xref: /linux/drivers/iommu/dma-iommu.c (revision 9dbbc3b9d09d6deba9f3b9e1d5b355032ed46a75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
28 
29 struct iommu_dma_msi_page {
30 	struct list_head	list;
31 	dma_addr_t		iova;
32 	phys_addr_t		phys;
33 };
34 
35 enum iommu_dma_cookie_type {
36 	IOMMU_DMA_IOVA_COOKIE,
37 	IOMMU_DMA_MSI_COOKIE,
38 };
39 
40 struct iommu_dma_cookie {
41 	enum iommu_dma_cookie_type	type;
42 	union {
43 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 		struct iova_domain	iovad;
45 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 		dma_addr_t		msi_iova;
47 	};
48 	struct list_head		msi_page_list;
49 
50 	/* Domain for flush queue callback; NULL if flush queue not in use */
51 	struct iommu_domain		*fq_domain;
52 };
53 
54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
55 bool iommu_dma_forcedac __read_mostly;
56 
57 static int __init iommu_dma_forcedac_setup(char *str)
58 {
59 	int ret = kstrtobool(str, &iommu_dma_forcedac);
60 
61 	if (!ret && iommu_dma_forcedac)
62 		pr_info("Forcing DAC for PCI devices\n");
63 	return ret;
64 }
65 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
66 
67 static void iommu_dma_entry_dtor(unsigned long data)
68 {
69 	struct page *freelist = (struct page *)data;
70 
71 	while (freelist) {
72 		unsigned long p = (unsigned long)page_address(freelist);
73 
74 		freelist = freelist->freelist;
75 		free_page(p);
76 	}
77 }
78 
79 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
80 {
81 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
82 		return cookie->iovad.granule;
83 	return PAGE_SIZE;
84 }
85 
86 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
87 {
88 	struct iommu_dma_cookie *cookie;
89 
90 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
91 	if (cookie) {
92 		INIT_LIST_HEAD(&cookie->msi_page_list);
93 		cookie->type = type;
94 	}
95 	return cookie;
96 }
97 
98 /**
99  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
100  * @domain: IOMMU domain to prepare for DMA-API usage
101  *
102  * IOMMU drivers should normally call this from their domain_alloc
103  * callback when domain->type == IOMMU_DOMAIN_DMA.
104  */
105 int iommu_get_dma_cookie(struct iommu_domain *domain)
106 {
107 	if (domain->iova_cookie)
108 		return -EEXIST;
109 
110 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
111 	if (!domain->iova_cookie)
112 		return -ENOMEM;
113 
114 	return 0;
115 }
116 EXPORT_SYMBOL(iommu_get_dma_cookie);
117 
118 /**
119  * iommu_get_msi_cookie - Acquire just MSI remapping resources
120  * @domain: IOMMU domain to prepare
121  * @base: Start address of IOVA region for MSI mappings
122  *
123  * Users who manage their own IOVA allocation and do not want DMA API support,
124  * but would still like to take advantage of automatic MSI remapping, can use
125  * this to initialise their own domain appropriately. Users should reserve a
126  * contiguous IOVA region, starting at @base, large enough to accommodate the
127  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
128  * used by the devices attached to @domain.
129  */
130 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
131 {
132 	struct iommu_dma_cookie *cookie;
133 
134 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
135 		return -EINVAL;
136 
137 	if (domain->iova_cookie)
138 		return -EEXIST;
139 
140 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
141 	if (!cookie)
142 		return -ENOMEM;
143 
144 	cookie->msi_iova = base;
145 	domain->iova_cookie = cookie;
146 	return 0;
147 }
148 EXPORT_SYMBOL(iommu_get_msi_cookie);
149 
150 /**
151  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
152  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
153  *          iommu_get_msi_cookie()
154  *
155  * IOMMU drivers should normally call this from their domain_free callback.
156  */
157 void iommu_put_dma_cookie(struct iommu_domain *domain)
158 {
159 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
160 	struct iommu_dma_msi_page *msi, *tmp;
161 
162 	if (!cookie)
163 		return;
164 
165 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
166 		put_iova_domain(&cookie->iovad);
167 
168 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
169 		list_del(&msi->list);
170 		kfree(msi);
171 	}
172 	kfree(cookie);
173 	domain->iova_cookie = NULL;
174 }
175 EXPORT_SYMBOL(iommu_put_dma_cookie);
176 
177 /**
178  * iommu_dma_get_resv_regions - Reserved region driver helper
179  * @dev: Device from iommu_get_resv_regions()
180  * @list: Reserved region list from iommu_get_resv_regions()
181  *
182  * IOMMU drivers can use this to implement their .get_resv_regions callback
183  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
184  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
185  * reservation.
