1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iommu-dma.h> 21 #include <linux/iova.h> 22 #include <linux/irq.h> 23 #include <linux/list_sort.h> 24 #include <linux/memremap.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/of_iommu.h> 28 #include <linux/pci.h> 29 #include <linux/scatterlist.h> 30 #include <linux/spinlock.h> 31 #include <linux/swiotlb.h> 32 #include <linux/vmalloc.h> 33 #include <trace/events/swiotlb.h> 34 35 #include "dma-iommu.h" 36 #include "iommu-pages.h" 37 38 struct iommu_dma_msi_page { 39 struct list_head list; 40 dma_addr_t iova; 41 phys_addr_t phys; 42 }; 43 44 enum iommu_dma_cookie_type { 45 IOMMU_DMA_IOVA_COOKIE, 46 IOMMU_DMA_MSI_COOKIE, 47 }; 48 49 enum iommu_dma_queue_type { 50 IOMMU_DMA_OPTS_PER_CPU_QUEUE, 51 IOMMU_DMA_OPTS_SINGLE_QUEUE, 52 }; 53 54 struct iommu_dma_options { 55 enum iommu_dma_queue_type qt; 56 size_t fq_size; 57 unsigned int fq_timeout; 58 }; 59 60 struct iommu_dma_cookie { 61 enum iommu_dma_cookie_type type; 62 union { 63 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 64 struct { 65 struct iova_domain iovad; 66 /* Flush queue */ 67 union { 68 struct iova_fq *single_fq; 69 struct iova_fq __percpu *percpu_fq; 70 }; 71 /* Number of TLB flushes that have been started */ 72 atomic64_t fq_flush_start_cnt; 73 /* Number of TLB flushes that have been finished */ 74 atomic64_t fq_flush_finish_cnt; 75 /* Timer to regularily empty the flush queues */ 76 struct timer_list fq_timer; 77 /* 1 when timer is active, 0 when not */ 78 atomic_t fq_timer_on; 79 }; 80 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 81 dma_addr_t msi_iova; 82 }; 83 struct list_head msi_page_list; 84 85 /* Domain for flush queue callback; NULL if flush queue not in use */ 86 struct iommu_domain *fq_domain; 87 /* Options for dma-iommu use */ 88 struct iommu_dma_options options; 89 struct mutex mutex; 90 }; 91 92 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 93 bool iommu_dma_forcedac __read_mostly; 94 95 static int __init iommu_dma_forcedac_setup(char *str) 96 { 97 int ret = kstrtobool(str, &iommu_dma_forcedac); 98 99 if (!ret && iommu_dma_forcedac) 100 pr_info("Forcing DAC for PCI devices\n"); 101 return ret; 102 } 103 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 104 105 /* Number of entries per flush queue */ 106 #define IOVA_DEFAULT_FQ_SIZE 256 107 #define IOVA_SINGLE_FQ_SIZE 32768 108 109 /* Timeout (in ms) after which entries are flushed from the queue */ 110 #define IOVA_DEFAULT_FQ_TIMEOUT 10 111 #define IOVA_SINGLE_FQ_TIMEOUT 1000 112 113 /* Flush queue entry for deferred flushing */ 114 struct iova_fq_entry { 115 unsigned long iova_pfn; 116 unsigned long pages; 117 struct list_head freelist; 118 u64 counter; /* Flush counter when this entry was added */ 119 }; 120 121 /* Per-CPU flush queue structure */ 122 struct iova_fq { 123 spinlock_t lock; 124 unsigned int head, tail; 125 unsigned int mod_mask; 126 struct iova_fq_entry entries[]; 127 }; 128 129 #define fq_ring_for_each(i, fq) \ 130 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask) 131 132 static inline bool fq_full(struct iova_fq *fq) 133 { 134 assert_spin_locked(&fq->lock); 135 return (((fq->tail + 1) & fq->mod_mask) == fq->head); 136 } 137 138 static inline unsigned int fq_ring_add(struct iova_fq *fq) 139 { 140 unsigned int idx = fq->tail; 141 142 assert_spin_locked(&fq->lock); 143 144 fq->tail = (idx + 1) & fq->mod_mask; 145 146 return idx; 147 } 148 149 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 150 { 151 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 152 unsigned int idx; 153 154 assert_spin_locked(&fq->lock); 155 156 fq_ring_for_each(idx, fq) { 157 158 if (fq->entries[idx].counter >= counter) 159 break; 160 161 iommu_put_pages_list(&fq->entries[idx].freelist); 162 free_iova_fast(&cookie->iovad, 163 fq->entries[idx].iova_pfn, 164 fq->entries[idx].pages); 165 166 fq->head = (fq->head + 1) & fq->mod_mask; 167 } 168 } 169 170 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 171 { 172 unsigned long flags; 173 174 spin_lock_irqsave(&fq->lock, flags); 175 fq_ring_free_locked(cookie, fq); 176 spin_unlock_irqrestore(&fq->lock, flags); 177 } 178 179 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 180 { 181 atomic64_inc(&cookie->fq_flush_start_cnt); 182 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 183 atomic64_inc(&cookie->fq_flush_finish_cnt); 184 } 185 186 static void fq_flush_timeout(struct timer_list *t) 187 { 188 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 189 int cpu; 190 191 atomic_set(&cookie->fq_timer_on, 0); 192 fq_flush_iotlb(cookie); 193 194 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) { 195 fq_ring_free(cookie, cookie->single_fq); 196 } else { 197 for_each_possible_cpu(cpu) 198 fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu)); 199 } 200 } 201 202 static void queue_iova(struct iommu_dma_cookie *cookie, 203 unsigned long pfn, unsigned long pages, 204 struct list_head *freelist) 205 { 206 struct iova_fq *fq; 207 unsigned long flags; 208 unsigned int idx; 209 210 /* 211 * Order against the IOMMU driver's pagetable update from unmapping 212 * @pte, to guarantee that fq_flush_iotlb() observes that if called 213 * from a different CPU before we release the lock below. Full barrier 214 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 215 * written fq state here. 216 */ 217 smp_mb(); 218 219 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 220 fq = cookie->single_fq; 221 else 222 fq = raw_cpu_ptr(cookie->percpu_fq); 223 224 spin_lock_irqsave(&fq->lock, flags); 225 226 /* 227 * First remove all entries from the flush queue that have already been 228 * flushed out on another CPU. This makes the fq_full() check below less 229 * likely to be true. 230 */ 231 fq_ring_free_locked(cookie, fq); 232 233 if (fq_full(fq)) { 234 fq_flush_iotlb(cookie); 235 fq_ring_free_locked(cookie, fq); 236 } 237 238 idx = fq_ring_add(fq); 239 240 fq->entries[idx].iova_pfn = pfn; 241 fq->entries[idx].pages = pages; 242 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 243 list_splice(freelist, &fq->entries[idx].freelist); 244 245 spin_unlock_irqrestore(&fq->lock, flags); 246 247 /* Avoid false sharing as much as possible. */ 248 if (!atomic_read(&cookie->fq_timer_on) && 249 !atomic_xchg(&cookie->fq_timer_on, 1)) 250 mod_timer(&cookie->fq_timer, 251 jiffies + msecs_to_jiffies(cookie->options.fq_timeout)); 252 } 253 254 static void iommu_dma_free_fq_single(struct iova_fq *fq) 255 { 256 int idx; 257 258 fq_ring_for_each(idx, fq) 259 iommu_put_pages_list(&fq->entries[idx].freelist); 260 vfree(fq); 261 } 262 263 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq) 264 { 265 int cpu, idx; 266 267 /* The IOVAs will be torn down separately, so just free our queued pages */ 268 for_each_possible_cpu(cpu) { 269 struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu); 270 271 fq_ring_for_each(idx, fq) 272 iommu_put_pages_list(&fq->entries[idx].freelist); 273 } 274 275 free_percpu(percpu_fq); 276 } 277 278 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 279 { 280 if (!cookie->fq_domain) 281 return; 282 283 del_timer_sync(&cookie->fq_timer); 284 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 285 iommu_dma_free_fq_single(cookie->single_fq); 286 else 287 iommu_dma_free_fq_percpu(cookie->percpu_fq); 288 } 289 290 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size) 291 { 292 int i; 293 294 fq->head = 0; 295 fq->tail = 0; 296 fq->mod_mask = fq_size - 1; 297 298 spin_lock_init(&fq->lock); 299 300 for (i = 0; i < fq_size; i++) 301 INIT_LIST_HEAD(&fq->entries[i].freelist); 302 } 303 304 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie) 305 { 306 size_t fq_size = cookie->options.fq_size; 307 struct iova_fq *queue; 308 309 queue = vmalloc(struct_size(queue, entries, fq_size)); 310 if (!queue) 311 return -ENOMEM; 312 iommu_dma_init_one_fq(queue, fq_size); 313 cookie->single_fq = queue; 314 315 return 0; 316 } 317 318 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie) 319 { 320 size_t fq_size = cookie->options.fq_size; 321 struct iova_fq __percpu *queue; 322 int cpu; 323 324 queue = __alloc_percpu(struct_size(queue, entries, fq_size), 325 __alignof__(*queue)); 326 if (!queue) 327 return -ENOMEM; 328 329 for_each_possible_cpu(cpu) 330 iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size); 331 cookie->percpu_fq = queue; 332 return 0; 333 } 334 335 /* sysfs updates are serialised by the mutex of the group owning @domain */ 336 int iommu_dma_init_fq(struct iommu_domain *domain) 337 { 338 struct iommu_dma_cookie *cookie = domain->iova_cookie; 339 int rc; 340 341 if (cookie->fq_domain) 342 return 0; 343 344 atomic64_set(&cookie->fq_flush_start_cnt, 0); 345 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 346 347 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 348 rc = iommu_dma_init_fq_single(cookie); 349 else 350 rc = iommu_dma_init_fq_percpu(cookie); 351 352 if (rc) { 353 pr_warn("iova flush queue initialization failed\n"); 354 return -ENOMEM; 355 } 356 357 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 358 atomic_set(&cookie->fq_timer_on, 0); 359 /* 360 * Prevent incomplete fq state being observable. Pairs with path from 361 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 362 */ 363 smp_wmb(); 364 WRITE_ONCE(cookie->fq_domain, domain); 365 return 0; 366 } 367 368 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 369 { 370 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 371 return cookie->iovad.granule; 372 return PAGE_SIZE; 373 } 374 375 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 376 { 377 struct iommu_dma_cookie *cookie; 378 379 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 380 if (cookie) { 381 INIT_LIST_HEAD(&cookie->msi_page_list); 382 cookie->type = type; 383 } 384 return cookie; 385 } 386 387 /** 388 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 389 * @domain: IOMMU domain to prepare for DMA-API usage 390 */ 391 int iommu_get_dma_cookie(struct iommu_domain *domain) 392 { 393 if (domain->iova_cookie) 394 return -EEXIST; 395 396 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 397 if (!domain->iova_cookie) 398 return -ENOMEM; 399 400 mutex_init(&domain->iova_cookie->mutex); 401 return 0; 402 } 403 404 /** 405 * iommu_get_msi_cookie - Acquire just MSI remapping resources 406 * @domain: IOMMU domain to prepare 407 * @base: Start address of IOVA region for MSI mappings 408 * 409 * Users who manage their own IOVA allocation and do not want DMA API support, 410 * but would still like to take advantage of automatic MSI remapping, can use 411 * this to initialise their own domain appropriately. Users should reserve a 412 * contiguous IOVA region, starting at @base, large enough to accommodate the 413 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 414 * used by the devices attached to @domain. 415 */ 416 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 417 { 418 struct iommu_dma_cookie *cookie; 419 420 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 421 return -EINVAL; 422 423 if (domain->iova_cookie) 424 return -EEXIST; 425 426 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 427 if (!cookie) 428 return -ENOMEM; 429 430 cookie->msi_iova = base; 431 domain->iova_cookie = cookie; 432 return 0; 433 } 434 EXPORT_SYMBOL(iommu_get_msi_cookie); 435 436 /** 437 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 438 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 439 * iommu_get_msi_cookie() 440 */ 441 void iommu_put_dma_cookie(struct iommu_domain *domain) 442 { 443 struct iommu_dma_cookie *cookie = domain->iova_cookie; 444 struct iommu_dma_msi_page *msi, *tmp; 445 446 if (!cookie) 447 return; 448 449 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { 450 iommu_dma_free_fq(cookie); 451 put_iova_domain(&cookie->iovad); 452 } 453 454 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 455 list_del(&msi->list); 456 kfree(msi); 457 } 458 kfree(cookie); 459 domain->iova_cookie = NULL; 460 } 461 462 /** 463 * iommu_dma_get_resv_regions - Reserved region driver helper 464 * @dev: Device from iommu_get_resv_regions() 465 * @list: Reserved region list from iommu_get_resv_regions() 466 * 467 * IOMMU drivers can use this to implement their .get_resv_regions callback 468 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 469 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 470 * reservation. 471 */ 472 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 473 { 474 475 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 476 iort_iommu_get_resv_regions(dev, list); 477 478 if (dev->of_node) 479 of_iommu_get_resv_regions(dev, list); 480 } 481 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 482 483 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 484 phys_addr_t start, phys_addr_t end) 485 { 486 struct iova_domain *iovad = &cookie->iovad; 487 struct iommu_dma_msi_page *msi_page; 488 int i, num_pages; 489 490 start -= iova_offset(iovad, start); 491 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 492 493 for (i = 0; i < num_pages; i++) { 494 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 495 if (!msi_page) 496 return -ENOMEM; 497 498 msi_page->phys = start; 499 msi_page->iova = start; 500 INIT_LIST_HEAD(&msi_page->list); 501 list_add(&msi_page->list, &cookie->msi_page_list); 502 start += iovad->granule; 503 } 504 505 return 0; 506 } 507 508 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 509 const struct list_head *b) 510 { 511 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 512 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 513 514 return res_a->res->start > res_b->res->start; 