xref: /linux/drivers/iommu/dma-iommu.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-contiguous.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/dma-noncoherent.h>
16 #include <linux/gfp.h>
17 #include <linux/huge_mm.h>
18 #include <linux/iommu.h>
19 #include <linux/iova.h>
20 #include <linux/irq.h>
21 #include <linux/mm.h>
22 #include <linux/pci.h>
23 #include <linux/scatterlist.h>
24 #include <linux/vmalloc.h>
25 
26 struct iommu_dma_msi_page {
27 	struct list_head	list;
28 	dma_addr_t		iova;
29 	phys_addr_t		phys;
30 };
31 
32 enum iommu_dma_cookie_type {
33 	IOMMU_DMA_IOVA_COOKIE,
34 	IOMMU_DMA_MSI_COOKIE,
35 };
36 
37 struct iommu_dma_cookie {
38 	enum iommu_dma_cookie_type	type;
39 	union {
40 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
41 		struct iova_domain	iovad;
42 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
43 		dma_addr_t		msi_iova;
44 	};
45 	struct list_head		msi_page_list;
46 	spinlock_t			msi_lock;
47 
48 	/* Domain for flush queue callback; NULL if flush queue not in use */
49 	struct iommu_domain		*fq_domain;
50 };
51 
52 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
53 {
54 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
55 		return cookie->iovad.granule;
56 	return PAGE_SIZE;
57 }
58 
59 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
60 {
61 	struct iommu_dma_cookie *cookie;
62 
63 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
64 	if (cookie) {
65 		spin_lock_init(&cookie->msi_lock);
66 		INIT_LIST_HEAD(&cookie->msi_page_list);
67 		cookie->type = type;
68 	}
69 	return cookie;
70 }
71 
72 /**
73  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
74  * @domain: IOMMU domain to prepare for DMA-API usage
75  *
76  * IOMMU drivers should normally call this from their domain_alloc
77  * callback when domain->type == IOMMU_DOMAIN_DMA.
78  */
79 int iommu_get_dma_cookie(struct iommu_domain *domain)
80 {
81 	if (domain->iova_cookie)
82 		return -EEXIST;
83 
84 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
85 	if (!domain->iova_cookie)
86 		return -ENOMEM;
87 
88 	return 0;
89 }
90 EXPORT_SYMBOL(iommu_get_dma_cookie);
91 
92 /**
93  * iommu_get_msi_cookie - Acquire just MSI remapping resources
94  * @domain: IOMMU domain to prepare
95  * @base: Start address of IOVA region for MSI mappings
96  *
97  * Users who manage their own IOVA allocation and do not want DMA API support,
98  * but would still like to take advantage of automatic MSI remapping, can use
99  * this to initialise their own domain appropriately. Users should reserve a
100  * contiguous IOVA region, starting at @base, large enough to accommodate the
101  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
102  * used by the devices attached to @domain.
103  */
104 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
105 {
106 	struct iommu_dma_cookie *cookie;
107 
108 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
109 		return -EINVAL;
110 
111 	if (domain->iova_cookie)
112 		return -EEXIST;
113 
114 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
115 	if (!cookie)
116 		return -ENOMEM;
117 
118 	cookie->msi_iova = base;
119 	domain->iova_cookie = cookie;
120 	return 0;
121 }
122 EXPORT_SYMBOL(iommu_get_msi_cookie);
123 
124 /**
125  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
126  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
127  *          iommu_get_msi_cookie()
128  *
129  * IOMMU drivers should normally call this from their domain_free callback.
130  */
131 void iommu_put_dma_cookie(struct iommu_domain *domain)
132 {
133 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
134 	struct iommu_dma_msi_page *msi, *tmp;
135 
136 	if (!cookie)
137 		return;
138 
139 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
140 		put_iova_domain(&cookie->iovad);
141 
142 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
143 		list_del(&msi->list);
144 		kfree(msi);
145 	}
146 	kfree(cookie);
147 	domain->iova_cookie = NULL;
148 }
149 EXPORT_SYMBOL(iommu_put_dma_cookie);
150 
151 /**
152  * iommu_dma_get_resv_regions - Reserved region driver helper
153  * @dev: Device from iommu_get_resv_regions()
154  * @list: Reserved region list from iommu_get_resv_regions()
155  *
156  * IOMMU drivers can use this to implement their .get_resv_regions callback
157  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
158  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
159  * reservation.
