1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iova.h> 21 #include <linux/irq.h> 22 #include <linux/list_sort.h> 23 #include <linux/memremap.h> 24 #include <linux/mm.h> 25 #include <linux/mutex.h> 26 #include <linux/of_iommu.h> 27 #include <linux/pci.h> 28 #include <linux/scatterlist.h> 29 #include <linux/spinlock.h> 30 #include <linux/swiotlb.h> 31 #include <linux/vmalloc.h> 32 #include <trace/events/swiotlb.h> 33 34 #include "dma-iommu.h" 35 36 struct iommu_dma_msi_page { 37 struct list_head list; 38 dma_addr_t iova; 39 phys_addr_t phys; 40 }; 41 42 enum iommu_dma_cookie_type { 43 IOMMU_DMA_IOVA_COOKIE, 44 IOMMU_DMA_MSI_COOKIE, 45 }; 46 47 enum iommu_dma_queue_type { 48 IOMMU_DMA_OPTS_PER_CPU_QUEUE, 49 IOMMU_DMA_OPTS_SINGLE_QUEUE, 50 }; 51 52 struct iommu_dma_options { 53 enum iommu_dma_queue_type qt; 54 size_t fq_size; 55 unsigned int fq_timeout; 56 }; 57 58 struct iommu_dma_cookie { 59 enum iommu_dma_cookie_type type; 60 union { 61 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 62 struct { 63 struct iova_domain iovad; 64 /* Flush queue */ 65 union { 66 struct iova_fq *single_fq; 67 struct iova_fq __percpu *percpu_fq; 68 }; 69 /* Number of TLB flushes that have been started */ 70 atomic64_t fq_flush_start_cnt; 71 /* Number of TLB flushes that have been finished */ 72 atomic64_t fq_flush_finish_cnt; 73 /* Timer to regularily empty the flush queues */ 74 struct timer_list fq_timer; 75 /* 1 when timer is active, 0 when not */ 76 atomic_t fq_timer_on; 77 }; 78 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 79 dma_addr_t msi_iova; 80 }; 81 struct list_head msi_page_list; 82 83 /* Domain for flush queue callback; NULL if flush queue not in use */ 84 struct iommu_domain *fq_domain; 85 /* Options for dma-iommu use */ 86 struct iommu_dma_options options; 87 struct mutex mutex; 88 }; 89 90 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 91 bool iommu_dma_forcedac __read_mostly; 92 93 static int __init iommu_dma_forcedac_setup(char *str) 94 { 95 int ret = kstrtobool(str, &iommu_dma_forcedac); 96 97 if (!ret && iommu_dma_forcedac) 98 pr_info("Forcing DAC for PCI devices\n"); 99 return ret; 100 } 101 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 102 103 /* Number of entries per flush queue */ 104 #define IOVA_DEFAULT_FQ_SIZE 256 105 #define IOVA_SINGLE_FQ_SIZE 32768 106 107 /* Timeout (in ms) after which entries are flushed from the queue */ 108 #define IOVA_DEFAULT_FQ_TIMEOUT 10 109 #define IOVA_SINGLE_FQ_TIMEOUT 1000 110 111 /* Flush queue entry for deferred flushing */ 112 struct iova_fq_entry { 113 unsigned long iova_pfn; 114 unsigned long pages; 115 struct list_head freelist; 116 u64 counter; /* Flush counter when this entry was added */ 117 }; 118 119 /* Per-CPU flush queue structure */ 120 struct iova_fq { 121 spinlock_t lock; 122 unsigned int head, tail; 123 unsigned int mod_mask; 124 struct iova_fq_entry entries[]; 125 }; 126 127 #define fq_ring_for_each(i, fq) \ 128 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask) 129 130 static inline bool fq_full(struct iova_fq *fq) 131 { 132 assert_spin_locked(&fq->lock); 133 return (((fq->tail + 1) & fq->mod_mask) == fq->head); 134 } 135 136 static inline unsigned int fq_ring_add(struct iova_fq *fq) 137 { 138 unsigned int idx = fq->tail; 139 140 assert_spin_locked(&fq->lock); 141 142 fq->tail = (idx + 1) & fq->mod_mask; 143 144 return idx; 145 } 146 147 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 148 { 149 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 150 unsigned int idx; 151 152 assert_spin_locked(&fq->lock); 153 154 fq_ring_for_each(idx, fq) { 155 156 if (fq->entries[idx].counter >= counter) 157 break; 158 159 put_pages_list(&fq->entries[idx].freelist); 160 free_iova_fast(&cookie->iovad, 161 fq->entries[idx].iova_pfn, 162 fq->entries[idx].pages); 163 164 fq->head = (fq->head + 1) & fq->mod_mask; 165 } 166 } 167 168 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 169 { 170 unsigned long flags; 171 172 spin_lock_irqsave(&fq->lock, flags); 173 fq_ring_free_locked(cookie, fq); 174 spin_unlock_irqrestore(&fq->lock, flags); 175 } 176 177 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 178 { 179 atomic64_inc(&cookie->fq_flush_start_cnt); 180 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 181 atomic64_inc(&cookie->fq_flush_finish_cnt); 182 } 183 184 static void fq_flush_timeout(struct timer_list *t) 185 { 186 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 187 int cpu; 188 189 atomic_set(&cookie->fq_timer_on, 0); 190 fq_flush_iotlb(cookie); 191 192 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) { 193 fq_ring_free(cookie, cookie->single_fq); 194 } else { 195 for_each_possible_cpu(cpu) 196 fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu)); 197 } 198 } 199 200 static void queue_iova(struct iommu_dma_cookie *cookie, 201 unsigned long pfn, unsigned long pages, 202 struct list_head *freelist) 203 { 204 struct iova_fq *fq; 205 unsigned long flags; 206 unsigned int idx; 207 208 /* 209 * Order against the IOMMU driver's pagetable update from unmapping 210 * @pte, to guarantee that fq_flush_iotlb() observes that if called 211 * from a different CPU before we release the lock below. Full barrier 212 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 213 * written fq state here. 214 */ 215 smp_mb(); 216 217 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 218 fq = cookie->single_fq; 219 else 220 fq = raw_cpu_ptr(cookie->percpu_fq); 221 222 spin_lock_irqsave(&fq->lock, flags); 223 224 /* 225 * First remove all entries from the flush queue that have already been 226 * flushed out on another CPU. This makes the fq_full() check below less 227 * likely to be true. 228 */ 229 fq_ring_free_locked(cookie, fq); 230 231 if (fq_full(fq)) { 232 fq_flush_iotlb(cookie); 233 fq_ring_free_locked(cookie, fq); 234 } 235 236 idx = fq_ring_add(fq); 237 238 fq->entries[idx].iova_pfn = pfn; 239 fq->entries[idx].pages = pages; 240 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 241 list_splice(freelist, &fq->entries[idx].freelist); 242 243 spin_unlock_irqrestore(&fq->lock, flags); 244 245 /* Avoid false sharing as much as possible. */ 246 if (!atomic_read(&cookie->fq_timer_on) && 247 !atomic_xchg(&cookie->fq_timer_on, 1)) 248 mod_timer(&cookie->fq_timer, 249 jiffies + msecs_to_jiffies(cookie->options.fq_timeout)); 250 } 251 252 static void iommu_dma_free_fq_single(struct iova_fq *fq) 253 { 254 int idx; 255 256 fq_ring_for_each(idx, fq) 257 put_pages_list(&fq->entries[idx].freelist); 258 vfree(fq); 259 } 260 261 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq) 262 { 263 int cpu, idx; 264 265 /* The IOVAs will be torn down separately, so just free our queued pages */ 266 for_each_possible_cpu(cpu) { 267 struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu); 268 269 fq_ring_for_each(idx, fq) 