xref: /linux/drivers/iommu/dma-iommu.c (revision e53b20598f394e37951d6355f1c88ae01165b53f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-iommu.h>
17 #include <linux/dma-map-ops.h>
18 #include <linux/gfp.h>
19 #include <linux/huge_mm.h>
20 #include <linux/iommu.h>
21 #include <linux/iova.h>
22 #include <linux/irq.h>
23 #include <linux/list_sort.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/pci.h>
27 #include <linux/scatterlist.h>
28 #include <linux/spinlock.h>
29 #include <linux/swiotlb.h>
30 #include <linux/vmalloc.h>
31 
32 struct iommu_dma_msi_page {
33 	struct list_head	list;
34 	dma_addr_t		iova;
35 	phys_addr_t		phys;
36 };
37 
38 enum iommu_dma_cookie_type {
39 	IOMMU_DMA_IOVA_COOKIE,
40 	IOMMU_DMA_MSI_COOKIE,
41 };
42 
43 struct iommu_dma_cookie {
44 	enum iommu_dma_cookie_type	type;
45 	union {
46 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
47 		struct {
48 			struct iova_domain	iovad;
49 
50 			struct iova_fq __percpu *fq;	/* Flush queue */
51 			/* Number of TLB flushes that have been started */
52 			atomic64_t		fq_flush_start_cnt;
53 			/* Number of TLB flushes that have been finished */
54 			atomic64_t		fq_flush_finish_cnt;
55 			/* Timer to regularily empty the flush queues */
56 			struct timer_list	fq_timer;
57 			/* 1 when timer is active, 0 when not */
58 			atomic_t		fq_timer_on;
59 		};
60 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
61 		dma_addr_t		msi_iova;
62 	};
63 	struct list_head		msi_page_list;
64 
65 	/* Domain for flush queue callback; NULL if flush queue not in use */
66 	struct iommu_domain		*fq_domain;
67 };
68 
69 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
70 bool iommu_dma_forcedac __read_mostly;
71 
72 static int __init iommu_dma_forcedac_setup(char *str)
73 {
74 	int ret = kstrtobool(str, &iommu_dma_forcedac);
75 
76 	if (!ret && iommu_dma_forcedac)
77 		pr_info("Forcing DAC for PCI devices\n");
78 	return ret;
79 }
80 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
81 
82 /* Number of entries per flush queue */
83 #define IOVA_FQ_SIZE	256
84 
85 /* Timeout (in ms) after which entries are flushed from the queue */
86 #define IOVA_FQ_TIMEOUT	10
87 
88 /* Flush queue entry for deferred flushing */
89 struct iova_fq_entry {
90 	unsigned long iova_pfn;
91 	unsigned long pages;
92 	struct list_head freelist;
93 	u64 counter; /* Flush counter when this entry was added */
94 };
95 
96 /* Per-CPU flush queue structure */
97 struct iova_fq {
98 	struct iova_fq_entry entries[IOVA_FQ_SIZE];
99 	unsigned int head, tail;
100 	spinlock_t lock;
101 };
102 
103 #define fq_ring_for_each(i, fq) \
104 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
105 
106 static inline bool fq_full(struct iova_fq *fq)
107 {
108 	assert_spin_locked(&fq->lock);
109 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
110 }
111 
112 static inline unsigned int fq_ring_add(struct iova_fq *fq)
113 {
114 	unsigned int idx = fq->tail;
115 
116 	assert_spin_locked(&fq->lock);
117 
118 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
119 
120 	return idx;
121 }
122 
123 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
124 {
125 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
126 	unsigned int idx;
127 
128 	assert_spin_locked(&fq->lock);
129 
130 	fq_ring_for_each(idx, fq) {
131 
132 		if (fq->entries[idx].counter >= counter)
133 			break;
134 
135 		put_pages_list(&fq->entries[idx].freelist);
136 		free_iova_fast(&cookie->iovad,
137 			       fq->entries[idx].iova_pfn,
138 			       fq->entries[idx].pages);
139 
140 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
141 	}
142 }
143 
144 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
145 {
146 	atomic64_inc(&cookie->fq_flush_start_cnt);
147 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
148 	atomic64_inc(&cookie->fq_flush_finish_cnt);
149 }
150 
151 static void fq_flush_timeout(struct timer_list *t)
152 {
153 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
154 	int cpu;
155 
156 	atomic_set(&cookie->fq_timer_on, 0);
157 	fq_flush_iotlb(cookie);
158 
159 	for_each_possible_cpu(cpu) {
160 		unsigned long flags;
161 		struct iova_fq *fq;
162 
163 		fq = per_cpu_ptr(cookie->fq, cpu);
164 		spin_lock_irqsave(&fq->lock, flags);
165 		fq_ring_free(cookie, fq);
166 		spin_unlock_irqrestore(&fq->lock, flags);
167 	}
168 }
169 
170 static void queue_iova(struct iommu_dma_cookie *cookie,
171 		unsigned long pfn, unsigned long pages,
172 		struct list_head *freelist)
173 {
174 	struct iova_fq *fq;
175 	unsigned long flags;
176 	unsigned int idx;
177 
178 	/*
179 	 * Order against the IOMMU driver's pagetable update from unmapping
180 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
181 	 * from a different CPU before we release the lock below. Full barrier
182 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
183 	 * written fq state here.
184 	 */
185 	smp_mb();
186 
187 	fq = raw_cpu_ptr(cookie->fq);
188 	spin_lock_irqsave(&fq->lock, flags);
189 
190 	/*
191 	 * First remove all entries from the flush queue that have already been
192 	 * flushed out on another CPU. This makes the fq_full() check below less
193 	 * likely to be true.