160  */
161 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
162 {
163 
164 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
165 		iort_iommu_msi_get_resv_regions(dev, list);
166 
167 }
168 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
169 
170 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
171 		phys_addr_t start, phys_addr_t end)
172 {
173 	struct iova_domain *iovad = &cookie->iovad;
174 	struct iommu_dma_msi_page *msi_page;
175 	int i, num_pages;
176 
177 	start -= iova_offset(iovad, start);
178 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
179 
180 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
181 	if (!msi_page)
182 		return -ENOMEM;
183 
184 	for (i = 0; i < num_pages; i++) {
185 		msi_page[i].phys = start;
186 		msi_page[i].iova = start;
187 		INIT_LIST_HEAD(&msi_page[i].list);
188 		list_add(&msi_page[i].list, &cookie->msi_page_list);
189 		start += iovad->granule;
190 	}
191 
192 	return 0;
193 }
194 
195 static int iova_reserve_pci_windows(struct pci_dev *dev,
196 		struct iova_domain *iovad)
197 {
198 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
199 	struct resource_entry *window;
200 	unsigned long lo, hi;
201 	phys_addr_t start = 0, end;
202 
203 	resource_list_for_each_entry(window, &bridge->windows) {
204 		if (resource_type(window->res) != IORESOURCE_MEM)
205 			continue;
206 
207 		lo = iova_pfn(iovad, window->res->start - window->offset);
208 		hi = iova_pfn(iovad, window->res->end - window->offset);
209 		reserve_iova(iovad, lo, hi);
210 	}
211 
212 	/* Get reserved DMA windows from host bridge */
213 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
214 		end = window->res->start - window->offset;
215 resv_iova:
216 		if (end > start) {
217 			lo = iova_pfn(iovad, start);
218 			hi = iova_pfn(iovad, end);
219 			reserve_iova(iovad, lo, hi);
220 		} else {
221 			/* dma_ranges list should be sorted */
222 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
223 			return -EINVAL;
224 		}
225 
226 		start = window->res->end - window->offset + 1;
227 		/* If window is last entry */
228 		if (window->node.next == &bridge->dma_ranges &&
229 		    end != ~(phys_addr_t)0) {
230 			end = ~(phys_addr_t)0;
231 			goto resv_iova;
232 		}
233 	}
234 
235 	return 0;
236 }
237 
238 static int iova_reserve_iommu_regions(struct device *dev,
239 		struct iommu_domain *domain)
240 {
241 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
242 	struct iova_domain *iovad = &cookie->iovad;
243 	struct iommu_resv_region *region;
244 	LIST_HEAD(resv_regions);
245 	int ret = 0;
246 
247 	if (dev_is_pci(dev)) {
248 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
249 		if (ret)
250 			return ret;
251 	}
252 
253 	iommu_get_resv_regions(dev, &resv_regions);
254 	list_for_each_entry(region, &resv_regions, list) {
255 		unsigned long lo, hi;
256 
257 		/* We ARE the software that manages these! */
258 		if (region->type == IOMMU_RESV_SW_MSI)
259 			continue;
260 
261 		lo = iova_pfn(iovad, region->start);
262 		hi = iova_pfn(iovad, region->start + region->length - 1);
263 		reserve_iova(iovad, lo, hi);
264 
265 		if (region->type == IOMMU_RESV_MSI)
266 			ret = cookie_init_hw_msi_region(cookie, region->start,
267 					region->start + region->length);
268 		if (ret)
269 			break;
270 	}
271 	iommu_put_resv_regions(dev, &resv_regions);
272 
273 	return ret;
274 }
275 
276 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
277 {
278 	struct iommu_dma_cookie *cookie;
279 	struct iommu_domain *domain;
280 
281 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
282 	domain = cookie->fq_domain;
283 	/*
284 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
285 	 * implies that ops->flush_iotlb_all must be non-NULL.
286 	 */
287 	domain->ops->flush_iotlb_all(domain);
288 }
289 
290 /**
291  * iommu_dma_init_domain - Initialise a DMA mapping domain
292  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
293  * @base: IOVA at which the mappable address space starts
294  * @size: Size of IOVA space
295  * @dev: Device the domain is being initialised for
296  *
297  * @base and @size should be exact multiples of IOMMU page granularity to
298  * avoid rounding surprises. If necessary, we reserve the page at address 0
299  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
300  * any change which could make prior IOVAs invalid will fail.