270 put_pages_list(&fq->entries[idx].freelist); 271 } 272 273 free_percpu(percpu_fq); 274 } 275 276 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 277 { 278 if (!cookie->fq_domain) 279 return; 280 281 del_timer_sync(&cookie->fq_timer); 282 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 283 iommu_dma_free_fq_single(cookie->single_fq); 284 else 285 iommu_dma_free_fq_percpu(cookie->percpu_fq); 286 } 287 288 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size) 289 { 290 int i; 291 292 fq->head = 0; 293 fq->tail = 0; 294 fq->mod_mask = fq_size - 1; 295 296 spin_lock_init(&fq->lock); 297 298 for (i = 0; i < fq_size; i++) 299 INIT_LIST_HEAD(&fq->entries[i].freelist); 300 } 301 302 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie) 303 { 304 size_t fq_size = cookie->options.fq_size; 305 struct iova_fq *queue; 306 307 queue = vmalloc(struct_size(queue, entries, fq_size)); 308 if (!queue) 309 return -ENOMEM; 310 iommu_dma_init_one_fq(queue, fq_size); 311 cookie->single_fq = queue; 312 313 return 0; 314 } 315 316 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie) 317 { 318 size_t fq_size = cookie->options.fq_size; 319 struct iova_fq __percpu *queue; 320 int cpu; 321 322 queue = __alloc_percpu(struct_size(queue, entries, fq_size), 323 __alignof__(*queue)); 324 if (!queue) 325 return -ENOMEM; 326 327 for_each_possible_cpu(cpu) 328 iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size); 329 cookie->percpu_fq = queue; 330 return 0; 331 } 332 333 /* sysfs updates are serialised by the mutex of the group owning @domain */ 334 int iommu_dma_init_fq(struct iommu_domain *domain) 335 { 336 struct iommu_dma_cookie *cookie = domain->iova_cookie; 337 int rc; 338 339 if (cookie->fq_domain) 340 return 0; 341 342 atomic64_set(&cookie->fq_flush_start_cnt, 0); 343 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 344 345 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 346 rc = iommu_dma_init_fq_single(cookie); 347 else 348 rc = iommu_dma_init_fq_percpu(cookie); 349 350 if (rc) { 351 pr_warn("iova flush queue initialization failed\n"); 352 return -ENOMEM; 353 } 354 355 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 356 atomic_set(&cookie->fq_timer_on, 0); 357 /* 358 * Prevent incomplete fq state being observable. Pairs with path from 359 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 360 */ 361 smp_wmb(); 362 WRITE_ONCE(cookie->fq_domain, domain); 363 return 0; 364 } 365 366 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 367 { 368 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 369 return cookie->iovad.granule; 370 return PAGE_SIZE; 371 } 372 373 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 374 { 375 struct iommu_dma_cookie *cookie; 376 377 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 378 if (cookie) { 379 INIT_LIST_HEAD(&cookie->msi_page_list); 380 cookie->type = type; 381 } 382 return cookie; 383 } 384 385 /** 386 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 387 * @domain: IOMMU domain to prepare for DMA-API usage 388 */ 389 int iommu_get_dma_cookie(struct iommu_domain *domain) 390 { 391 if (domain->iova_cookie) 392 return -EEXIST; 393 394 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 395 if (!domain->iova_cookie) 396 return -ENOMEM; 397 398 mutex_init(&domain->iova_cookie->mutex); 399 return 0; 400 } 401 402 /** 403 * iommu_get_msi_cookie - Acquire just MSI remapping resources 404 * @domain: IOMMU domain to prepare 405 * @base: Start address of IOVA region for MSI mappings 406 * 407 * Users who manage their own IOVA allocation and do not want DMA API support, 408 * but would still like to take advantage of automatic MSI remapping, can use 409 * this to initialise their own domain appropriately. Users should reserve a 410 * contiguous IOVA region, starting at @base, large enough to accommodate the 411 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 412 * used by the devices attached to @domain. 413 */ 414 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 415 { 416 struct iommu_dma_cookie *cookie; 417 418 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 419 return -EINVAL; 420 421 if (domain->iova_cookie) 422 return -EEXIST; 423 424 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 425 if (!cookie) 426 return -ENOMEM; 427 428 cookie->msi_iova = base; 429 domain->iova_cookie = cookie; 430 return 0; 431 } 432 EXPORT_SYMBOL(iommu_get_msi_cookie); 433 434 /** 435 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 436 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 437 * iommu_get_msi_cookie() 438 */ 439 void iommu_put_dma_cookie(struct iommu_domain *domain) 440 { 441 struct iommu_dma_cookie *cookie = domain->iova_cookie; 442 struct iommu_dma_msi_page *msi, *tmp; 443 444 if (!cookie) 445 return; 446 447 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { 448 iommu_dma_free_fq(cookie); 449 put_iova_domain(&cookie->iovad); 450 } 451 452 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 453 list_del(&msi->list); 454 kfree(msi); 455 } 456 kfree(cookie); 457 domain->iova_cookie = NULL; 458 } 459 460 /** 461 * iommu_dma_get_resv_regions - Reserved region driver helper 462 * @dev: Device from iommu_get_resv_regions() 463 * @list: Reserved region list from iommu_get_resv_regions() 464 * 465 * IOMMU drivers can use this to implement their .get_resv_regions callback 466 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 467 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 468 * reservation. 469 */ 470 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 471 { 472 473 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 474 iort_iommu_get_resv_regions(dev, list); 475 476 if (dev->of_node) 477 of_iommu_get_resv_regions(dev, list); 478 } 479 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 480 481 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 482 phys_addr_t start, phys_addr_t end) 483 { 484 struct iova_domain *iovad = &cookie->iovad; 485 struct iommu_dma_msi_page *msi_page; 486 int i, num_pages; 487 488 start -= iova_offset(iovad, start); 489 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 490 491 for (i = 0; i < num_pages; i++) { 492 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 493 if (!msi_page) 494 return -ENOMEM; 495 496 msi_page->phys = start; 497 msi_page->iova = start; 498 INIT_LIST_HEAD(&msi_page->list); 499 list_add(&msi_page->list, &cookie->msi_page_list); 500 start += iovad->granule; 501 } 502 503 return 0; 504 } 505 506 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 507 const struct list_head *b) 508 { 509 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 510 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 511 512 return res_a->res->start > res_b->res->start; 513 } 514 515 static int iova_reserve_pci_windows(struct pci_dev *dev, 516 struct iova_domain *iovad) 517 { 518 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 519 struct resource_entry *window; 520 unsigned long lo, hi; 521 phys_addr_t start = 0, end; 522 523 resource_list_for_each_entry(window, &bridge->windows) { 524 if (resource_type(window->res) != IORESOURCE_MEM) 525 continue; 526 527 lo = iova_pfn(iovad, window->res->start - window->offset); 528 hi = iova_pfn(iovad, window->res->end - window->offset); 529 reserve_iova(iovad, lo, hi); 530 } 531 532 /* Get reserved DMA windows from host bridge */ 533 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 534 resource_list_for_each_entry(window, &bridge->dma_ranges) { 535 end = window->res->start - window->offset; 536 resv_iova: 537 if (end > start) { 538 lo = iova_pfn(iovad, start); 539 hi = iova_pfn(iovad, end); 540 reserve_iova(iovad, lo, hi); 541 } else if (end < start) { 542 /* DMA ranges should be non-overlapping */ 543 dev_err(&dev->dev, 544 "Failed to reserve IOVA [%pa-%pa]\n", 545 &start, &end); 546 return -EINVAL; 547 } 548 549 start = window->res->end - window->offset + 1; 550 /* If window is last entry */ 551 if (window->node.next == &bridge->dma_ranges && 552 end != ~(phys_addr_t)0) { 553 end = ~(phys_addr_t)0; 554 goto resv_iova; 555 } 556 } 557 558 return 0; 559 } 560 561 static int iova_reserve_iommu_regions(struct device *dev, 562 struct iommu_domain *domain) 563 { 564 struct iommu_dma_cookie *cookie = domain->iova_cookie; 565 struct iova_domain *iovad = &cookie->iovad; 566 struct iommu_resv_region *region; 567 LIST_HEAD(resv_regions); 568 int ret = 0; 569 570 if (dev_is_pci(dev)) { 571 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 572 if (ret) 573 return ret; 574 } 575 576 iommu_get_resv_regions(dev, &resv_regions); 577 list_for_each_entry(region, &resv_regions, list) { 578 unsigned long lo, hi; 579 580 /* We ARE the software that manages these! */ 581 if (region->type == IOMMU_RESV_SW_MSI) 582 continue; 583 584 lo = iova_pfn(iovad, region->start); 585 hi = iova_pfn(iovad, region->start + region->length - 1); 586 reserve_iova(iovad, lo, hi); 587 588 if (region->type == IOMMU_RESV_MSI) 589 ret = cookie_init_hw_msi_region(cookie, region->start, 590 region->start + region->length); 591 if (ret) 592 break; 593 } 594 iommu_put_resv_regions(dev, &resv_regions); 595 596 return ret; 597 } 598 599 static bool dev_is_untrusted(struct device *dev) 600 { 601 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 602 } 603 604 static bool dev_use_swiotlb(struct device *dev, size_t size, 605 enum dma_data_direction dir) 606 { 607 return IS_ENABLED(CONFIG_SWIOTLB) && 608 (dev_is_untrusted(dev) || 609 dma_kmalloc_needs_bounce(dev, size, dir)); 610 } 611 612 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg, 613 int nents, enum dma_data_direction dir) 614 { 615 struct scatterlist *s; 616 int i; 617 618 if (!IS_ENABLED(CONFIG_SWIOTLB)) 619 return false; 620 621 if (dev_is_untrusted(dev)) 622 return true; 623 624 /* 625 * If kmalloc() buffers are not DMA-safe for this device and 626 * direction, check the individual lengths in the sg list. If any 627 * element is deemed unsafe, use the swiotlb for bouncing. 628 */ 629 if (!dma_kmalloc_safe(dev, dir)) { 630 for_each_sg(sg, s, nents, i) 631 if (!dma_kmalloc_size_aligned(s->length)) 632 return true; 633 } 634 635 return false; 636 } 637 638 /** 639 * iommu_dma_init_options - Initialize dma-iommu options 640 * @options: The options to be initialized 641 * @dev: Device the options are set for 642 * 643 * This allows tuning dma-iommu specific to device properties 644 */ 645 static void iommu_dma_init_options(struct iommu_dma_options *options, 646 struct device *dev) 647 { 648 /* Shadowing IOTLB flushes do better with a single large queue */ 649 if (dev->iommu->shadow_on_flush) { 650 options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE; 651 options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT; 652 options->fq_size = IOVA_SINGLE_FQ_SIZE; 653 } else { 654 options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE; 655 options->fq_size = IOVA_DEFAULT_FQ_SIZE; 656 options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT; 657 } 658 } 659 660 /** 661 * iommu_dma_init_domain - Initialise a DMA mapping domain 662 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 663 * @base: IOVA at which the mappable address space starts 664 * @limit: Last address of the IOVA space 665 * @dev: Device the domain is being initialised for 666 * 667 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to 668 * avoid rounding surprises. If necessary, we reserve the page at address 0 669 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 670 * any change which could make prior IOVAs invalid will fail. 671 */ 672 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 673 dma_addr_t limit, struct device *dev) 674 { 675 struct iommu_dma_cookie *cookie = domain->iova_cookie; 676 unsigned long order, base_pfn; 677 struct iova_domain *iovad; 678 int ret; 679 680 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 681 return -EINVAL; 682 683 iovad = &cookie->iovad; 684 685 /* Use the smallest supported page size for IOVA granularity */ 686 order = __ffs(domain->pgsize_bitmap); 687 base_pfn = max_t(unsigned long, 1, base >> order); 688 689 /* Check the domain allows at least some access to the device... */ 690 if (domain->geometry.force_aperture) { 691 if (base > domain->geometry.aperture_end || 692 limit < domain->geometry.aperture_start) { 693 pr_warn("specified DMA range outside IOMMU capability\n"); 694 return -EFAULT; 695 } 696 /* ...then finally give it a kicking to make sure it fits */ 697 base_pfn = max_t(unsigned long, base_pfn, 698 domain->geometry.aperture_start >> order); 699 } 700 701 /* start_pfn is always nonzero for an already-initialised domain */ 702 mutex_lock(&cookie->mutex); 703 if (iovad->start_pfn) { 704 if (1UL << order != iovad->granule || 705 base_pfn != iovad->start_pfn) { 706 pr_warn("Incompatible range for DMA domain\n"); 707 ret = -EFAULT; 708 goto done_unlock; 709 } 710 711 ret = 0; 712 goto done_unlock; 713 } 714 715 init_iova_domain(iovad, 1UL << order, base_pfn); 716 ret = iova_domain_init_rcaches(iovad); 717 if (ret) 718 goto done_unlock; 719 720 iommu_dma_init_options(&cookie->options, dev); 721 722 /* If the FQ fails we can simply fall back to strict mode */ 723 if (domain->type == IOMMU_DOMAIN_DMA_FQ && 724 (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain))) 725 domain->type = IOMMU_DOMAIN_DMA; 726 727 ret = iova_reserve_iommu_regions(dev, domain); 728 729 done_unlock: 730 mutex_unlock(&cookie->mutex); 731 return ret; 732 } 733 734 /** 735 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 736 * page flags. 737 * @dir: Direction of DMA transfer 738 * @coherent: Is the DMA master cache-coherent? 