194 	 */
195 	fq_ring_free(cookie, fq);
196 
197 	if (fq_full(fq)) {
198 		fq_flush_iotlb(cookie);
199 		fq_ring_free(cookie, fq);
200 	}
201 
202 	idx = fq_ring_add(fq);
203 
204 	fq->entries[idx].iova_pfn = pfn;
205 	fq->entries[idx].pages    = pages;
206 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
207 	list_splice(freelist, &fq->entries[idx].freelist);
208 
209 	spin_unlock_irqrestore(&fq->lock, flags);
210 
211 	/* Avoid false sharing as much as possible. */
212 	if (!atomic_read(&cookie->fq_timer_on) &&
213 	    !atomic_xchg(&cookie->fq_timer_on, 1))
214 		mod_timer(&cookie->fq_timer,
215 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
216 }
217 
218 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
219 {
220 	int cpu, idx;
221 
222 	if (!cookie->fq)
223 		return;
224 
225 	del_timer_sync(&cookie->fq_timer);
226 	/* The IOVAs will be torn down separately, so just free our queued pages */
227 	for_each_possible_cpu(cpu) {
228 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
229 
230 		fq_ring_for_each(idx, fq)
231 			put_pages_list(&fq->entries[idx].freelist);
232 	}
233 
234 	free_percpu(cookie->fq);
235 }
236 
237 /* sysfs updates are serialised by the mutex of the group owning @domain */
238 int iommu_dma_init_fq(struct iommu_domain *domain)
239 {
240 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
241 	struct iova_fq __percpu *queue;
242 	int i, cpu;
243 
244 	if (cookie->fq_domain)
245 		return 0;
246 
247 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
248 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
249 
250 	queue = alloc_percpu(struct iova_fq);
251 	if (!queue) {
252 		pr_warn("iova flush queue initialization failed\n");
253 		return -ENOMEM;
254 	}
255 
256 	for_each_possible_cpu(cpu) {
257 		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
258 
259 		fq->head = 0;
260 		fq->tail = 0;
261 
262 		spin_lock_init(&fq->lock);
263 
264 		for (i = 0; i < IOVA_FQ_SIZE; i++)
265 			INIT_LIST_HEAD(&fq->entries[i].freelist);
266 	}
267 
268 	cookie->fq = queue;
269 
270 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
271 	atomic_set(&cookie->fq_timer_on, 0);
272 	/*
273 	 * Prevent incomplete fq state being observable. Pairs with path from
274 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
275 	 */
276 	smp_wmb();
277 	WRITE_ONCE(cookie->fq_domain, domain);
278 	return 0;
279 }
280 
281 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
282 {
283 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
284 		return cookie->iovad.granule;
285 	return PAGE_SIZE;
286 }
287 
288 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
289 {
290 	struct iommu_dma_cookie *cookie;
291 
292 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
293 	if (cookie) {
294 		INIT_LIST_HEAD(&cookie->msi_page_list);
295 		cookie->type = type;
296 	}
297 	return cookie;
298 }
299 
300 /**
301  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
302  * @domain: IOMMU domain to prepare for DMA-API usage
303  */
304 int iommu_get_dma_cookie(struct iommu_domain *domain)
305 {
306 	if (domain->iova_cookie)
307 		return -EEXIST;
308 
309 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
310 	if (!domain->iova_cookie)
311 		return -ENOMEM;
312 
313 	return 0;
314 }
315 
316 /**
317  * iommu_get_msi_cookie - Acquire just MSI remapping resources
318  * @domain: IOMMU domain to prepare
319  * @base: Start address of IOVA region for MSI mappings
320  *
321  * Users who manage their own IOVA allocation and do not want DMA API support,
322  * but would still like to take advantage of automatic MSI remapping, can use
323  * this to initialise their own domain appropriately. Users should reserve a
324  * contiguous IOVA region, starting at @base, large enough to accommodate the
325  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
326  * used by the devices attached to @domain.
327  */
328 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
329 {
330 	struct iommu_dma_cookie *cookie;
331 
332 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
333 		return -EINVAL;
334 
335 	if (domain->iova_cookie)
336 		return -EEXIST;
337 
338 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
339 	if (!cookie)
340 		return -ENOMEM;
341 
342 	cookie->msi_iova = base;
343 	domain->iova_cookie = cookie;
344 	return 0;
345 }
346 EXPORT_SYMBOL(iommu_get_msi_cookie);
347 
348 /**
349  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
350  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
351  *          iommu_get_msi_cookie()
352  */
353 void iommu_put_dma_cookie(struct iommu_domain *domain)
354 {
355 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
356 	struct iommu_dma_msi_page *msi, *tmp;
357 
358 	if (!cookie)
359 		return;
360 
361 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
362 		iommu_dma_free_fq(cookie);
363 		put_iova_domain(&cookie->iovad);
364 	}
365 
366 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
367 		list_del(&msi->list);
368 		kfree(msi);
369 	}
370 	kfree(cookie);
371 	domain->iova_cookie = NULL;
372 }
373 
374 /**
375  * iommu_dma_get_resv_regions - Reserved region driver helper
376  * @dev: Device from iommu_get_resv_regions()
377  * @list: Reserved region list from iommu_get_resv_regions()
378  *
379  * IOMMU drivers can use this to implement their .get_resv_regions callback
380  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
381  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
382  * reservation.