186  */
187 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
188 {
189 
190 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
191 		iort_iommu_msi_get_resv_regions(dev, list);
192 
193 }
194 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
195 
196 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
197 		phys_addr_t start, phys_addr_t end)
198 {
199 	struct iova_domain *iovad = &cookie->iovad;
200 	struct iommu_dma_msi_page *msi_page;
201 	int i, num_pages;
202 
203 	start -= iova_offset(iovad, start);
204 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
205 
206 	for (i = 0; i < num_pages; i++) {
207 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
208 		if (!msi_page)
209 			return -ENOMEM;
210 
211 		msi_page->phys = start;
212 		msi_page->iova = start;
213 		INIT_LIST_HEAD(&msi_page->list);
214 		list_add(&msi_page->list, &cookie->msi_page_list);
215 		start += iovad->granule;
216 	}
217 
218 	return 0;
219 }
220 
221 static int iova_reserve_pci_windows(struct pci_dev *dev,
222 		struct iova_domain *iovad)
223 {
224 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
225 	struct resource_entry *window;
226 	unsigned long lo, hi;
227 	phys_addr_t start = 0, end;
228 
229 	resource_list_for_each_entry(window, &bridge->windows) {
230 		if (resource_type(window->res) != IORESOURCE_MEM)
231 			continue;
232 
233 		lo = iova_pfn(iovad, window->res->start - window->offset);
234 		hi = iova_pfn(iovad, window->res->end - window->offset);
235 		reserve_iova(iovad, lo, hi);
236 	}
237 
238 	/* Get reserved DMA windows from host bridge */
239 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
240 		end = window->res->start - window->offset;
241 resv_iova:
242 		if (end > start) {
243 			lo = iova_pfn(iovad, start);
244 			hi = iova_pfn(iovad, end);
245 			reserve_iova(iovad, lo, hi);
246 		} else if (end < start) {
247 			/* dma_ranges list should be sorted */
248 			dev_err(&dev->dev,
249 				"Failed to reserve IOVA [%pa-%pa]\n",
250 				&start, &end);
251 			return -EINVAL;
252 		}
253 
254 		start = window->res->end - window->offset + 1;
255 		/* If window is last entry */
256 		if (window->node.next == &bridge->dma_ranges &&
257 		    end != ~(phys_addr_t)0) {
258 			end = ~(phys_addr_t)0;
259 			goto resv_iova;
260 		}
261 	}
262 
263 	return 0;
264 }
265 
266 static int iova_reserve_iommu_regions(struct device *dev,
267 		struct iommu_domain *domain)
268 {
269 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
270 	struct iova_domain *iovad = &cookie->iovad;
271 	struct iommu_resv_region *region;
272 	LIST_HEAD(resv_regions);
273 	int ret = 0;
274 
275 	if (dev_is_pci(dev)) {
276 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
277 		if (ret)
278 			return ret;
279 	}
280 
281 	iommu_get_resv_regions(dev, &resv_regions);
282 	list_for_each_entry(region, &resv_regions, list) {
283 		unsigned long lo, hi;
284 
285 		/* We ARE the software that manages these! */
286 		if (region->type == IOMMU_RESV_SW_MSI)
287 			continue;
288 
289 		lo = iova_pfn(iovad, region->start);
290 		hi = iova_pfn(iovad, region->start + region->length - 1);
291 		reserve_iova(iovad, lo, hi);
292 
293 		if (region->type == IOMMU_RESV_MSI)
294 			ret = cookie_init_hw_msi_region(cookie, region->start,
295 					region->start + region->length);
296 		if (ret)
297 			break;
298 	}
299 	iommu_put_resv_regions(dev, &resv_regions);
300 
301 	return ret;
302 }
303 
304 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
305 {
306 	struct iommu_dma_cookie *cookie;
307 	struct iommu_domain *domain;
308 
309 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
310 	domain = cookie->fq_domain;
311 
312 	domain->ops->flush_iotlb_all(domain);
313 }
314 
315 static bool dev_is_untrusted(struct device *dev)
316 {
317 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
318 }
319 
320 /**
321  * iommu_dma_init_domain - Initialise a DMA mapping domain
322  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
323  * @base: IOVA at which the mappable address space starts
324  * @limit: Last address of the IOVA space
325  * @dev: Device the domain is being initialised for
326  *
327  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
328  * avoid rounding surprises. If necessary, we reserve the page at address 0
329  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
330  * any change which could make prior IOVAs invalid will fail.
331  */
332 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
333 				 dma_addr_t limit, struct device *dev)
334 {
335 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
336 	unsigned long order, base_pfn;
337 	struct iova_domain *iovad;
338 
339 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
340 		return -EINVAL;
341 
342 	iovad = &cookie->iovad;
343 
344 	/* Use the smallest supported page size for IOVA granularity */
345 	order = __ffs(domain->pgsize_bitmap);
346 	base_pfn = max_t(unsigned long, 1, base >> order);
347 
348 	/* Check the domain allows at least some access to the device... */
349 	if (domain->geometry.force_aperture) {
350 		if (base > domain->geometry.aperture_end ||
351 		    limit < domain->geometry.aperture_start) {
352 			pr_warn("specified DMA range outside IOMMU capability\n");
353 			return -EFAULT;
354 		}
355 		/* ...then finally give it a kicking to make sure it fits */
356 		base_pfn = max_t(unsigned long, base_pfn,
357 				domain->geometry.aperture_start >> order);
358 	}
359 
360 	/* start_pfn is always nonzero for an already-initialised domain */
361 	if (iovad->start_pfn) {
362 		if (1UL << order != iovad->granule ||
363 		    base_pfn != iovad->start_pfn) {
364 			pr_warn("Incompatible range for DMA domain\n");
365 			return -EFAULT;
366 		}
367 
368 		return 0;
369 	}
370 
371 	init_iova_domain(iovad, 1UL << order, base_pfn);
372 
373 	if (!cookie->fq_domain && (!dev || !dev_is_untrusted(dev)) &&
374 	    domain->ops->flush_iotlb_all && !iommu_get_dma_strict(domain)) {
375 		if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
376 					  iommu_dma_entry_dtor))
377 			pr_warn("iova flush queue initialization failed\n");
378 		else
379 			cookie->fq_domain = domain;
380 	}
381 
382 	if (!dev)
383 		return 0;
384 
385 	return iova_reserve_iommu_regions(dev, domain);
386 }
387 
388 /**
389  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
390  *                    page flags.
