xref: /linux/drivers/iommu/dma-iommu.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/irq.h>
29 #include <linux/mm.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/vmalloc.h>
33 
34 struct iommu_dma_msi_page {
35 	struct list_head	list;
36 	dma_addr_t		iova;
37 	phys_addr_t		phys;
38 };
39 
40 enum iommu_dma_cookie_type {
41 	IOMMU_DMA_IOVA_COOKIE,
42 	IOMMU_DMA_MSI_COOKIE,
43 };
44 
45 struct iommu_dma_cookie {
46 	enum iommu_dma_cookie_type	type;
47 	union {
48 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
49 		struct iova_domain	iovad;
50 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
51 		dma_addr_t		msi_iova;
52 	};
53 	struct list_head		msi_page_list;
54 	spinlock_t			msi_lock;
55 };
56 
57 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
58 {
59 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
60 		return cookie->iovad.granule;
61 	return PAGE_SIZE;
62 }
63 
64 static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
65 {
66 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
67 
68 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
69 		return &cookie->iovad;
70 	return NULL;
71 }
72 
73 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
74 {
75 	struct iommu_dma_cookie *cookie;
76 
77 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
78 	if (cookie) {
79 		spin_lock_init(&cookie->msi_lock);
80 		INIT_LIST_HEAD(&cookie->msi_page_list);
81 		cookie->type = type;
82 	}
83 	return cookie;
84 }
85 
86 int iommu_dma_init(void)
87 {
88 	return iova_cache_get();
89 }
90 
91 /**
92  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
93  * @domain: IOMMU domain to prepare for DMA-API usage
94  *
95  * IOMMU drivers should normally call this from their domain_alloc
96  * callback when domain->type == IOMMU_DOMAIN_DMA.
97  */
98 int iommu_get_dma_cookie(struct iommu_domain *domain)
99 {
100 	if (domain->iova_cookie)
101 		return -EEXIST;
102 
103 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
104 	if (!domain->iova_cookie)
105 		return -ENOMEM;
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL(iommu_get_dma_cookie);
110 
111 /**
112  * iommu_get_msi_cookie - Acquire just MSI remapping resources
113  * @domain: IOMMU domain to prepare
114  * @base: Start address of IOVA region for MSI mappings
115  *
116  * Users who manage their own IOVA allocation and do not want DMA API support,
117  * but would still like to take advantage of automatic MSI remapping, can use
118  * this to initialise their own domain appropriately. Users should reserve a
119  * contiguous IOVA region, starting at @base, large enough to accommodate the
120  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
121  * used by the devices attached to @domain.
122  */
123 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
124 {
125 	struct iommu_dma_cookie *cookie;
126 
127 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
128 		return -EINVAL;
129 
130 	if (domain->iova_cookie)
131 		return -EEXIST;
132 
133 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
134 	if (!cookie)
135 		return -ENOMEM;
136 
137 	cookie->msi_iova = base;
138 	domain->iova_cookie = cookie;
139 	return 0;
140 }
141 EXPORT_SYMBOL(iommu_get_msi_cookie);
142 
143 /**
144  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
145  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
146  *          iommu_get_msi_cookie()
147  *
148  * IOMMU drivers should normally call this from their domain_free callback.
149  */
150 void iommu_put_dma_cookie(struct iommu_domain *domain)
151 {
152 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
153 	struct iommu_dma_msi_page *msi, *tmp;
154 
155 	if (!cookie)
156 		return;
157 
158 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
159 		put_iova_domain(&cookie->iovad);
160 
161 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
162 		list_del(&msi->list);
163 		kfree(msi);
164 	}
165 	kfree(cookie);
166 	domain->iova_cookie = NULL;
167 }
168 EXPORT_SYMBOL(iommu_put_dma_cookie);
169 
170 static void iova_reserve_pci_windows(struct pci_dev *dev,
171 		struct iova_domain *iovad)
172 {
173 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
174 	struct resource_entry *window;
175 	unsigned long lo, hi;
176 
177 	resource_list_for_each_entry(window, &bridge->windows) {
178 		if (resource_type(window->res) != IORESOURCE_MEM &&
179 		    resource_type(window->res) != IORESOURCE_IO)
180 			continue;
181 
182 		lo = iova_pfn(iovad, window->res->start - window->offset);
183 		hi = iova_pfn(iovad, window->res->end - window->offset);
184 		reserve_iova(iovad, lo, hi);
185 	}
186 }
187 
188 /**
189  * iommu_dma_init_domain - Initialise a DMA mapping domain
190  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
191  * @base: IOVA at which the mappable address space starts
192  * @size: Size of IOVA space
193  * @dev: Device the domain is being initialised for
194  *
195  * @base and @size should be exact multiples of IOMMU page granularity to
196  * avoid rounding surprises. If necessary, we reserve the page at address 0
197  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
198  * any change which could make prior IOVAs invalid will fail.