383  */
384 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
385 {
386 
387 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
388 		iort_iommu_msi_get_resv_regions(dev, list);
389 
390 }
391 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
392 
393 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
394 		phys_addr_t start, phys_addr_t end)
395 {
396 	struct iova_domain *iovad = &cookie->iovad;
397 	struct iommu_dma_msi_page *msi_page;
398 	int i, num_pages;
399 
400 	start -= iova_offset(iovad, start);
401 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
402 
403 	for (i = 0; i < num_pages; i++) {
404 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
405 		if (!msi_page)
406 			return -ENOMEM;
407 
408 		msi_page->phys = start;
409 		msi_page->iova = start;
410 		INIT_LIST_HEAD(&msi_page->list);
411 		list_add(&msi_page->list, &cookie->msi_page_list);
412 		start += iovad->granule;
413 	}
414 
415 	return 0;
416 }
417 
418 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
419 		const struct list_head *b)
420 {
421 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
422 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
423 
424 	return res_a->res->start > res_b->res->start;
425 }
426 
427 static int iova_reserve_pci_windows(struct pci_dev *dev,
428 		struct iova_domain *iovad)
429 {
430 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
431 	struct resource_entry *window;
432 	unsigned long lo, hi;
433 	phys_addr_t start = 0, end;
434 
435 	resource_list_for_each_entry(window, &bridge->windows) {
436 		if (resource_type(window->res) != IORESOURCE_MEM)
437 			continue;
438 
439 		lo = iova_pfn(iovad, window->res->start - window->offset);
440 		hi = iova_pfn(iovad, window->res->end - window->offset);
441 		reserve_iova(iovad, lo, hi);
442 	}
443 
444 	/* Get reserved DMA windows from host bridge */
445 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
446 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
447 		end = window->res->start - window->offset;
448 resv_iova:
449 		if (end > start) {
450 			lo = iova_pfn(iovad, start);
451 			hi = iova_pfn(iovad, end);
452 			reserve_iova(iovad, lo, hi);
453 		} else if (end < start) {
454 			/* DMA ranges should be non-overlapping */
455 			dev_err(&dev->dev,
456 				"Failed to reserve IOVA [%pa-%pa]\n",
457 				&start, &end);
458 			return -EINVAL;
459 		}
460 
461 		start = window->res->end - window->offset + 1;
462 		/* If window is last entry */
463 		if (window->node.next == &bridge->dma_ranges &&
464 		    end != ~(phys_addr_t)0) {
465 			end = ~(phys_addr_t)0;
466 			goto resv_iova;
467 		}
468 	}
469 
470 	return 0;
471 }
472 
473 static int iova_reserve_iommu_regions(struct device *dev,
474 		struct iommu_domain *domain)
475 {
476 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
477 	struct iova_domain *iovad = &cookie->iovad;
478 	struct iommu_resv_region *region;
479 	LIST_HEAD(resv_regions);
480 	int ret = 0;
481 
482 	if (dev_is_pci(dev)) {
483 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
484 		if (ret)
485 			return ret;
486 	}
487 
488 	iommu_get_resv_regions(dev, &resv_regions);
489 	list_for_each_entry(region, &resv_regions, list) {
490 		unsigned long lo, hi;
491 
492 		/* We ARE the software that manages these! */
493 		if (region->type == IOMMU_RESV_SW_MSI)
494 			continue;
495 
496 		lo = iova_pfn(iovad, region->start);
497 		hi = iova_pfn(iovad, region->start + region->length - 1);
498 		reserve_iova(iovad, lo, hi);
499 
500 		if (region->type == IOMMU_RESV_MSI)
501 			ret = cookie_init_hw_msi_region(cookie, region->start,
502 					region->start + region->length);
503 		if (ret)
504 			break;
505 	}
506 	iommu_put_resv_regions(dev, &resv_regions);
507 
508 	return ret;
509 }
510 
511 static bool dev_is_untrusted(struct device *dev)
512 {
513 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
514 }
515 
516 static bool dev_use_swiotlb(struct device *dev)
517 {
518 	return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
519 }
520 
521 /**
522  * iommu_dma_init_domain - Initialise a DMA mapping domain
523  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
524  * @base: IOVA at which the mappable address space starts
525  * @limit: Last address of the IOVA space
526  * @dev: Device the domain is being initialised for
527  *
528  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
529  * avoid rounding surprises. If necessary, we reserve the page at address 0
530  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
531  * any change which could make prior IOVAs invalid will fail.
532  */
533 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
534 				 dma_addr_t limit, struct device *dev)
535 {
536 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
537 	unsigned long order, base_pfn;
538 	struct iova_domain *iovad;
539 	int ret;
540 
541 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
542 		return -EINVAL;
543 
544 	iovad = &cookie->iovad;
545 
546 	/* Use the smallest supported page size for IOVA granularity */
547 	order = __ffs(domain->pgsize_bitmap);
548 	base_pfn = max_t(unsigned long, 1, base >> order);
549 
550 	/* Check the domain allows at least some access to the device... */
551 	if (domain->geometry.force_aperture) {
552 		if (base > domain->geometry.aperture_end ||
553 		    limit < domain->geometry.aperture_start) {
554 			pr_warn("specified DMA range outside IOMMU capability\n");
555 			return -EFAULT;
556 		}
557 		/* ...then finally give it a kicking to make sure it fits */
558 		base_pfn = max_t(unsigned long, base_pfn,
559 				domain->geometry.aperture_start >> order);
560 	}
561 
562 	/* start_pfn is always nonzero for an already-initialised domain */
563 	if (iovad->start_pfn) {
564 		if (1UL << order != iovad->granule ||
565 		    base_pfn != iovad->start_pfn) {
566 			pr_warn("Incompatible range for DMA domain\n");
567 			return -EFAULT;
568 		}
569 
570 		return 0;
571 	}
572 
573 	init_iova_domain(iovad, 1UL << order, base_pfn);
574 	ret = iova_domain_init_rcaches(iovad);
575 	if (ret)
576 		return ret;
577 
578 	/* If the FQ fails we can simply fall back to strict mode */
579 	if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
580 		domain->type = IOMMU_DOMAIN_DMA;
581 
582 	return iova_reserve_iommu_regions(dev, domain);
583 }
584 
585 /**
586  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
587  *                    page flags.
588  * @dir: Direction of DMA transfer
589  * @coherent: Is the DMA master cache-coherent?
