232 * Mapping through host bridge should be 1233 * mapped with regular IOVAs, thus we 1234 * do nothing here and continue below. 1235 */ 1236 break; 1237 default: 1238 ret = -EREMOTEIO; 1239 goto out_restore_sg; 1240 } 1241 } 1242 1243 sg_dma_address(s) = s_iova_off; 1244 sg_dma_len(s) = s_length; 1245 s->offset -= s_iova_off; 1246 s_length = iova_align(iovad, s_length + s_iova_off); 1247 s->length = s_length; 1248 1249 /* 1250 * Due to the alignment of our single IOVA allocation, we can 1251 * depend on these assumptions about the segment boundary mask: 1252 * - If mask size >= IOVA size, then the IOVA range cannot 1253 * possibly fall across a boundary, so we don't care. 1254 * - If mask size < IOVA size, then the IOVA range must start 1255 * exactly on a boundary, therefore we can lay things out 1256 * based purely on segment lengths without needing to know 1257 * the actual addresses beforehand. 1258 * - The mask must be a power of 2, so pad_len == 0 if 1259 * iova_len == 0, thus we cannot dereference prev the first 1260 * time through here (i.e. before it has a meaningful value). 1261 */ 1262 if (pad_len && pad_len < s_length - 1) { 1263 prev->length += pad_len; 1264 iova_len += pad_len; 1265 } 1266 1267 iova_len += s_length; 1268 prev = s; 1269 } 1270 1271 if (!iova_len) 1272 return __finalise_sg(dev, sg, nents, 0); 1273 1274 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1275 if (!iova) { 1276 ret = -ENOMEM; 1277 goto out_restore_sg; 1278 } 1279 1280 /* 1281 * We'll leave any physical concatenation to the IOMMU driver's 1282 * implementation - it knows better than we do. 1283 */ 1284 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot); 1285 if (ret < 0 || ret < iova_len) 1286 goto out_free_iova; 1287 1288 return __finalise_sg(dev, sg, nents, iova); 1289 1290 out_free_iova: 1291 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1292 out_restore_sg: 1293 __invalidate_sg(sg, nents); 1294 out: 1295 if (ret != -ENOMEM && ret != -EREMOTEIO) 1296 return -EINVAL; 1297 return ret; 1298 } 1299 1300 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1301 int nents, enum dma_data_direction dir, unsigned long attrs) 1302 { 1303 dma_addr_t end = 0, start; 1304 struct scatterlist *tmp; 1305 int i; 1306 1307 if (dev_use_swiotlb(dev)) { 1308 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1309 return; 1310 } 1311 1312 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1313 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1314 1315 /* 1316 * The scatterlist segments are mapped into a single 1317 * contiguous IOVA allocation, the start and end points 1318 * just have to be determined. 1319 */ 1320 for_each_sg(sg, tmp, nents, i) { 1321 if (sg_is_dma_bus_address(tmp)) { 1322 sg_dma_unmark_bus_address(tmp); 1323 continue; 1324 } 1325 1326 if (sg_dma_len(tmp) == 0) 1327 break; 1328 1329 start = sg_dma_address(tmp); 1330 break; 1331 } 1332 1333 nents -= i; 1334 for_each_sg(tmp, tmp, nents, i) { 1335 if (sg_is_dma_bus_address(tmp)) { 1336 sg_dma_unmark_bus_address(tmp); 1337 continue; 1338 } 1339 1340 if (sg_dma_len(tmp) == 0) 1341 break; 1342 1343 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1344 } 1345 1346 if (end) 1347 __iommu_dma_unmap(dev, start, end - start); 1348 } 1349 1350 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1351 size_t size, enum dma_data_direction dir, unsigned long attrs) 1352 { 1353 return __iommu_dma_map(dev, phys, size, 1354 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1355 dma_get_mask(dev)); 1356 } 1357 1358 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1359 size_t size, enum dma_data_direction dir, unsigned long attrs) 1360 { 1361 __iommu_dma_unmap(dev, handle, size); 1362 } 1363 1364 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1365 { 1366 size_t alloc_size = PAGE_ALIGN(size); 1367 int count = alloc_size >> PAGE_SHIFT; 1368 struct page *page = NULL, **pages = NULL; 1369 1370 /* Non-coherent atomic allocation? Easy */ 1371 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1372 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1373 return; 1374 1375 if (is_vmalloc_addr(cpu_addr)) { 1376 /* 1377 * If it the address is remapped, then it's either non-coherent 1378 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1379 */ 1380 pages = dma_common_find_pages(cpu_addr); 1381 if (!pages) 1382 page = vmalloc_to_page(cpu_addr); 1383 dma_common_free_remap(cpu_addr, alloc_size); 1384 } else { 1385 /* Lowmem means a coherent atomic or CMA allocation */ 1386 page = virt_to_page(cpu_addr); 1387 } 1388 1389 if (pages) 1390 __iommu_dma_free_pages(pages, count); 1391 if (page) 1392 dma_free_contiguous(dev, page, alloc_size); 