199  */
200 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
201 		u64 size, struct device *dev)
202 {
203 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
204 	struct iova_domain *iovad = &cookie->iovad;
205 	unsigned long order, base_pfn, end_pfn;
206 	bool pci = dev && dev_is_pci(dev);
207 
208 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
209 		return -EINVAL;
210 
211 	/* Use the smallest supported page size for IOVA granularity */
212 	order = __ffs(domain->pgsize_bitmap);
213 	base_pfn = max_t(unsigned long, 1, base >> order);
214 	end_pfn = (base + size - 1) >> order;
215 
216 	/* Check the domain allows at least some access to the device... */
217 	if (domain->geometry.force_aperture) {
218 		if (base > domain->geometry.aperture_end ||
219 		    base + size <= domain->geometry.aperture_start) {
220 			pr_warn("specified DMA range outside IOMMU capability\n");
221 			return -EFAULT;
222 		}
223 		/* ...then finally give it a kicking to make sure it fits */
224 		base_pfn = max_t(unsigned long, base_pfn,
225 				domain->geometry.aperture_start >> order);
226 		end_pfn = min_t(unsigned long, end_pfn,
227 				domain->geometry.aperture_end >> order);
228 	}
229 	/*
230 	 * PCI devices may have larger DMA masks, but still prefer allocating
231 	 * within a 32-bit mask to avoid DAC addressing. Such limitations don't
232 	 * apply to the typical platform device, so for those we may as well
233 	 * leave the cache limit at the top of their range to save an rb_last()
234 	 * traversal on every allocation.
235 	 */
236 	if (pci)
237 		end_pfn &= DMA_BIT_MASK(32) >> order;
238 
239 	/* start_pfn is always nonzero for an already-initialised domain */
240 	if (iovad->start_pfn) {
241 		if (1UL << order != iovad->granule ||
242 		    base_pfn != iovad->start_pfn) {
243 			pr_warn("Incompatible range for DMA domain\n");
244 			return -EFAULT;
245 		}
246 		/*
247 		 * If we have devices with different DMA masks, move the free
248 		 * area cache limit down for the benefit of the smaller one.
249 		 */
250 		iovad->dma_32bit_pfn = min(end_pfn, iovad->dma_32bit_pfn);
251 	} else {
252 		init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
253 		if (pci)
254 			iova_reserve_pci_windows(to_pci_dev(dev), iovad);
255 	}
256 	return 0;
257 }
258 EXPORT_SYMBOL(iommu_dma_init_domain);
259 
260 /**
261  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
262  *                    page flags.
263  * @dir: Direction of DMA transfer
264  * @coherent: Is the DMA master cache-coherent?
265  * @attrs: DMA attributes for the mapping
266  *
267  * Return: corresponding IOMMU API page protection flags
268  */
269 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
270 		     unsigned long attrs)
271 {
272 	int prot = coherent ? IOMMU_CACHE : 0;
273 
274 	if (attrs & DMA_ATTR_PRIVILEGED)
275 		prot |= IOMMU_PRIV;
276 
277 	switch (dir) {
278 	case DMA_BIDIRECTIONAL:
279 		return prot | IOMMU_READ | IOMMU_WRITE;
280 	case DMA_TO_DEVICE:
281 		return prot | IOMMU_READ;
282 	case DMA_FROM_DEVICE:
283 		return prot | IOMMU_WRITE;
284 	default:
285 		return 0;
286 	}
287 }
288 
289 static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
290 		dma_addr_t dma_limit, struct device *dev)
291 {
292 	struct iova_domain *iovad = cookie_iovad(domain);
293 	unsigned long shift = iova_shift(iovad);
294 	unsigned long length = iova_align(iovad, size) >> shift;
295 	struct iova *iova = NULL;
296 
297 	if (domain->geometry.force_aperture)
298 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
299 
300 	/* Try to get PCI devices a SAC address */
301 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
302 		iova = alloc_iova(iovad, length, DMA_BIT_MASK(32) >> shift,
303 				  true);
304 	/*
305 	 * Enforce size-alignment to be safe - there could perhaps be an
306 	 * attribute to control this per-device, or at least per-domain...