590  * @attrs: DMA attributes for the mapping
591  *
592  * Return: corresponding IOMMU API page protection flags
593  */
594 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
595 		     unsigned long attrs)
596 {
597 	int prot = coherent ? IOMMU_CACHE : 0;
598 
599 	if (attrs & DMA_ATTR_PRIVILEGED)
600 		prot |= IOMMU_PRIV;
601 
602 	switch (dir) {
603 	case DMA_BIDIRECTIONAL:
604 		return prot | IOMMU_READ | IOMMU_WRITE;
605 	case DMA_TO_DEVICE:
606 		return prot | IOMMU_READ;
607 	case DMA_FROM_DEVICE:
608 		return prot | IOMMU_WRITE;
609 	default:
610 		return 0;
611 	}
612 }
613 
614 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
615 		size_t size, u64 dma_limit, struct device *dev)
616 {
617 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
618 	struct iova_domain *iovad = &cookie->iovad;
619 	unsigned long shift, iova_len, iova = 0;
620 
621 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
622 		cookie->msi_iova += size;
623 		return cookie->msi_iova - size;
624 	}
625 
626 	shift = iova_shift(iovad);
627 	iova_len = size >> shift;
628 
629 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
630 
631 	if (domain->geometry.force_aperture)
632 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
633 
634 	/* Try to get PCI devices a SAC address */
635 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
636 		iova = alloc_iova_fast(iovad, iova_len,
637 				       DMA_BIT_MASK(32) >> shift, false);
638 
639 	if (!iova)
640 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
641 				       true);
642 
643 	return (dma_addr_t)iova << shift;
644 }
645 
646 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
647 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
648 {
649 	struct iova_domain *iovad = &cookie->iovad;
650 
651 	/* The MSI case is only ever cleaning up its most recent allocation */
652 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
653 		cookie->msi_iova -= size;
654 	else if (gather && gather->queued)
655 		queue_iova(cookie, iova_pfn(iovad, iova),
656 				size >> iova_shift(iovad),
657 				&gather->freelist);
658 	else
659 		free_iova_fast(iovad, iova_pfn(iovad, iova),
660 				size >> iova_shift(iovad));
661 }
662 
663 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
664 		size_t size)
665 {
666 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
667 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
668 	struct iova_domain *iovad = &cookie->iovad;
669 	size_t iova_off = iova_offset(iovad, dma_addr);
670 	struct iommu_iotlb_gather iotlb_gather;
671 	size_t unmapped;
672 
673 	dma_addr -= iova_off;
674 	size = iova_align(iovad, size + iova_off);
675 	iommu_iotlb_gather_init(&iotlb_gather);
676 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
677 
678 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
679 	WARN_ON(unmapped != size);
680 
681 	if (!iotlb_gather.queued)
682 		iommu_iotlb_sync(domain, &iotlb_gather);
683 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
684 }
685 
686 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
687 		size_t size, int prot, u64 dma_mask)
688 {
689 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
690 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
691 	struct iova_domain *iovad = &cookie->iovad;
692 	size_t iova_off = iova_offset(iovad, phys);
693 	dma_addr_t iova;
694 
695 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
696 	    iommu_deferred_attach(dev, domain))
697 		return DMA_MAPPING_ERROR;
698 
699 	size = iova_align(iovad, size + iova_off);
700 
701 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
702 	if (!iova)
703 		return DMA_MAPPING_ERROR;
704 
705 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
706 		iommu_dma_free_iova(cookie, iova, size, NULL);
707 		return DMA_MAPPING_ERROR;
708 	}
709 	return iova + iova_off;
710 }
711 
712 static void __iommu_dma_free_pages(struct page **pages, int count)
713 {
714 	while (count--)
715 		__free_page(pages[count]);
716 	kvfree(pages);
717 }
718 
719 static struct page **__iommu_dma_alloc_pages(struct device *dev,
720 		unsigned int count, unsigned long order_mask, gfp_t gfp)
721 {
722 	struct page **pages;
723 	unsigned int i = 0, nid = dev_to_node(dev);
724 
725 	order_mask &= (2U << MAX_ORDER) - 1;
726 	if (!order_mask)
727 		return NULL;
728 
729 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
730 	if (!pages)
731 		return NULL;
732 
733 	/* IOMMU can map any pages, so himem can also be used here */
734 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
735 
736 	/* It makes no sense to muck about with huge pages */
737 	gfp &= ~__GFP_COMP;
738 
739 	while (count) {
740 		struct page *page = NULL;
741 		unsigned int order_size;
742 
743 		/*
744 		 * Higher-order allocations are a convenience rather
745 		 * than a necessity, hence using __GFP_NORETRY until
746 		 * falling back to minimum-order allocations.
747 		 */
748 		for (order_mask &= (2U << __fls(count)) - 1;
749 		     order_mask; order_mask &= ~order_size) {
750 			unsigned int order = __fls(order_mask);
751 			gfp_t alloc_flags = gfp;
752 
753 			order_size = 1U << order;
754 			if (order_mask > order_size)
755 				alloc_flags |= __GFP_NORETRY;
756 			page = alloc_pages_node(nid, alloc_flags, order);
757 			if (!page)
758 				continue;
759 			if (order)
760 				split_page(page, order);
761 			break;
762 		}
763 		if (!page) {
764 			__iommu_dma_free_pages(pages, i);
765 			return NULL;
766 		}
767 		count -= order_size;
768 		while (order_size--)
769 			pages[i++] = page++;
770 	}
771 	return pages;
772 }
773 
774 /*
775  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
776  * but an IOMMU which supports smaller pages might not map the whole thing.