1393 } 1394 1395 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1396 dma_addr_t handle, unsigned long attrs) 1397 { 1398 __iommu_dma_unmap(dev, handle, size); 1399 __iommu_dma_free(dev, size, cpu_addr); 1400 } 1401 1402 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1403 struct page **pagep, gfp_t gfp, unsigned long attrs) 1404 { 1405 bool coherent = dev_is_dma_coherent(dev); 1406 size_t alloc_size = PAGE_ALIGN(size); 1407 int node = dev_to_node(dev); 1408 struct page *page = NULL; 1409 void *cpu_addr; 1410 1411 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1412 if (!page) 1413 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1414 if (!page) 1415 return NULL; 1416 1417 if (!coherent || PageHighMem(page)) { 1418 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1419 1420 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1421 prot, __builtin_return_address(0)); 1422 if (!cpu_addr) 1423 goto out_free_pages; 1424 1425 if (!coherent) 1426 arch_dma_prep_coherent(page, size); 1427 } else { 1428 cpu_addr = page_address(page); 1429 } 1430 1431 *pagep = page; 1432 memset(cpu_addr, 0, alloc_size); 1433 return cpu_addr; 1434 out_free_pages: 1435 dma_free_contiguous(dev, page, alloc_size); 1436 return NULL; 1437 } 1438 1439 static void *iommu_dma_alloc(struct device *dev, size_t size, 1440 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1441 { 1442 bool coherent = dev_is_dma_coherent(dev); 1443 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1444 struct page *page = NULL; 1445 void *cpu_addr; 1446 1447 gfp |= __GFP_ZERO; 1448 1449 if (gfpflags_allow_blocking(gfp) && 1450 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1451 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1452 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1453 } 1454 1455 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1456 !gfpflags_allow_blocking(gfp) && !coherent) 1457 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1458 gfp, NULL); 1459 else 1460 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1461 if (!cpu_addr) 1462 return NULL; 1463 1464 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1465 dev->coherent_dma_mask); 1466 if (*handle == DMA_MAPPING_ERROR) { 1467 __iommu_dma_free(dev, size, cpu_addr); 1468 return NULL; 1469 } 1470 1471 return cpu_addr; 1472 } 1473 1474 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1475 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1476 unsigned long attrs) 1477 { 1478 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1479 unsigned long pfn, off = vma->vm_pgoff; 1480 int ret; 1481 1482 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1483 1484 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1485 return ret; 1486 1487 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1488 return -ENXIO; 1489 1490 if (is_vmalloc_addr(cpu_addr)) { 1491 struct page **pages = dma_common_find_pages(cpu_addr); 1492 1493 if (pages) 1494 return vm_map_pages(vma, pages, nr_pages); 1495 pfn = vmalloc_to_pfn(cpu_addr); 1496 } else { 1497 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1498 } 1499 1500 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1501 vma->vm_end - vma->vm_start, 1502 vma->vm_page_prot); 1503 } 1504 1505 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1506 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1507 unsigned long attrs) 1508 { 1509 struct page *page; 1510 int ret; 1511 1512 if (is_vmalloc_addr(cpu_addr)) { 1513 struct page **pages = dma_common_find_pages(cpu_addr); 1514 1515 if (pages) { 1516 return sg_alloc_table_from_pages(sgt, pages, 1517 PAGE_ALIGN(size) >> PAGE_SHIFT, 1518 0, size, GFP_KERNEL); 1519 } 1520 1521 page = vmalloc_to_page(cpu_addr); 1522 } else { 1523 page = virt_to_page(cpu_addr); 1524 } 1525 1526 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1527 if (!ret) 1528 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1529 return ret; 1530 } 1531 1532 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1533 { 1534 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1535 1536 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1537 } 1538 1539 static size_t iommu_dma_opt_mapping_size(void) 1540 { 1541 return iova_rcache_range(); 1542 } 1543 1544 static const struct dma_map_ops iommu_dma_ops = { 1545 .flags = DMA_F_PCI_P2PDMA_SUPPORTED, 1546 .alloc = iommu_dma_alloc, 1547 .free = iommu_dma_free, 1548 .alloc_pages = dma_common_alloc_pages, 1549 .free_pages = dma_common_free_pages, 1550 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, 1551 .free_noncontiguous = iommu_dma_free_noncontiguous, 1552 .mmap = iommu_dma_mmap, 1553 .get_sgtable = iommu_dma_get_sgtable, 