307 	 */
308 	if (!iova)
309 		iova = alloc_iova(iovad, length, dma_limit >> shift, true);
310 
311 	return iova;
312 }
313 
314 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */
315 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
316 {
317 	struct iova_domain *iovad = cookie_iovad(domain);
318 	unsigned long shift = iova_shift(iovad);
319 	unsigned long pfn = dma_addr >> shift;
320 	struct iova *iova = find_iova(iovad, pfn);
321 	size_t size;
322 
323 	if (WARN_ON(!iova))
324 		return;
325 
326 	size = iova_size(iova) << shift;
327 	size -= iommu_unmap(domain, pfn << shift, size);
328 	/* ...and if we can't, then something is horribly, horribly wrong */
329 	WARN_ON(size > 0);
330 	__free_iova(iovad, iova);
331 }
332 
333 static void __iommu_dma_free_pages(struct page **pages, int count)
334 {
335 	while (count--)
336 		__free_page(pages[count]);
337 	kvfree(pages);
338 }
339 
340 static struct page **__iommu_dma_alloc_pages(unsigned int count,
341 		unsigned long order_mask, gfp_t gfp)
342 {
343 	struct page **pages;
344 	unsigned int i = 0, array_size = count * sizeof(*pages);
345 
346 	order_mask &= (2U << MAX_ORDER) - 1;
347 	if (!order_mask)
348 		return NULL;
349 
350 	if (array_size <= PAGE_SIZE)
351 		pages = kzalloc(array_size, GFP_KERNEL);
352 	else
353 		pages = vzalloc(array_size);
354 	if (!pages)
355 		return NULL;
356 
357 	/* IOMMU can map any pages, so himem can also be used here */
358 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
359 
360 	while (count) {
361 		struct page *page = NULL;
362 		unsigned int order_size;
363 
364 		/*
365 		 * Higher-order allocations are a convenience rather
366 		 * than a necessity, hence using __GFP_NORETRY until
367 		 * falling back to minimum-order allocations.
368 		 */
369 		for (order_mask &= (2U << __fls(count)) - 1;
370 		     order_mask; order_mask &= ~order_size) {
371 			unsigned int order = __fls(order_mask);
372 
373 			order_size = 1U << order;
374 			page = alloc_pages((order_mask - order_size) ?
375 					   gfp | __GFP_NORETRY : gfp, order);
376 			if (!page)
377 				continue;
378 			if (!order)
379 				break;
380 			if (!PageCompound(page)) {
381 				split_page(page, order);
382 				break;
383 			} else if (!split_huge_page(page)) {
384 				break;
385 			}
386 			__free_pages(page, order);
387 		}
388 		if (!page) {
389 			__iommu_dma_free_pages(pages, i);
390 			return NULL;
391 		}
392 		count -= order_size;
393 		while (order_size--)
394 			pages[i++] = page++;
395 	}
396 	return pages;
397 }
398 
399 /**
400  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
401  * @dev: Device which owns this buffer
402  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
403  * @size: Size of buffer in bytes
404  * @handle: DMA address of buffer
405  *
406  * Frees both the pages associated with the buffer, and the array
407  * describing them
408  */
409 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
410 		dma_addr_t *handle)
411 {
412 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
413 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
414 	*handle = DMA_ERROR_CODE;
415 }
416 
417 /**
418  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
419  * @dev: Device to allocate memory for. Must be a real device
420  *	 attached to an iommu_dma_domain
421  * @size: Size of buffer in bytes
422  * @gfp: Allocation flags
423  * @attrs: DMA attributes for this allocation
424  * @prot: IOMMU mapping flags
425  * @handle: Out argument for allocated DMA handle
426  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
427  *		given VA/PA are visible to the given non-coherent device.
428  *
429  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
430  * but an IOMMU which supports smaller pages might not map the whole thing.
431  *
432  * Return: Array of struct page pointers describing the buffer,
433  *	   or NULL on failure.
