1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iommu-dma.h> 21 #include <linux/iova.h> 22 #include <linux/irq.h> 23 #include <linux/list_sort.h> 24 #include <linux/memremap.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/msi.h> 28 #include <linux/of_iommu.h> 29 #include <linux/pci.h> 30 #include <linux/pci-p2pdma.h> 31 #include <linux/scatterlist.h> 32 #include <linux/spinlock.h> 33 #include <linux/swiotlb.h> 34 #include <linux/vmalloc.h> 35 #include <trace/events/swiotlb.h> 36 37 #include "dma-iommu.h" 38 #include "iommu-pages.h" 39 40 struct iommu_dma_msi_page { 41 struct list_head list; 42 dma_addr_t iova; 43 phys_addr_t phys; 44 }; 45 46 enum iommu_dma_queue_type { 47 IOMMU_DMA_OPTS_PER_CPU_QUEUE, 48 IOMMU_DMA_OPTS_SINGLE_QUEUE, 49 }; 50 51 struct iommu_dma_options { 52 enum iommu_dma_queue_type qt; 53 size_t fq_size; 54 unsigned int fq_timeout; 55 }; 56 57 struct iommu_dma_cookie { 58 struct iova_domain iovad; 59 struct list_head msi_page_list; 60 /* Flush queue */ 61 union { 62 struct iova_fq *single_fq; 63 struct iova_fq __percpu *percpu_fq; 64 }; 65 /* Number of TLB flushes that have been started */ 66 atomic64_t fq_flush_start_cnt; 67 /* Number of TLB flushes that have been finished */ 68 atomic64_t fq_flush_finish_cnt; 69 /* Timer to regularily empty the flush queues */ 70 struct timer_list fq_timer; 71 /* 1 when timer is active, 0 when not */ 72 atomic_t fq_timer_on; 73 /* Domain for flush queue callback; NULL if flush queue not in use */ 74 struct iommu_domain *fq_domain; 75 /* Options for dma-iommu use */ 76 struct iommu_dma_options options; 77 }; 78 79 struct iommu_dma_msi_cookie { 80 dma_addr_t msi_iova; 81 struct list_head msi_page_list; 82 }; 83 84 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 85 bool iommu_dma_forcedac __read_mostly; 86 87 static int __init iommu_dma_forcedac_setup(char *str) 88 { 89 int ret = kstrtobool(str, &iommu_dma_forcedac); 90 91 if (!ret && iommu_dma_forcedac) 92 pr_info("Forcing DAC for PCI devices\n"); 93 return ret; 94 } 95 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 96 97 /* Number of entries per flush queue */ 98 #define IOVA_DEFAULT_FQ_SIZE 256 99 #define IOVA_SINGLE_FQ_SIZE 32768 100 101 /* Timeout (in ms) after which entries are flushed from the queue */ 102 #define IOVA_DEFAULT_FQ_TIMEOUT 10 103 #define IOVA_SINGLE_FQ_TIMEOUT 1000 104 105 /* Flush queue entry for deferred flushing */ 106 struct iova_fq_entry { 107 unsigned long iova_pfn; 108 unsigned long pages; 109 struct iommu_pages_list freelist; 110 u64 counter; /* Flush counter when this entry was added */ 111 }; 112 113 /* Per-CPU flush queue structure */ 114 struct iova_fq { 115 spinlock_t lock; 116 unsigned int head, tail; 117 unsigned int mod_mask; 118 struct iova_fq_entry entries[]; 119 }; 120 121 #define fq_ring_for_each(i, fq) \ 122 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask) 123 124 static inline bool fq_full(struct iova_fq *fq) 125 { 126 assert_spin_locked(&fq->lock); 127 return (((fq->tail + 1) & fq->mod_mask) == fq->head); 128 } 129 130 static inline unsigned int fq_ring_add(struct iova_fq *fq) 131 { 132 unsigned int idx = fq->tail; 133 134 assert_spin_locked(&fq->lock); 135 136 fq->tail = (idx + 1) & fq->mod_mask; 137 138 return idx; 139 } 140 141 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 142 { 143 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 144 unsigned int idx; 145 146 assert_spin_locked(&fq->lock); 147 148 fq_ring_for_each(idx, fq) { 149 150 if (fq->entries[idx].counter >= counter) 151 break; 152 153 iommu_put_pages_list(&fq->entries[idx].freelist); 154 free_iova_fast(&cookie->iovad, 155 fq->entries[idx].iova_pfn, 156 fq->entries[idx].pages); 157 158 fq->entries[idx].freelist = 159 IOMMU_PAGES_LIST_INIT(fq->entries[idx].freelist); 160 fq->head = (fq->head + 1) & fq->mod_mask; 161 } 162 } 163 164 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 165 { 166 unsigned long flags; 167 168 spin_lock_irqsave(&fq->lock, flags); 169 fq_ring_free_locked(cookie, fq); 170 spin_unlock_irqrestore(&fq->lock, flags); 171 } 172 173 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 174 { 175 atomic64_inc(&cookie->fq_flush_start_cnt); 176 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 177 atomic64_inc(&cookie->fq_flush_finish_cnt); 178 } 179 180 static void fq_flush_timeout(struct timer_list *t) 181 { 182 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 183 int cpu; 184 185 atomic_set(&cookie->fq_timer_on, 0); 186 fq_flush_iotlb(cookie); 187 188 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) { 189 fq_ring_free(cookie, cookie->single_fq); 190 } else { 191 for_each_possible_cpu(cpu) 192 fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu)); 193 } 194 } 195 196 static void queue_iova(struct iommu_dma_cookie *cookie, 197 unsigned long pfn, unsigned long pages, 198 struct iommu_pages_list *freelist) 199 { 200 struct iova_fq *fq; 201 unsigned long flags; 202 unsigned int idx; 203 204 /* 205 * Order against the IOMMU driver's pagetable update from unmapping 206 * @pte, to guarantee that fq_flush_iotlb() observes that if called 207 * from a different CPU before we release the lock below. Full barrier 208 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 209 * written fq state here. 210 */ 211 smp_mb(); 212 213 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 214 fq = cookie->single_fq; 215 else 216 fq = raw_cpu_ptr(cookie->percpu_fq); 217 218 spin_lock_irqsave(&fq->lock, flags); 219 220 /* 221 * First remove all entries from the flush queue that have already been 222 * flushed out on another CPU. This makes the fq_full() check below less 223 * likely to be true. 224 */ 225 fq_ring_free_locked(cookie, fq); 226 227 if (fq_full(fq)) { 228 fq_flush_iotlb(cookie); 229 fq_ring_free_locked(cookie, fq); 230 } 231 232 idx = fq_ring_add(fq); 233 234 fq->entries[idx].iova_pfn = pfn; 235 fq->entries[idx].pages = pages; 236 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 237 iommu_pages_list_splice(freelist, &fq->entries[idx].freelist); 238 239 spin_unlock_irqrestore(&fq->lock, flags); 240 241 /* Avoid false sharing as much as possible. */ 242 if (!atomic_read(&cookie->fq_timer_on) && 243 !atomic_xchg(&cookie->fq_timer_on, 1)) 244 mod_timer(&cookie->fq_timer, 245 jiffies + msecs_to_jiffies(cookie->options.fq_timeout)); 246 } 247 248 static void iommu_dma_free_fq_single(struct iova_fq *fq) 249 { 250 int idx; 251 252 fq_ring_for_each(idx, fq) 253 iommu_put_pages_list(&fq->entries[idx].freelist); 254 vfree(fq); 255 } 256 257 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq) 258 { 259 int cpu, idx; 260 261 /* The IOVAs will be torn down separately, so just free our queued pages */ 262 for_each_possible_cpu(cpu) { 263 struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu); 264 265 fq_ring_for_each(idx, fq) 266 iommu_put_pages_list(&fq->entries[idx].freelist); 267 } 268 269 free_percpu(percpu_fq); 270 } 271 272 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 273 { 274 if (!cookie->fq_domain) 275 return; 276 277 timer_delete_sync(&cookie->fq_timer); 278 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 279 iommu_dma_free_fq_single(cookie->single_fq); 280 else 281 iommu_dma_free_fq_percpu(cookie->percpu_fq); 282 } 283 284 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size) 285 { 286 int i; 287 288 fq->head = 0; 289 fq->tail = 0; 290 fq->mod_mask = fq_size - 1; 291 292 spin_lock_init(&fq->lock); 293 294 for (i = 0; i < fq_size; i++) 295 fq->entries[i].freelist = 296 IOMMU_PAGES_LIST_INIT(fq->entries[i].freelist); 297 } 298 299 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie) 300 { 301 size_t fq_size = cookie->options.fq_size; 302 struct iova_fq *queue; 303 304 queue = vmalloc(struct_size(queue, entries, fq_size)); 305 if (!queue) 306 return -ENOMEM; 307 iommu_dma_init_one_fq(queue, fq_size); 308 cookie->single_fq = queue; 309 310 return 0; 311 } 312 313 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie) 314 { 315 size_t fq_size = cookie->options.fq_size; 316 struct iova_fq __percpu *queue; 317 int cpu; 318 319 queue = __alloc_percpu(struct_size(queue, entries, fq_size), 320 __alignof__(*queue)); 321 if (!queue) 322 return -ENOMEM; 323 324 for_each_possible_cpu(cpu) 325 iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size); 326 cookie->percpu_fq = queue; 327 return 0; 328 } 