739 * @attrs: DMA attributes for the mapping 740 * 741 * Return: corresponding IOMMU API page protection flags 742 */ 743 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 744 unsigned long attrs) 745 { 746 int prot = coherent ? IOMMU_CACHE : 0; 747 748 if (attrs & DMA_ATTR_PRIVILEGED) 749 prot |= IOMMU_PRIV; 750 751 switch (dir) { 752 case DMA_BIDIRECTIONAL: 753 return prot | IOMMU_READ | IOMMU_WRITE; 754 case DMA_TO_DEVICE: 755 return prot | IOMMU_READ; 756 case DMA_FROM_DEVICE: 757 return prot | IOMMU_WRITE; 758 default: 759 return 0; 760 } 761 } 762 763 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 764 size_t size, u64 dma_limit, struct device *dev) 765 { 766 struct iommu_dma_cookie *cookie = domain->iova_cookie; 767 struct iova_domain *iovad = &cookie->iovad; 768 unsigned long shift, iova_len, iova; 769 770 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 771 cookie->msi_iova += size; 772 return cookie->msi_iova - size; 773 } 774 775 shift = iova_shift(iovad); 776 iova_len = size >> shift; 777 778 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 779 780 if (domain->geometry.force_aperture) 781 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 782 783 /* 784 * Try to use all the 32-bit PCI addresses first. The original SAC vs. 785 * DAC reasoning loses relevance with PCIe, but enough hardware and 786 * firmware bugs are still lurking out there that it's safest not to 787 * venture into the 64-bit space until necessary. 788 * 789 * If your device goes wrong after seeing the notice then likely either 790 * its driver is not setting DMA masks accurately, the hardware has 791 * some inherent bug in handling >32-bit addresses, or not all the 792 * expected address bits are wired up between the device and the IOMMU. 793 */ 794 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) { 795 iova = alloc_iova_fast(iovad, iova_len, 796 DMA_BIT_MASK(32) >> shift, false); 797 if (iova) 798 goto done; 799 800 dev->iommu->pci_32bit_workaround = false; 801 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit)); 802 } 803 804 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true); 805 done: 806 return (dma_addr_t)iova << shift; 807 } 808 809 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 810 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) 811 { 812 struct iova_domain *iovad = &cookie->iovad; 813 814 /* The MSI case is only ever cleaning up its most recent allocation */ 815 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 816 cookie->msi_iova -= size; 817 else if (gather && gather->queued) 818 queue_iova(cookie, iova_pfn(iovad, iova), 819 size >> iova_shift(iovad), 820 &gather->freelist); 821 else 822 free_iova_fast(iovad, iova_pfn(iovad, iova), 823 size >> iova_shift(iovad)); 824 } 825 826 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 827 size_t size) 828 { 829 struct iommu_domain *domain = iommu_get_dma_domain(dev); 830 struct iommu_dma_cookie *cookie = domain->iova_cookie; 831 struct iova_domain *iovad = &cookie->iovad; 832 size_t iova_off = iova_offset(iovad, dma_addr); 833 struct iommu_iotlb_gather iotlb_gather; 834 size_t unmapped; 835 836 dma_addr -= iova_off; 837 size = iova_align(iovad, size + iova_off); 838 iommu_iotlb_gather_init(&iotlb_gather); 839 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 840 841 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 842 WARN_ON(unmapped != size); 843 844 if (!iotlb_gather.queued) 845 iommu_iotlb_sync(domain, &iotlb_gather); 846 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); 847 } 848 849 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 850 size_t size, int prot, u64 dma_mask) 851 { 852 struct iommu_domain *domain = iommu_get_dma_domain(dev); 853 struct iommu_dma_cookie *cookie = domain->iova_cookie; 854 struct iova_domain *iovad = &cookie->iovad; 855 size_t iova_off = iova_offset(iovad, phys); 856 dma_addr_t iova; 857 858 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 859 iommu_deferred_attach(dev, domain)) 860 return DMA_MAPPING_ERROR; 861 862 size = iova_align(iovad, size + iova_off); 863 864 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 865 if (!iova) 866 return DMA_MAPPING_ERROR; 867 868 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { 869 iommu_dma_free_iova(cookie, iova, size, NULL); 870 return DMA_MAPPING_ERROR; 871 } 872 return iova + iova_off; 873 } 874 875 static void __iommu_dma_free_pages(struct page **pages, int count) 876 { 877 while (count--) 878 __free_page(pages[count]); 879 kvfree(pages); 880 } 881 882 static struct page **__iommu_dma_alloc_pages(struct device *dev, 883 unsigned int count, unsigned long order_mask, gfp_t gfp) 884 { 885 struct page **pages; 886 unsigned int i = 0, nid = dev_to_node(dev); 887 888 order_mask &= GENMASK(MAX_PAGE_ORDER, 0); 889 if (!order_mask) 890 return NULL; 891 892 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 893 if (!pages) 894 return NULL; 895 896 /* IOMMU can map any pages, so himem can also be used here */ 897 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 898 899 while (count) { 900 struct page *page = NULL; 901 unsigned int order_size; 902 903 /* 904 * Higher-order allocations are a convenience rather 905 * than a necessity, hence using __GFP_NORETRY until 906 * falling back to minimum-order allocations. 907 */ 908 for (order_mask &= GENMASK(__fls(count), 0); 909 order_mask; order_mask &= ~order_size) { 910 unsigned int order = __fls(order_mask); 911 gfp_t alloc_flags = gfp; 912 913 order_size = 1U << order; 914 if (order_mask > order_size) 915 alloc_flags |= __GFP_NORETRY; 916 page = alloc_pages_node(nid, alloc_flags, order); 917 if (!page) 918 continue; 919 if (order) 920 split_page(page, order); 921 break; 922 } 923 if (!page) { 924 __iommu_dma_free_pages(pages, i); 925 return NULL; 926 } 927 count -= order_size; 928 while (order_size--) 929 pages[i++] = page++; 930 } 931 return pages; 932 } 933 934 /* 935 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 936 * but an IOMMU which supports smaller pages might not map the whole thing. 937 */ 938 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 939 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, 940 unsigned long attrs) 941 { 942 struct iommu_domain *domain = iommu_get_dma_domain(dev); 943 struct iommu_dma_cookie *cookie = domain->iova_cookie; 944 struct iova_domain *iovad = &cookie->iovad; 945 bool coherent = dev_is_dma_coherent(dev); 946 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 947 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 948 struct page **pages; 949 dma_addr_t iova; 950 ssize_t ret; 951 952 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 953 iommu_deferred_attach(dev, domain)) 954 return NULL; 955 956 min_size = alloc_sizes & -alloc_sizes; 957 if (min_size < PAGE_SIZE) { 958 min_size = PAGE_SIZE; 959 alloc_sizes |= PAGE_SIZE; 960 } else { 961 size = ALIGN(size, min_size); 962 } 963 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 964 alloc_sizes = min_size; 965 966 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 967 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 968 gfp); 969 if (!pages) 970 return NULL; 971 972 size = iova_align(iovad, size); 973 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 974 if (!iova) 975 goto out_free_pages; 976 977 /* 978 * Remove the zone/policy flags from the GFP - these are applied to the 979 * __iommu_dma_alloc_pages() but are not used for the supporting 980 * internal allocations that follow. 