391  * @dir: Direction of DMA transfer
392  * @coherent: Is the DMA master cache-coherent?
393  * @attrs: DMA attributes for the mapping
394  *
395  * Return: corresponding IOMMU API page protection flags
396  */
397 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
398 		     unsigned long attrs)
399 {
400 	int prot = coherent ? IOMMU_CACHE : 0;
401 
402 	if (attrs & DMA_ATTR_PRIVILEGED)
403 		prot |= IOMMU_PRIV;
404 
405 	switch (dir) {
406 	case DMA_BIDIRECTIONAL:
407 		return prot | IOMMU_READ | IOMMU_WRITE;
408 	case DMA_TO_DEVICE:
409 		return prot | IOMMU_READ;
410 	case DMA_FROM_DEVICE:
411 		return prot | IOMMU_WRITE;
412 	default:
413 		return 0;
414 	}
415 }
416 
417 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
418 		size_t size, u64 dma_limit, struct device *dev)
419 {
420 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
421 	struct iova_domain *iovad = &cookie->iovad;
422 	unsigned long shift, iova_len, iova = 0;
423 
424 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
425 		cookie->msi_iova += size;
426 		return cookie->msi_iova - size;
427 	}
428 
429 	shift = iova_shift(iovad);
430 	iova_len = size >> shift;
431 	/*
432 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
433 	 * will come back to bite us badly, so we have to waste a bit of space
434 	 * rounding up anything cacheable to make sure that can't happen. The
435 	 * order of the unadjusted size will still match upon freeing.
436 	 */
437 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
438 		iova_len = roundup_pow_of_two(iova_len);
439 
440 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
441 
442 	if (domain->geometry.force_aperture)
443 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
444 
445 	/* Try to get PCI devices a SAC address */
446 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
447 		iova = alloc_iova_fast(iovad, iova_len,
448 				       DMA_BIT_MASK(32) >> shift, false);
449 
450 	if (!iova)
451 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
452 				       true);
453 
454 	return (dma_addr_t)iova << shift;
455 }
456 
457 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
458 		dma_addr_t iova, size_t size, struct page *freelist)
459 {
460 	struct iova_domain *iovad = &cookie->iovad;
461 
462 	/* The MSI case is only ever cleaning up its most recent allocation */
463 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
464 		cookie->msi_iova -= size;
465 	else if (cookie->fq_domain)	/* non-strict mode */
466 		queue_iova(iovad, iova_pfn(iovad, iova),
467 				size >> iova_shift(iovad),
468 				(unsigned long)freelist);
469 	else
470 		free_iova_fast(iovad, iova_pfn(iovad, iova),
471 				size >> iova_shift(iovad));
472 }
473 
474 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
475 		size_t size)
476 {
477 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
478 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
479 	struct iova_domain *iovad = &cookie->iovad;
480 	size_t iova_off = iova_offset(iovad, dma_addr);
481 	struct iommu_iotlb_gather iotlb_gather;
482 	size_t unmapped;
483 
484 	dma_addr -= iova_off;
485 	size = iova_align(iovad, size + iova_off);
486 	iommu_iotlb_gather_init(&iotlb_gather);
487 
488 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
489 	WARN_ON(unmapped != size);
490 
491 	if (!cookie->fq_domain)
492 		iommu_iotlb_sync(domain, &iotlb_gather);
493 	iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist);
494 }
495 
496 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
497 		size_t size, enum dma_data_direction dir,
498 		unsigned long attrs)
499 {
500 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
501 	phys_addr_t phys;
502 
503 	phys = iommu_iova_to_phys(domain, dma_addr);
504 	if (WARN_ON(!phys))
505 		return;
506 
507 	__iommu_dma_unmap(dev, dma_addr, size);
508 
509 	if (unlikely(is_swiotlb_buffer(phys)))
510 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
511 }
512 
513 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
514 		size_t size, int prot, u64 dma_mask)
515 {
516 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
517 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
518 	struct iova_domain *iovad = &cookie->iovad;
519 	size_t iova_off = iova_offset(iovad, phys);
520 	dma_addr_t iova;
521 
522 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
523 	    iommu_deferred_attach(dev, domain))
524 		return DMA_MAPPING_ERROR;
525 
526 	size = iova_align(iovad, size + iova_off);
527 
528 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
529 	if (!iova)
530 		return DMA_MAPPING_ERROR;
531 
532 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
533 		iommu_dma_free_iova(cookie, iova, size, NULL);
534 		return DMA_MAPPING_ERROR;
535 	}
536 	return iova + iova_off;
537 }
538 
539 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
540 		size_t org_size, dma_addr_t dma_mask, bool coherent,
541 		enum dma_data_direction dir, unsigned long attrs)
542 {
543 	int prot = dma_info_to_prot(dir, coherent, attrs);
544 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
545 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
546 	struct iova_domain *iovad = &cookie->iovad;
547 	size_t aligned_size = org_size;
548 	void *padding_start;
549 	size_t padding_size;
550 	dma_addr_t iova;
551 
552 	/*
553 	 * If both the physical buffer start address and size are
554 	 * page aligned, we don't need to use a bounce page.