329 330 /* sysfs updates are serialised by the mutex of the group owning @domain */ 331 int iommu_dma_init_fq(struct iommu_domain *domain) 332 { 333 struct iommu_dma_cookie *cookie = domain->iova_cookie; 334 int rc; 335 336 if (cookie->fq_domain) 337 return 0; 338 339 atomic64_set(&cookie->fq_flush_start_cnt, 0); 340 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 341 342 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 343 rc = iommu_dma_init_fq_single(cookie); 344 else 345 rc = iommu_dma_init_fq_percpu(cookie); 346 347 if (rc) { 348 pr_warn("iova flush queue initialization failed\n"); 349 return -ENOMEM; 350 } 351 352 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 353 atomic_set(&cookie->fq_timer_on, 0); 354 /* 355 * Prevent incomplete fq state being observable. Pairs with path from 356 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 357 */ 358 smp_wmb(); 359 WRITE_ONCE(cookie->fq_domain, domain); 360 return 0; 361 } 362 363 /** 364 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 365 * @domain: IOMMU domain to prepare for DMA-API usage 366 */ 367 int iommu_get_dma_cookie(struct iommu_domain *domain) 368 { 369 struct iommu_dma_cookie *cookie; 370 371 if (domain->cookie_type != IOMMU_COOKIE_NONE) 372 return -EEXIST; 373 374 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 375 if (!cookie) 376 return -ENOMEM; 377 378 INIT_LIST_HEAD(&cookie->msi_page_list); 379 domain->cookie_type = IOMMU_COOKIE_DMA_IOVA; 380 domain->iova_cookie = cookie; 381 return 0; 382 } 383 384 /** 385 * iommu_get_msi_cookie - Acquire just MSI remapping resources 386 * @domain: IOMMU domain to prepare 387 * @base: Start address of IOVA region for MSI mappings 388 * 389 * Users who manage their own IOVA allocation and do not want DMA API support, 390 * but would still like to take advantage of automatic MSI remapping, can use 391 * this to initialise their own domain appropriately. Users should reserve a 392 * contiguous IOVA region, starting at @base, large enough to accommodate the 393 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 394 * used by the devices attached to @domain. 395 */ 396 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 397 { 398 struct iommu_dma_msi_cookie *cookie; 399 400 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 401 return -EINVAL; 402 403 if (domain->cookie_type != IOMMU_COOKIE_NONE) 404 return -EEXIST; 405 406 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 407 if (!cookie) 408 return -ENOMEM; 409 410 cookie->msi_iova = base; 411 INIT_LIST_HEAD(&cookie->msi_page_list); 412 domain->cookie_type = IOMMU_COOKIE_DMA_MSI; 413 domain->msi_cookie = cookie; 414 return 0; 415 } 416 EXPORT_SYMBOL(iommu_get_msi_cookie); 417 418 /** 419 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 420 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 421 */ 422 void iommu_put_dma_cookie(struct iommu_domain *domain) 423 { 424 struct iommu_dma_cookie *cookie = domain->iova_cookie; 425 struct iommu_dma_msi_page *msi, *tmp; 426 427 if (cookie->iovad.granule) { 428 iommu_dma_free_fq(cookie); 429 put_iova_domain(&cookie->iovad); 430 } 431 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) 432 kfree(msi); 433 kfree(cookie); 434 } 435 436 /** 437 * iommu_put_msi_cookie - Release a domain's MSI mapping resources 438 * @domain: IOMMU domain previously prepared by iommu_get_msi_cookie() 439 */ 440 void iommu_put_msi_cookie(struct iommu_domain *domain) 441 { 442 struct iommu_dma_msi_cookie *cookie = domain->msi_cookie; 443 struct iommu_dma_msi_page *msi, *tmp; 444 445 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) 446 kfree(msi); 447 kfree(cookie); 448 } 449 450 /** 451 * iommu_dma_get_resv_regions - Reserved region driver helper 452 * @dev: Device from iommu_get_resv_regions() 453 * @list: Reserved region list from iommu_get_resv_regions() 454 * 455 * IOMMU drivers can use this to implement their .get_resv_regions callback 456 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 457 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 458 * reservation. 459 */ 460 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 461 { 462 463 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 464 iort_iommu_get_resv_regions(dev, list); 465 466 if (dev->of_node) 467 of_iommu_get_resv_regions(dev, list); 468 } 469 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 470 471 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 472 phys_addr_t start, phys_addr_t end) 473 { 474 struct iova_domain *iovad = &cookie->iovad; 475 struct iommu_dma_msi_page *msi_page; 476 int i, num_pages; 477 478 start -= iova_offset(iovad, start); 479 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 480 481 for (i = 0; i < num_pages; i++) { 482 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 483 if (!msi_page) 484 return -ENOMEM; 485 486 msi_page->phys = start; 487 msi_page->iova = start; 488 INIT_LIST_HEAD(&msi_page->list); 489 list_add(&msi_page->list, &cookie->msi_page_list); 490 start += iovad->granule; 491 } 492 493 return 0; 494 } 495 496 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 497 const struct list_head *b) 498 { 499 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 500 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 501 502 return res_a->res->start > res_b->res->start; 503 } 504 505 static int iova_reserve_pci_windows(struct pci_dev *dev, 506 struct iova_domain *iovad) 507 { 508 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 509 struct resource_entry *window; 510 unsigned long lo, hi; 511 phys_addr_t start = 0, end; 512 513 resource_list_for_each_entry(window, &bridge->windows) { 514 if (resource_type(window->res) != IORESOURCE_MEM) 515 continue; 516 517 lo = iova_pfn(iovad, window->res->start - window->offset); 518 hi = iova_pfn(iovad, window->res->end - window->offset); 519 reserve_iova(iovad, lo, hi); 520 } 521 522 /* Get reserved DMA windows from host bridge */ 523 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 524 resource_list_for_each_entry(window, &bridge->dma_ranges) { 525 end = window->res->start - window->offset; 526 resv_iova: 527 if (end > start) { 528 lo = iova_pfn(iovad, start); 529 hi = iova_pfn(iovad, end); 530 reserve_iova(iovad, lo, hi); 531 } else if (end < start) { 532 /* DMA ranges should be non-overlapping */ 533 dev_err(&dev->dev, 534 "Failed to reserve IOVA [%pa-%pa]\n", 535 &start, &end); 536 return -EINVAL; 537 } 538 539 start = window->res->end - window->offset + 1; 540 /* If window is last entry */ 541 if (window->node.next == &bridge->dma_ranges && 542 end != ~(phys_addr_t)0) { 543 end = ~(phys_addr_t)0; 544 goto resv_iova; 545 } 546 } 547 548 return 0; 549 } 550 551 static int iova_reserve_iommu_regions(struct device *dev, 552 struct iommu_domain *domain) 553 { 554 struct iommu_dma_cookie *cookie = domain->iova_cookie; 555 struct iova_domain *iovad = &cookie->iovad; 556 struct iommu_resv_region *region; 557 LIST_HEAD(resv_regions); 558 int ret = 0; 559 560 if (dev_is_pci(dev)) { 561 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 562 if (ret) 563 return ret; 564 } 565 566 iommu_get_resv_regions(dev, &resv_regions); 567 list_for_each_entry(region, &resv_regions, list) { 568 unsigned long lo, hi; 569 570 /* We ARE the software that manages these! */ 571 if (region->type == IOMMU_RESV_SW_MSI) 572 continue; 573 574 lo = iova_pfn(iovad, region->start); 575 hi = iova_pfn(iovad, region->start + region->length - 1); 576 reserve_iova(iovad, lo, hi); 577 578 if (region->type == IOMMU_RESV_MSI) 579 ret = cookie_init_hw_msi_region(cookie, region->start, 580 region->start + region->length); 581 if (ret) 582 break; 583 } 584 iommu_put_resv_regions(dev, &resv_regions); 585 586 return ret; 587 } 588 589 static bool dev_is_untrusted(struct device *dev) 590 { 591 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 592 } 593 594 static bool dev_use_swiotlb(struct device *dev, size_t size, 595 enum dma_data_direction dir) 596 { 597 return IS_ENABLED(CONFIG_SWIOTLB) && 598 (dev_is_untrusted(dev) || 599 dma_kmalloc_needs_bounce(dev, size, dir)); 600 } 601 602 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg, 603 int nents, enum dma_data_direction dir) 604 { 605 struct scatterlist *s; 606 int i; 607 608 if (!IS_ENABLED(CONFIG_SWIOTLB)) 609 return false; 610 611 if (dev_is_untrusted(dev)) 612 return true; 613 614 /* 615 * If kmalloc() buffers are not DMA-safe for this device and 616 * direction, check the individual lengths in the sg list. If any 617 * element is deemed unsafe, use the swiotlb for bouncing. 