981 */ 982 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); 983 984 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) 985 goto out_free_iova; 986 987 if (!(ioprot & IOMMU_CACHE)) { 988 struct scatterlist *sg; 989 int i; 990 991 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 992 arch_dma_prep_coherent(sg_page(sg), sg->length); 993 } 994 995 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, 996 gfp); 997 if (ret < 0 || ret < size) 998 goto out_free_sg; 999 1000 sgt->sgl->dma_address = iova; 1001 sgt->sgl->dma_length = size; 1002 return pages; 1003 1004 out_free_sg: 1005 sg_free_table(sgt); 1006 out_free_iova: 1007 iommu_dma_free_iova(cookie, iova, size, NULL); 1008 out_free_pages: 1009 __iommu_dma_free_pages(pages, count); 1010 return NULL; 1011 } 1012 1013 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 1014 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 1015 unsigned long attrs) 1016 { 1017 struct page **pages; 1018 struct sg_table sgt; 1019 void *vaddr; 1020 1021 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, 1022 attrs); 1023 if (!pages) 1024 return NULL; 1025 *dma_handle = sgt.sgl->dma_address; 1026 sg_free_table(&sgt); 1027 vaddr = dma_common_pages_remap(pages, size, prot, 1028 __builtin_return_address(0)); 1029 if (!vaddr) 1030 goto out_unmap; 1031 return vaddr; 1032 1033 out_unmap: 1034 __iommu_dma_unmap(dev, *dma_handle, size); 1035 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1036 return NULL; 1037 } 1038 1039 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, 1040 size_t size, enum dma_data_direction dir, gfp_t gfp, 1041 unsigned long attrs) 1042 { 1043 struct dma_sgt_handle *sh; 1044 1045 sh = kmalloc(sizeof(*sh), gfp); 1046 if (!sh) 1047 return NULL; 1048 1049 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, 1050 PAGE_KERNEL, attrs); 1051 if (!sh->pages) { 1052 kfree(sh); 1053 return NULL; 1054 } 1055 return &sh->sgt; 1056 } 1057 1058 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 1059 struct sg_table *sgt, enum dma_data_direction dir) 1060 { 1061 struct dma_sgt_handle *sh = sgt_handle(sgt); 1062 1063 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 1064 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1065 sg_free_table(&sh->sgt); 1066 kfree(sh); 1067 } 1068 1069 static void iommu_dma_sync_single_for_cpu(struct device *dev, 1070 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 1071 { 1072 phys_addr_t phys; 1073 1074 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1075 return; 1076 1077 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1078 if (!dev_is_dma_coherent(dev)) 1079 arch_sync_dma_for_cpu(phys, size, dir); 1080 1081 if (is_swiotlb_buffer(dev, phys)) 1082 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 1083 } 1084 1085 static void iommu_dma_sync_single_for_device(struct device *dev, 1086 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 1087 { 1088 phys_addr_t phys; 1089 1090 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1091 return; 1092 1093 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1094 if (is_swiotlb_buffer(dev, phys)) 1095 swiotlb_sync_single_for_device(dev, phys, size, dir); 1096 1097 if (!dev_is_dma_coherent(dev)) 1098 arch_sync_dma_for_device(phys, size, dir); 1099 } 1100 1101 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 1102 struct scatterlist *sgl, int nelems, 1103 enum dma_data_direction dir) 1104 { 1105 struct scatterlist *sg; 1106 int i; 1107 1108 if (sg_dma_is_swiotlb(sgl)) 1109 for_each_sg(sgl, sg, nelems, i) 1110 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 1111 sg->length, dir); 1112 else if (!dev_is_dma_coherent(dev)) 1113 for_each_sg(sgl, sg, nelems, i) 1114 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 1115 } 1116 1117 static void iommu_dma_sync_sg_for_device(struct device *dev, 1118 struct scatterlist *sgl, int nelems, 1119 enum dma_data_direction dir) 1120 { 1121 struct scatterlist *sg; 1122 int i; 1123 1124 if (sg_dma_is_swiotlb(sgl)) 1125 for_each_sg(sgl, sg, nelems, i) 1126 iommu_dma_sync_single_for_device(dev, 1127 sg_dma_address(sg), 1128 sg->length, dir); 1129 else if (!dev_is_dma_coherent(dev)) 1130 for_each_sg(sgl, sg, nelems, i) 1131 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 1132 } 1133 1134 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 1135 unsigned long offset, size_t size, enum dma_data_direction dir, 1136 unsigned long attrs) 1137 { 1138 phys_addr_t phys = page_to_phys(page) + offset; 1139 bool coherent = dev_is_dma_coherent(dev); 1140 int prot = dma_info_to_prot(dir, coherent, attrs); 1141 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1142 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1143 struct iova_domain *iovad = &cookie->iovad; 1144 dma_addr_t iova, dma_mask = dma_get_mask(dev); 1145 1146 /* 1147 * If both the physical buffer start address and size are 1148 * page aligned, we don't need to use a bounce page. 1149 */ 1150 if (dev_use_swiotlb(dev, size, dir) && 1151 iova_offset(iovad, phys | size)) { 1152 void *padding_start; 1153 size_t padding_size, aligned_size; 1154 1155 if (!is_swiotlb_active(dev)) { 1156 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 1157 return DMA_MAPPING_ERROR; 1158 } 1159 1160 trace_swiotlb_bounced(dev, phys, size); 1161 1162 aligned_size = iova_align(iovad, size); 1163 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, 1164 iova_mask(iovad), dir, attrs); 1165 1166 if (phys == DMA_MAPPING_ERROR) 1167 return DMA_MAPPING_ERROR; 1168 1169 /* Cleanup the padding area. */ 1170 padding_start = phys_to_virt(phys); 1171 padding_size = aligned_size; 1172 1173 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 1174 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { 1175 padding_start += size; 1176 padding_size -= size; 1177 } 1178 1179 memset(padding_start, 0, padding_size); 1180 } 1181 1182 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1183 arch_sync_dma_for_device(phys, size, dir); 1184 1185 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1186 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) 1187 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1188 return iova; 1189 } 1190 1191 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1192 size_t size, enum dma_data_direction dir, unsigned long attrs) 1193 { 1194 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1195 phys_addr_t phys; 1196 1197 phys = iommu_iova_to_phys(domain, dma_handle); 1198 if (WARN_ON(!phys)) 1199 return; 1200 1201 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1202 arch_sync_dma_for_cpu(phys, size, dir); 1203 1204 __iommu_dma_unmap(dev, dma_handle, size); 1205 1206 if (unlikely(is_swiotlb_buffer(dev, phys))) 1207 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1208 } 1209 1210 /* 1211 * Prepare a successfully-mapped scatterlist to give back to the caller. 