301  */
302 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
303 		u64 size, struct device *dev)
304 {
305 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
306 	unsigned long order, base_pfn;
307 	struct iova_domain *iovad;
308 	int attr;
309 
310 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
311 		return -EINVAL;
312 
313 	iovad = &cookie->iovad;
314 
315 	/* Use the smallest supported page size for IOVA granularity */
316 	order = __ffs(domain->pgsize_bitmap);
317 	base_pfn = max_t(unsigned long, 1, base >> order);
318 
319 	/* Check the domain allows at least some access to the device... */
320 	if (domain->geometry.force_aperture) {
321 		if (base > domain->geometry.aperture_end ||
322 		    base + size <= domain->geometry.aperture_start) {
323 			pr_warn("specified DMA range outside IOMMU capability\n");
324 			return -EFAULT;
325 		}
326 		/* ...then finally give it a kicking to make sure it fits */
327 		base_pfn = max_t(unsigned long, base_pfn,
328 				domain->geometry.aperture_start >> order);
329 	}
330 
331 	/* start_pfn is always nonzero for an already-initialised domain */
332 	if (iovad->start_pfn) {
333 		if (1UL << order != iovad->granule ||
334 		    base_pfn != iovad->start_pfn) {
335 			pr_warn("Incompatible range for DMA domain\n");
336 			return -EFAULT;
337 		}
338 
339 		return 0;
340 	}
341 
342 	init_iova_domain(iovad, 1UL << order, base_pfn);
343 
344 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
345 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
346 		cookie->fq_domain = domain;
347 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
348 	}
349 
350 	if (!dev)
351 		return 0;
352 
353 	return iova_reserve_iommu_regions(dev, domain);
354 }
355 
356 /**
357  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
358  *                    page flags.
359  * @dir: Direction of DMA transfer
360  * @coherent: Is the DMA master cache-coherent?
361  * @attrs: DMA attributes for the mapping
362  *
363  * Return: corresponding IOMMU API page protection flags
364  */
365 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
366 		     unsigned long attrs)
367 {
368 	int prot = coherent ? IOMMU_CACHE : 0;
369 
370 	if (attrs & DMA_ATTR_PRIVILEGED)
371 		prot |= IOMMU_PRIV;
372 
373 	switch (dir) {
374 	case DMA_BIDIRECTIONAL:
375 		return prot | IOMMU_READ | IOMMU_WRITE;
376 	case DMA_TO_DEVICE:
377 		return prot | IOMMU_READ;
378 	case DMA_FROM_DEVICE:
379 		return prot | IOMMU_WRITE;
380 	default:
381 		return 0;
382 	}
383 }
384 
385 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
386 		size_t size, dma_addr_t dma_limit, struct device *dev)
387 {
388 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
389 	struct iova_domain *iovad = &cookie->iovad;
390 	unsigned long shift, iova_len, iova = 0;
391 
392 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
393 		cookie->msi_iova += size;
394 		return cookie->msi_iova - size;
395 	}
396 
397 	shift = iova_shift(iovad);
398 	iova_len = size >> shift;
399 	/*
400 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
401 	 * will come back to bite us badly, so we have to waste a bit of space
402 	 * rounding up anything cacheable to make sure that can't happen. The
403 	 * order of the unadjusted size will still match upon freeing.
404 	 */
405 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
406 		iova_len = roundup_pow_of_two(iova_len);
407 
408 	if (dev->bus_dma_mask)
409 		dma_limit &= dev->bus_dma_mask;
410 
411 	if (domain->geometry.force_aperture)
412 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
413 
414 	/* Try to get PCI devices a SAC address */
415 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
416 		iova = alloc_iova_fast(iovad, iova_len,
417 				       DMA_BIT_MASK(32) >> shift, false);
418 
419 	if (!iova)
420 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
421 				       true);
422 
423 	return (dma_addr_t)iova << shift;
424 }
425 
426 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
427 		dma_addr_t iova, size_t size)
428 {
429 	struct iova_domain *iovad = &cookie->iovad;
430 
431 	/* The MSI case is only ever cleaning up its most recent allocation */
432 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
433 		cookie->msi_iova -= size;
434 	else if (cookie->fq_domain)	/* non-strict mode */
435 		queue_iova(iovad, iova_pfn(iovad, iova),
436 				size >> iova_shift(iovad), 0);
437 	else
438 		free_iova_fast(iovad, iova_pfn(iovad, iova),
439 				size >> iova_shift(iovad));
440 }
441 
442 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
443 		size_t size)
444 {
445 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
446 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
447 	struct iova_domain *iovad = &cookie->iovad;
448 	size_t iova_off = iova_offset(iovad, dma_addr);
449 	struct iommu_iotlb_gather iotlb_gather;
450 	size_t unmapped;
451 
452 	dma_addr -= iova_off;
453 	size = iova_align(iovad, size + iova_off);
454 	iommu_iotlb_gather_init(&iotlb_gather);
455 
456 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
457 	WARN_ON(unmapped != size);
458 
459 	if (!cookie->fq_domain)
460 		iommu_tlb_sync(domain, &iotlb_gather);
461 	iommu_dma_free_iova(cookie, dma_addr, size);
462 }
463 
464 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
465 		size_t size, int prot)
466 {
467 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