777  */
778 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
779 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
780 		unsigned long attrs)
781 {
782 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
783 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
784 	struct iova_domain *iovad = &cookie->iovad;
785 	bool coherent = dev_is_dma_coherent(dev);
786 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
787 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
788 	struct page **pages;
789 	dma_addr_t iova;
790 	ssize_t ret;
791 
792 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
793 	    iommu_deferred_attach(dev, domain))
794 		return NULL;
795 
796 	min_size = alloc_sizes & -alloc_sizes;
797 	if (min_size < PAGE_SIZE) {
798 		min_size = PAGE_SIZE;
799 		alloc_sizes |= PAGE_SIZE;
800 	} else {
801 		size = ALIGN(size, min_size);
802 	}
803 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
804 		alloc_sizes = min_size;
805 
806 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
807 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
808 					gfp);
809 	if (!pages)
810 		return NULL;
811 
812 	size = iova_align(iovad, size);
813 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
814 	if (!iova)
815 		goto out_free_pages;
816 
817 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
818 		goto out_free_iova;
819 
820 	if (!(ioprot & IOMMU_CACHE)) {
821 		struct scatterlist *sg;
822 		int i;
823 
824 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
825 			arch_dma_prep_coherent(sg_page(sg), sg->length);
826 	}
827 
828 	ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot);
829 	if (ret < 0 || ret < size)
830 		goto out_free_sg;
831 
832 	sgt->sgl->dma_address = iova;
833 	sgt->sgl->dma_length = size;
834 	return pages;
835 
836 out_free_sg:
837 	sg_free_table(sgt);
838 out_free_iova:
839 	iommu_dma_free_iova(cookie, iova, size, NULL);
840 out_free_pages:
841 	__iommu_dma_free_pages(pages, count);
842 	return NULL;
843 }
844 
845 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
846 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
847 		unsigned long attrs)
848 {
849 	struct page **pages;
850 	struct sg_table sgt;
851 	void *vaddr;
852 
853 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
854 						attrs);
855 	if (!pages)
856 		return NULL;
857 	*dma_handle = sgt.sgl->dma_address;
858 	sg_free_table(&sgt);
859 	vaddr = dma_common_pages_remap(pages, size, prot,
860 			__builtin_return_address(0));
861 	if (!vaddr)
862 		goto out_unmap;
863 	return vaddr;
864 
865 out_unmap:
866 	__iommu_dma_unmap(dev, *dma_handle, size);
867 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
868 	return NULL;
869 }
870 
871 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
872 		size_t size, enum dma_data_direction dir, gfp_t gfp,
873 		unsigned long attrs)
874 {
875 	struct dma_sgt_handle *sh;
876 
877 	sh = kmalloc(sizeof(*sh), gfp);
878 	if (!sh)
879 		return NULL;
880 
881 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
882 						    PAGE_KERNEL, attrs);
883 	if (!sh->pages) {
884 		kfree(sh);
885 		return NULL;
886 	}
887 	return &sh->sgt;
888 }
889 
890 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
891 		struct sg_table *sgt, enum dma_data_direction dir)
892 {
893 	struct dma_sgt_handle *sh = sgt_handle(sgt);
894 
895 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
896 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
897 	sg_free_table(&sh->sgt);
898 	kfree(sh);
899 }
900 
901 static void iommu_dma_sync_single_for_cpu(struct device *dev,
902 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
903 {
904 	phys_addr_t phys;
905 
906 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
907 		return;
908 
909 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
910 	if (!dev_is_dma_coherent(dev))
911 		arch_sync_dma_for_cpu(phys, size, dir);
912 
913 	if (is_swiotlb_buffer(dev, phys))
914 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
915 }
916 
917 static void iommu_dma_sync_single_for_device(struct device *dev,
918 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
919 {
920 	phys_addr_t phys;
921 
922 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
923 		return;
924 
925 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
926 	if (is_swiotlb_buffer(dev, phys))
927 		swiotlb_sync_single_for_device(dev, phys, size, dir);
928 
929 	if (!dev_is_dma_coherent(dev))
930 		arch_sync_dma_for_device(phys, size, dir);
931 }
932 
933 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
934 		struct scatterlist *sgl, int nelems,
935 		enum dma_data_direction dir)
936 {
937 	struct scatterlist *sg;
938 	int i;
939 
940 	if (dev_use_swiotlb(dev))
941 		for_each_sg(sgl, sg, nelems, i)
942 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
943 						      sg->length, dir);
944 	else if (!dev_is_dma_coherent(dev))
945 		for_each_sg(sgl, sg, nelems, i)
946 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
947 }
948 
949 static void iommu_dma_sync_sg_for_device(struct device *dev,
950 		struct scatterlist *sgl, int nelems,
951 		enum dma_data_direction dir)
952 {
953 	struct scatterlist *sg;
954 	int i;
955 
956 	if (dev_use_swiotlb(dev))
957 		for_each_sg(sgl, sg, nelems, i)
958 			iommu_dma_sync_single_for_device(dev,
959 							 sg_dma_address(sg),
960 							 sg->length, dir);
961 	else if (!dev_is_dma_coherent(dev))
962 		for_each_sg(sgl, sg, nelems, i)
963 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
964 }
965 
966 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
967 		unsigned long offset, size_t size, enum dma_data_direction dir,
968 		unsigned long attrs)
969 {
970 	phys_addr_t phys = page_to_phys(page) + offset;
971 	bool coherent = dev_is_dma_coherent(dev);
972 	int prot = dma_info_to_prot(dir, coherent, attrs);
973 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
974 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
975 	struct iova_domain *iovad = &cookie->iovad;
976 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
977 
978 	/*
979 	 * If both the physical buffer start address and size are
980 	 * page aligned, we don't need to use a bounce page.
981 	 */
982 	if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
983 		void *padding_start;
984 		size_t padding_size, aligned_size;
985 
986 		if (!is_swiotlb_active(dev)) {
987 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
988 			return DMA_MAPPING_ERROR;
989 		}
990 
991 		aligned_size = iova_align(iovad, size);
992 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
993 					      iova_mask(iovad), dir, attrs);
994 
995 		if (phys == DMA_MAPPING_ERROR)
996 			return DMA_MAPPING_ERROR;
997 
998 		/* Cleanup the padding area. */
999 		padding_start = phys_to_virt(phys);
1000 		padding_size = aligned_size;
1001 
1002 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1003 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1004 			padding_start += size;
1005 			padding_size -= size;
1006 		}
1007 
1008 		memset(padding_start, 0, padding_size);
1009 	}
1010 
1011 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1012 		arch_sync_dma_for_device(phys, size, dir);
1013 
1014 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1015 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1016 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1017 	return iova;
1018 }
1019 
1020 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1021 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1022 {
1023 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1024 	phys_addr_t phys;
1025 
1026 	phys = iommu_iova_to_phys(domain, dma_handle);
1027 	if (WARN_ON(!phys))
1028 		return;
1029 
1030 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1031 		arch_sync_dma_for_cpu(phys, size, dir);
1032 
1033 	__iommu_dma_unmap(dev, dma_handle, size);
1034 
1035 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1036 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1037 }
1038 
1039 /*
1040  * Prepare a successfully-mapped scatterlist to give back to the caller.