434  */
435 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
436 		unsigned long attrs, int prot, dma_addr_t *handle,
437 		void (*flush_page)(struct device *, const void *, phys_addr_t))
438 {
439 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
440 	struct iova_domain *iovad = cookie_iovad(domain);
441 	struct iova *iova;
442 	struct page **pages;
443 	struct sg_table sgt;
444 	dma_addr_t dma_addr;
445 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
446 
447 	*handle = DMA_ERROR_CODE;
448 
449 	min_size = alloc_sizes & -alloc_sizes;
450 	if (min_size < PAGE_SIZE) {
451 		min_size = PAGE_SIZE;
452 		alloc_sizes |= PAGE_SIZE;
453 	} else {
454 		size = ALIGN(size, min_size);
455 	}
456 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
457 		alloc_sizes = min_size;
458 
459 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
460 	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
461 	if (!pages)
462 		return NULL;
463 
464 	iova = __alloc_iova(domain, size, dev->coherent_dma_mask, dev);
465 	if (!iova)
466 		goto out_free_pages;
467 
468 	size = iova_align(iovad, size);
469 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
470 		goto out_free_iova;
471 
472 	if (!(prot & IOMMU_CACHE)) {
473 		struct sg_mapping_iter miter;
474 		/*
475 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
476 		 * sufficient here, so skip it by using the "wrong" direction.
477 		 */
478 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
479 		while (sg_miter_next(&miter))
480 			flush_page(dev, miter.addr, page_to_phys(miter.page));
481 		sg_miter_stop(&miter);
482 	}
483 
484 	dma_addr = iova_dma_addr(iovad, iova);
485 	if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
486 			< size)
487 		goto out_free_sg;
488 
489 	*handle = dma_addr;
490 	sg_free_table(&sgt);
491 	return pages;
492 
493 out_free_sg:
494 	sg_free_table(&sgt);
495 out_free_iova:
496 	__free_iova(iovad, iova);
497 out_free_pages:
498 	__iommu_dma_free_pages(pages, count);
499 	return NULL;
500 }
501 
502 /**
503  * iommu_dma_mmap - Map a buffer into provided user VMA
504  * @pages: Array representing buffer from iommu_dma_alloc()
505  * @size: Size of buffer in bytes
506  * @vma: VMA describing requested userspace mapping
507  *
508  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
509  * for verifying the correct size and protection of @vma beforehand.
510  */
511 
512 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
513 {
514 	unsigned long uaddr = vma->vm_start;
515 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
516 	int ret = -ENXIO;
517 
518 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
519 		ret = vm_insert_page(vma, uaddr, pages[i]);
520 		if (ret)
521 			break;
522 		uaddr += PAGE_SIZE;
523 	}
524 	return ret;
525 }
526 
527 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
528 		size_t size, int prot)
529 {
530 	dma_addr_t dma_addr;
531 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
532 	struct iova_domain *iovad = cookie_iovad(domain);
533 	size_t iova_off = iova_offset(iovad, phys);
534 	size_t len = iova_align(iovad, size + iova_off);
535 	struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev), dev);
536 
537 	if (!iova)
538 		return DMA_ERROR_CODE;
539 
540 	dma_addr = iova_dma_addr(iovad, iova);
541 	if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
542 		__free_iova(iovad, iova);
543 		return DMA_ERROR_CODE;
544 	}
545 	return dma_addr + iova_off;
546 }
547 
548 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
549 		unsigned long offset, size_t size, int prot)
550 {
551 	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
552 }
553 
554 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
555 		enum dma_data_direction dir, unsigned long attrs)
556 {
557 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
558 }
559 
560 /*
561  * Prepare a successfully-mapped scatterlist to give back to the caller.
562  *
563  * At this point the segments are already laid out by iommu_dma_map_sg() to
564  * avoid individually crossing any boundaries, so we merely need to check a
565  * segment's start address to avoid concatenating across one.