468 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
469 	struct iova_domain *iovad = &cookie->iovad;
470 	size_t iova_off = iova_offset(iovad, phys);
471 	dma_addr_t iova;
472 
473 	size = iova_align(iovad, size + iova_off);
474 
475 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
476 	if (!iova)
477 		return DMA_MAPPING_ERROR;
478 
479 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
480 		iommu_dma_free_iova(cookie, iova, size);
481 		return DMA_MAPPING_ERROR;
482 	}
483 	return iova + iova_off;
484 }
485 
486 static void __iommu_dma_free_pages(struct page **pages, int count)
487 {
488 	while (count--)
489 		__free_page(pages[count]);
490 	kvfree(pages);
491 }
492 
493 static struct page **__iommu_dma_alloc_pages(struct device *dev,
494 		unsigned int count, unsigned long order_mask, gfp_t gfp)
495 {
496 	struct page **pages;
497 	unsigned int i = 0, nid = dev_to_node(dev);
498 
499 	order_mask &= (2U << MAX_ORDER) - 1;
500 	if (!order_mask)
501 		return NULL;
502 
503 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
504 	if (!pages)
505 		return NULL;
506 
507 	/* IOMMU can map any pages, so himem can also be used here */
508 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
509 
510 	while (count) {
511 		struct page *page = NULL;
512 		unsigned int order_size;
513 
514 		/*
515 		 * Higher-order allocations are a convenience rather
516 		 * than a necessity, hence using __GFP_NORETRY until
517 		 * falling back to minimum-order allocations.
518 		 */
519 		for (order_mask &= (2U << __fls(count)) - 1;
520 		     order_mask; order_mask &= ~order_size) {
521 			unsigned int order = __fls(order_mask);
522 			gfp_t alloc_flags = gfp;
523 
524 			order_size = 1U << order;
525 			if (order_mask > order_size)
526 				alloc_flags |= __GFP_NORETRY;
527 			page = alloc_pages_node(nid, alloc_flags, order);
528 			if (!page)
529 				continue;
530 			if (!order)
531 				break;
532 			if (!PageCompound(page)) {
533 				split_page(page, order);
534 				break;
535 			} else if (!split_huge_page(page)) {
536 				break;
537 			}
538 			__free_pages(page, order);
539 		}
540 		if (!page) {
541 			__iommu_dma_free_pages(pages, i);
542 			return NULL;
543 		}
544 		count -= order_size;
545 		while (order_size--)
546 			pages[i++] = page++;
547 	}
548 	return pages;
549 }
550 
551 /**
552  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
553  * @dev: Device to allocate memory for. Must be a real device
554  *	 attached to an iommu_dma_domain
555  * @size: Size of buffer in bytes
556  * @dma_handle: Out argument for allocated DMA handle
557  * @gfp: Allocation flags
558  * @attrs: DMA attributes for this allocation
559  *
560  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
561  * but an IOMMU which supports smaller pages might not map the whole thing.
562  *
563  * Return: Mapped virtual address, or NULL on failure.
564  */
565 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
566 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
567 {
568 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
569 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
570 	struct iova_domain *iovad = &cookie->iovad;
571 	bool coherent = dev_is_dma_coherent(dev);
572 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
573 	pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
574 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
575 	struct page **pages;
576 	struct sg_table sgt;
577 	dma_addr_t iova;
578 	void *vaddr;
579 
580 	*dma_handle = DMA_MAPPING_ERROR;
581 
582 	min_size = alloc_sizes & -alloc_sizes;
583 	if (min_size < PAGE_SIZE) {
584 		min_size = PAGE_SIZE;
585 		alloc_sizes |= PAGE_SIZE;
586 	} else {
587 		size = ALIGN(size, min_size);
588 	}
589 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
590 		alloc_sizes = min_size;
591 
592 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
593 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
594 					gfp);
595 	if (!pages)
596 		return NULL;
597 
598 	size = iova_align(iovad, size);
599 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
600 	if (!iova)
601 		goto out_free_pages;
602 
603 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
604 		goto out_free_iova;
605 
606 	if (!(ioprot & IOMMU_CACHE)) {
607 		struct scatterlist *sg;
608 		int i;
609 
610 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
611 			arch_dma_prep_coherent(sg_page(sg), sg->length);
612 	}
613 
614 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
615 			< size)
616 		goto out_free_sg;
617 
618 	vaddr = dma_common_pages_remap(pages, size, prot,
619 			__builtin_return_address(0));
620 	if (!vaddr)
621 		goto out_unmap;
622 
623 	*dma_handle = iova;
624 	sg_free_table(&sgt);
625 	return vaddr;
626 
627 out_unmap:
628 	__iommu_dma_unmap(dev, iova, size);
629 out_free_sg:
630 	sg_free_table(&sgt);
631 out_free_iova:
632 	iommu_dma_free_iova(cookie, iova, size);
633 out_free_pages:
634 	__iommu_dma_free_pages(pages, count);
635 	return NULL;
636 }
637 
638 /**
639  * __iommu_dma_mmap - Map a buffer into provided user VMA
640  * @pages: Array representing buffer from __iommu_dma_alloc()
641  * @size: Size of buffer in bytes
642  * @vma: VMA describing requested userspace mapping
643  *
644  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
645  * for verifying the correct size and protection of @vma beforehand.