1041  *
1042  * At this point the segments are already laid out by iommu_dma_map_sg() to
1043  * avoid individually crossing any boundaries, so we merely need to check a
1044  * segment's start address to avoid concatenating across one.
1045  */
1046 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1047 		dma_addr_t dma_addr)
1048 {
1049 	struct scatterlist *s, *cur = sg;
1050 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1051 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1052 	int i, count = 0;
1053 
1054 	for_each_sg(sg, s, nents, i) {
1055 		/* Restore this segment's original unaligned fields first */
1056 		unsigned int s_iova_off = sg_dma_address(s);
1057 		unsigned int s_length = sg_dma_len(s);
1058 		unsigned int s_iova_len = s->length;
1059 
1060 		s->offset += s_iova_off;
1061 		s->length = s_length;
1062 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1063 		sg_dma_len(s) = 0;
1064 
1065 		/*
1066 		 * Now fill in the real DMA data. If...
1067 		 * - there is a valid output segment to append to
1068 		 * - and this segment starts on an IOVA page boundary
1069 		 * - but doesn't fall at a segment boundary
1070 		 * - and wouldn't make the resulting output segment too long
1071 		 */
1072 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1073 		    (max_len - cur_len >= s_length)) {
1074 			/* ...then concatenate it with the previous one */
1075 			cur_len += s_length;
1076 		} else {
1077 			/* Otherwise start the next output segment */
1078 			if (i > 0)
1079 				cur = sg_next(cur);
1080 			cur_len = s_length;
1081 			count++;
1082 
1083 			sg_dma_address(cur) = dma_addr + s_iova_off;
1084 		}
1085 
1086 		sg_dma_len(cur) = cur_len;
1087 		dma_addr += s_iova_len;
1088 
1089 		if (s_length + s_iova_off < s_iova_len)
1090 			cur_len = 0;
1091 	}
1092 	return count;
1093 }
1094 
1095 /*
1096  * If mapping failed, then just restore the original list,
1097  * but making sure the DMA fields are invalidated.
1098  */
1099 static void __invalidate_sg(struct scatterlist *sg, int nents)
1100 {
1101 	struct scatterlist *s;
1102 	int i;
1103 
1104 	for_each_sg(sg, s, nents, i) {
1105 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1106 			s->offset += sg_dma_address(s);
1107 		if (sg_dma_len(s))
1108 			s->length = sg_dma_len(s);
1109 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1110 		sg_dma_len(s) = 0;
1111 	}
1112 }
1113 
1114 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1115 		int nents, enum dma_data_direction dir, unsigned long attrs)
1116 {
1117 	struct scatterlist *s;
1118 	int i;
1119 
1120 	for_each_sg(sg, s, nents, i)
1121 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1122 				sg_dma_len(s), dir, attrs);
1123 }
1124 
1125 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1126 		int nents, enum dma_data_direction dir, unsigned long attrs)
1127 {
1128 	struct scatterlist *s;
1129 	int i;
1130 
1131 	for_each_sg(sg, s, nents, i) {
1132 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1133 				s->offset, s->length, dir, attrs);
1134 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1135 			goto out_unmap;
1136 		sg_dma_len(s) = s->length;
1137 	}
1138 
1139 	return nents;
1140 
1141 out_unmap:
1142 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1143 	return -EIO;
1144 }
1145 
1146 /*
1147  * The DMA API client is passing in a scatterlist which could describe
1148  * any old buffer layout, but the IOMMU API requires everything to be
1149  * aligned to IOMMU pages. Hence the need for this complicated bit of
1150  * impedance-matching, to be able to hand off a suitably-aligned list,
1151  * but still preserve the original offsets and sizes for the caller.
1152  */
1153 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1154 		int nents, enum dma_data_direction dir, unsigned long attrs)
1155 {
1156 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1157 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1158 	struct iova_domain *iovad = &cookie->iovad;
1159 	struct scatterlist *s, *prev = NULL;
1160 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1161 	dma_addr_t iova;
1162 	size_t iova_len = 0;
1163 	unsigned long mask = dma_get_seg_boundary(dev);
1164 	ssize_t ret;
1165 	int i;
1166 
1167 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1168 		ret = iommu_deferred_attach(dev, domain);
1169 		if (ret)
1170 			goto out;
1171 	}
1172 
1173 	if (dev_use_swiotlb(dev))
1174 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1175 
1176 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1177 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1178 
1179 	/*
1180 	 * Work out how much IOVA space we need, and align the segments to
1181 	 * IOVA granules for the IOMMU driver to handle. With some clever
1182 	 * trickery we can modify the list in-place, but reversibly, by
1183 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1184 	 */
1185 	for_each_sg(sg, s, nents, i) {
1186 		size_t s_iova_off = iova_offset(iovad, s->offset);
1187 		size_t s_length = s->length;
1188 		size_t pad_len = (mask - iova_len + 1) & mask;
1189 
1190 		sg_dma_address(s) = s_iova_off;
1191 		sg_dma_len(s) = s_length;
1192 		s->offset -= s_iova_off;
1193 		s_length = iova_align(iovad, s_length + s_iova_off);
1194 		s->length = s_length;
1195 
1196 		/*
1197 		 * Due to the alignment of our single IOVA allocation, we can
1198 		 * depend on these assumptions about the segment boundary mask:
1199 		 * - If mask size >= IOVA size, then the IOVA range cannot
1200 		 *   possibly fall across a boundary, so we don't care.