515 } 516 517 static int iova_reserve_pci_windows(struct pci_dev *dev, 518 struct iova_domain *iovad) 519 { 520 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 521 struct resource_entry *window; 522 unsigned long lo, hi; 523 phys_addr_t start = 0, end; 524 525 resource_list_for_each_entry(window, &bridge->windows) { 526 if (resource_type(window->res) != IORESOURCE_MEM) 527 continue; 528 529 lo = iova_pfn(iovad, window->res->start - window->offset); 530 hi = iova_pfn(iovad, window->res->end - window->offset); 531 reserve_iova(iovad, lo, hi); 532 } 533 534 /* Get reserved DMA windows from host bridge */ 535 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 536 resource_list_for_each_entry(window, &bridge->dma_ranges) { 537 end = window->res->start - window->offset; 538 resv_iova: 539 if (end > start) { 540 lo = iova_pfn(iovad, start); 541 hi = iova_pfn(iovad, end); 542 reserve_iova(iovad, lo, hi); 543 } else if (end < start) { 544 /* DMA ranges should be non-overlapping */ 545 dev_err(&dev->dev, 546 "Failed to reserve IOVA [%pa-%pa]\n", 547 &start, &end); 548 return -EINVAL; 549 } 550 551 start = window->res->end - window->offset + 1; 552 /* If window is last entry */ 553 if (window->node.next == &bridge->dma_ranges && 554 end != ~(phys_addr_t)0) { 555 end = ~(phys_addr_t)0; 556 goto resv_iova; 557 } 558 } 559 560 return 0; 561 } 562 563 static int iova_reserve_iommu_regions(struct device *dev, 564 struct iommu_domain *domain) 565 { 566 struct iommu_dma_cookie *cookie = domain->iova_cookie; 567 struct iova_domain *iovad = &cookie->iovad; 568 struct iommu_resv_region *region; 569 LIST_HEAD(resv_regions); 570 int ret = 0; 571 572 if (dev_is_pci(dev)) { 573 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 574 if (ret) 575 return ret; 576 } 577 578 iommu_get_resv_regions(dev, &resv_regions); 579 list_for_each_entry(region, &resv_regions, list) { 580 unsigned long lo, hi; 581 582 /* We ARE the software that manages these! */ 583 if (region->type == IOMMU_RESV_SW_MSI) 584 continue; 585 586 lo = iova_pfn(iovad, region->start); 587 hi = iova_pfn(iovad, region->start + region->length - 1); 588 reserve_iova(iovad, lo, hi); 589 590 if (region->type == IOMMU_RESV_MSI) 591 ret = cookie_init_hw_msi_region(cookie, region->start, 592 region->start + region->length); 593 if (ret) 594 break; 595 } 596 iommu_put_resv_regions(dev, &resv_regions); 597 598 return ret; 599 } 600 601 static bool dev_is_untrusted(struct device *dev) 602 { 603 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 604 } 605 606 static bool dev_use_swiotlb(struct device *dev, size_t size, 607 enum dma_data_direction dir) 608 { 609 return IS_ENABLED(CONFIG_SWIOTLB) && 610 (dev_is_untrusted(dev) || 611 dma_kmalloc_needs_bounce(dev, size, dir)); 612 } 613 614 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg, 615 int nents, enum dma_data_direction dir) 616 { 617 struct scatterlist *s; 618 int i; 619 620 if (!IS_ENABLED(CONFIG_SWIOTLB)) 621 return false; 622 623 if (dev_is_untrusted(dev)) 624 return true; 625 626 /* 627 * If kmalloc() buffers are not DMA-safe for this device and 628 * direction, check the individual lengths in the sg list. If any 629 * element is deemed unsafe, use the swiotlb for bouncing. 630 */ 631 if (!dma_kmalloc_safe(dev, dir)) { 632 for_each_sg(sg, s, nents, i) 633 if (!dma_kmalloc_size_aligned(s->length)) 634 return true; 635 } 636 637 return false; 638 } 639 640 /** 641 * iommu_dma_init_options - Initialize dma-iommu options 642 * @options: The options to be initialized 643 * @dev: Device the options are set for 644 * 645 * This allows tuning dma-iommu specific to device properties 646 */ 647 static void iommu_dma_init_options(struct iommu_dma_options *options, 648 struct device *dev) 649 { 650 /* Shadowing IOTLB flushes do better with a single large queue */ 651 if (dev->iommu->shadow_on_flush) { 652 options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE; 653 options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT; 654 options->fq_size = IOVA_SINGLE_FQ_SIZE; 655 } else { 656 options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE; 657 options->fq_size = IOVA_DEFAULT_FQ_SIZE; 658 options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT; 659 } 660 } 661 662 /** 663 * iommu_dma_init_domain - Initialise a DMA mapping domain 664 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 665 * @dev: Device the domain is being initialised for 666 * 667 * If the geometry and dma_range_map include address 0, we reserve that page 668 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 669 * any change which could make prior IOVAs invalid will fail. 670 */ 671 static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev) 672 { 673 struct iommu_dma_cookie *cookie = domain->iova_cookie; 674 const struct bus_dma_region *map = dev->dma_range_map; 675 unsigned long order, base_pfn; 676 struct iova_domain *iovad; 677 int ret; 678 679 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 680 return -EINVAL; 681 682 iovad = &cookie->iovad; 683 684 /* Use the smallest supported page size for IOVA granularity */ 685 order = __ffs(domain->pgsize_bitmap); 686 base_pfn = 1; 687 688 /* Check the domain allows at least some access to the device... */ 689 if (map) { 690 if (dma_range_map_min(map) > domain->geometry.aperture_end || 691 dma_range_map_max(map) < domain->geometry.aperture_start) { 692 pr_warn("specified DMA range outside IOMMU capability\n"); 693 return -EFAULT; 694 } 695 } 696 /* ...then finally give it a kicking to make sure it fits */ 697 base_pfn = max_t(unsigned long, base_pfn, 698 domain->geometry.aperture_start >> order); 699 700 /* start_pfn is always nonzero for an already-initialised domain */ 701 mutex_lock(&cookie->mutex); 702 if (iovad->start_pfn) { 703 if (1UL << order != iovad->granule || 704 base_pfn != iovad->start_pfn) { 705 pr_warn("Incompatible range for DMA domain\n"); 706 ret = -EFAULT; 707 goto done_unlock; 708 } 709 710 ret = 0; 711 goto done_unlock; 712 } 713 714 init_iova_domain(iovad, 1UL << order, base_pfn); 715 ret = iova_domain_init_rcaches(iovad); 716 if (ret) 717 goto done_unlock; 718 719 iommu_dma_init_options(&cookie->options, dev); 720 721 /* If the FQ fails we can simply fall back to strict mode */ 722 if (domain->type == IOMMU_DOMAIN_DMA_FQ && 723 (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain))) 724 domain->type = IOMMU_DOMAIN_DMA; 725 726 ret = iova_reserve_iommu_regions(dev, domain); 727 728 done_unlock: 729 mutex_unlock(&cookie->mutex); 730 return ret; 731 } 732 733 /** 734 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 735 * page flags. 736 * @dir: Direction of DMA transfer 737 * @coherent: Is the DMA master cache-coherent? 