646  */
647 static int __iommu_dma_mmap(struct page **pages, size_t size,
648 		struct vm_area_struct *vma)
649 {
650 	return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
651 }
652 
653 static void iommu_dma_sync_single_for_cpu(struct device *dev,
654 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
655 {
656 	phys_addr_t phys;
657 
658 	if (dev_is_dma_coherent(dev))
659 		return;
660 
661 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
662 	arch_sync_dma_for_cpu(dev, phys, size, dir);
663 }
664 
665 static void iommu_dma_sync_single_for_device(struct device *dev,
666 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
667 {
668 	phys_addr_t phys;
669 
670 	if (dev_is_dma_coherent(dev))
671 		return;
672 
673 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
674 	arch_sync_dma_for_device(dev, phys, size, dir);
675 }
676 
677 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
678 		struct scatterlist *sgl, int nelems,
679 		enum dma_data_direction dir)
680 {
681 	struct scatterlist *sg;
682 	int i;
683 
684 	if (dev_is_dma_coherent(dev))
685 		return;
686 
687 	for_each_sg(sgl, sg, nelems, i)
688 		arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
689 }
690 
691 static void iommu_dma_sync_sg_for_device(struct device *dev,
692 		struct scatterlist *sgl, int nelems,
693 		enum dma_data_direction dir)
694 {
695 	struct scatterlist *sg;
696 	int i;
697 
698 	if (dev_is_dma_coherent(dev))
699 		return;
700 
701 	for_each_sg(sgl, sg, nelems, i)
702 		arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
703 }
704 
705 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
706 		unsigned long offset, size_t size, enum dma_data_direction dir,
707 		unsigned long attrs)
708 {
709 	phys_addr_t phys = page_to_phys(page) + offset;
710 	bool coherent = dev_is_dma_coherent(dev);
711 	int prot = dma_info_to_prot(dir, coherent, attrs);
712 	dma_addr_t dma_handle;
713 
714 	dma_handle =__iommu_dma_map(dev, phys, size, prot);
715 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
716 	    dma_handle != DMA_MAPPING_ERROR)
717 		arch_sync_dma_for_device(dev, phys, size, dir);
718 	return dma_handle;
719 }
720 
721 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
722 		size_t size, enum dma_data_direction dir, unsigned long attrs)
723 {
724 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
725 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
726 	__iommu_dma_unmap(dev, dma_handle, size);
727 }
728 
729 /*
730  * Prepare a successfully-mapped scatterlist to give back to the caller.
731  *
732  * At this point the segments are already laid out by iommu_dma_map_sg() to
733  * avoid individually crossing any boundaries, so we merely need to check a
734  * segment's start address to avoid concatenating across one.
735  */
736 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
737 		dma_addr_t dma_addr)
738 {
739 	struct scatterlist *s, *cur = sg;
740 	unsigned long seg_mask = dma_get_seg_boundary(dev);
741 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
742 	int i, count = 0;
743 
744 	for_each_sg(sg, s, nents, i) {
745 		/* Restore this segment's original unaligned fields first */
746 		unsigned int s_iova_off = sg_dma_address(s);
747 		unsigned int s_length = sg_dma_len(s);
748 		unsigned int s_iova_len = s->length;
749 
750 		s->offset += s_iova_off;
751 		s->length = s_length;
752 		sg_dma_address(s) = DMA_MAPPING_ERROR;
753 		sg_dma_len(s) = 0;
754 
755 		/*
756 		 * Now fill in the real DMA data. If...