555 	 */
556 	if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
557 	    iova_offset(iovad, phys | org_size)) {
558 		aligned_size = iova_align(iovad, org_size);
559 		phys = swiotlb_tbl_map_single(dev, phys, org_size,
560 					      aligned_size, dir, attrs);
561 
562 		if (phys == DMA_MAPPING_ERROR)
563 			return DMA_MAPPING_ERROR;
564 
565 		/* Cleanup the padding area. */
566 		padding_start = phys_to_virt(phys);
567 		padding_size = aligned_size;
568 
569 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
570 		    (dir == DMA_TO_DEVICE ||
571 		     dir == DMA_BIDIRECTIONAL)) {
572 			padding_start += org_size;
573 			padding_size -= org_size;
574 		}
575 
576 		memset(padding_start, 0, padding_size);
577 	}
578 
579 	iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
580 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(phys))
581 		swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs);
582 	return iova;
583 }
584 
585 static void __iommu_dma_free_pages(struct page **pages, int count)
586 {
587 	while (count--)
588 		__free_page(pages[count]);
589 	kvfree(pages);
590 }
591 
592 static struct page **__iommu_dma_alloc_pages(struct device *dev,
593 		unsigned int count, unsigned long order_mask, gfp_t gfp)
594 {
595 	struct page **pages;
596 	unsigned int i = 0, nid = dev_to_node(dev);
597 
598 	order_mask &= (2U << MAX_ORDER) - 1;
599 	if (!order_mask)
600 		return NULL;
601 
602 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
603 	if (!pages)
604 		return NULL;
605 
606 	/* IOMMU can map any pages, so himem can also be used here */
607 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
608 
609 	/* It makes no sense to muck about with huge pages */
610 	gfp &= ~__GFP_COMP;
611 
612 	while (count) {
613 		struct page *page = NULL;
614 		unsigned int order_size;
615 
616 		/*
617 		 * Higher-order allocations are a convenience rather
618 		 * than a necessity, hence using __GFP_NORETRY until
619 		 * falling back to minimum-order allocations.
620 		 */
621 		for (order_mask &= (2U << __fls(count)) - 1;
622 		     order_mask; order_mask &= ~order_size) {
623 			unsigned int order = __fls(order_mask);
624 			gfp_t alloc_flags = gfp;
625 
626 			order_size = 1U << order;
627 			if (order_mask > order_size)
628 				alloc_flags |= __GFP_NORETRY;
629 			page = alloc_pages_node(nid, alloc_flags, order);
630 			if (!page)
631 				continue;
632 			if (order)
633 				split_page(page, order);
634 			break;
635 		}
636 		if (!page) {
637 			__iommu_dma_free_pages(pages, i);
638 			return NULL;
639 		}
640 		count -= order_size;
641 		while (order_size--)
642 			pages[i++] = page++;
643 	}
644 	return pages;
645 }
646 
647 /*
648  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
649  * but an IOMMU which supports smaller pages might not map the whole thing.
650  */
651 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
652 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
653 		unsigned long attrs)
654 {
655 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
656 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
657 	struct iova_domain *iovad = &cookie->iovad;
658 	bool coherent = dev_is_dma_coherent(dev);
659 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
660 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
661 	struct page **pages;
662 	dma_addr_t iova;
663 
664 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
665 	    iommu_deferred_attach(dev, domain))
666 		return NULL;
667 
668 	min_size = alloc_sizes & -alloc_sizes;
669 	if (min_size < PAGE_SIZE) {
670 		min_size = PAGE_SIZE;
671 		alloc_sizes |= PAGE_SIZE;
672 	} else {
673 		size = ALIGN(size, min_size);
674 	}
675 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
676 		alloc_sizes = min_size;
677 
678 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
679 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
680 					gfp);
681 	if (!pages)
682 		return NULL;
683 
684 	size = iova_align(iovad, size);
685 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
686 	if (!iova)
687 		goto out_free_pages;
688 
689 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
690 		goto out_free_iova;
691 
692 	if (!(ioprot & IOMMU_CACHE)) {
693 		struct scatterlist *sg;
694 		int i;
695 
696 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
697 			arch_dma_prep_coherent(sg_page(sg), sg->length);
698 	}
699 
700 	if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot)
701 			< size)
702 		goto out_free_sg;
703 
704 	sgt->sgl->dma_address = iova;
705 	sgt->sgl->dma_length = size;
706 	return pages;
707 
708 out_free_sg:
709 	sg_free_table(sgt);
710 out_free_iova:
711 	iommu_dma_free_iova(cookie, iova, size, NULL);
712 out_free_pages:
713 	__iommu_dma_free_pages(pages, count);
714 	return NULL;
715 }
716 
717 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
718 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
719 		unsigned long attrs)
720 {
721 	struct page **pages;
722 	struct sg_table sgt;
723 	void *vaddr;
724 
725 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
726 						attrs);
727 	if (!pages)
728 		return NULL;
729 	*dma_handle = sgt.sgl->dma_address;