738 * @attrs: DMA attributes for the mapping 739 * 740 * Return: corresponding IOMMU API page protection flags 741 */ 742 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 743 unsigned long attrs) 744 { 745 int prot = coherent ? IOMMU_CACHE : 0; 746 747 if (attrs & DMA_ATTR_PRIVILEGED) 748 prot |= IOMMU_PRIV; 749 750 switch (dir) { 751 case DMA_BIDIRECTIONAL: 752 return prot | IOMMU_READ | IOMMU_WRITE; 753 case DMA_TO_DEVICE: 754 return prot | IOMMU_READ; 755 case DMA_FROM_DEVICE: 756 return prot | IOMMU_WRITE; 757 default: 758 return 0; 759 } 760 } 761 762 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 763 size_t size, u64 dma_limit, struct device *dev) 764 { 765 struct iommu_dma_cookie *cookie = domain->iova_cookie; 766 struct iova_domain *iovad = &cookie->iovad; 767 unsigned long shift, iova_len, iova; 768 769 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 770 cookie->msi_iova += size; 771 return cookie->msi_iova - size; 772 } 773 774 shift = iova_shift(iovad); 775 iova_len = size >> shift; 776 777 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 778 779 if (domain->geometry.force_aperture) 780 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 781 782 /* 783 * Try to use all the 32-bit PCI addresses first. The original SAC vs. 784 * DAC reasoning loses relevance with PCIe, but enough hardware and 785 * firmware bugs are still lurking out there that it's safest not to 786 * venture into the 64-bit space until necessary. 787 * 788 * If your device goes wrong after seeing the notice then likely either 789 * its driver is not setting DMA masks accurately, the hardware has 790 * some inherent bug in handling >32-bit addresses, or not all the 791 * expected address bits are wired up between the device and the IOMMU. 792 */ 793 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) { 794 iova = alloc_iova_fast(iovad, iova_len, 795 DMA_BIT_MASK(32) >> shift, false); 796 if (iova) 797 goto done; 798 799 dev->iommu->pci_32bit_workaround = false; 800 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit)); 801 } 802 803 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true); 804 done: 805 return (dma_addr_t)iova << shift; 806 } 807 808 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 809 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) 810 { 811 struct iova_domain *iovad = &cookie->iovad; 812 813 /* The MSI case is only ever cleaning up its most recent allocation */ 814 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 815 cookie->msi_iova -= size; 816 else if (gather && gather->queued) 817 queue_iova(cookie, iova_pfn(iovad, iova), 818 size >> iova_shift(iovad), 819 &gather->freelist); 820 else 821 free_iova_fast(iovad, iova_pfn(iovad, iova), 822 size >> iova_shift(iovad)); 823 } 824 825 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 826 size_t size) 827 { 828 struct iommu_domain *domain = iommu_get_dma_domain(dev); 829 struct iommu_dma_cookie *cookie = domain->iova_cookie; 830 struct iova_domain *iovad = &cookie->iovad; 831 size_t iova_off = iova_offset(iovad, dma_addr); 832 struct iommu_iotlb_gather iotlb_gather; 833 size_t unmapped; 834 835 dma_addr -= iova_off; 836 size = iova_align(iovad, size + iova_off); 837 iommu_iotlb_gather_init(&iotlb_gather); 838 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 839 840 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 841 WARN_ON(unmapped != size); 842 843 if (!iotlb_gather.queued) 844 iommu_iotlb_sync(domain, &iotlb_gather); 845 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); 846 } 847 848 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 849 size_t size, int prot, u64 dma_mask) 850 { 851 struct iommu_domain *domain = iommu_get_dma_domain(dev); 852 struct iommu_dma_cookie *cookie = domain->iova_cookie; 853 struct iova_domain *iovad = &cookie->iovad; 854 size_t iova_off = iova_offset(iovad, phys); 855 dma_addr_t iova; 856 857 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 858 iommu_deferred_attach(dev, domain)) 859 return DMA_MAPPING_ERROR; 860 861 /* If anyone ever wants this we'd need support in the IOVA allocator */ 862 if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad), 863 "Unsupported alignment constraint\n")) 864 return DMA_MAPPING_ERROR; 865 866 size = iova_align(iovad, size + iova_off); 867 868 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 869 if (!iova) 870 return DMA_MAPPING_ERROR; 871 872 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { 873 iommu_dma_free_iova(cookie, iova, size, NULL); 874 return DMA_MAPPING_ERROR; 875 } 876 return iova + iova_off; 877 } 878 879 static void __iommu_dma_free_pages(struct page **pages, int count) 880 { 881 while (count--) 882 __free_page(pages[count]); 883 kvfree(pages); 884 } 885 886 static struct page **__iommu_dma_alloc_pages(struct device *dev, 887 unsigned int count, unsigned long order_mask, gfp_t gfp) 888 { 889 struct page **pages; 890 unsigned int i = 0, nid = dev_to_node(dev); 891 892 order_mask &= GENMASK(MAX_PAGE_ORDER, 0); 893 if (!order_mask) 894 return NULL; 895 896 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 897 if (!pages) 898 return NULL; 899 900 /* IOMMU can map any pages, so himem can also be used here */ 901 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 902 903 while (count) { 904 struct page *page = NULL; 905 unsigned int order_size; 906 907 /* 908 * Higher-order allocations are a convenience rather 909 * than a necessity, hence using __GFP_NORETRY until 910 * falling back to minimum-order allocations. 911 */ 912 for (order_mask &= GENMASK(__fls(count), 0); 913 order_mask; order_mask &= ~order_size) { 914 unsigned int order = __fls(order_mask); 915 gfp_t alloc_flags = gfp; 916 917 order_size = 1U << order; 918 if (order_mask > order_size) 919 alloc_flags |= __GFP_NORETRY; 920 page = alloc_pages_node(nid, alloc_flags, order); 921 if (!page) 922 continue; 923 if (order) 924 split_page(page, order); 925 break; 926 } 927 if (!page) { 928 __iommu_dma_free_pages(pages, i); 929 return NULL; 930 } 931 count -= order_size; 932 while (order_size--) 933 pages[i++] = page++; 934 } 935 return pages; 936 } 937 938 /* 939 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 940 * but an IOMMU which supports smaller pages might not map the whole thing. 