757 		 * - there is a valid output segment to append to
758 		 * - and this segment starts on an IOVA page boundary
759 		 * - but doesn't fall at a segment boundary
760 		 * - and wouldn't make the resulting output segment too long
761 		 */
762 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
763 		    (max_len - cur_len >= s_length)) {
764 			/* ...then concatenate it with the previous one */
765 			cur_len += s_length;
766 		} else {
767 			/* Otherwise start the next output segment */
768 			if (i > 0)
769 				cur = sg_next(cur);
770 			cur_len = s_length;
771 			count++;
772 
773 			sg_dma_address(cur) = dma_addr + s_iova_off;
774 		}
775 
776 		sg_dma_len(cur) = cur_len;
777 		dma_addr += s_iova_len;
778 
779 		if (s_length + s_iova_off < s_iova_len)
780 			cur_len = 0;
781 	}
782 	return count;
783 }
784 
785 /*
786  * If mapping failed, then just restore the original list,
787  * but making sure the DMA fields are invalidated.
788  */
789 static void __invalidate_sg(struct scatterlist *sg, int nents)
790 {
791 	struct scatterlist *s;
792 	int i;
793 
794 	for_each_sg(sg, s, nents, i) {
795 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
796 			s->offset += sg_dma_address(s);
797 		if (sg_dma_len(s))
798 			s->length = sg_dma_len(s);
799 		sg_dma_address(s) = DMA_MAPPING_ERROR;
800 		sg_dma_len(s) = 0;
801 	}
802 }
803 
804 /*
805  * The DMA API client is passing in a scatterlist which could describe
806  * any old buffer layout, but the IOMMU API requires everything to be
807  * aligned to IOMMU pages. Hence the need for this complicated bit of
808  * impedance-matching, to be able to hand off a suitably-aligned list,
809  * but still preserve the original offsets and sizes for the caller.
810  */
811 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
812 		int nents, enum dma_data_direction dir, unsigned long attrs)
813 {
814 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
815 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
816 	struct iova_domain *iovad = &cookie->iovad;
817 	struct scatterlist *s, *prev = NULL;
818 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
819 	dma_addr_t iova;
820 	size_t iova_len = 0;
821 	unsigned long mask = dma_get_seg_boundary(dev);
822 	int i;
823 
824 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
825 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
826 
827 	/*
828 	 * Work out how much IOVA space we need, and align the segments to
829 	 * IOVA granules for the IOMMU driver to handle. With some clever
830 	 * trickery we can modify the list in-place, but reversibly, by
831 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
832 	 */
833 	for_each_sg(sg, s, nents, i) {
834 		size_t s_iova_off = iova_offset(iovad, s->offset);
835 		size_t s_length = s->length;
836 		size_t pad_len = (mask - iova_len + 1) & mask;
837 
838 		sg_dma_address(s) = s_iova_off;
839 		sg_dma_len(s) = s_length;
840 		s->offset -= s_iova_off;
841 		s_length = iova_align(iovad, s_length + s_iova_off);
842 		s->length = s_length;
843 
844 		/*
845 		 * Due to the alignment of our single IOVA allocation, we can
846 		 * depend on these assumptions about the segment boundary mask:
847 		 * - If mask size >= IOVA size, then the IOVA range cannot
848 		 *   possibly fall across a boundary, so we don't care.
849 		 * - If mask size < IOVA size, then the IOVA range must start
850 		 *   exactly on a boundary, therefore we can lay things out
851 		 *   based purely on segment lengths without needing to know
852 		 *   the actual addresses beforehand.
853 		 * - The mask must be a power of 2, so pad_len == 0 if
854 		 *   iova_len == 0, thus we cannot dereference prev the first
855 		 *   time through here (i.e. before it has a meaningful value).
856 		 */
857 		if (pad_len && pad_len < s_length - 1) {
858 			prev->length += pad_len;
859 			iova_len += pad_len;
860 		}
861 
862 		iova_len += s_length;
863 		prev = s;
864 	}
865 
866 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
867 	if (!iova)
868 		goto out_restore_sg;
869 
870 	/*
871 	 * We'll leave any physical concatenation to the IOMMU driver's
872 	 * implementation - it knows better than we do.
873 	 */
874 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
875 		goto out_free_iova;
876 
877 	return __finalise_sg(dev, sg, nents, iova);
878 
879 out_free_iova:
880 	iommu_dma_free_iova(cookie, iova, iova_len);
881 out_restore_sg:
882 	__invalidate_sg(sg, nents);
883 	return 0;
884 }
885 
886 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
887 		int nents, enum dma_data_direction dir, unsigned long attrs)
888 {
889 	dma_addr_t start, end;
890 	struct scatterlist *tmp;
891 	int i;
892 
893 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
894 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
895 
896 	/*
897 	 * The scatterlist segments are mapped into a single
898 	 * contiguous IOVA allocation, so this is incredibly easy.