730 	sg_free_table(&sgt);
731 	vaddr = dma_common_pages_remap(pages, size, prot,
732 			__builtin_return_address(0));
733 	if (!vaddr)
734 		goto out_unmap;
735 	return vaddr;
736 
737 out_unmap:
738 	__iommu_dma_unmap(dev, *dma_handle, size);
739 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
740 	return NULL;
741 }
742 
743 #ifdef CONFIG_DMA_REMAP
744 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
745 		size_t size, enum dma_data_direction dir, gfp_t gfp,
746 		unsigned long attrs)
747 {
748 	struct dma_sgt_handle *sh;
749 
750 	sh = kmalloc(sizeof(*sh), gfp);
751 	if (!sh)
752 		return NULL;
753 
754 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
755 						    PAGE_KERNEL, attrs);
756 	if (!sh->pages) {
757 		kfree(sh);
758 		return NULL;
759 	}
760 	return &sh->sgt;
761 }
762 
763 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
764 		struct sg_table *sgt, enum dma_data_direction dir)
765 {
766 	struct dma_sgt_handle *sh = sgt_handle(sgt);
767 
768 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
769 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
770 	sg_free_table(&sh->sgt);
771 }
772 #endif /* CONFIG_DMA_REMAP */
773 
774 static void iommu_dma_sync_single_for_cpu(struct device *dev,
775 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
776 {
777 	phys_addr_t phys;
778 
779 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
780 		return;
781 
782 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
783 	if (!dev_is_dma_coherent(dev))
784 		arch_sync_dma_for_cpu(phys, size, dir);
785 
786 	if (is_swiotlb_buffer(phys))
787 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
788 }
789 
790 static void iommu_dma_sync_single_for_device(struct device *dev,
791 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
792 {
793 	phys_addr_t phys;
794 
795 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
796 		return;
797 
798 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
799 	if (is_swiotlb_buffer(phys))
800 		swiotlb_sync_single_for_device(dev, phys, size, dir);
801 
802 	if (!dev_is_dma_coherent(dev))
803 		arch_sync_dma_for_device(phys, size, dir);
804 }
805 
806 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
807 		struct scatterlist *sgl, int nelems,
808 		enum dma_data_direction dir)
809 {
810 	struct scatterlist *sg;
811 	int i;
812 
813 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
814 		return;
815 
816 	for_each_sg(sgl, sg, nelems, i) {
817 		if (!dev_is_dma_coherent(dev))
818 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
819 
820 		if (is_swiotlb_buffer(sg_phys(sg)))
821 			swiotlb_sync_single_for_cpu(dev, sg_phys(sg),
822 						    sg->length, dir);
823 	}
824 }
825 
826 static void iommu_dma_sync_sg_for_device(struct device *dev,
827 		struct scatterlist *sgl, int nelems,
828 		enum dma_data_direction dir)
829 {
830 	struct scatterlist *sg;
831 	int i;
832 
833 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
834 		return;
835 
836 	for_each_sg(sgl, sg, nelems, i) {
837 		if (is_swiotlb_buffer(sg_phys(sg)))
838 			swiotlb_sync_single_for_device(dev, sg_phys(sg),
839 						       sg->length, dir);
840 
841 		if (!dev_is_dma_coherent(dev))
842 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
843 	}
844 }
845 
846 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
847 		unsigned long offset, size_t size, enum dma_data_direction dir,
848 		unsigned long attrs)
849 {
850 	phys_addr_t phys = page_to_phys(page) + offset;
851 	bool coherent = dev_is_dma_coherent(dev);
852 	dma_addr_t dma_handle;
853 
854 	dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
855 			coherent, dir, attrs);
856 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
857 	    dma_handle != DMA_MAPPING_ERROR)
858 		arch_sync_dma_for_device(phys, size, dir);
859 	return dma_handle;
860 }
861 
862 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
863 		size_t size, enum dma_data_direction dir, unsigned long attrs)
864 {
865 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
866 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
867 	__iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
868 }
869 
870 /*
871  * Prepare a successfully-mapped scatterlist to give back to the caller.
872  *
873  * At this point the segments are already laid out by iommu_dma_map_sg() to
874  * avoid individually crossing any boundaries, so we merely need to check a
875  * segment's start address to avoid concatenating across one.
876  */
877 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
878 		dma_addr_t dma_addr)
879 {
880 	struct scatterlist *s, *cur = sg;
881 	unsigned long seg_mask = dma_get_seg_boundary(dev);
882 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
883 	int i, count = 0;
884 
885 	for_each_sg(sg, s, nents, i) {
886 		/* Restore this segment's original unaligned fields first */
887 		unsigned int s_iova_off = sg_dma_address(s);
888 		unsigned int s_length = sg_dma_len(s);
889 		unsigned int s_iova_len = s->length;
890 
891 		s->offset += s_iova_off;
892 		s->length = s_length;
893 		sg_dma_address(s) = DMA_MAPPING_ERROR;
894 		sg_dma_len(s) = 0;
895 
896 		/*
897 		 * Now fill in the real DMA data. If...