941 */ 942 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 943 size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs) 944 { 945 struct iommu_domain *domain = iommu_get_dma_domain(dev); 946 struct iommu_dma_cookie *cookie = domain->iova_cookie; 947 struct iova_domain *iovad = &cookie->iovad; 948 bool coherent = dev_is_dma_coherent(dev); 949 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 950 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 951 struct page **pages; 952 dma_addr_t iova; 953 ssize_t ret; 954 955 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 956 iommu_deferred_attach(dev, domain)) 957 return NULL; 958 959 min_size = alloc_sizes & -alloc_sizes; 960 if (min_size < PAGE_SIZE) { 961 min_size = PAGE_SIZE; 962 alloc_sizes |= PAGE_SIZE; 963 } else { 964 size = ALIGN(size, min_size); 965 } 966 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 967 alloc_sizes = min_size; 968 969 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 970 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 971 gfp); 972 if (!pages) 973 return NULL; 974 975 size = iova_align(iovad, size); 976 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 977 if (!iova) 978 goto out_free_pages; 979 980 /* 981 * Remove the zone/policy flags from the GFP - these are applied to the 982 * __iommu_dma_alloc_pages() but are not used for the supporting 983 * internal allocations that follow. 984 */ 985 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); 986 987 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) 988 goto out_free_iova; 989 990 if (!(ioprot & IOMMU_CACHE)) { 991 struct scatterlist *sg; 992 int i; 993 994 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 995 arch_dma_prep_coherent(sg_page(sg), sg->length); 996 } 997 998 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, 999 gfp); 1000 if (ret < 0 || ret < size) 1001 goto out_free_sg; 1002 1003 sgt->sgl->dma_address = iova; 1004 sgt->sgl->dma_length = size; 1005 return pages; 1006 1007 out_free_sg: 1008 sg_free_table(sgt); 1009 out_free_iova: 1010 iommu_dma_free_iova(cookie, iova, size, NULL); 1011 out_free_pages: 1012 __iommu_dma_free_pages(pages, count); 1013 return NULL; 1014 } 1015 1016 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 1017 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 1018 { 1019 struct page **pages; 1020 struct sg_table sgt; 1021 void *vaddr; 1022 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1023 1024 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs); 1025 if (!pages) 1026 return NULL; 1027 *dma_handle = sgt.sgl->dma_address; 1028 sg_free_table(&sgt); 1029 vaddr = dma_common_pages_remap(pages, size, prot, 1030 __builtin_return_address(0)); 1031 if (!vaddr) 1032 goto out_unmap; 1033 return vaddr; 1034 1035 out_unmap: 1036 __iommu_dma_unmap(dev, *dma_handle, size); 1037 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1038 return NULL; 1039 } 1040 1041 /* 1042 * This is the actual return value from the iommu_dma_alloc_noncontiguous. 1043 * 1044 * The users of the DMA API should only care about the sg_table, but to make 1045 * the DMA-API internal vmaping and freeing easier we stash away the page 1046 * array as well (except for the fallback case). This can go away any time, 1047 * e.g. when a vmap-variant that takes a scatterlist comes along. 1048 */ 1049 struct dma_sgt_handle { 1050 struct sg_table sgt; 1051 struct page **pages; 1052 }; 1053 #define sgt_handle(sgt) \ 1054 container_of((sgt), struct dma_sgt_handle, sgt) 1055 1056 struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size, 1057 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 1058 { 1059 struct dma_sgt_handle *sh; 1060 1061 sh = kmalloc(sizeof(*sh), gfp); 1062 if (!sh) 1063 return NULL; 1064 1065 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs); 1066 if (!sh->pages) { 1067 kfree(sh); 1068 return NULL; 1069 } 1070 return &sh->sgt; 1071 } 1072 1073 void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 1074 struct sg_table *sgt, enum dma_data_direction dir) 1075 { 1076 struct dma_sgt_handle *sh = sgt_handle(sgt); 1077 1078 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 1079 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1080 sg_free_table(&sh->sgt); 1081 kfree(sh); 1082 } 1083 1084 void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size, 1085 struct sg_table *sgt) 1086 { 1087 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1088 1089 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 1090 } 1091 1092 int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 1093 size_t size, struct sg_table *sgt) 1094 { 1095 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1096 1097 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 1098 return -ENXIO; 1099 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 1100 } 1101 1102 void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, 1103 size_t size, enum dma_data_direction dir) 1104 { 1105 phys_addr_t phys; 1106 1107 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1108 return; 1109 1110 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1111 if (!dev_is_dma_coherent(dev)) 1112 arch_sync_dma_for_cpu(phys, size, dir); 1113 1114 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 1115 } 1116 1117 void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, 1118 size_t size, enum dma_data_direction dir) 1119 { 1120 phys_addr_t phys; 1121 1122 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1123 return; 1124 1125 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1126 swiotlb_sync_single_for_device(dev, phys, size, dir); 1127 1128 if (!dev_is_dma_coherent(dev)) 1129 arch_sync_dma_for_device(phys, size, dir); 1130 } 1131 1132 void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 1133 int nelems, enum dma_data_direction dir) 1134 { 1135 struct scatterlist *sg; 1136 int i; 1137 1138 if (sg_dma_is_swiotlb(sgl)) 1139 for_each_sg(sgl, sg, nelems, i) 1140 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 1141 sg->length, dir); 1142 else if (!dev_is_dma_coherent(dev)) 1143 for_each_sg(sgl, sg, nelems, i) 1144 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 1145 } 1146 1147 void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 1148 int nelems, enum dma_data_direction dir) 1149 { 1150 struct scatterlist *sg; 1151 int i; 1152 1153 if (sg_dma_is_swiotlb(sgl)) 1154 for_each_sg(sgl, sg, nelems, i) 1155 iommu_dma_sync_single_for_device(dev, 1156 sg_dma_address(sg), 1157 sg->length, dir); 1158 else if (!dev_is_dma_coherent(dev)) 1159 for_each_sg(sgl, sg, nelems, i) 1160 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 1161 } 1162 1163 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 1164 unsigned long offset, size_t size, enum dma_data_direction dir, 1165 unsigned long attrs) 1166 { 1167 phys_addr_t phys = page_to_phys(page) + offset; 1168 bool coherent = dev_is_dma_coherent(dev); 1169 int prot = dma_info_to_prot(dir, coherent, attrs); 1170 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1171 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1172 struct iova_domain *iovad = &cookie->iovad; 1173 dma_addr_t iova, dma_mask = dma_get_mask(dev); 1174 1175 /* 1176 * If both the physical buffer start address and size are 1177 * page aligned, we don't need to use a bounce page. 1178 */ 1179 if (dev_use_swiotlb(dev, size, dir) && 1180 iova_offset(iovad, phys | size)) { 1181 if (!is_swiotlb_active(dev)) { 1182 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 1183 return DMA_MAPPING_ERROR; 1184 } 1185 1186 trace_swiotlb_bounced(dev, phys, size); 1187 1188 phys = swiotlb_tbl_map_single(dev, phys, size, 1189 iova_mask(iovad), dir, attrs); 1190 1191 if (phys == DMA_MAPPING_ERROR) 1192 return DMA_MAPPING_ERROR; 1193 1194 /* 1195 * Untrusted devices should not see padding areas with random 1196 * leftover kernel data, so zero the pre- and post-padding. 