1212 * 1213 * At this point the segments are already laid out by iommu_dma_map_sg() to 1214 * avoid individually crossing any boundaries, so we merely need to check a 1215 * segment's start address to avoid concatenating across one. 1216 */ 1217 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1218 dma_addr_t dma_addr) 1219 { 1220 struct scatterlist *s, *cur = sg; 1221 unsigned long seg_mask = dma_get_seg_boundary(dev); 1222 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1223 int i, count = 0; 1224 1225 for_each_sg(sg, s, nents, i) { 1226 /* Restore this segment's original unaligned fields first */ 1227 dma_addr_t s_dma_addr = sg_dma_address(s); 1228 unsigned int s_iova_off = sg_dma_address(s); 1229 unsigned int s_length = sg_dma_len(s); 1230 unsigned int s_iova_len = s->length; 1231 1232 sg_dma_address(s) = DMA_MAPPING_ERROR; 1233 sg_dma_len(s) = 0; 1234 1235 if (sg_dma_is_bus_address(s)) { 1236 if (i > 0) 1237 cur = sg_next(cur); 1238 1239 sg_dma_unmark_bus_address(s); 1240 sg_dma_address(cur) = s_dma_addr; 1241 sg_dma_len(cur) = s_length; 1242 sg_dma_mark_bus_address(cur); 1243 count++; 1244 cur_len = 0; 1245 continue; 1246 } 1247 1248 s->offset += s_iova_off; 1249 s->length = s_length; 1250 1251 /* 1252 * Now fill in the real DMA data. If... 1253 * - there is a valid output segment to append to 1254 * - and this segment starts on an IOVA page boundary 1255 * - but doesn't fall at a segment boundary 1256 * - and wouldn't make the resulting output segment too long 1257 */ 1258 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1259 (max_len - cur_len >= s_length)) { 1260 /* ...then concatenate it with the previous one */ 1261 cur_len += s_length; 1262 } else { 1263 /* Otherwise start the next output segment */ 1264 if (i > 0) 1265 cur = sg_next(cur); 1266 cur_len = s_length; 1267 count++; 1268 1269 sg_dma_address(cur) = dma_addr + s_iova_off; 1270 } 1271 1272 sg_dma_len(cur) = cur_len; 1273 dma_addr += s_iova_len; 1274 1275 if (s_length + s_iova_off < s_iova_len) 1276 cur_len = 0; 1277 } 1278 return count; 1279 } 1280 1281 /* 1282 * If mapping failed, then just restore the original list, 1283 * but making sure the DMA fields are invalidated. 1284 */ 1285 static void __invalidate_sg(struct scatterlist *sg, int nents) 1286 { 1287 struct scatterlist *s; 1288 int i; 1289 1290 for_each_sg(sg, s, nents, i) { 1291 if (sg_dma_is_bus_address(s)) { 1292 sg_dma_unmark_bus_address(s); 1293 } else { 1294 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1295 s->offset += sg_dma_address(s); 1296 if (sg_dma_len(s)) 1297 s->length = sg_dma_len(s); 1298 } 1299 sg_dma_address(s) = DMA_MAPPING_ERROR; 1300 sg_dma_len(s) = 0; 1301 } 1302 } 1303 1304 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1305 int nents, enum dma_data_direction dir, unsigned long attrs) 1306 { 1307 struct scatterlist *s; 1308 int i; 1309 1310 for_each_sg(sg, s, nents, i) 1311 iommu_dma_unmap_page(dev, sg_dma_address(s), 1312 sg_dma_len(s), dir, attrs); 1313 } 1314 1315 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1316 int nents, enum dma_data_direction dir, unsigned long attrs) 1317 { 1318 struct scatterlist *s; 1319 int i; 1320 1321 sg_dma_mark_swiotlb(sg); 1322 1323 for_each_sg(sg, s, nents, i) { 1324 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1325 s->offset, s->length, dir, attrs); 1326 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1327 goto out_unmap; 1328 sg_dma_len(s) = s->length; 1329 } 1330 1331 return nents; 1332 1333 out_unmap: 1334 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1335 return -EIO; 1336 } 1337 1338 /* 1339 * The DMA API client is passing in a scatterlist which could describe 1340 * any old buffer layout, but the IOMMU API requires everything to be 1341 * aligned to IOMMU pages. Hence the need for this complicated bit of 1342 * impedance-matching, to be able to hand off a suitably-aligned list, 1343 * but still preserve the original offsets and sizes for the caller. 1344 */ 1345 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 1346 int nents, enum dma_data_direction dir, unsigned long attrs) 1347 { 1348 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1349 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1350 struct iova_domain *iovad = &cookie->iovad; 1351 struct scatterlist *s, *prev = NULL; 1352 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1353 struct pci_p2pdma_map_state p2pdma_state = {}; 1354 enum pci_p2pdma_map_type map; 1355 dma_addr_t iova; 1356 size_t iova_len = 0; 1357 unsigned long mask = dma_get_seg_boundary(dev); 1358 ssize_t ret; 1359 int i; 1360 1361 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1362 ret = iommu_deferred_attach(dev, domain); 1363 if (ret) 1364 goto out; 1365 } 1366 1367 if (dev_use_sg_swiotlb(dev, sg, nents, dir)) 1368 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1369 1370 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1371 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1372 1373 /* 1374 * Work out how much IOVA space we need, and align the segments to 1375 * IOVA granules for the IOMMU driver to handle. With some clever 1376 * trickery we can modify the list in-place, but reversibly, by 1377 * stashing the unaligned parts in the as-yet-unused DMA fields. 1378 */ 1379 for_each_sg(sg, s, nents, i) { 1380 size_t s_iova_off = iova_offset(iovad, s->offset); 1381 size_t s_length = s->length; 1382 size_t pad_len = (mask - iova_len + 1) & mask; 1383 1384 if (is_pci_p2pdma_page(sg_page(s))) { 1385 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); 1386 switch (map) { 1387 case PCI_P2PDMA_MAP_BUS_ADDR: 1388 /* 1389 * iommu_map_sg() will skip this segment as 1390 * it is marked as a bus address, 1391 * __finalise_sg() will copy the dma address 1392 * into the output segment. 1393 */ 1394 continue; 1395 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1396 /* 1397 * Mapping through host bridge should be 1398 * mapped with regular IOVAs, thus we 1399 * do nothing here and continue below. 