898 		 * - there is a valid output segment to append to
899 		 * - and this segment starts on an IOVA page boundary
900 		 * - but doesn't fall at a segment boundary
901 		 * - and wouldn't make the resulting output segment too long
902 		 */
903 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
904 		    (max_len - cur_len >= s_length)) {
905 			/* ...then concatenate it with the previous one */
906 			cur_len += s_length;
907 		} else {
908 			/* Otherwise start the next output segment */
909 			if (i > 0)
910 				cur = sg_next(cur);
911 			cur_len = s_length;
912 			count++;
913 
914 			sg_dma_address(cur) = dma_addr + s_iova_off;
915 		}
916 
917 		sg_dma_len(cur) = cur_len;
918 		dma_addr += s_iova_len;
919 
920 		if (s_length + s_iova_off < s_iova_len)
921 			cur_len = 0;
922 	}
923 	return count;
924 }
925 
926 /*
927  * If mapping failed, then just restore the original list,
928  * but making sure the DMA fields are invalidated.
929  */
930 static void __invalidate_sg(struct scatterlist *sg, int nents)
931 {
932 	struct scatterlist *s;
933 	int i;
934 
935 	for_each_sg(sg, s, nents, i) {
936 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
937 			s->offset += sg_dma_address(s);
938 		if (sg_dma_len(s))
939 			s->length = sg_dma_len(s);
940 		sg_dma_address(s) = DMA_MAPPING_ERROR;
941 		sg_dma_len(s) = 0;
942 	}
943 }
944 
945 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
946 		int nents, enum dma_data_direction dir, unsigned long attrs)
947 {
948 	struct scatterlist *s;
949 	int i;
950 
951 	for_each_sg(sg, s, nents, i)
952 		__iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
953 				sg_dma_len(s), dir, attrs);
954 }
955 
956 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
957 		int nents, enum dma_data_direction dir, unsigned long attrs)
958 {
959 	struct scatterlist *s;
960 	int i;
961 
962 	for_each_sg(sg, s, nents, i) {
963 		sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
964 				s->length, dma_get_mask(dev),
965 				dev_is_dma_coherent(dev), dir, attrs);
966 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
967 			goto out_unmap;
968 		sg_dma_len(s) = s->length;
969 	}
970 
971 	return nents;
972 
973 out_unmap:
974 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
975 	return 0;
976 }
977 
978 /*
979  * The DMA API client is passing in a scatterlist which could describe
980  * any old buffer layout, but the IOMMU API requires everything to be
981  * aligned to IOMMU pages. Hence the need for this complicated bit of
982  * impedance-matching, to be able to hand off a suitably-aligned list,
983  * but still preserve the original offsets and sizes for the caller.
984  */
985 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
986 		int nents, enum dma_data_direction dir, unsigned long attrs)
987 {
988 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
989 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
990 	struct iova_domain *iovad = &cookie->iovad;
991 	struct scatterlist *s, *prev = NULL;
992 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
993 	dma_addr_t iova;
994 	size_t iova_len = 0;
995 	unsigned long mask = dma_get_seg_boundary(dev);
996 	int i;
997 
998 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
999 	    iommu_deferred_attach(dev, domain))
1000 		return 0;
1001 
1002 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1003 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1004 
1005 	if (dev_is_untrusted(dev))
1006 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1007 
1008 	/*
1009 	 * Work out how much IOVA space we need, and align the segments to
1010 	 * IOVA granules for the IOMMU driver to handle. With some clever
1011 	 * trickery we can modify the list in-place, but reversibly, by
1012 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1013 	 */
1014 	for_each_sg(sg, s, nents, i) {
1015 		size_t s_iova_off = iova_offset(iovad, s->offset);
1016 		size_t s_length = s->length;
1017 		size_t pad_len = (mask - iova_len + 1) & mask;
1018 
1019 		sg_dma_address(s) = s_iova_off;
1020 		sg_dma_len(s) = s_length;
1021 		s->offset -= s_iova_off;
1022 		s_length = iova_align(iovad, s_length + s_iova_off);
1023 		s->length = s_length;
1024 
1025 		/*
1026 		 * Due to the alignment of our single IOVA allocation, we can
1027 		 * depend on these assumptions about the segment boundary mask:
1028 		 * - If mask size >= IOVA size, then the IOVA range cannot
1029 		 *   possibly fall across a boundary, so we don't care.
1030 		 * - If mask size < IOVA size, then the IOVA range must start
1031 		 *   exactly on a boundary, therefore we can lay things out
1032 		 *   based purely on segment lengths without needing to know
1033 		 *   the actual addresses beforehand.
1034 		 * - The mask must be a power of 2, so pad_len == 0 if
1035 		 *   iova_len == 0, thus we cannot dereference prev the first
1036 		 *   time through here (i.e. before it has a meaningful value).
1037 		 */
1038 		if (pad_len && pad_len < s_length - 1) {
1039 			prev->length += pad_len;
1040 			iova_len += pad_len;
1041 		}
1042 
1043 		iova_len += s_length;
1044 		prev = s;
1045 	}
1046 
1047 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1048 	if (!iova)
1049 		goto out_restore_sg;
1050 
1051 	/*
1052 	 * We'll leave any physical concatenation to the IOMMU driver's
1053 	 * implementation - it knows better than we do.