566  */
567 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
568 		dma_addr_t dma_addr)
569 {
570 	struct scatterlist *s, *cur = sg;
571 	unsigned long seg_mask = dma_get_seg_boundary(dev);
572 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
573 	int i, count = 0;
574 
575 	for_each_sg(sg, s, nents, i) {
576 		/* Restore this segment's original unaligned fields first */
577 		unsigned int s_iova_off = sg_dma_address(s);
578 		unsigned int s_length = sg_dma_len(s);
579 		unsigned int s_iova_len = s->length;
580 
581 		s->offset += s_iova_off;
582 		s->length = s_length;
583 		sg_dma_address(s) = DMA_ERROR_CODE;
584 		sg_dma_len(s) = 0;
585 
586 		/*
587 		 * Now fill in the real DMA data. If...
588 		 * - there is a valid output segment to append to
589 		 * - and this segment starts on an IOVA page boundary
590 		 * - but doesn't fall at a segment boundary
591 		 * - and wouldn't make the resulting output segment too long
592 		 */
593 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
594 		    (cur_len + s_length <= max_len)) {
595 			/* ...then concatenate it with the previous one */
596 			cur_len += s_length;
597 		} else {
598 			/* Otherwise start the next output segment */
599 			if (i > 0)
600 				cur = sg_next(cur);
601 			cur_len = s_length;
602 			count++;
603 
604 			sg_dma_address(cur) = dma_addr + s_iova_off;
605 		}
606 
607 		sg_dma_len(cur) = cur_len;
608 		dma_addr += s_iova_len;
609 
610 		if (s_length + s_iova_off < s_iova_len)
611 			cur_len = 0;
612 	}
613 	return count;
614 }
615 
616 /*
617  * If mapping failed, then just restore the original list,
618  * but making sure the DMA fields are invalidated.
619  */
620 static void __invalidate_sg(struct scatterlist *sg, int nents)
621 {
622 	struct scatterlist *s;
623 	int i;
624 
625 	for_each_sg(sg, s, nents, i) {
626 		if (sg_dma_address(s) != DMA_ERROR_CODE)
627 			s->offset += sg_dma_address(s);
628 		if (sg_dma_len(s))
629 			s->length = sg_dma_len(s);
630 		sg_dma_address(s) = DMA_ERROR_CODE;
631 		sg_dma_len(s) = 0;
632 	}
633 }
634 
635 /*
636  * The DMA API client is passing in a scatterlist which could describe
637  * any old buffer layout, but the IOMMU API requires everything to be
638  * aligned to IOMMU pages. Hence the need for this complicated bit of
639  * impedance-matching, to be able to hand off a suitably-aligned list,
640  * but still preserve the original offsets and sizes for the caller.
641  */
642 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
643 		int nents, int prot)
644 {
645 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
646 	struct iova_domain *iovad = cookie_iovad(domain);
647 	struct iova *iova;
648 	struct scatterlist *s, *prev = NULL;
649 	dma_addr_t dma_addr;
650 	size_t iova_len = 0;
651 	unsigned long mask = dma_get_seg_boundary(dev);
652 	int i;
653 
654 	/*
655 	 * Work out how much IOVA space we need, and align the segments to
656 	 * IOVA granules for the IOMMU driver to handle. With some clever
657 	 * trickery we can modify the list in-place, but reversibly, by
658 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
659 	 */
660 	for_each_sg(sg, s, nents, i) {
661 		size_t s_iova_off = iova_offset(iovad, s->offset);
662 		size_t s_length = s->length;
663 		size_t pad_len = (mask - iova_len + 1) & mask;
664 
665 		sg_dma_address(s) = s_iova_off;
666 		sg_dma_len(s) = s_length;
667 		s->offset -= s_iova_off;
668 		s_length = iova_align(iovad, s_length + s_iova_off);
669 		s->length = s_length;
670 
671 		/*
672 		 * Due to the alignment of our single IOVA allocation, we can
673 		 * depend on these assumptions about the segment boundary mask:
674 		 * - If mask size >= IOVA size, then the IOVA range cannot
675 		 *   possibly fall across a boundary, so we don't care.
676 		 * - If mask size < IOVA size, then the IOVA range must start
677 		 *   exactly on a boundary, therefore we can lay things out
678 		 *   based purely on segment lengths without needing to know
679 		 *   the actual addresses beforehand.
680 		 * - The mask must be a power of 2, so pad_len == 0 if
681 		 *   iova_len == 0, thus we cannot dereference prev the first
682 		 *   time through here (i.e. before it has a meaningful value).