1197 * swiotlb_tbl_map_single() has initialized the bounce buffer 1198 * proper to the contents of the original memory buffer. 1199 */ 1200 if (dev_is_untrusted(dev)) { 1201 size_t start, virt = (size_t)phys_to_virt(phys); 1202 1203 /* Pre-padding */ 1204 start = iova_align_down(iovad, virt); 1205 memset((void *)start, 0, virt - start); 1206 1207 /* Post-padding */ 1208 start = virt + size; 1209 memset((void *)start, 0, 1210 iova_align(iovad, start) - start); 1211 } 1212 } 1213 1214 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1215 arch_sync_dma_for_device(phys, size, dir); 1216 1217 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1218 if (iova == DMA_MAPPING_ERROR) 1219 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1220 return iova; 1221 } 1222 1223 void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1224 size_t size, enum dma_data_direction dir, unsigned long attrs) 1225 { 1226 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1227 phys_addr_t phys; 1228 1229 phys = iommu_iova_to_phys(domain, dma_handle); 1230 if (WARN_ON(!phys)) 1231 return; 1232 1233 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1234 arch_sync_dma_for_cpu(phys, size, dir); 1235 1236 __iommu_dma_unmap(dev, dma_handle, size); 1237 1238 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1239 } 1240 1241 /* 1242 * Prepare a successfully-mapped scatterlist to give back to the caller. 1243 * 1244 * At this point the segments are already laid out by iommu_dma_map_sg() to 1245 * avoid individually crossing any boundaries, so we merely need to check a 1246 * segment's start address to avoid concatenating across one. 1247 */ 1248 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1249 dma_addr_t dma_addr) 1250 { 1251 struct scatterlist *s, *cur = sg; 1252 unsigned long seg_mask = dma_get_seg_boundary(dev); 1253 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1254 int i, count = 0; 1255 1256 for_each_sg(sg, s, nents, i) { 1257 /* Restore this segment's original unaligned fields first */ 1258 dma_addr_t s_dma_addr = sg_dma_address(s); 1259 unsigned int s_iova_off = sg_dma_address(s); 1260 unsigned int s_length = sg_dma_len(s); 1261 unsigned int s_iova_len = s->length; 1262 1263 sg_dma_address(s) = DMA_MAPPING_ERROR; 1264 sg_dma_len(s) = 0; 1265 1266 if (sg_dma_is_bus_address(s)) { 1267 if (i > 0) 1268 cur = sg_next(cur); 1269 1270 sg_dma_unmark_bus_address(s); 1271 sg_dma_address(cur) = s_dma_addr; 1272 sg_dma_len(cur) = s_length; 1273 sg_dma_mark_bus_address(cur); 1274 count++; 1275 cur_len = 0; 1276 continue; 1277 } 1278 1279 s->offset += s_iova_off; 1280 s->length = s_length; 1281 1282 /* 1283 * Now fill in the real DMA data. If... 1284 * - there is a valid output segment to append to 1285 * - and this segment starts on an IOVA page boundary 1286 * - but doesn't fall at a segment boundary 1287 * - and wouldn't make the resulting output segment too long 1288 */ 1289 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1290 (max_len - cur_len >= s_length)) { 1291 /* ...then concatenate it with the previous one */ 1292 cur_len += s_length; 1293 } else { 1294 /* Otherwise start the next output segment */ 1295 if (i > 0) 1296 cur = sg_next(cur); 1297 cur_len = s_length; 1298 count++; 1299 1300 sg_dma_address(cur) = dma_addr + s_iova_off; 1301 } 1302 1303 sg_dma_len(cur) = cur_len; 1304 dma_addr += s_iova_len; 1305 1306 if (s_length + s_iova_off < s_iova_len) 1307 cur_len = 0; 1308 } 1309 return count; 1310 } 1311 1312 /* 1313 * If mapping failed, then just restore the original list, 1314 * but making sure the DMA fields are invalidated. 1315 */ 1316 static void __invalidate_sg(struct scatterlist *sg, int nents) 1317 { 1318 struct scatterlist *s; 1319 int i; 1320 1321 for_each_sg(sg, s, nents, i) { 1322 if (sg_dma_is_bus_address(s)) { 1323 sg_dma_unmark_bus_address(s); 1324 } else { 1325 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1326 s->offset += sg_dma_address(s); 1327 if (sg_dma_len(s)) 1328 s->length = sg_dma_len(s); 1329 } 1330 sg_dma_address(s) = DMA_MAPPING_ERROR; 1331 sg_dma_len(s) = 0; 1332 } 1333 } 1334 1335 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1336 int nents, enum dma_data_direction dir, unsigned long attrs) 1337 { 1338 struct scatterlist *s; 1339 int i; 1340 1341 for_each_sg(sg, s, nents, i) 1342 iommu_dma_unmap_page(dev, sg_dma_address(s), 1343 sg_dma_len(s), dir, attrs); 1344 } 1345 1346 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1347 int nents, enum dma_data_direction dir, unsigned long attrs) 1348 { 1349 struct scatterlist *s; 1350 int i; 1351 1352 sg_dma_mark_swiotlb(sg); 1353 1354 for_each_sg(sg, s, nents, i) { 1355 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1356 s->offset, s->length, dir, attrs); 1357 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1358 goto out_unmap; 1359 sg_dma_len(s) = s->length; 1360 } 1361 1362 return nents; 1363 1364 out_unmap: 1365 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1366 return -EIO; 1367 } 1368 1369 /* 1370 * The DMA API client is passing in a scatterlist which could describe 1371 * any old buffer layout, but the IOMMU API requires everything to be 1372 * aligned to IOMMU pages. Hence the need for this complicated bit of 1373 * impedance-matching, to be able to hand off a suitably-aligned list, 1374 * but still preserve the original offsets and sizes for the caller. 1375 */ 1376 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1377 enum dma_data_direction dir, unsigned long attrs) 1378 { 1379 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1380 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1381 struct iova_domain *iovad = &cookie->iovad; 1382 struct scatterlist *s, *prev = NULL; 1383 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1384 struct pci_p2pdma_map_state p2pdma_state = {}; 1385 enum pci_p2pdma_map_type map; 1386 dma_addr_t iova; 1387 size_t iova_len = 0; 1388 unsigned long mask = dma_get_seg_boundary(dev); 1389 ssize_t ret; 1390 int i; 1391 1392 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1393 ret = iommu_deferred_attach(dev, domain); 1394 if (ret) 1395 goto out; 1396 } 1397 1398 if (dev_use_sg_swiotlb(dev, sg, nents, dir)) 1399 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1400 1401 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1402 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1403 1404 /* 1405 * Work out how much IOVA space we need, and align the segments to 1406 * IOVA granules for the IOMMU driver to handle. With some clever 1407 * trickery we can modify the list in-place, but reversibly, by 1408 * stashing the unaligned parts in the as-yet-unused DMA fields. 