1054 	 */
1055 	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
1056 		goto out_free_iova;
1057 
1058 	return __finalise_sg(dev, sg, nents, iova);
1059 
1060 out_free_iova:
1061 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1062 out_restore_sg:
1063 	__invalidate_sg(sg, nents);
1064 	return 0;
1065 }
1066 
1067 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1068 		int nents, enum dma_data_direction dir, unsigned long attrs)
1069 {
1070 	dma_addr_t start, end;
1071 	struct scatterlist *tmp;
1072 	int i;
1073 
1074 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1075 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1076 
1077 	if (dev_is_untrusted(dev)) {
1078 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1079 		return;
1080 	}
1081 
1082 	/*
1083 	 * The scatterlist segments are mapped into a single
1084 	 * contiguous IOVA allocation, so this is incredibly easy.
1085 	 */
1086 	start = sg_dma_address(sg);
1087 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1088 		if (sg_dma_len(tmp) == 0)
1089 			break;
1090 		sg = tmp;
1091 	}
1092 	end = sg_dma_address(sg) + sg_dma_len(sg);
1093 	__iommu_dma_unmap(dev, start, end - start);
1094 }
1095 
1096 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1097 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1098 {
1099 	return __iommu_dma_map(dev, phys, size,
1100 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1101 			dma_get_mask(dev));
1102 }
1103 
1104 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1105 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1106 {
1107 	__iommu_dma_unmap(dev, handle, size);
1108 }
1109 
1110 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1111 {
1112 	size_t alloc_size = PAGE_ALIGN(size);
1113 	int count = alloc_size >> PAGE_SHIFT;
1114 	struct page *page = NULL, **pages = NULL;
1115 
1116 	/* Non-coherent atomic allocation? Easy */
1117 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1118 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1119 		return;
1120 
1121 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1122 		/*
1123 		 * If it the address is remapped, then it's either non-coherent
1124 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1125 		 */
1126 		pages = dma_common_find_pages(cpu_addr);
1127 		if (!pages)
1128 			page = vmalloc_to_page(cpu_addr);
1129 		dma_common_free_remap(cpu_addr, alloc_size);
1130 	} else {
1131 		/* Lowmem means a coherent atomic or CMA allocation */
1132 		page = virt_to_page(cpu_addr);
1133 	}
1134 
1135 	if (pages)
1136 		__iommu_dma_free_pages(pages, count);
1137 	if (page)
1138 		dma_free_contiguous(dev, page, alloc_size);
1139 }
1140 
1141 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1142 		dma_addr_t handle, unsigned long attrs)
1143 {
1144 	__iommu_dma_unmap(dev, handle, size);
1145 	__iommu_dma_free(dev, size, cpu_addr);
1146 }
1147 
1148 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1149 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1150 {
1151 	bool coherent = dev_is_dma_coherent(dev);
1152 	size_t alloc_size = PAGE_ALIGN(size);
1153 	int node = dev_to_node(dev);
1154 	struct page *page = NULL;
1155 	void *cpu_addr;
1156 
1157 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1158 	if (!page)
1159 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1160 	if (!page)
1161 		return NULL;
1162 
1163 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1164 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1165 
1166 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1167 				prot, __builtin_return_address(0));
1168 		if (!cpu_addr)
1169 			goto out_free_pages;
1170 
1171 		if (!coherent)
1172 			arch_dma_prep_coherent(page, size);
1173 	} else {
1174 		cpu_addr = page_address(page);
1175 	}
1176 
1177 	*pagep = page;
1178 	memset(cpu_addr, 0, alloc_size);
1179 	return cpu_addr;
1180 out_free_pages:
1181 	dma_free_contiguous(dev, page, alloc_size);
1182 	return NULL;
1183 }
1184 
1185 static void *iommu_dma_alloc(struct device *dev, size_t size,
1186 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1187 {
1188 	bool coherent = dev_is_dma_coherent(dev);
1189 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1190 	struct page *page = NULL;
1191 	void *cpu_addr;
1192 
1193 	gfp |= __GFP_ZERO;
1194 
1195 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1196 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1197 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1198 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1199 	}
1200 
1201 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1202 	    !gfpflags_allow_blocking(gfp) && !coherent)
1203 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1204 					       gfp, NULL);
1205 	else
1206 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1207 	if (!cpu_addr)
1208 		return NULL;
1209 
1210 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1211 			dev->coherent_dma_mask);
1212 	if (*handle == DMA_MAPPING_ERROR) {
1213 		__iommu_dma_free(dev, size, cpu_addr);
1214 		return NULL;
1215 	}
1216 
1217 	return cpu_addr;
1218 }
1219 
1220 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1221 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1222 		unsigned long attrs)
1223 {
1224 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1225 	unsigned long pfn, off = vma->vm_pgoff;
1226 	int ret;
1227 
1228 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1229 
1230 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1231 		return ret;
1232 
1233 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1234 		return -ENXIO;
1235 
1236 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1237 		struct page **pages = dma_common_find_pages(cpu_addr);
1238 
1239 		if (pages)
1240 			return vm_map_pages(vma, pages, nr_pages);
1241 		pfn = vmalloc_to_pfn(cpu_addr);
1242 	} else {