1400 */ 1401 break; 1402 default: 1403 ret = -EREMOTEIO; 1404 goto out_restore_sg; 1405 } 1406 } 1407 1408 sg_dma_address(s) = s_iova_off; 1409 sg_dma_len(s) = s_length; 1410 s->offset -= s_iova_off; 1411 s_length = iova_align(iovad, s_length + s_iova_off); 1412 s->length = s_length; 1413 1414 /* 1415 * Due to the alignment of our single IOVA allocation, we can 1416 * depend on these assumptions about the segment boundary mask: 1417 * - If mask size >= IOVA size, then the IOVA range cannot 1418 * possibly fall across a boundary, so we don't care. 1419 * - If mask size < IOVA size, then the IOVA range must start 1420 * exactly on a boundary, therefore we can lay things out 1421 * based purely on segment lengths without needing to know 1422 * the actual addresses beforehand. 1423 * - The mask must be a power of 2, so pad_len == 0 if 1424 * iova_len == 0, thus we cannot dereference prev the first 1425 * time through here (i.e. before it has a meaningful value). 1426 */ 1427 if (pad_len && pad_len < s_length - 1) { 1428 prev->length += pad_len; 1429 iova_len += pad_len; 1430 } 1431 1432 iova_len += s_length; 1433 prev = s; 1434 } 1435 1436 if (!iova_len) 1437 return __finalise_sg(dev, sg, nents, 0); 1438 1439 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1440 if (!iova) { 1441 ret = -ENOMEM; 1442 goto out_restore_sg; 1443 } 1444 1445 /* 1446 * We'll leave any physical concatenation to the IOMMU driver's 1447 * implementation - it knows better than we do. 1448 */ 1449 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 1450 if (ret < 0 || ret < iova_len) 1451 goto out_free_iova; 1452 1453 return __finalise_sg(dev, sg, nents, iova); 1454 1455 out_free_iova: 1456 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1457 out_restore_sg: 1458 __invalidate_sg(sg, nents); 1459 out: 1460 if (ret != -ENOMEM && ret != -EREMOTEIO) 1461 return -EINVAL; 1462 return ret; 1463 } 1464 1465 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1466 int nents, enum dma_data_direction dir, unsigned long attrs) 1467 { 1468 dma_addr_t end = 0, start; 1469 struct scatterlist *tmp; 1470 int i; 1471 1472 if (sg_dma_is_swiotlb(sg)) { 1473 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1474 return; 1475 } 1476 1477 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1478 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1479 1480 /* 1481 * The scatterlist segments are mapped into a single 1482 * contiguous IOVA allocation, the start and end points 1483 * just have to be determined. 1484 */ 1485 for_each_sg(sg, tmp, nents, i) { 1486 if (sg_dma_is_bus_address(tmp)) { 1487 sg_dma_unmark_bus_address(tmp); 1488 continue; 1489 } 1490 1491 if (sg_dma_len(tmp) == 0) 1492 break; 1493 1494 start = sg_dma_address(tmp); 1495 break; 1496 } 1497 1498 nents -= i; 1499 for_each_sg(tmp, tmp, nents, i) { 1500 if (sg_dma_is_bus_address(tmp)) { 1501 sg_dma_unmark_bus_address(tmp); 1502 continue; 1503 } 1504 1505 if (sg_dma_len(tmp) == 0) 1506 break; 1507 1508 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1509 } 1510 1511 if (end) 1512 __iommu_dma_unmap(dev, start, end - start); 1513 } 1514 1515 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1516 size_t size, enum dma_data_direction dir, unsigned long attrs) 1517 { 1518 return __iommu_dma_map(dev, phys, size, 1519 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1520 dma_get_mask(dev)); 1521 } 1522 1523 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1524 size_t size, enum dma_data_direction dir, unsigned long attrs) 1525 { 1526 __iommu_dma_unmap(dev, handle, size); 1527 } 1528 1529 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1530 { 1531 size_t alloc_size = PAGE_ALIGN(size); 1532 int count = alloc_size >> PAGE_SHIFT; 1533 struct page *page = NULL, **pages = NULL; 1534 1535 /* Non-coherent atomic allocation? Easy */ 1536 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1537 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1538 return; 1539 1540 if (is_vmalloc_addr(cpu_addr)) { 1541 /* 1542 * If it the address is remapped, then it's either non-coherent 1543 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1544 */ 1545 pages = dma_common_find_pages(cpu_addr); 1546 if (!pages) 1547 page = vmalloc_to_page(cpu_addr); 1548 dma_common_free_remap(cpu_addr, alloc_size); 1549 } else { 1550 /* Lowmem means a coherent atomic or CMA allocation */ 1551 page = virt_to_page(cpu_addr); 1552 } 1553 1554 if (pages) 1555 __iommu_dma_free_pages(pages, count); 1556 if (page) 1557 dma_free_contiguous(dev, page, alloc_size); 1558 } 1559 1560 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1561 dma_addr_t handle, unsigned long attrs) 1562 { 1563 __iommu_dma_unmap(dev, handle, size); 1564 __iommu_dma_free(dev, size, cpu_addr); 1565 } 1566 1567 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1568 struct page **pagep, gfp_t gfp, unsigned long attrs) 1569 { 1570 bool coherent = dev_is_dma_coherent(dev); 1571 size_t alloc_size = PAGE_ALIGN(size); 1572 int node = dev_to_node(dev); 1573 struct page *page = NULL; 1574 void *cpu_addr; 1575 1576 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1577 if (!page) 1578 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1579 if (!page) 1580 return NULL; 1581 1582 if (!coherent || PageHighMem(page)) { 1583 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1584 1585 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1586 prot, __builtin_return_address(0)); 1587 if (!cpu_addr) 1588 goto out_free_pages; 1589 1590 if (!coherent) 1591 arch_dma_prep_coherent(page, size); 1592 } else { 1593 cpu_addr = page_address(page); 1594 } 1595 1596 *pagep = page; 1597 memset(cpu_addr, 0, alloc_size); 1598 return cpu_addr; 1599 out_free_pages: 1600 dma_free_contiguous(dev, page, alloc_size); 1601 return NULL; 1602 } 1603 1604 static void *iommu_dma_alloc(struct device *dev, size_t size, 1605 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1606 { 1607 bool coherent = dev_is_dma_coherent(dev); 1608 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1609 struct page *page = NULL; 1610 void *cpu_addr; 1611 1612 gfp |= __GFP_ZERO; 1613 1614 if (gfpflags_allow_blocking(gfp) && 1615 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1616 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1617 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1618 } 1619 1620 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1621 !gfpflags_allow_blocking(gfp) && !coherent) 1622 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1623 gfp, NULL); 1624 else 1625 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1626 if (!cpu_addr) 1627 return NULL; 1628 1629 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1630 dev->coherent_dma_mask); 1631 if (*handle == DMA_MAPPING_ERROR) { 1632 __iommu_dma_free(dev, size, cpu_addr); 1633 return NULL; 1634 } 1635 1636 return cpu_addr; 1637 } 1638 1639 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1640 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1641 unsigned long attrs) 1642 { 1643 