1201 		 * - If mask size < IOVA size, then the IOVA range must start
1202 		 *   exactly on a boundary, therefore we can lay things out
1203 		 *   based purely on segment lengths without needing to know
1204 		 *   the actual addresses beforehand.
1205 		 * - The mask must be a power of 2, so pad_len == 0 if
1206 		 *   iova_len == 0, thus we cannot dereference prev the first
1207 		 *   time through here (i.e. before it has a meaningful value).
1208 		 */
1209 		if (pad_len && pad_len < s_length - 1) {
1210 			prev->length += pad_len;
1211 			iova_len += pad_len;
1212 		}
1213 
1214 		iova_len += s_length;
1215 		prev = s;
1216 	}
1217 
1218 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1219 	if (!iova) {
1220 		ret = -ENOMEM;
1221 		goto out_restore_sg;
1222 	}
1223 
1224 	/*
1225 	 * We'll leave any physical concatenation to the IOMMU driver's
1226 	 * implementation - it knows better than we do.
1227 	 */
1228 	ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1229 	if (ret < 0 || ret < iova_len)
1230 		goto out_free_iova;
1231 
1232 	return __finalise_sg(dev, sg, nents, iova);
1233 
1234 out_free_iova:
1235 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1236 out_restore_sg:
1237 	__invalidate_sg(sg, nents);
1238 out:
1239 	if (ret != -ENOMEM)
1240 		return -EINVAL;
1241 	return ret;
1242 }
1243 
1244 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1245 		int nents, enum dma_data_direction dir, unsigned long attrs)
1246 {
1247 	dma_addr_t start, end;
1248 	struct scatterlist *tmp;
1249 	int i;
1250 
1251 	if (dev_use_swiotlb(dev)) {
1252 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1253 		return;
1254 	}
1255 
1256 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1257 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1258 
1259 	/*
1260 	 * The scatterlist segments are mapped into a single
1261 	 * contiguous IOVA allocation, so this is incredibly easy.
1262 	 */
1263 	start = sg_dma_address(sg);
1264 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1265 		if (sg_dma_len(tmp) == 0)
1266 			break;
1267 		sg = tmp;
1268 	}
1269 	end = sg_dma_address(sg) + sg_dma_len(sg);
1270 	__iommu_dma_unmap(dev, start, end - start);
1271 }
1272 
1273 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1274 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1275 {
1276 	return __iommu_dma_map(dev, phys, size,
1277 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1278 			dma_get_mask(dev));
1279 }
1280 
1281 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1282 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1283 {
1284 	__iommu_dma_unmap(dev, handle, size);
1285 }
1286 
1287 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1288 {
1289 	size_t alloc_size = PAGE_ALIGN(size);
1290 	int count = alloc_size >> PAGE_SHIFT;
1291 	struct page *page = NULL, **pages = NULL;
1292 
1293 	/* Non-coherent atomic allocation? Easy */
1294 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1295 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1296 		return;
1297 
1298 	if (is_vmalloc_addr(cpu_addr)) {
1299 		/*
1300 		 * If it the address is remapped, then it's either non-coherent
1301 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1302 		 */
1303 		pages = dma_common_find_pages(cpu_addr);
1304 		if (!pages)
1305 			page = vmalloc_to_page(cpu_addr);
1306 		dma_common_free_remap(cpu_addr, alloc_size);
1307 	} else {
1308 		/* Lowmem means a coherent atomic or CMA allocation */
1309 		page = virt_to_page(cpu_addr);
1310 	}
1311 
1312 	if (pages)
1313 		__iommu_dma_free_pages(pages, count);
1314 	if (page)
1315 		dma_free_contiguous(dev, page, alloc_size);
1316 }
1317 
1318 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1319 		dma_addr_t handle, unsigned long attrs)
1320 {
1321 	__iommu_dma_unmap(dev, handle, size);
1322 	__iommu_dma_free(dev, size, cpu_addr);
1323 }
1324 
1325 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1326 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1327 {
1328 	bool coherent = dev_is_dma_coherent(dev);
1329 	size_t alloc_size = PAGE_ALIGN(size);
1330 	int node = dev_to_node(dev);
1331 	struct page *page = NULL;
1332 	void *cpu_addr;
1333 
1334 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1335 	if (!page)
1336 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1337 	if (!page)
1338 		return NULL;
1339 
1340 	if (!coherent || PageHighMem(page)) {
1341 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1342 
1343 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1344 				prot, __builtin_return_address(0));
1345 		if (!cpu_addr)
1346 			goto out_free_pages;
1347 
1348 		if (!coherent)
1349 			arch_dma_prep_coherent(page, size);
1350 	} else {
1351 		cpu_addr = page_address(page);
1352 	}
1353 
1354 	*pagep = page;
1355 	memset(cpu_addr, 0, alloc_size);
1356 	return cpu_addr;
1357 out_free_pages:
1358 	dma_free_contiguous(dev, page, alloc_size);
1359 	return NULL;
1360 }
1361 
1362 static void *iommu_dma_alloc(struct device *dev, size_t size,
1363 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1364 {
1365 	bool coherent = dev_is_dma_coherent(dev);
1366 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1367 	struct page *page = NULL;
1368 	void *cpu_addr;
1369 
1370 	gfp |= __GFP_ZERO;
1371 
1372 	if (gfpflags_allow_blocking(gfp) &&
1373 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1374 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1375 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1376 	}
1377 
1378 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1379 	    !gfpflags_allow_blocking(gfp) && !coherent)
1380 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1381 					       gfp, NULL);
1382 	else
1383 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1384 	if (!cpu_addr)
1385 		return NULL;
1386 
1387 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1388 			dev->coherent_dma_mask);
1389 	if (*handle == DMA_MAPPING_ERROR) {
1390 		__iommu_dma_free(dev, size, cpu_addr);
1391 		return NULL;
1392 	}
1393 
1394 	return cpu_addr;
1395 }
1396 
1397 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1398 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1399 		unsigned long attrs)
1400 {
1401 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1402 	unsigned long pfn, off = vma->vm_pgoff;