1554 .map_page = iommu_dma_map_page, 1555 .unmap_page = iommu_dma_unmap_page, 1556 .map_sg = iommu_dma_map_sg, 1557 .unmap_sg = iommu_dma_unmap_sg, 1558 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1559 .sync_single_for_device = iommu_dma_sync_single_for_device, 1560 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1561 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1562 .map_resource = iommu_dma_map_resource, 1563 .unmap_resource = iommu_dma_unmap_resource, 1564 .get_merge_boundary = iommu_dma_get_merge_boundary, 1565 .opt_mapping_size = iommu_dma_opt_mapping_size, 1566 }; 1567 1568 /* 1569 * The IOMMU core code allocates the default DMA domain, which the underlying 1570 * IOMMU driver needs to support via the dma-iommu layer. 1571 */ 1572 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) 1573 { 1574 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1575 1576 if (!domain) 1577 goto out_err; 1578 1579 /* 1580 * The IOMMU core code allocates the default DMA domain, which the 1581 * underlying IOMMU driver needs to support via the dma-iommu layer. 1582 */ 1583 if (iommu_is_dma_domain(domain)) { 1584 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) 1585 goto out_err; 1586 dev->dma_ops = &iommu_dma_ops; 1587 } 1588 1589 return; 1590 out_err: 1591 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1592 dev_name(dev)); 1593 } 1594 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); 1595 1596 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1597 phys_addr_t msi_addr, struct iommu_domain *domain) 1598 { 1599 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1600 struct iommu_dma_msi_page *msi_page; 1601 dma_addr_t iova; 1602 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1603 size_t size = cookie_msi_granule(cookie); 1604 1605 msi_addr &= ~(phys_addr_t)(size - 1); 1606 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1607 if (msi_page->phys == msi_addr) 1608 return msi_page; 1609 1610 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1611 if (!msi_page) 1612 return NULL; 1613 1614 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1615 if (!iova) 1616 goto out_free_page; 1617 1618 if (iommu_map(domain, iova, msi_addr, size, prot)) 1619 goto out_free_iova; 1620 1621 INIT_LIST_HEAD(&msi_page->list); 1622 msi_page->phys = msi_addr; 1623 msi_page->iova = iova; 1624 list_add(&msi_page->list, &cookie->msi_page_list); 1625 return msi_page; 1626 1627 out_free_iova: 1628 iommu_dma_free_iova(cookie, iova, size, NULL); 1629 out_free_page: 1630 kfree(msi_page); 1631 return NULL; 1632 } 1633 1634 /** 1635 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain 1636 * @desc: MSI descriptor, will store the MSI page 1637 * @msi_addr: MSI target address to be mapped 1638 * 1639 * Return: 0 on success or negative error code if the mapping failed. 1640 */ 1641 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1642 { 1643 struct device *dev = msi_desc_to_dev(desc); 1644 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1645 struct iommu_dma_msi_page *msi_page; 1646 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1647 1648 if (!domain || !domain->iova_cookie) { 1649 desc->iommu_cookie = NULL; 1650 return 0; 1651 } 1652 1653 /* 1654 * In fact the whole prepare operation should already be serialised by 1655 * irq_domain_mutex further up the callchain, but that's pretty subtle 1656 * on its own, so consider this locking as failsafe documentation... 1657 */ 1658 mutex_lock(&msi_prepare_lock); 1659 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1660 mutex_unlock(&msi_prepare_lock); 1661 1662 msi_desc_set_iommu_cookie(desc, msi_page); 1663 1664 if (!msi_page) 1665 return -ENOMEM; 1666 return 0; 1667 } 1668 1669 /** 1670 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message 1671 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi() 1672 * @msg: MSI message containing target physical address 1673 */ 1674 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg) 1675 { 1676 struct device *dev = msi_desc_to_dev(desc); 1677 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1678 const struct iommu_dma_msi_page *msi_page; 1679 1680 msi_page = msi_desc_get_iommu_cookie(desc); 1681 1682 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1683 return; 1684 1685 msg->address_hi = upper_32_bits(msi_page->iova); 1686 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1687 msg->address_lo += lower_32_bits(msi_page->iova); 1688 } 1689 1690 static int iommu_dma_init(void) 1691 { 1692 if (is_kdump_kernel()) 1693 static_branch_enable(&iommu_deferred_attach_enabled); 1694 1695 return iova_cache_get(); 1696 } 1697 arch_initcall(iommu_dma_init); 1698