1243 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1244 	}
1245 
1246 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1247 			       vma->vm_end - vma->vm_start,
1248 			       vma->vm_page_prot);
1249 }
1250 
1251 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1252 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1253 		unsigned long attrs)
1254 {
1255 	struct page *page;
1256 	int ret;
1257 
1258 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1259 		struct page **pages = dma_common_find_pages(cpu_addr);
1260 
1261 		if (pages) {
1262 			return sg_alloc_table_from_pages(sgt, pages,
1263 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1264 					0, size, GFP_KERNEL);
1265 		}
1266 
1267 		page = vmalloc_to_page(cpu_addr);
1268 	} else {
1269 		page = virt_to_page(cpu_addr);
1270 	}
1271 
1272 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1273 	if (!ret)
1274 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1275 	return ret;
1276 }
1277 
1278 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1279 {
1280 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1281 
1282 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1283 }
1284 
1285 static const struct dma_map_ops iommu_dma_ops = {
1286 	.alloc			= iommu_dma_alloc,
1287 	.free			= iommu_dma_free,
1288 	.alloc_pages		= dma_common_alloc_pages,
1289 	.free_pages		= dma_common_free_pages,
1290 #ifdef CONFIG_DMA_REMAP
1291 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1292 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1293 #endif
1294 	.mmap			= iommu_dma_mmap,
1295 	.get_sgtable		= iommu_dma_get_sgtable,
1296 	.map_page		= iommu_dma_map_page,
1297 	.unmap_page		= iommu_dma_unmap_page,
1298 	.map_sg			= iommu_dma_map_sg,
1299 	.unmap_sg		= iommu_dma_unmap_sg,
1300 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1301 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1302 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1303 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1304 	.map_resource		= iommu_dma_map_resource,
1305 	.unmap_resource		= iommu_dma_unmap_resource,
1306 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1307 };
1308 
1309 /*
1310  * The IOMMU core code allocates the default DMA domain, which the underlying
1311  * IOMMU driver needs to support via the dma-iommu layer.
1312  */
1313 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1314 {
1315 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1316 
1317 	if (!domain)
1318 		goto out_err;
1319 
1320 	/*
1321 	 * The IOMMU core code allocates the default DMA domain, which the
1322 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1323 	 */
1324 	if (domain->type == IOMMU_DOMAIN_DMA) {
1325 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1326 			goto out_err;
1327 		dev->dma_ops = &iommu_dma_ops;
1328 	}
1329 
1330 	return;
1331 out_err:
1332 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1333 		 dev_name(dev));
1334 }
1335 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1336 
1337 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1338 		phys_addr_t msi_addr, struct iommu_domain *domain)
1339 {
1340 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1341 	struct iommu_dma_msi_page *msi_page;
1342 	dma_addr_t iova;
1343 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1344 	size_t size = cookie_msi_granule(cookie);
1345 
1346 	msi_addr &= ~(phys_addr_t)(size - 1);
1347 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1348 		if (msi_page->phys == msi_addr)
1349 			return msi_page;
1350 
1351 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1352 	if (!msi_page)
1353 		return NULL;
1354 
1355 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1356 	if (!iova)
1357 		goto out_free_page;
1358 
1359 	if (iommu_map(domain, iova, msi_addr, size, prot))
1360 		goto out_free_iova;
1361 
1362 	INIT_LIST_HEAD(&msi_page->list);
1363 	msi_page->phys = msi_addr;
1364 	msi_page->iova = iova;
1365 	list_add(&msi_page->list, &cookie->msi_page_list);
1366 	return msi_page;
1367 
1368 out_free_iova:
1369 	iommu_dma_free_iova(cookie, iova, size, NULL);
1370 out_free_page:
1371 	kfree(msi_page);
1372 	return NULL;
1373 }
1374 
1375 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1376 {
1377 	struct device *dev = msi_desc_to_dev(desc);
1378 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1379 	struct iommu_dma_msi_page *msi_page;
1380 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1381 
1382 	if (!domain || !domain->iova_cookie) {
1383 		desc->iommu_cookie = NULL;
1384 		return 0;
1385 	}
1386 
1387 	/*
1388 	 * In fact the whole prepare operation should already be serialised by
1389 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1390 	 * on its own, so consider this locking as failsafe documentation...
1391 	 */
1392 	mutex_lock(&msi_prepare_lock);
1393 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1394 	mutex_unlock(&msi_prepare_lock);
1395 
1396 	msi_desc_set_iommu_cookie(desc, msi_page);
1397 
1398 	if (!msi_page)
1399 		return -ENOMEM;
1400 	return 0;
1401 }
1402 
1403 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1404 			       struct msi_msg *msg)
1405 {
1406 	struct device *dev = msi_desc_to_dev(desc);
1407 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1408 	const struct iommu_dma_msi_page *msi_page;
1409 
1410 	msi_page = msi_desc_get_iommu_cookie(desc);
1411 
1412 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1413 		return;
1414 
1415 	msg->address_hi = upper_32_bits(msi_page->iova);
1416 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1417 	msg->address_lo += lower_32_bits(msi_page->iova);
1418 }
1419 
1420 static int iommu_dma_init(void)
1421 {
1422 	if (is_kdump_kernel())
1423 		static_branch_enable(&iommu_deferred_attach_enabled);
1424 
1425 	return iova_cache_get();
1426 }
1427 arch_initcall(iommu_dma_init);
1428