1403 	int ret;
1404 
1405 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1406 
1407 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1408 		return ret;
1409 
1410 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1411 		return -ENXIO;
1412 
1413 	if (is_vmalloc_addr(cpu_addr)) {
1414 		struct page **pages = dma_common_find_pages(cpu_addr);
1415 
1416 		if (pages)
1417 			return vm_map_pages(vma, pages, nr_pages);
1418 		pfn = vmalloc_to_pfn(cpu_addr);
1419 	} else {
1420 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1421 	}
1422 
1423 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1424 			       vma->vm_end - vma->vm_start,
1425 			       vma->vm_page_prot);
1426 }
1427 
1428 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1429 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1430 		unsigned long attrs)
1431 {
1432 	struct page *page;
1433 	int ret;
1434 
1435 	if (is_vmalloc_addr(cpu_addr)) {
1436 		struct page **pages = dma_common_find_pages(cpu_addr);
1437 
1438 		if (pages) {
1439 			return sg_alloc_table_from_pages(sgt, pages,
1440 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1441 					0, size, GFP_KERNEL);
1442 		}
1443 
1444 		page = vmalloc_to_page(cpu_addr);
1445 	} else {
1446 		page = virt_to_page(cpu_addr);
1447 	}
1448 
1449 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1450 	if (!ret)
1451 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1452 	return ret;
1453 }
1454 
1455 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1456 {
1457 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1458 
1459 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1460 }
1461 
1462 static const struct dma_map_ops iommu_dma_ops = {
1463 	.alloc			= iommu_dma_alloc,
1464 	.free			= iommu_dma_free,
1465 	.alloc_pages		= dma_common_alloc_pages,
1466 	.free_pages		= dma_common_free_pages,
1467 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1468 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1469 	.mmap			= iommu_dma_mmap,
1470 	.get_sgtable		= iommu_dma_get_sgtable,
1471 	.map_page		= iommu_dma_map_page,
1472 	.unmap_page		= iommu_dma_unmap_page,
1473 	.map_sg			= iommu_dma_map_sg,
1474 	.unmap_sg		= iommu_dma_unmap_sg,
1475 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1476 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1477 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1478 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1479 	.map_resource		= iommu_dma_map_resource,
1480 	.unmap_resource		= iommu_dma_unmap_resource,
1481 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1482 };
1483 
1484 /*
1485  * The IOMMU core code allocates the default DMA domain, which the underlying
1486  * IOMMU driver needs to support via the dma-iommu layer.
1487  */
1488 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1489 {
1490 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1491 
1492 	if (!domain)
1493 		goto out_err;
1494 
1495 	/*
1496 	 * The IOMMU core code allocates the default DMA domain, which the
1497 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1498 	 */
1499 	if (iommu_is_dma_domain(domain)) {
1500 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1501 			goto out_err;
1502 		dev->dma_ops = &iommu_dma_ops;
1503 	}
1504 
1505 	return;
1506 out_err:
1507 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1508 		 dev_name(dev));
1509 }
1510 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1511 
1512 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1513 		phys_addr_t msi_addr, struct iommu_domain *domain)
1514 {
1515 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1516 	struct iommu_dma_msi_page *msi_page;
1517 	dma_addr_t iova;
1518 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1519 	size_t size = cookie_msi_granule(cookie);
1520 
1521 	msi_addr &= ~(phys_addr_t)(size - 1);
1522 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1523 		if (msi_page->phys == msi_addr)
1524 			return msi_page;
1525 
1526 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1527 	if (!msi_page)
1528 		return NULL;
1529 
1530 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1531 	if (!iova)
1532 		goto out_free_page;
1533 
1534 	if (iommu_map(domain, iova, msi_addr, size, prot))
1535 		goto out_free_iova;
1536 
1537 	INIT_LIST_HEAD(&msi_page->list);
1538 	msi_page->phys = msi_addr;
1539 	msi_page->iova = iova;
1540 	list_add(&msi_page->list, &cookie->msi_page_list);
1541 	return msi_page;
1542 
1543 out_free_iova:
1544 	iommu_dma_free_iova(cookie, iova, size, NULL);
1545 out_free_page:
1546 	kfree(msi_page);
1547 	return NULL;
1548 }
1549 
1550 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1551 {
1552 	struct device *dev = msi_desc_to_dev(desc);
1553 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1554 	struct iommu_dma_msi_page *msi_page;
1555 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1556 
1557 	if (!domain || !domain->iova_cookie) {
1558 		desc->iommu_cookie = NULL;
1559 		return 0;
1560 	}
1561 
1562 	/*
1563 	 * In fact the whole prepare operation should already be serialised by
1564 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1565 	 * on its own, so consider this locking as failsafe documentation...
1566 	 */
1567 	mutex_lock(&msi_prepare_lock);
1568 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1569 	mutex_unlock(&msi_prepare_lock);
1570 
1571 	msi_desc_set_iommu_cookie(desc, msi_page);
1572 
1573 	if (!msi_page)
1574 		return -ENOMEM;
1575 	return 0;
1576 }
1577 
1578 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1579 			       struct msi_msg *msg)
1580 {
1581 	struct device *dev = msi_desc_to_dev(desc);
1582 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1583 	const struct iommu_dma_msi_page *msi_page;
1584 
1585 	msi_page = msi_desc_get_iommu_cookie(desc);
1586 
1587 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1588 		return;
1589 
1590 	msg->address_hi = upper_32_bits(msi_page->iova);
1591 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1592 	msg->address_lo += lower_32_bits(msi_page->iova);
1593 }
1594 
1595 static int iommu_dma_init(void)
1596 {
1597 	if (is_kdump_kernel())
1598 		static_branch_enable(&iommu_deferred_attach_enabled);
1599 
1600 	return iova_cache_get();
1601 }
1602 arch_initcall(iommu_dma_init);
1603