1409 */ 1410 for_each_sg(sg, s, nents, i) { 1411 size_t s_iova_off = iova_offset(iovad, s->offset); 1412 size_t s_length = s->length; 1413 size_t pad_len = (mask - iova_len + 1) & mask; 1414 1415 if (is_pci_p2pdma_page(sg_page(s))) { 1416 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); 1417 switch (map) { 1418 case PCI_P2PDMA_MAP_BUS_ADDR: 1419 /* 1420 * iommu_map_sg() will skip this segment as 1421 * it is marked as a bus address, 1422 * __finalise_sg() will copy the dma address 1423 * into the output segment. 1424 */ 1425 continue; 1426 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1427 /* 1428 * Mapping through host bridge should be 1429 * mapped with regular IOVAs, thus we 1430 * do nothing here and continue below. 1431 */ 1432 break; 1433 default: 1434 ret = -EREMOTEIO; 1435 goto out_restore_sg; 1436 } 1437 } 1438 1439 sg_dma_address(s) = s_iova_off; 1440 sg_dma_len(s) = s_length; 1441 s->offset -= s_iova_off; 1442 s_length = iova_align(iovad, s_length + s_iova_off); 1443 s->length = s_length; 1444 1445 /* 1446 * Due to the alignment of our single IOVA allocation, we can 1447 * depend on these assumptions about the segment boundary mask: 1448 * - If mask size >= IOVA size, then the IOVA range cannot 1449 * possibly fall across a boundary, so we don't care. 1450 * - If mask size < IOVA size, then the IOVA range must start 1451 * exactly on a boundary, therefore we can lay things out 1452 * based purely on segment lengths without needing to know 1453 * the actual addresses beforehand. 1454 * - The mask must be a power of 2, so pad_len == 0 if 1455 * iova_len == 0, thus we cannot dereference prev the first 1456 * time through here (i.e. before it has a meaningful value). 1457 */ 1458 if (pad_len && pad_len < s_length - 1) { 1459 prev->length += pad_len; 1460 iova_len += pad_len; 1461 } 1462 1463 iova_len += s_length; 1464 prev = s; 1465 } 1466 1467 if (!iova_len) 1468 return __finalise_sg(dev, sg, nents, 0); 1469 1470 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1471 if (!iova) { 1472 ret = -ENOMEM; 1473 goto out_restore_sg; 1474 } 1475 1476 /* 1477 * We'll leave any physical concatenation to the IOMMU driver's 1478 * implementation - it knows better than we do. 1479 */ 1480 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 1481 if (ret < 0 || ret < iova_len) 1482 goto out_free_iova; 1483 1484 return __finalise_sg(dev, sg, nents, iova); 1485 1486 out_free_iova: 1487 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1488 out_restore_sg: 1489 __invalidate_sg(sg, nents); 1490 out: 1491 if (ret != -ENOMEM && ret != -EREMOTEIO) 1492 return -EINVAL; 1493 return ret; 1494 } 1495 1496 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1497 enum dma_data_direction dir, unsigned long attrs) 1498 { 1499 dma_addr_t end = 0, start; 1500 struct scatterlist *tmp; 1501 int i; 1502 1503 if (sg_dma_is_swiotlb(sg)) { 1504 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1505 return; 1506 } 1507 1508 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1509 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1510 1511 /* 1512 * The scatterlist segments are mapped into a single 1513 * contiguous IOVA allocation, the start and end points 1514 * just have to be determined. 1515 */ 1516 for_each_sg(sg, tmp, nents, i) { 1517 if (sg_dma_is_bus_address(tmp)) { 1518 sg_dma_unmark_bus_address(tmp); 1519 continue; 1520 } 1521 1522 if (sg_dma_len(tmp) == 0) 1523 break; 1524 1525 start = sg_dma_address(tmp); 1526 break; 1527 } 1528 1529 nents -= i; 1530 for_each_sg(tmp, tmp, nents, i) { 1531 if (sg_dma_is_bus_address(tmp)) { 1532 sg_dma_unmark_bus_address(tmp); 1533 continue; 1534 } 1535 1536 if (sg_dma_len(tmp) == 0) 1537 break; 1538 1539 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1540 } 1541 1542 if (end) 1543 __iommu_dma_unmap(dev, start, end - start); 1544 } 1545 1546 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1547 size_t size, enum dma_data_direction dir, unsigned long attrs) 1548 { 1549 return __iommu_dma_map(dev, phys, size, 1550 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1551 dma_get_mask(dev)); 1552 } 1553 1554 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1555 size_t size, enum dma_data_direction dir, unsigned long attrs) 1556 { 1557 __iommu_dma_unmap(dev, handle, size); 1558 } 1559 1560 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1561 { 1562 size_t alloc_size = PAGE_ALIGN(size); 1563 int count = alloc_size >> PAGE_SHIFT; 1564 struct page *page = NULL, **pages = NULL; 1565 1566 /* Non-coherent atomic allocation? Easy */ 1567 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1568 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1569 return; 1570 1571 if (is_vmalloc_addr(cpu_addr)) { 1572 /* 1573 * If it the address is remapped, then it's either non-coherent 1574 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1575 */ 1576 pages = dma_common_find_pages(cpu_addr); 1577 if (!pages) 1578 page = vmalloc_to_page(cpu_addr); 1579 dma_common_free_remap(cpu_addr, alloc_size); 1580 } else { 1581 /* Lowmem means a coherent atomic or CMA allocation */ 1582 page = virt_to_page(cpu_addr); 1583 } 1584 1585 if (pages) 1586 __iommu_dma_free_pages(pages, count); 1587 if (page) 1588 dma_free_contiguous(dev, page, alloc_size); 1589 } 1590 1591 void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1592 dma_addr_t handle, unsigned long attrs) 1593 { 1594 __iommu_dma_unmap(dev, handle, size); 1595 __iommu_dma_free(dev, size, cpu_addr); 1596 } 1597 1598 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1599 struct page **pagep, gfp_t gfp, unsigned long attrs) 1600 { 1601 bool coherent = dev_is_dma_coherent(dev); 1602 size_t alloc_size = PAGE_ALIGN(size); 1603 int node = dev_to_node(dev); 1604 struct page *page = NULL; 1605 void *cpu_addr; 1606 1607 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1608 if (!page) 1609 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1610 if (!page) 1611 return NULL; 1612 1613 if (!coherent || PageHighMem(page)) { 1614 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1615 1616 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1617 prot, __builtin_return_address(0)); 1618 if (!cpu_addr) 1619 goto out_free_pages; 1620 1621 if (!coherent) 1622 arch_dma_prep_coherent(page, size); 1623 } else { 1624 cpu_addr = page_address(page); 1625 } 1626 1627 *pagep = page; 1628 memset(cpu_addr, 0, alloc_size); 1629 return cpu_addr; 1630 out_free_pages: 1631 dma_free_contiguous(dev, page, alloc_size); 1632 return NULL; 1633 } 1634 1635 