618 */ 619 if (!dma_kmalloc_safe(dev, dir)) { 620 for_each_sg(sg, s, nents, i) 621 if (!dma_kmalloc_size_aligned(s->length)) 622 return true; 623 } 624 625 return false; 626 } 627 628 /** 629 * iommu_dma_init_options - Initialize dma-iommu options 630 * @options: The options to be initialized 631 * @dev: Device the options are set for 632 * 633 * This allows tuning dma-iommu specific to device properties 634 */ 635 static void iommu_dma_init_options(struct iommu_dma_options *options, 636 struct device *dev) 637 { 638 /* Shadowing IOTLB flushes do better with a single large queue */ 639 if (dev->iommu->shadow_on_flush) { 640 options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE; 641 options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT; 642 options->fq_size = IOVA_SINGLE_FQ_SIZE; 643 } else { 644 options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE; 645 options->fq_size = IOVA_DEFAULT_FQ_SIZE; 646 options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT; 647 } 648 } 649 650 /** 651 * iommu_dma_init_domain - Initialise a DMA mapping domain 652 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 653 * @dev: Device the domain is being initialised for 654 * 655 * If the geometry and dma_range_map include address 0, we reserve that page 656 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 657 * any change which could make prior IOVAs invalid will fail. 658 */ 659 static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev) 660 { 661 struct iommu_dma_cookie *cookie = domain->iova_cookie; 662 const struct bus_dma_region *map = dev->dma_range_map; 663 unsigned long order, base_pfn; 664 struct iova_domain *iovad; 665 int ret; 666 667 if (!cookie || domain->cookie_type != IOMMU_COOKIE_DMA_IOVA) 668 return -EINVAL; 669 670 iovad = &cookie->iovad; 671 672 /* Use the smallest supported page size for IOVA granularity */ 673 order = __ffs(domain->pgsize_bitmap); 674 base_pfn = 1; 675 676 /* Check the domain allows at least some access to the device... */ 677 if (map) { 678 if (dma_range_map_min(map) > domain->geometry.aperture_end || 679 dma_range_map_max(map) < domain->geometry.aperture_start) { 680 pr_warn("specified DMA range outside IOMMU capability\n"); 681 return -EFAULT; 682 } 683 } 684 /* ...then finally give it a kicking to make sure it fits */ 685 base_pfn = max_t(unsigned long, base_pfn, 686 domain->geometry.aperture_start >> order); 687 688 /* start_pfn is always nonzero for an already-initialised domain */ 689 if (iovad->start_pfn) { 690 if (1UL << order != iovad->granule || 691 base_pfn != iovad->start_pfn) { 692 pr_warn("Incompatible range for DMA domain\n"); 693 return -EFAULT; 694 } 695 696 return 0; 697 } 698 699 init_iova_domain(iovad, 1UL << order, base_pfn); 700 ret = iova_domain_init_rcaches(iovad); 701 if (ret) 702 return ret; 703 704 iommu_dma_init_options(&cookie->options, dev); 705 706 /* If the FQ fails we can simply fall back to strict mode */ 707 if (domain->type == IOMMU_DOMAIN_DMA_FQ && 708 (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain))) 709 domain->type = IOMMU_DOMAIN_DMA; 710 711 return iova_reserve_iommu_regions(dev, domain); 712 } 713 714 /** 715 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 716 * page flags. 717 * @dir: Direction of DMA transfer 718 * @coherent: Is the DMA master cache-coherent? 719 * @attrs: DMA attributes for the mapping 720 * 721 * Return: corresponding IOMMU API page protection flags 722 */ 723 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 724 unsigned long attrs) 725 { 726 int prot = coherent ? IOMMU_CACHE : 0; 727 728 if (attrs & DMA_ATTR_PRIVILEGED) 729 prot |= IOMMU_PRIV; 730 731 switch (dir) { 732 case DMA_BIDIRECTIONAL: 733 return prot | IOMMU_READ | IOMMU_WRITE; 734 case DMA_TO_DEVICE: 735 return prot | IOMMU_READ; 736 case DMA_FROM_DEVICE: 737 return prot | IOMMU_WRITE; 738 default: 739 return 0; 740 } 741 } 742 743 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 744 size_t size, u64 dma_limit, struct device *dev) 745 { 746 struct iommu_dma_cookie *cookie = domain->iova_cookie; 747 struct iova_domain *iovad = &cookie->iovad; 748 unsigned long shift, iova_len, iova; 749 750 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) { 751 domain->msi_cookie->msi_iova += size; 752 return domain->msi_cookie->msi_iova - size; 753 } 754 755 shift = iova_shift(iovad); 756 iova_len = size >> shift; 757 758 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 759 760 if (domain->geometry.force_aperture) 761 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 762 763 /* 764 * Try to use all the 32-bit PCI addresses first. The original SAC vs. 765 * DAC reasoning loses relevance with PCIe, but enough hardware and 766 * firmware bugs are still lurking out there that it's safest not to 767 * venture into the 64-bit space until necessary. 768 * 769 * If your device goes wrong after seeing the notice then likely either 770 * its driver is not setting DMA masks accurately, the hardware has 771 * some inherent bug in handling >32-bit addresses, or not all the 772 * expected address bits are wired up between the device and the IOMMU. 773 */ 774 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) { 775 iova = alloc_iova_fast(iovad, iova_len, 776 DMA_BIT_MASK(32) >> shift, false); 777 if (iova) 778 goto done; 779 780 dev->iommu->pci_32bit_workaround = false; 781 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit)); 782 } 783 784 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true); 785 done: 786 return (dma_addr_t)iova << shift; 787 } 788 789 static void iommu_dma_free_iova(struct iommu_domain *domain, dma_addr_t iova, 790 size_t size, struct iommu_iotlb_gather *gather) 791 { 792 struct iova_domain *iovad = &domain->iova_cookie->iovad; 793 794 /* The MSI case is only ever cleaning up its most recent allocation */ 795 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) 796 domain->msi_cookie->msi_iova -= size; 797 else if (gather && gather->queued) 798 queue_iova(domain->iova_cookie, iova_pfn(iovad, iova), 799 size >> iova_shift(iovad), 800 &gather->freelist); 801 else 802 free_iova_fast(iovad, iova_pfn(iovad, iova), 803 size >> iova_shift(iovad)); 804 } 805 806 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 807 size_t size) 808 { 809 struct iommu_domain *domain = iommu_get_dma_domain(dev); 810 struct iommu_dma_cookie *cookie = domain->iova_cookie; 811 struct iova_domain *iovad = &cookie->iovad; 812 size_t iova_off = iova_offset(iovad, dma_addr); 813 struct iommu_iotlb_gather iotlb_gather; 814 size_t unmapped; 815 816 dma_addr -= iova_off; 817 size = iova_align(iovad, size + iova_off); 818 iommu_iotlb_gather_init(&iotlb_gather); 819 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 820 821 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 822 WARN_ON(unmapped != size); 823 824 if (!iotlb_gather.queued) 825 iommu_iotlb_sync(domain, &iotlb_gather); 826 iommu_dma_free_iova(domain, dma_addr, size, &iotlb_gather); 827 } 828 829 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 830 size_t size, int prot, u64 dma_mask) 831 { 832 struct iommu_domain *domain = iommu_get_dma_domain(dev); 833 struct iommu_dma_cookie *cookie = domain->iova_cookie; 834 struct iova_domain *iovad = &cookie->iovad; 835 size_t iova_off = iova_offset(iovad, phys); 836 dma_addr_t iova; 837 838 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 839 iommu_deferred_attach(dev, domain)) 840 return DMA_MAPPING_ERROR; 841 842 /* If anyone ever wants this we'd need support in the IOVA allocator */ 843 if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad), 844 "Unsupported alignment constraint\n")) 845 return DMA_MAPPING_ERROR; 846 847 size = iova_align(iovad, size + iova_off); 848 849 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 850 if (!iova) 851 return DMA_MAPPING_ERROR; 852 853 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { 854 iommu_dma_free_iova(domain, iova, size, NULL); 855 return DMA_MAPPING_ERROR; 856 } 857 return iova + iova_off; 858 } 859 860 static void __iommu_dma_free_pages(struct page **pages, int count) 861 { 862 while (count--) 863 __free_page(pages[count]); 864 kvfree(pages); 865 } 866 867 static struct page **__iommu_dma_alloc_pages(struct device *dev, 868 unsigned int count, unsigned long order_mask, gfp_t gfp) 869 { 870 struct page **pages; 871 unsigned int i = 0, nid = dev_to_node(dev); 872 873 order_mask &= GENMASK(MAX_PAGE_ORDER, 0); 874 if (!order_mask) 875 return NULL; 876 877 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 878 if (!pages) 879 return NULL; 880 881 /* IOMMU can map any pages, so himem can also be used here */ 882 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 883 884 while (count) { 885 struct page *page = NULL; 886 unsigned int order_size; 887 888 /* 889 * Higher-order allocations are a convenience rather 890 * than a necessity, hence using __GFP_NORETRY until 891 * falling back to minimum-order allocations. 