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1644 unsigned long pfn, off = vma->vm_pgoff; 1645 int ret; 1646 1647 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1648 1649 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1650 return ret; 1651 1652 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1653 return -ENXIO; 1654 1655 if (is_vmalloc_addr(cpu_addr)) { 1656 struct page **pages = dma_common_find_pages(cpu_addr); 1657 1658 if (pages) 1659 return vm_map_pages(vma, pages, nr_pages); 1660 pfn = vmalloc_to_pfn(cpu_addr); 1661 } else { 1662 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1663 } 1664 1665 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1666 vma->vm_end - vma->vm_start, 1667 vma->vm_page_prot); 1668 } 1669 1670 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1671 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1672 unsigned long attrs) 1673 { 1674 struct page *page; 1675 int ret; 1676 1677 if (is_vmalloc_addr(cpu_addr)) { 1678 struct page **pages = dma_common_find_pages(cpu_addr); 1679 1680 if (pages) { 1681 return sg_alloc_table_from_pages(sgt, pages, 1682 PAGE_ALIGN(size) >> PAGE_SHIFT, 1683 0, size, GFP_KERNEL); 1684 } 1685 1686 page = vmalloc_to_page(cpu_addr); 1687 } else { 1688 page = virt_to_page(cpu_addr); 1689 } 1690 1691 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1692 if (!ret) 1693 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1694 return ret; 1695 } 1696 1697 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1698 { 1699 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1700 1701 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1702 } 1703 1704 static size_t iommu_dma_opt_mapping_size(void) 1705 { 1706 return iova_rcache_range(); 1707 } 1708 1709 static const struct dma_map_ops iommu_dma_ops = { 1710 .flags = DMA_F_PCI_P2PDMA_SUPPORTED, 1711 .alloc = iommu_dma_alloc, 1712 .free = iommu_dma_free, 1713 .alloc_pages = dma_common_alloc_pages, 1714 .free_pages = dma_common_free_pages, 1715 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, 1716 .free_noncontiguous = iommu_dma_free_noncontiguous, 1717 .mmap = iommu_dma_mmap, 1718 .get_sgtable = iommu_dma_get_sgtable, 1719 .map_page = iommu_dma_map_page, 1720 .unmap_page = iommu_dma_unmap_page, 1721 .map_sg = iommu_dma_map_sg, 1722 .unmap_sg = iommu_dma_unmap_sg, 1723 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1724 .sync_single_for_device = iommu_dma_sync_single_for_device, 1725 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1726 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1727 .map_resource = iommu_dma_map_resource, 1728 .unmap_resource = iommu_dma_unmap_resource, 1729 .get_merge_boundary = iommu_dma_get_merge_boundary, 1730 .opt_mapping_size = iommu_dma_opt_mapping_size, 1731 }; 1732 1733 /* 1734 * The IOMMU core code allocates the default DMA domain, which the underlying 1735 * IOMMU driver needs to support via the dma-iommu layer. 1736 */ 1737 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) 1738 { 1739 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1740 1741 if (!domain) 1742 goto out_err; 1743 1744 /* 1745 * The IOMMU core code allocates the default DMA domain, which the 1746 * underlying IOMMU driver needs to support via the dma-iommu layer. 1747 */ 1748 if (iommu_is_dma_domain(domain)) { 1749 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) 1750 goto out_err; 1751 dev->dma_ops = &iommu_dma_ops; 1752 } 1753 1754 return; 1755 out_err: 1756 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1757 dev_name(dev)); 1758 } 1759 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); 1760 1761 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1762 phys_addr_t msi_addr, struct iommu_domain *domain) 1763 { 1764 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1765 struct iommu_dma_msi_page *msi_page; 1766 dma_addr_t iova; 1767 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1768 size_t size = cookie_msi_granule(cookie); 1769 1770 msi_addr &= ~(phys_addr_t)(size - 1); 1771 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1772 if (msi_page->phys == msi_addr) 1773 return msi_page; 1774 1775 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1776 if (!msi_page) 1777 return NULL; 1778 1779 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1780 if (!iova) 1781 goto out_free_page; 1782 1783 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) 1784 goto out_free_iova; 1785 1786 INIT_LIST_HEAD(&msi_page->list); 1787 msi_page->phys = msi_addr; 1788 msi_page->iova = iova; 1789 list_add(&msi_page->list, &cookie->msi_page_list); 1790 return msi_page; 1791 1792 out_free_iova: 1793 iommu_dma_free_iova(cookie, iova, size, NULL); 1794 out_free_page: 1795 kfree(msi_page); 1796 return NULL; 1797 } 1798 1799 /** 1800 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain 1801 * @desc: MSI descriptor, will store the MSI page 1802 * @msi_addr: MSI target address to be mapped 1803 * 1804 * Return: 0 on success or negative error code if the mapping failed. 1805 */ 1806 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1807 { 1808 struct device *dev = msi_desc_to_dev(desc); 1809 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1810 struct iommu_dma_msi_page *msi_page; 1811 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1812 1813 if (!domain || !domain->iova_cookie) { 1814 desc->iommu_cookie = NULL; 1815 return 0; 1816 } 1817 1818 /* 1819 * In fact the whole prepare operation should already be serialised by 1820 * irq_domain_mutex further up the callchain, but that's pretty subtle 1821 * on its own, so consider this locking as failsafe documentation... 1822 */ 1823 mutex_lock(&msi_prepare_lock); 1824 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1825 mutex_unlock(&msi_prepare_lock); 1826 1827 msi_desc_set_iommu_cookie(desc, msi_page); 1828 1829 if (!msi_page) 1830 return -ENOMEM; 1831 return 0; 1832 } 1833 1834 /** 1835 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message 1836 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi() 1837 * @msg: MSI message containing target physical address 1838 */ 1839 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg) 1840 { 1841 struct device *dev = msi_desc_to_dev(desc); 1842 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1843 const struct iommu_dma_msi_page *msi_page; 1844 1845 msi_page = msi_desc_get_iommu_cookie(desc); 1846 1847 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1848 return; 1849 1850 msg->address_hi = upper_32_bits(msi_page->iova); 1851 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1852 msg->address_lo += lower_32_bits(msi_page->iova); 1853 } 1854 1855 static int iommu_dma_init(void) 1856 { 1857 if (is_kdump_kernel()) 1858 static_branch_enable(&iommu_deferred_attach_enabled); 1859 1860 return iova_cache_get(); 1861 } 1862 arch_initcall(iommu_dma_init); 1863