void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 1636 gfp_t gfp, unsigned long attrs) 1637 { 1638 bool coherent = dev_is_dma_coherent(dev); 1639 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1640 struct page *page = NULL; 1641 void *cpu_addr; 1642 1643 gfp |= __GFP_ZERO; 1644 1645 if (gfpflags_allow_blocking(gfp) && 1646 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1647 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs); 1648 } 1649 1650 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1651 !gfpflags_allow_blocking(gfp) && !coherent) 1652 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1653 gfp, NULL); 1654 else 1655 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1656 if (!cpu_addr) 1657 return NULL; 1658 1659 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1660 dev->coherent_dma_mask); 1661 if (*handle == DMA_MAPPING_ERROR) { 1662 __iommu_dma_free(dev, size, cpu_addr); 1663 return NULL; 1664 } 1665 1666 return cpu_addr; 1667 } 1668 1669 int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1670 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1671 unsigned long attrs) 1672 { 1673 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1674 unsigned long pfn, off = vma->vm_pgoff; 1675 int ret; 1676 1677 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1678 1679 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1680 return ret; 1681 1682 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1683 return -ENXIO; 1684 1685 if (is_vmalloc_addr(cpu_addr)) { 1686 struct page **pages = dma_common_find_pages(cpu_addr); 1687 1688 if (pages) 1689 return vm_map_pages(vma, pages, nr_pages); 1690 pfn = vmalloc_to_pfn(cpu_addr); 1691 } else { 1692 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1693 } 1694 1695 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1696 vma->vm_end - vma->vm_start, 1697 vma->vm_page_prot); 1698 } 1699 1700 int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1701 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1702 unsigned long attrs) 1703 { 1704 struct page *page; 1705 int ret; 1706 1707 if (is_vmalloc_addr(cpu_addr)) { 1708 struct page **pages = dma_common_find_pages(cpu_addr); 1709 1710 if (pages) { 1711 return sg_alloc_table_from_pages(sgt, pages, 1712 PAGE_ALIGN(size) >> PAGE_SHIFT, 1713 0, size, GFP_KERNEL); 1714 } 1715 1716 page = vmalloc_to_page(cpu_addr); 1717 } else { 1718 page = virt_to_page(cpu_addr); 1719 } 1720 1721 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1722 if (!ret) 1723 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1724 return ret; 1725 } 1726 1727 unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1728 { 1729 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1730 1731 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1732 } 1733 1734 size_t iommu_dma_opt_mapping_size(void) 1735 { 1736 return iova_rcache_range(); 1737 } 1738 1739 size_t iommu_dma_max_mapping_size(struct device *dev) 1740 { 1741 if (dev_is_untrusted(dev)) 1742 return swiotlb_max_mapping_size(dev); 1743 1744 return SIZE_MAX; 1745 } 1746 1747 void iommu_setup_dma_ops(struct device *dev) 1748 { 1749 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1750 1751 if (dev_is_pci(dev)) 1752 dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac; 1753 1754 dev->dma_iommu = iommu_is_dma_domain(domain); 1755 if (dev->dma_iommu && iommu_dma_init_domain(domain, dev)) 1756 goto out_err; 1757 1758 return; 1759 out_err: 1760 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1761 dev_name(dev)); 1762 dev->dma_iommu = false; 1763 } 1764 1765 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1766 phys_addr_t msi_addr, struct iommu_domain *domain) 1767 { 1768 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1769 struct iommu_dma_msi_page *msi_page; 1770 dma_addr_t iova; 1771 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1772 size_t size = cookie_msi_granule(cookie); 1773 1774 msi_addr &= ~(phys_addr_t)(size - 1); 1775 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1776 if (msi_page->phys == msi_addr) 1777 return msi_page; 1778 1779 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1780 if (!msi_page) 1781 return NULL; 1782 1783 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1784 if (!iova) 1785 goto out_free_page; 1786 1787 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) 1788 goto out_free_iova; 1789 1790 INIT_LIST_HEAD(&msi_page->list); 1791 msi_page->phys = msi_addr; 1792 msi_page->iova = iova; 1793 list_add(&msi_page->list, &cookie->msi_page_list); 1794 return msi_page; 1795 1796 out_free_iova: 1797 iommu_dma_free_iova(cookie, iova, size, NULL); 1798 out_free_page: 1799 kfree(msi_page); 1800 return NULL; 1801 } 1802 1803 /** 1804 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain 1805 * @desc: MSI descriptor, will store the MSI page 1806 * @msi_addr: MSI target address to be mapped 1807 * 1808 * Return: 0 on success or negative error code if the mapping failed. 1809 */ 1810 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1811 { 1812 struct device *dev = msi_desc_to_dev(desc); 1813 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1814 struct iommu_dma_msi_page *msi_page; 1815 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1816 1817 if (!domain || !domain->iova_cookie) { 1818 desc->iommu_cookie = NULL; 1819 return 0; 1820 } 1821 1822 /* 1823 * In fact the whole prepare operation should already be serialised by 1824 * irq_domain_mutex further up the callchain, but that's pretty subtle 1825 * on its own, so consider this locking as failsafe documentation... 1826 */ 1827 mutex_lock(&msi_prepare_lock); 1828 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1829 mutex_unlock(&msi_prepare_lock); 1830 1831 msi_desc_set_iommu_cookie(desc, msi_page); 1832 1833 if (!msi_page) 1834 return -ENOMEM; 1835 return 0; 1836 } 1837 1838 /** 1839 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message 1840 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi() 1841 * @msg: MSI message containing target physical address 1842 */ 1843 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg) 1844 { 1845 struct device *dev = msi_desc_to_dev(desc); 1846 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1847 const struct iommu_dma_msi_page *msi_page; 1848 1849 msi_page = msi_desc_get_iommu_cookie(desc); 1850 1851 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1852 return; 1853 1854 msg->address_hi = upper_32_bits(msi_page->iova); 1855 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1856 msg->address_lo += lower_32_bits(msi_page->iova); 1857 } 1858 1859 static int iommu_dma_init(void) 1860 { 1861 if (is_kdump_kernel()) 1862 static_branch_enable(&iommu_deferred_attach_enabled); 1863 1864 return iova_cache_get(); 1865 } 1866 arch_initcall(iommu_dma_init); 1867