899 	 */
900 	start = sg_dma_address(sg);
901 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
902 		if (sg_dma_len(tmp) == 0)
903 			break;
904 		sg = tmp;
905 	}
906 	end = sg_dma_address(sg) + sg_dma_len(sg);
907 	__iommu_dma_unmap(dev, start, end - start);
908 }
909 
910 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
911 		size_t size, enum dma_data_direction dir, unsigned long attrs)
912 {
913 	return __iommu_dma_map(dev, phys, size,
914 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
915 }
916 
917 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
918 		size_t size, enum dma_data_direction dir, unsigned long attrs)
919 {
920 	__iommu_dma_unmap(dev, handle, size);
921 }
922 
923 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
924 {
925 	size_t alloc_size = PAGE_ALIGN(size);
926 	int count = alloc_size >> PAGE_SHIFT;
927 	struct page *page = NULL, **pages = NULL;
928 
929 	/* Non-coherent atomic allocation? Easy */
930 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
931 	    dma_free_from_pool(cpu_addr, alloc_size))
932 		return;
933 
934 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
935 		/*
936 		 * If it the address is remapped, then it's either non-coherent
937 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
938 		 */
939 		pages = dma_common_find_pages(cpu_addr);
940 		if (!pages)
941 			page = vmalloc_to_page(cpu_addr);
942 		dma_common_free_remap(cpu_addr, alloc_size);
943 	} else {
944 		/* Lowmem means a coherent atomic or CMA allocation */
945 		page = virt_to_page(cpu_addr);
946 	}
947 
948 	if (pages)
949 		__iommu_dma_free_pages(pages, count);
950 	if (page)
951 		dma_free_contiguous(dev, page, alloc_size);
952 }
953 
954 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
955 		dma_addr_t handle, unsigned long attrs)
956 {
957 	__iommu_dma_unmap(dev, handle, size);
958 	__iommu_dma_free(dev, size, cpu_addr);
959 }
960 
961 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
962 		struct page **pagep, gfp_t gfp, unsigned long attrs)
963 {
964 	bool coherent = dev_is_dma_coherent(dev);
965 	size_t alloc_size = PAGE_ALIGN(size);
966 	int node = dev_to_node(dev);
967 	struct page *page = NULL;
968 	void *cpu_addr;
969 
970 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
971 	if (!page)
972 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
973 	if (!page)
974 		return NULL;
975 
976 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
977 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
978 
979 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
980 				prot, __builtin_return_address(0));
981 		if (!cpu_addr)
982 			goto out_free_pages;
983 
984 		if (!coherent)
985 			arch_dma_prep_coherent(page, size);
986 	} else {
987 		cpu_addr = page_address(page);
988 	}
989 
990 	*pagep = page;
991 	memset(cpu_addr, 0, alloc_size);
992 	return cpu_addr;
993 out_free_pages:
994 	dma_free_contiguous(dev, page, alloc_size);
995 	return NULL;
996 }
997 
998 static void *iommu_dma_alloc(struct device *dev, size_t size,
999 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1000 {
1001 	bool coherent = dev_is_dma_coherent(dev);
1002 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1003 	struct page *page = NULL;
1004 	void *cpu_addr;
1005 
1006 	gfp |= __GFP_ZERO;
1007 
1008 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1009 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1010 		return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1011 
1012 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1013 	    !gfpflags_allow_blocking(gfp) && !coherent)
1014 		cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1015 	else
1016 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1017 	if (!cpu_addr)
1018 		return NULL;
1019 
1020 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot);
1021 	if (*handle == DMA_MAPPING_ERROR) {
1022 		__iommu_dma_free(dev, size, cpu_addr);
1023 		return NULL;
1024 	}
1025 
1026 	return cpu_addr;
1027 }
1028 
1029 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1030 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1031 		unsigned long attrs)
1032 {
1033 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1034 	unsigned long pfn, off = vma->vm_pgoff;
1035 	int ret;
1036 
1037 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1038 
1039 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1040 		return ret;
1041 
1042 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1043 		return -ENXIO;
1044 
1045 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1046 		struct page **pages = dma_common_find_pages(cpu_addr);
1047 
1048 		if (pages)
1049 			return __iommu_dma_mmap(pages, size, vma);
1050 		pfn = vmalloc_to_pfn(cpu_addr);
1051 	} else {
1052 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1053 	}
1054 
1055 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1056 			       vma->vm_end - vma->vm_start,
1057 			       vma->vm_page_prot);
1058 }
1059 
1060 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1061 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1062 		unsigned long attrs)
1063 {
1064 	struct page *page;
1065 	int ret;
1066 
1067 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1068 		struct page **pages = dma_common_find_pages(cpu_addr);
1069 
1070 		if (pages) {
1071 			return sg_alloc_table_from_pages(sgt, pages,
1072 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1073 					0, size, GFP_KERNEL);
1074 		}
1075 
1076 		page = vmalloc_to_page(cpu_addr);
1077 	} else {
1078 		page = virt_to_page(cpu_addr);
1079 	}
1080 
1081 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1082 	if (!ret)
1083 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1084 	return ret;
1085 }
1086 
1087 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1088 {
1089 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1090 
1091 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1092 }
1093 
1094 static const struct dma_map_ops iommu_dma_ops = {
1095 	.alloc			= iommu_dma_alloc,
1096 	.free			= iommu_dma_free,
1097 	.mmap			= iommu_dma_mmap,
1098 	.get_sgtable		= iommu_dma_get_sgtable,
1099 	.map_page		= iommu_dma_map_page,
1100 	.unmap_page		= iommu_dma_unmap_page,
1101 	.map_sg			= iommu_dma_map_sg,
1102 	.unmap_sg		= iommu_dma_unmap_sg,
1103 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1104 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1105 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1106 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1107 	.map_resource		= iommu_dma_map_resource,
1108 	.unmap_resource		= iommu_dma_unmap_resource,
1109 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1110 };
1111 
1112 /*
1113  * The IOMMU core code allocates the default DMA domain, which the underlying
1114  * IOMMU driver needs to support via the dma-iommu layer.