892 */ 893 for (order_mask &= GENMASK(__fls(count), 0); 894 order_mask; order_mask &= ~order_size) { 895 unsigned int order = __fls(order_mask); 896 gfp_t alloc_flags = gfp; 897 898 order_size = 1U << order; 899 if (order_mask > order_size) 900 alloc_flags |= __GFP_NORETRY; 901 page = alloc_pages_node(nid, alloc_flags, order); 902 if (!page) 903 continue; 904 if (order) 905 split_page(page, order); 906 break; 907 } 908 if (!page) { 909 __iommu_dma_free_pages(pages, i); 910 return NULL; 911 } 912 count -= order_size; 913 while (order_size--) 914 pages[i++] = page++; 915 } 916 return pages; 917 } 918 919 /* 920 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 921 * but an IOMMU which supports smaller pages might not map the whole thing. 922 */ 923 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 924 size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs) 925 { 926 struct iommu_domain *domain = iommu_get_dma_domain(dev); 927 struct iommu_dma_cookie *cookie = domain->iova_cookie; 928 struct iova_domain *iovad = &cookie->iovad; 929 bool coherent = dev_is_dma_coherent(dev); 930 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 931 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 932 struct page **pages; 933 dma_addr_t iova; 934 ssize_t ret; 935 936 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 937 iommu_deferred_attach(dev, domain)) 938 return NULL; 939 940 min_size = alloc_sizes & -alloc_sizes; 941 if (min_size < PAGE_SIZE) { 942 min_size = PAGE_SIZE; 943 alloc_sizes |= PAGE_SIZE; 944 } else { 945 size = ALIGN(size, min_size); 946 } 947 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 948 alloc_sizes = min_size; 949 950 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 951 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 952 gfp); 953 if (!pages) 954 return NULL; 955 956 size = iova_align(iovad, size); 957 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 958 if (!iova) 959 goto out_free_pages; 960 961 /* 962 * Remove the zone/policy flags from the GFP - these are applied to the 963 * __iommu_dma_alloc_pages() but are not used for the supporting 964 * internal allocations that follow. 965 */ 966 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); 967 968 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) 969 goto out_free_iova; 970 971 if (!(ioprot & IOMMU_CACHE)) { 972 struct scatterlist *sg; 973 int i; 974 975 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 976 arch_dma_prep_coherent(sg_page(sg), sg->length); 977 } 978 979 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, 980 gfp); 981 if (ret < 0 || ret < size) 982 goto out_free_sg; 983 984 sgt->sgl->dma_address = iova; 985 sgt->sgl->dma_length = size; 986 return pages; 987 988 out_free_sg: 989 sg_free_table(sgt); 990 out_free_iova: 991 iommu_dma_free_iova(domain, iova, size, NULL); 992 out_free_pages: 993 __iommu_dma_free_pages(pages, count); 994 return NULL; 995 } 996 997 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 998 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 999 { 1000 struct page **pages; 1001 struct sg_table sgt; 1002 void *vaddr; 1003 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1004 1005 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs); 1006 if (!pages) 1007 return NULL; 1008 *dma_handle = sgt.sgl->dma_address; 1009 sg_free_table(&sgt); 1010 vaddr = dma_common_pages_remap(pages, size, prot, 1011 __builtin_return_address(0)); 1012 if (!vaddr) 1013 goto out_unmap; 1014 return vaddr; 1015 1016 out_unmap: 1017 __iommu_dma_unmap(dev, *dma_handle, size); 1018 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1019 return NULL; 1020 } 1021 1022 /* 1023 * This is the actual return value from the iommu_dma_alloc_noncontiguous. 1024 * 1025 * The users of the DMA API should only care about the sg_table, but to make 1026 * the DMA-API internal vmaping and freeing easier we stash away the page 1027 * array as well (except for the fallback case). This can go away any time, 1028 * e.g. when a vmap-variant that takes a scatterlist comes along. 1029 */ 1030 struct dma_sgt_handle { 1031 struct sg_table sgt; 1032 struct page **pages; 1033 }; 1034 #define sgt_handle(sgt) \ 1035 container_of((sgt), struct dma_sgt_handle, sgt) 1036 1037 struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size, 1038 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 1039 { 1040 struct dma_sgt_handle *sh; 1041 1042 sh = kmalloc(sizeof(*sh), gfp); 1043 if (!sh) 1044 return NULL; 1045 1046 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs); 1047 if (!sh->pages) { 1048 kfree(sh); 1049 return NULL; 1050 } 1051 return &sh->sgt; 1052 } 1053 1054 void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 1055 struct sg_table *sgt, enum dma_data_direction dir) 1056 { 1057 struct dma_sgt_handle *sh = sgt_handle(sgt); 1058 1059 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 1060 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1061 sg_free_table(&sh->sgt); 1062 kfree(sh); 1063 } 1064 1065 void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size, 1066 struct sg_table *sgt) 1067 { 1068 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1069 1070 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 1071 } 1072 1073 int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 1074 size_t size, struct sg_table *sgt) 1075 { 1076 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1077 1078 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 1079 return -ENXIO; 1080 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 1081 } 1082 1083 void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, 1084 size_t size, enum dma_data_direction dir) 1085 { 1086 phys_addr_t phys; 1087 1088 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1089 return; 1090 1091 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1092 if (!dev_is_dma_coherent(dev)) 1093 arch_sync_dma_for_cpu(phys, size, dir); 1094 1095 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 1096 } 1097 1098 void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, 1099 size_t size, enum dma_data_direction dir) 1100 { 1101 phys_addr_t phys; 1102 1103 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1104 return; 1105 1106 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1107 swiotlb_sync_single_for_device(dev, phys, size, dir); 1108 1109 if (!dev_is_dma_coherent(dev)) 1110 arch_sync_dma_for_device(phys, size, dir); 1111 } 1112 1113 void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 1114 int nelems, enum dma_data_direction dir) 1115 { 1116 struct scatterlist *sg; 1117 int i; 1118 1119 if (sg_dma_is_swiotlb(sgl)) 1120 for_each_sg(sgl, sg, nelems, i) 1121 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 1122 sg->length, dir); 1123 else if (!dev_is_dma_coherent(dev)) 1124 for_each_sg(sgl, sg, nelems, i) 1125 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 1126 } 1127 1128 void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 1129 int nelems, enum dma_data_direction dir) 1130 { 1131 struct scatterlist *sg; 1132 int i; 1133 1134 if (sg_dma_is_swiotlb(sgl)) 1135 for_each_sg(sgl, sg, nelems, i) 1136 iommu_dma_sync_single_for_device(dev, 1137 sg_dma_address(sg), 1138 sg->length, dir); 1139 else if (!dev_is_dma_coherent(dev)) 1140 for_each_sg(sgl, sg, nelems, i) 1141 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 1142 } 1143 1144 static phys_addr_t iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys, 1145 size_t size, enum dma_data_direction dir, unsigned long attrs) 1146 { 1147 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1148 struct iova_domain *iovad = &domain->iova_cookie->iovad; 1149 1150 if (!is_swiotlb_active(dev)) { 1151 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 1152 return (phys_addr_t)DMA_MAPPING_ERROR; 1153 } 1154 1155 trace_swiotlb_bounced(dev, phys, size); 1156 1157 phys = swiotlb_tbl_map_single(dev, phys, size, iova_mask(iovad), dir, 1158 attrs); 1159 1160 /* 1161 * Untrusted devices should not see padding areas with random leftover 1162 * kernel data, so zero the pre- and post-padding. 