683 		 */
684 		if (pad_len && pad_len < s_length - 1) {
685 			prev->length += pad_len;
686 			iova_len += pad_len;
687 		}
688 
689 		iova_len += s_length;
690 		prev = s;
691 	}
692 
693 	iova = __alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
694 	if (!iova)
695 		goto out_restore_sg;
696 
697 	/*
698 	 * We'll leave any physical concatenation to the IOMMU driver's
699 	 * implementation - it knows better than we do.
700 	 */
701 	dma_addr = iova_dma_addr(iovad, iova);
702 	if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
703 		goto out_free_iova;
704 
705 	return __finalise_sg(dev, sg, nents, dma_addr);
706 
707 out_free_iova:
708 	__free_iova(iovad, iova);
709 out_restore_sg:
710 	__invalidate_sg(sg, nents);
711 	return 0;
712 }
713 
714 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
715 		enum dma_data_direction dir, unsigned long attrs)
716 {
717 	/*
718 	 * The scatterlist segments are mapped into a single
719 	 * contiguous IOVA allocation, so this is incredibly easy.
720 	 */
721 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
722 }
723 
724 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
725 		size_t size, enum dma_data_direction dir, unsigned long attrs)
726 {
727 	return __iommu_dma_map(dev, phys, size,
728 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
729 }
730 
731 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
732 		size_t size, enum dma_data_direction dir, unsigned long attrs)
733 {
734 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
735 }
736 
737 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
738 {
739 	return dma_addr == DMA_ERROR_CODE;
740 }
741 
742 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
743 		phys_addr_t msi_addr, struct iommu_domain *domain)
744 {
745 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
746 	struct iommu_dma_msi_page *msi_page;
747 	struct iova_domain *iovad = cookie_iovad(domain);
748 	struct iova *iova;
749 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
750 	size_t size = cookie_msi_granule(cookie);
751 
752 	msi_addr &= ~(phys_addr_t)(size - 1);
753 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
754 		if (msi_page->phys == msi_addr)
755 			return msi_page;
756 
757 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
758 	if (!msi_page)
759 		return NULL;
760 
761 	msi_page->phys = msi_addr;
762 	if (iovad) {
763 		iova = __alloc_iova(domain, size, dma_get_mask(dev), dev);
764 		if (!iova)
765 			goto out_free_page;
766 		msi_page->iova = iova_dma_addr(iovad, iova);
767 	} else {
768 		msi_page->iova = cookie->msi_iova;
769 		cookie->msi_iova += size;
770 	}
771 
772 	if (iommu_map(domain, msi_page->iova, msi_addr, size, prot))
773 		goto out_free_iova;
774 
775 	INIT_LIST_HEAD(&msi_page->list);
776 	list_add(&msi_page->list, &cookie->msi_page_list);
777 	return msi_page;
778 
779 out_free_iova:
780 	if (iovad)
781 		__free_iova(iovad, iova);
782 	else
783 		cookie->msi_iova -= size;
784 out_free_page:
785 	kfree(msi_page);
786 	return NULL;
787 }
788 
789 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
790 {
791 	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
792 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
793 	struct iommu_dma_cookie *cookie;
794 	struct iommu_dma_msi_page *msi_page;
795 	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
796 	unsigned long flags;
797 
798 	if (!domain || !domain->iova_cookie)
799 		return;
800 
801 	cookie = domain->iova_cookie;
802 
803 	/*
804 	 * We disable IRQs to rule out a possible inversion against
805 	 * irq_desc_lock if, say, someone tries to retarget the affinity
806 	 * of an MSI from within an IPI handler.
807 	 */
808 	spin_lock_irqsave(&cookie->msi_lock, flags);
809 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
810 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
811 
812 	if (WARN_ON(!msi_page)) {
813 		/*
814 		 * We're called from a void callback, so the best we can do is
815 		 * 'fail' by filling the message with obviously bogus values.
816 		 * Since we got this far due to an IOMMU being present, it's
817 		 * not like the existing address would have worked anyway...
818 		 */
819 		msg->address_hi = ~0U;
820 		msg->address_lo = ~0U;
821 		msg->data = ~0U;
822 	} else {
823 		msg->address_hi = upper_32_bits(msi_page->iova);
824 		msg->address_lo &= cookie_msi_granule(cookie) - 1;
825 		msg->address_lo += lower_32_bits(msi_page->iova);
826 	}
827 }
828