1115  */
1116 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1117 {
1118 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1119 
1120 	if (!domain)
1121 		goto out_err;
1122 
1123 	/*
1124 	 * The IOMMU core code allocates the default DMA domain, which the
1125 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1126 	 */
1127 	if (domain->type == IOMMU_DOMAIN_DMA) {
1128 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1129 			goto out_err;
1130 		dev->dma_ops = &iommu_dma_ops;
1131 	}
1132 
1133 	return;
1134 out_err:
1135 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1136 		 dev_name(dev));
1137 }
1138 
1139 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1140 		phys_addr_t msi_addr, struct iommu_domain *domain)
1141 {
1142 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1143 	struct iommu_dma_msi_page *msi_page;
1144 	dma_addr_t iova;
1145 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1146 	size_t size = cookie_msi_granule(cookie);
1147 
1148 	msi_addr &= ~(phys_addr_t)(size - 1);
1149 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1150 		if (msi_page->phys == msi_addr)
1151 			return msi_page;
1152 
1153 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
1154 	if (!msi_page)
1155 		return NULL;
1156 
1157 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1158 	if (!iova)
1159 		goto out_free_page;
1160 
1161 	if (iommu_map(domain, iova, msi_addr, size, prot))
1162 		goto out_free_iova;
1163 
1164 	INIT_LIST_HEAD(&msi_page->list);
1165 	msi_page->phys = msi_addr;
1166 	msi_page->iova = iova;
1167 	list_add(&msi_page->list, &cookie->msi_page_list);
1168 	return msi_page;
1169 
1170 out_free_iova:
1171 	iommu_dma_free_iova(cookie, iova, size);
1172 out_free_page:
1173 	kfree(msi_page);
1174 	return NULL;
1175 }
1176 
1177 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1178 {
1179 	struct device *dev = msi_desc_to_dev(desc);
1180 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1181 	struct iommu_dma_cookie *cookie;
1182 	struct iommu_dma_msi_page *msi_page;
1183 	unsigned long flags;
1184 
1185 	if (!domain || !domain->iova_cookie) {
1186 		desc->iommu_cookie = NULL;
1187 		return 0;
1188 	}
1189 
1190 	cookie = domain->iova_cookie;
1191 
1192 	/*
1193 	 * We disable IRQs to rule out a possible inversion against
1194 	 * irq_desc_lock if, say, someone tries to retarget the affinity
1195 	 * of an MSI from within an IPI handler.
1196 	 */
1197 	spin_lock_irqsave(&cookie->msi_lock, flags);
1198 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1199 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
1200 
1201 	msi_desc_set_iommu_cookie(desc, msi_page);
1202 
1203 	if (!msi_page)
1204 		return -ENOMEM;
1205 	return 0;
1206 }
1207 
1208 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1209 			       struct msi_msg *msg)
1210 {
1211 	struct device *dev = msi_desc_to_dev(desc);
1212 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1213 	const struct iommu_dma_msi_page *msi_page;
1214 
1215 	msi_page = msi_desc_get_iommu_cookie(desc);
1216 
1217 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1218 		return;
1219 
1220 	msg->address_hi = upper_32_bits(msi_page->iova);
1221 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1222 	msg->address_lo += lower_32_bits(msi_page->iova);
1223 }
1224 
1225 static int iommu_dma_init(void)
1226 {
1227 	return iova_cache_get();
1228 }
1229 arch_initcall(iommu_dma_init);
1230