1163 * swiotlb_tbl_map_single() has initialized the bounce buffer proper to 1164 * the contents of the original memory buffer. 1165 */ 1166 if (phys != (phys_addr_t)DMA_MAPPING_ERROR && dev_is_untrusted(dev)) { 1167 size_t start, virt = (size_t)phys_to_virt(phys); 1168 1169 /* Pre-padding */ 1170 start = iova_align_down(iovad, virt); 1171 memset((void *)start, 0, virt - start); 1172 1173 /* Post-padding */ 1174 start = virt + size; 1175 memset((void *)start, 0, iova_align(iovad, start) - start); 1176 } 1177 1178 return phys; 1179 } 1180 1181 /* 1182 * Checks if a physical buffer has unaligned boundaries with respect to 1183 * the IOMMU granule. Returns non-zero if either the start or end 1184 * address is not aligned to the granule boundary. 1185 */ 1186 static inline size_t iova_unaligned(struct iova_domain *iovad, phys_addr_t phys, 1187 size_t size) 1188 { 1189 return iova_offset(iovad, phys | size); 1190 } 1191 1192 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 1193 unsigned long offset, size_t size, enum dma_data_direction dir, 1194 unsigned long attrs) 1195 { 1196 phys_addr_t phys = page_to_phys(page) + offset; 1197 bool coherent = dev_is_dma_coherent(dev); 1198 int prot = dma_info_to_prot(dir, coherent, attrs); 1199 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1200 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1201 struct iova_domain *iovad = &cookie->iovad; 1202 dma_addr_t iova, dma_mask = dma_get_mask(dev); 1203 1204 /* 1205 * If both the physical buffer start address and size are page aligned, 1206 * we don't need to use a bounce page. 1207 */ 1208 if (dev_use_swiotlb(dev, size, dir) && 1209 iova_unaligned(iovad, phys, size)) { 1210 phys = iommu_dma_map_swiotlb(dev, phys, size, dir, attrs); 1211 if (phys == (phys_addr_t)DMA_MAPPING_ERROR) 1212 return DMA_MAPPING_ERROR; 1213 } 1214 1215 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1216 arch_sync_dma_for_device(phys, size, dir); 1217 1218 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1219 if (iova == DMA_MAPPING_ERROR) 1220 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1221 return iova; 1222 } 1223 1224 void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1225 size_t size, enum dma_data_direction dir, unsigned long attrs) 1226 { 1227 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1228 phys_addr_t phys; 1229 1230 phys = iommu_iova_to_phys(domain, dma_handle); 1231 if (WARN_ON(!phys)) 1232 return; 1233 1234 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1235 arch_sync_dma_for_cpu(phys, size, dir); 1236 1237 __iommu_dma_unmap(dev, dma_handle, size); 1238 1239 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1240 } 1241 1242 /* 1243 * Prepare a successfully-mapped scatterlist to give back to the caller. 1244 * 1245 * At this point the segments are already laid out by iommu_dma_map_sg() to 1246 * avoid individually crossing any boundaries, so we merely need to check a 1247 * segment's start address to avoid concatenating across one. 1248 */ 1249 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1250 dma_addr_t dma_addr) 1251 { 1252 struct scatterlist *s, *cur = sg; 1253 unsigned long seg_mask = dma_get_seg_boundary(dev); 1254 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1255 int i, count = 0; 1256 1257 for_each_sg(sg, s, nents, i) { 1258 /* Restore this segment's original unaligned fields first */ 1259 dma_addr_t s_dma_addr = sg_dma_address(s); 1260 unsigned int s_iova_off = sg_dma_address(s); 1261 unsigned int s_length = sg_dma_len(s); 1262 unsigned int s_iova_len = s->length; 1263 1264 sg_dma_address(s) = DMA_MAPPING_ERROR; 1265 sg_dma_len(s) = 0; 1266 1267 if (sg_dma_is_bus_address(s)) { 1268 if (i > 0) 1269 cur = sg_next(cur); 1270 1271 sg_dma_unmark_bus_address(s); 1272 sg_dma_address(cur) = s_dma_addr; 1273 sg_dma_len(cur) = s_length; 1274 sg_dma_mark_bus_address(cur); 1275 count++; 1276 cur_len = 0; 1277 continue; 1278 } 1279 1280 s->offset += s_iova_off; 1281 s->length = s_length; 1282 1283 /* 1284 * Now fill in the real DMA data. If... 1285 * - there is a valid output segment to append to 1286 * - and this segment starts on an IOVA page boundary 1287 * - but doesn't fall at a segment boundary 1288 * - and wouldn't make the resulting output segment too long 1289 */ 1290 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1291 (max_len - cur_len >= s_length)) { 1292 /* ...then concatenate it with the previous one */ 1293 cur_len += s_length; 1294 } else { 1295 /* Otherwise start the next output segment */ 1296 if (i > 0) 1297 cur = sg_next(cur); 1298 cur_len = s_length; 1299 count++; 1300 1301 sg_dma_address(cur) = dma_addr + s_iova_off; 1302 } 1303 1304 sg_dma_len(cur) = cur_len; 1305 dma_addr += s_iova_len; 1306 1307 if (s_length + s_iova_off < s_iova_len) 1308 cur_len = 0; 1309 } 1310 return count; 1311 } 1312 1313 /* 1314 * If mapping failed, then just restore the original list, 1315 * but making sure the DMA fields are invalidated. 1316 */ 1317 static void __invalidate_sg(struct scatterlist *sg, int nents) 1318 { 1319 struct scatterlist *s; 1320 int i; 1321 1322 for_each_sg(sg, s, nents, i) { 1323 if (sg_dma_is_bus_address(s)) { 1324 sg_dma_unmark_bus_address(s); 1325 } else { 1326 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1327 s->offset += sg_dma_address(s); 1328 if (sg_dma_len(s)) 1329 s->length = sg_dma_len(s); 1330 } 1331 sg_dma_address(s) = DMA_MAPPING_ERROR; 1332 sg_dma_len(s) = 0; 1333 } 1334 } 1335 1336 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1337 int nents, enum dma_data_direction dir, unsigned long attrs) 1338 { 1339 struct scatterlist *s; 1340 int i; 1341 1342 for_each_sg(sg, s, nents, i) 1343 iommu_dma_unmap_page(dev, sg_dma_address(s), 1344 sg_dma_len(s), dir, attrs); 1345 } 1346 1347 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1348 int nents, enum dma_data_direction dir, unsigned long attrs) 1349 { 1350 struct scatterlist *s; 1351 int i; 1352 1353 sg_dma_mark_swiotlb(sg); 1354 1355 for_each_sg(sg, s, nents, i) { 1356 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1357 s->offset, s->length, dir, attrs); 1358 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1359 goto out_unmap; 1360 sg_dma_len(s) = s->length; 1361 } 1362 1363 return nents; 1364 1365 out_unmap: 1366 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1367 return -EIO; 1368 } 1369 1370 /* 1371 * The DMA API client is passing in a scatterlist which could describe 1372 * any old buffer layout, but the IOMMU API requires everything to be 1373 * aligned to IOMMU pages. Hence the need for this complicated bit of 1374 * impedance-matching, to be able to hand off a suitably-aligned list, 1375 * but still preserve the original offsets and sizes for the caller. 1376 */ 1377 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1378 enum dma_data_direction dir, unsigned long attrs) 1379 { 1380 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1381 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1382 struct iova_domain *iovad = &cookie->iovad; 1383 struct scatterlist *s, *prev = NULL; 1384 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1385 struct pci_p2pdma_map_state p2pdma_state = {}; 1386 dma_addr_t iova; 1387 size_t iova_len = 0; 1388 unsigned long mask = dma_get_seg_boundary(dev); 1389 ssize_t ret; 1390 int i; 1391 1392 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1393 ret = iommu_deferred_attach(dev, domain); 1394 if (ret) 1395 goto out; 1396 } 1397 1398 if (dev_use_sg_swiotlb(dev, sg, nents, dir)) 1399 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1400 1401 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1402 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1403 1404 /* 1405 * Work out how much IOVA space we need, and align the segments to 1406 * IOVA granules for the IOMMU driver to handle. With some clever 1407 * trickery we can modify the list in-place, but reversibly, by 1408 * stashing the unaligned parts in the as-yet-unused DMA fields. 1409 */ 1410 for_each_sg(sg, s, nents, i) { 1411 size_t s_iova_off = iova_offset(iovad, s->offset); 1412 size_t s_length = s->length; 1413 size_t pad_len = (mask - iova_len + 1) & mask; 1414 1415 switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(s))) { 1416 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1417 /* 1418 * Mapping through host bridge should be mapped with 1419 * regular IOVAs, thus we do nothing here and continue 1420 * below. 1421 */ 1422 break; 1423 case PCI_P2PDMA_MAP_NONE: 1424 break; 1425 case PCI_P2PDMA_MAP_BUS_ADDR: 1426 /* 1427 * iommu_map_sg() will skip this segment as it is marked 1428 * as a bus address, __finalise_sg() will copy the dma 1429 * address into the output segment. 1430 */ 1431 s->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state, 1432 sg_phys(s)); 1433 sg_dma_len(s) = sg->length; 1434 sg_dma_mark_bus_address(s); 1435 continue; 1436 default: 1437 ret = -EREMOTEIO; 1438 goto out_restore_sg; 1439 } 1440 1441 sg_dma_address(s) = s_iova_off; 1442 sg_dma_len(s) = s_length; 1443 s->offset -= s_iova_off; 1444 s_length = iova_align(iovad, s_length + s_iova_off); 1445 s->length = s_length; 1446 1447 /* 1448 * Due to the alignment of our single IOVA allocation, we can 1449 * depend on these assumptions about the segment boundary mask: 1450 * - If mask size >= IOVA size, then the IOVA range cannot 1451 * possibly fall across a boundary, so we don't care. 1452 * - If mask size < IOVA size, then the IOVA range must start 1453 * exactly on a boundary, therefore we can lay things out 1454 * based purely on segment lengths without needing to know 1455 * the actual addresses beforehand. 1456 * - The mask must be a power of 2, so pad_len == 0 if 1457 * iova_len == 0, thus we cannot dereference prev the first 1458 * time through here (i.e. before it has a meaningful value). 1459 */ 1460 if (pad_len && pad_len < s_length - 1) { 1461 prev->length += pad_len; 1462 iova_len += pad_len; 1463 } 1464 1465 iova_len += s_length; 1466 prev = s; 1467 } 1468 1469 if (!iova_len) 1470 return __finalise_sg(dev, sg, nents, 0); 1471 1472 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1473 if (!iova) { 1474 ret = -ENOMEM; 1475 goto out_restore_sg; 1476 } 1477 1478 /* 1479 * We'll leave any physical concatenation to the IOMMU driver's 1480 * implementation - it knows better than we do. 1481 */ 1482 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 1483 if (ret < 0 || ret < iova_len) 1484 goto out_free_iova; 1485 1486 return __finalise_sg(dev, sg, nents, iova); 1487 1488 out_free_iova: 1489 iommu_dma_free_iova(domain, iova, iova_len, NULL); 1490 out_restore_sg: 1491 __invalidate_sg(sg, nents); 1492 out: 1493 if (ret != -ENOMEM && ret != -EREMOTEIO) 1494 return -EINVAL; 1495 return ret; 1496 } 1497 1498 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1499 enum dma_data_direction dir, unsigned long attrs) 1500 { 1501 dma_addr_t end = 0, start; 1502 struct scatterlist *tmp; 1503 int i; 1504 1505 if (sg_dma_is_swiotlb(sg)) { 1506 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1507 return; 1508 } 1509 1510 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1511 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1512 1513 /* 1514 * The scatterlist segments are mapped into a single 1515 * contiguous IOVA allocation, the start and end points 1516 * just have to be determined. 1517 */ 1518 for_each_sg(sg, tmp, nents, i) { 1519 if (sg_dma_is_bus_address(tmp)) { 1520 sg_dma_unmark_bus_address(tmp); 1521 continue; 1522 } 1523 1524 if (sg_dma_len(tmp) == 0) 1525 break; 1526 1527 start = sg_dma_address(tmp); 1528 break; 1529 } 1530 1531 nents -= i; 1532 for_each_sg(tmp, tmp, nents, i) { 1533 if (sg_dma_is_bus_address(tmp)) { 1534 sg_dma_unmark_bus_address(tmp); 1535 continue; 1536 } 1537 1538 if (sg_dma_len(tmp) == 0) 1539 break; 1540 1541 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1542 } 1543 1544 if (end) 1545 __iommu_dma_unmap(dev, start, end - start); 1546 } 1547 1548 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1549 size_t size, enum dma_data_direction dir, unsigned long attrs) 1550 { 1551 return __iommu_dma_map(dev, phys, size, 1552 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1553 dma_get_mask(dev)); 1554 } 1555 1556 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1557 size_t size, enum dma_data_direction dir, unsigned long attrs) 1558 { 1559 __iommu_dma_unmap(dev, handle, size); 1560 } 1561 1562 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1563 { 1564 size_t alloc_size = PAGE_ALIGN(size); 1565 int count = alloc_size >> PAGE_SHIFT; 1566 struct page *page = NULL, **pages = NULL; 1567 1568 /* Non-coherent atomic allocation? Easy */ 1569 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1570 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1571 return; 1572 1573 if (is_vmalloc_addr(cpu_addr)) { 1574 /* 1575 * If it the address is remapped, then it's either non-coherent 1576 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1577 */ 1578 pages = dma_common_find_pages(cpu_addr); 1579 if (!pages) 1580 page = vmalloc_to_page(cpu_addr); 1581 dma_common_free_remap(cpu_addr, alloc_size); 1582 } else { 1583 /* Lowmem means a coherent atomic or CMA allocation */ 1584 page = virt_to_page(cpu_addr); 1585 } 1586 1587 if (pages) 1588 __iommu_dma_free_pages(pages, count); 1589 if (page) 1590 dma_free_contiguous(dev, page, alloc_size); 1591 } 1592 1593 void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1594 dma_addr_t handle, unsigned long attrs) 1595 { 1596 __iommu_dma_unmap(dev, handle, size); 1597 __iommu_dma_free(dev, size, cpu_addr); 1598 } 1599 1600 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1601 struct page **pagep, gfp_t gfp, unsigned long attrs) 1602 { 1603 bool coherent = dev_is_dma_coherent(dev); 1604 size_t alloc_size = PAGE_ALIGN(size); 1605 int node = dev_to_node(dev); 1606 struct page *page = NULL; 1607 void *cpu_addr; 1608 1609 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1610 if (!page) 1611 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1612 if (!page) 1613 return NULL; 1614 1615 if (!coherent || PageHighMem(page)) { 1616 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1617 1618 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1619 prot, __builtin_return_address(0)); 1620 if (!cpu_addr) 1621 goto out_free_pages; 1622 1623 if (!coherent) 1624 arch_dma_prep_coherent(page, size); 1625 } else { 1626 cpu_addr = page_address(page); 1627 } 1628 1629 *pagep = page; 1630 memset(cpu_addr, 0, alloc_size); 1631 return cpu_addr; 1632 out_free_pages: 1633 dma_free_contiguous(dev, page, alloc_size); 1634 return NULL; 1635 } 1636 1637 void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 1638 gfp_t gfp, unsigned long attrs) 1639 { 1640 bool coherent = dev_is_dma_coherent(dev); 1641 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1642 struct page *page = NULL; 1643 void *cpu_addr; 1644 1645 gfp |= __GFP_ZERO; 1646 1647 if (gfpflags_allow_blocking(gfp) && 1648 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1649 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs); 1650 } 1651 1652 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1653 !gfpflags_allow_blocking(gfp) && !coherent) 1654 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1655 gfp, NULL); 1656 else 1657 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1658 if (!cpu_addr) 1659 return NULL; 1660 1661 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1662 dev->coherent_dma_mask); 1663 if (*handle == DMA_MAPPING_ERROR) { 1664 __iommu_dma_free(dev, size, cpu_addr); 1665 return NULL; 1666 } 1667 1668 return cpu_addr; 1669 } 1670 1671 int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1672 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1673 unsigned long attrs) 1674 { 1675 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1676 unsigned long pfn, off = vma->vm_pgoff; 1677 int ret; 1678 1679 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1680 1681 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1682 return ret; 1683 1684 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1685 return -ENXIO; 1686 1687 if (is_vmalloc_addr(cpu_addr)) { 1688 struct page **pages = dma_common_find_pages(cpu_addr); 1689 1690 if (pages) 1691 return vm_map_pages(vma, pages, nr_pages); 1692 pfn = vmalloc_to_pfn(cpu_addr); 1693 } else { 1694 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1695 } 1696 1697 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1698 vma->vm_end - vma->vm_start, 1699 vma->vm_page_prot); 1700 } 1701 1702 int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1703 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1704 unsigned long attrs) 1705 { 1706 struct page *page; 1707 int ret; 1708 1709 if (is_vmalloc_addr(cpu_addr)) { 1710 struct page **pages = dma_common_find_pages(cpu_addr); 1711 1712 if (pages) { 1713 return sg_alloc_table_from_pages(sgt, pages, 1714 PAGE_ALIGN(size) >> PAGE_SHIFT, 1715 0, size, GFP_KERNEL); 1716 } 1717 1718 page = vmalloc_to_page(cpu_addr); 1719 } else { 1720 page = virt_to_page(cpu_addr); 1721 } 1722 1723 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1724 if (!ret) 1725 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1726 return ret; 1727 } 1728 1729 unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1730 { 1731 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1732 1733 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1734 } 1735 1736 size_t iommu_dma_opt_mapping_size(void) 1737 { 1738 return iova_rcache_range(); 1739 } 1740 1741 size_t iommu_dma_max_mapping_size(struct device *dev) 1742 { 1743 if (dev_is_untrusted(dev)) 1744 return swiotlb_max_mapping_size(dev); 1745 1746 return SIZE_MAX; 1747 } 1748 1749 /** 1750 * dma_iova_try_alloc - Try to allocate an IOVA space 1751 * @dev: Device to allocate the IOVA space for 1752 * @state: IOVA state 1753 * @phys: physical address 1754 * @size: IOVA size 1755 * 1756 * Check if @dev supports the IOVA-based DMA API, and if yes allocate IOVA space 1757 * for the given base address and size. 1758 * 1759 * Note: @phys is only used to calculate the IOVA alignment. Callers that always 1760 * do PAGE_SIZE aligned transfers can safely pass 0 here. 1761 * 1762 * Returns %true if the IOVA-based DMA API can be used and IOVA space has been 1763 * allocated, or %false if the regular DMA API should be used. 1764 */ 1765 bool dma_iova_try_alloc(struct device *dev, struct dma_iova_state *state, 1766 phys_addr_t phys, size_t size) 1767 { 1768 struct iommu_dma_cookie *cookie; 1769 struct iommu_domain *domain; 1770 struct iova_domain *iovad; 1771 size_t iova_off; 1772 dma_addr_t addr; 1773 1774 memset(state, 0, sizeof(*state)); 1775 if (!use_dma_iommu(dev)) 1776 return false; 1777 1778 domain = iommu_get_dma_domain(dev); 1779 cookie = domain->iova_cookie; 1780 iovad = &cookie->iovad; 1781 iova_off = iova_offset(iovad, phys); 1782 1783 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 1784 iommu_deferred_attach(dev, iommu_get_domain_for_dev(dev))) 1785 return false; 1786 1787 if (WARN_ON_ONCE(!size)) 1788 return false; 1789 1790 /* 1791 * DMA_IOVA_USE_SWIOTLB is flag which is set by dma-iommu 1792 * internals, make sure that caller didn't set it and/or 1793 * didn't use this interface to map SIZE_MAX. 1794 */ 1795 if (WARN_ON_ONCE((u64)size & DMA_IOVA_USE_SWIOTLB)) 1796 return false; 1797 1798 addr = iommu_dma_alloc_iova(domain, 1799 iova_align(iovad, size + iova_off), 1800 dma_get_mask(dev), dev); 1801 if (!addr) 1802 return false; 1803 1804 state->addr = addr + iova_off; 1805 state->__size = size; 1806 return true; 1807 } 1808 EXPORT_SYMBOL_GPL(dma_iova_try_alloc); 1809 1810 /** 1811 * dma_iova_free - Free an IOVA space 1812 * @dev: Device to free the IOVA space for 1813 * @state: IOVA state 1814 * 1815 * Undoes a successful dma_try_iova_alloc(). 1816 * 1817 * Note that all dma_iova_link() calls need to be undone first. For callers 1818 * that never call dma_iova_unlink(), dma_iova_destroy() can be used instead 1819 * which unlinks all ranges and frees the IOVA space in a single efficient 1820 * operation. 1821 */ 1822 void dma_iova_free(struct device *dev, struct dma_iova_state *state) 1823 { 1824 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1825 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1826 struct iova_domain *iovad = &cookie->iovad; 1827 size_t iova_start_pad = iova_offset(iovad, state->addr); 1828 size_t size = dma_iova_size(state); 1829 1830 iommu_dma_free_iova(domain, state->addr - iova_start_pad, 1831 iova_align(iovad, size + iova_start_pad), NULL); 1832 } 1833 EXPORT_SYMBOL_GPL(dma_iova_free); 1834 1835 static int __dma_iova_link(struct device *dev, dma_addr_t addr, 1836 phys_addr_t phys, size_t size, enum dma_data_direction dir, 1837 unsigned long attrs) 1838 { 1839 bool coherent = dev_is_dma_coherent(dev); 1840 1841 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1842 arch_sync_dma_for_device(phys, size, dir); 1843 1844 return iommu_map_nosync(iommu_get_dma_domain(dev), addr, phys, size, 1845 dma_info_to_prot(dir, coherent, attrs), GFP_ATOMIC); 1846 } 1847 1848 static int iommu_dma_iova_bounce_and_link(struct device *dev, dma_addr_t addr, 1849 phys_addr_t phys, size_t bounce_len, 1850 enum dma_data_direction dir, unsigned long attrs, 1851 size_t iova_start_pad) 1852 { 1853 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1854 struct iova_domain *iovad = &domain->iova_cookie->iovad; 1855 phys_addr_t bounce_phys; 1856 int error; 1857 1858 bounce_phys = iommu_dma_map_swiotlb(dev, phys, bounce_len, dir, attrs); 1859 if (bounce_phys == DMA_MAPPING_ERROR) 1860 return -ENOMEM; 1861 1862 error = __dma_iova_link(dev, addr - iova_start_pad, 1863 bounce_phys - iova_start_pad, 1864 iova_align(iovad, bounce_len), dir, attrs); 1865 if (error) 1866 swiotlb_tbl_unmap_single(dev, bounce_phys, bounce_len, dir, 1867 attrs); 1868 return error; 1869 } 1870 1871 static int iommu_dma_iova_link_swiotlb(struct device *dev, 1872 struct dma_iova_state *state, phys_addr_t phys, size_t offset, 1873 size_t size, enum dma_data_direction dir, unsigned long attrs) 1874 { 1875 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1876 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1877 struct iova_domain *iovad = &cookie->iovad; 1878 size_t iova_start_pad = iova_offset(iovad, phys); 1879 size_t iova_end_pad = iova_offset(iovad, phys + size); 1880 dma_addr_t addr = state->addr + offset; 1881 size_t mapped = 0; 1882 int error; 1883 1884 if (iova_start_pad) { 1885 size_t bounce_len = min(size, iovad->granule - iova_start_pad); 1886 1887 error = iommu_dma_iova_bounce_and_link(dev, addr, phys, 1888 bounce_len, dir, attrs, iova_start_pad); 1889 if (error) 1890 return error; 1891 state->__size |= DMA_IOVA_USE_SWIOTLB; 1892 1893 mapped += bounce_len; 1894 size -= bounce_len; 1895 if (!size) 1896 return 0; 1897 } 1898 1899 size -= iova_end_pad; 1900 error = __dma_iova_link(dev, addr + mapped, phys + mapped, size, dir, 1901 attrs); 1902 if (error) 1903 goto out_unmap; 1904 mapped += size; 1905 1906 if (iova_end_pad) { 1907 error = iommu_dma_iova_bounce_and_link(dev, addr + mapped, 1908 phys + mapped, iova_end_pad, dir, attrs, 0); 1909 if (error) 1910 goto out_unmap; 1911 state->__size |= DMA_IOVA_USE_SWIOTLB; 1912 } 1913 1914 return 0; 1915 1916 out_unmap: 1917 dma_iova_unlink(dev, state, 0, mapped, dir, attrs); 1918 return error; 1919 } 1920 1921 /** 1922 * dma_iova_link - Link a range of IOVA space 1923 * @dev: DMA device 1924 * @state: IOVA state 1925 * @phys: physical address to link 1926 * @offset: offset into the IOVA state to map into 1927 * @size: size of the buffer 1928 * @dir: DMA direction 1929 * @attrs: attributes of mapping properties 1930 * 1931 * Link a range of IOVA space for the given IOVA state without IOTLB sync. 1932 * This function is used to link multiple physical addresses in contiguous 1933 * IOVA space without performing costly IOTLB sync. 1934 * 1935 * The caller is responsible to call to dma_iova_sync() to sync IOTLB at 1936 * the end of linkage. 1937 */ 1938 int dma_iova_link(struct device *dev, struct dma_iova_state *state, 1939 phys_addr_t phys, size_t offset, size_t size, 1940 enum dma_data_direction dir, unsigned long attrs) 1941 { 1942 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1943 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1944 struct iova_domain *iovad = &cookie->iovad; 1945 size_t iova_start_pad = iova_offset(iovad, phys); 1946 1947 if (WARN_ON_ONCE(iova_start_pad && offset > 0)) 1948 return -EIO; 1949 1950 if (dev_use_swiotlb(dev, size, dir) && 1951 iova_unaligned(iovad, phys, size)) 1952 return iommu_dma_iova_link_swiotlb(dev, state, phys, offset, 1953 size, dir, attrs); 1954 1955 return __dma_iova_link(dev, state->addr + offset - iova_start_pad, 1956 phys - iova_start_pad, 1957 iova_align(iovad, size + iova_start_pad), dir, attrs); 1958 } 1959 EXPORT_SYMBOL_GPL(dma_iova_link); 1960 1961 /** 1962 * dma_iova_sync - Sync IOTLB 1963 * @dev: DMA device 1964 * @state: IOVA state 1965 * @offset: offset into the IOVA state to sync 1966 * @size: size of the buffer 1967 * 1968 * Sync IOTLB for the given IOVA state. This function should be called on 1969 * the IOVA-contiguous range created by one ore more dma_iova_link() calls 1970 * to sync the IOTLB. 1971 */ 1972 int dma_iova_sync(struct device *dev, struct dma_iova_state *state, 1973 size_t offset, size_t size) 1974 { 1975 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1976 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1977 struct iova_domain *iovad = &cookie->iovad; 1978 dma_addr_t addr = state->addr + offset; 1979 size_t iova_start_pad = iova_offset(iovad, addr); 1980 1981 return iommu_sync_map(domain, addr - iova_start_pad, 1982 iova_align(iovad, size + iova_start_pad)); 1983 } 1984 EXPORT_SYMBOL_GPL(dma_iova_sync); 1985 1986 static void iommu_dma_iova_unlink_range_slow(struct device *dev, 1987 dma_addr_t addr, size_t size, enum dma_data_direction dir, 1988 unsigned long attrs) 1989 { 1990 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1991 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1992 struct iova_domain *iovad = &cookie->iovad; 1993 size_t iova_start_pad = iova_offset(iovad, addr); 1994 dma_addr_t end = addr + size; 1995 1996 do { 1997 phys_addr_t phys; 1998 size_t len; 1999 2000 phys = iommu_iova_to_phys(domain, addr); 2001 if (WARN_ON(!phys)) 2002 /* Something very horrible happen here */ 2003 return; 2004 2005 len = min_t(size_t, 2006 end - addr, iovad->granule - iova_start_pad); 2007 2008 if (!dev_is_dma_coherent(dev) && 2009 !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 2010 arch_sync_dma_for_cpu(phys, len, dir); 2011 2012 swiotlb_tbl_unmap_single(dev, phys, len, dir, attrs); 2013 2014 addr += len; 2015 iova_start_pad = 0; 2016 } while (addr < end); 2017 } 2018 2019 static void __iommu_dma_iova_unlink(struct device *dev, 2020 struct dma_iova_state *state, size_t offset, size_t size, 2021 enum dma_data_direction dir, unsigned long attrs, 2022 bool free_iova) 2023 { 2024 struct iommu_domain *domain = iommu_get_dma_domain(dev); 2025 struct iommu_dma_cookie *cookie = domain->iova_cookie; 2026 struct iova_domain *iovad = &cookie->iovad; 2027 dma_addr_t addr = state->addr + offset; 2028 size_t iova_start_pad = iova_offset(iovad, addr); 2029 struct iommu_iotlb_gather iotlb_gather; 2030 size_t unmapped; 2031 2032 if ((state->__size & DMA_IOVA_USE_SWIOTLB) || 2033 (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))) 2034 iommu_dma_iova_unlink_range_slow(dev, addr, size, dir, attrs); 2035 2036 iommu_iotlb_gather_init(&iotlb_gather); 2037 iotlb_gather.queued = free_iova && READ_ONCE(cookie->fq_domain); 2038 2039 size = iova_align(iovad, size + iova_start_pad); 2040 addr -= iova_start_pad; 2041 unmapped = iommu_unmap_fast(domain, addr, size, &iotlb_gather); 2042 WARN_ON(unmapped != size); 2043 2044 if (!iotlb_gather.queued) 2045 iommu_iotlb_sync(domain, &iotlb_gather); 2046 if (free_iova) 2047 iommu_dma_free_iova(domain, addr, size, &iotlb_gather); 2048 } 2049 2050 /** 2051 * dma_iova_unlink - Unlink a range of IOVA space 2052 * @dev: DMA device 2053 * @state: IOVA state 2054 * @offset: offset into the IOVA state to unlink 2055 * @size: size of the buffer 2056 * @dir: DMA direction 2057 * @attrs: attributes of mapping properties 2058 * 2059 * Unlink a range of IOVA space for the given IOVA state. 2060 */ 2061 void dma_iova_unlink(struct device *dev, struct dma_iova_state *state, 2062 size_t offset, size_t size, enum dma_data_direction dir, 2063 unsigned long attrs) 2064 { 2065 __iommu_dma_iova_unlink(dev, state, offset, size, dir, attrs, false); 2066 } 2067 EXPORT_SYMBOL_GPL(dma_iova_unlink); 2068 2069 /** 2070 * dma_iova_destroy - Finish a DMA mapping transaction 2071 * @dev: DMA device 2072 * @state: IOVA state 2073 * @mapped_len: number of bytes to unmap 2074 * @dir: DMA direction 2075 * @attrs: attributes of mapping properties 2076 * 2077 * Unlink the IOVA range up to @mapped_len and free the entire IOVA space. The 2078 * range of IOVA from dma_addr to @mapped_len must all be linked, and be the 2079 * only linked IOVA in state. 2080 */ 2081 void dma_iova_destroy(struct device *dev, struct dma_iova_state *state, 2082 size_t mapped_len, enum dma_data_direction dir, 2083 unsigned long attrs) 2084 { 2085 if (mapped_len) 2086 __iommu_dma_iova_unlink(dev, state, 0, mapped_len, dir, attrs, 2087 true); 2088 else 2089 /* 2090 * We can be here if first call to dma_iova_link() failed and 2091 * there is nothing to unlink, so let's be more clear. 2092 */ 2093 dma_iova_free(dev, state); 2094 } 2095 EXPORT_SYMBOL_GPL(dma_iova_destroy); 2096 2097 void iommu_setup_dma_ops(struct device *dev) 2098 { 2099 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 2100 2101 if (dev_is_pci(dev)) 2102 dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac; 2103 2104 dev->dma_iommu = iommu_is_dma_domain(domain); 2105 if (dev->dma_iommu && iommu_dma_init_domain(domain, dev)) 2106 goto out_err; 2107 2108 return; 2109 out_err: 2110 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 2111 dev_name(dev)); 2112 dev->dma_iommu = false; 2113 } 2114 2115 static bool has_msi_cookie(const struct iommu_domain *domain) 2116 { 2117 return domain && (domain->cookie_type == IOMMU_COOKIE_DMA_IOVA || 2118 domain->cookie_type == IOMMU_COOKIE_DMA_MSI); 2119 } 2120 2121 static size_t cookie_msi_granule(const struct iommu_domain *domain) 2122 { 2123 switch (domain->cookie_type) { 2124 case IOMMU_COOKIE_DMA_IOVA: 2125 return domain->iova_cookie->iovad.granule; 2126 case IOMMU_COOKIE_DMA_MSI: 2127 return PAGE_SIZE; 2128 default: 2129 BUG(); 2130 } 2131 } 2132 2133 static struct list_head *cookie_msi_pages(const struct iommu_domain *domain) 2134 { 2135 switch (domain->cookie_type) { 2136 case IOMMU_COOKIE_DMA_IOVA: 2137 return &domain->iova_cookie->msi_page_list; 2138 case IOMMU_COOKIE_DMA_MSI: 2139 return &domain->msi_cookie->msi_page_list; 2140 default: 2141 BUG(); 2142 } 2143 } 2144 2145 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 2146 phys_addr_t msi_addr, struct iommu_domain *domain) 2147 { 2148 struct list_head *msi_page_list = cookie_msi_pages(domain); 2149 struct iommu_dma_msi_page *msi_page; 2150 dma_addr_t iova; 2151 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 2152 size_t size = cookie_msi_granule(domain); 2153 2154 msi_addr &= ~(phys_addr_t)(size - 1); 2155 list_for_each_entry(msi_page, msi_page_list, list) 2156 if (msi_page->phys == msi_addr) 2157 return msi_page; 2158 2159 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 2160 if (!msi_page) 2161 return NULL; 2162 2163 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 2164 if (!iova) 2165 goto out_free_page; 2166 2167 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) 2168 goto out_free_iova; 2169 2170 INIT_LIST_HEAD(&msi_page->list); 2171 msi_page->phys = msi_addr; 2172 msi_page->iova = iova; 2173 list_add(&msi_page->list, msi_page_list); 2174 return msi_page; 2175 2176 out_free_iova: 2177 iommu_dma_free_iova(domain, iova, size, NULL); 2178 out_free_page: 2179 kfree(msi_page); 2180 return NULL; 2181 } 2182 2183 int iommu_dma_sw_msi(struct iommu_domain *domain, struct msi_desc *desc, 2184 phys_addr_t msi_addr) 2185 { 2186 struct device *dev = msi_desc_to_dev(desc); 2187 const struct iommu_dma_msi_page *msi_page; 2188 2189 if (!has_msi_cookie(domain)) { 2190 msi_desc_set_iommu_msi_iova(desc, 0, 0); 2191 return 0; 2192 } 2193 2194 iommu_group_mutex_assert(dev); 2195 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 2196 if (!msi_page) 2197 return -ENOMEM; 2198 2199 msi_desc_set_iommu_msi_iova(desc, msi_page->iova, 2200 ilog2(cookie_msi_granule(domain))); 2201 return 0; 2202 } 2203 2204 static int iommu_dma_init(void) 2205 { 2206 if (is_kdump_kernel()) 2207 static_branch_enable(&iommu_deferred_attach_enabled); 2208 2209 return iova_cache_get(); 2210 } 2211 arch_initcall(iommu_dma_init); 2212