xref: /linux/drivers/iommu/dma-iommu.c (revision 856e7c4b619af622d56b3b454f7bec32a170ac99)
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/acpi_iort.h>
23 #include <linux/device.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/gfp.h>
26 #include <linux/huge_mm.h>
27 #include <linux/iommu.h>
28 #include <linux/iova.h>
29 #include <linux/irq.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/scatterlist.h>
33 #include <linux/vmalloc.h>
34 
35 #define IOMMU_MAPPING_ERROR	0
36 
37 struct iommu_dma_msi_page {
38 	struct list_head	list;
39 	dma_addr_t		iova;
40 	phys_addr_t		phys;
41 };
42 
43 enum iommu_dma_cookie_type {
44 	IOMMU_DMA_IOVA_COOKIE,
45 	IOMMU_DMA_MSI_COOKIE,
46 };
47 
48 struct iommu_dma_cookie {
49 	enum iommu_dma_cookie_type	type;
50 	union {
51 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
52 		struct iova_domain	iovad;
53 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
54 		dma_addr_t		msi_iova;
55 	};
56 	struct list_head		msi_page_list;
57 	spinlock_t			msi_lock;
58 };
59 
60 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
61 {
62 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
63 		return cookie->iovad.granule;
64 	return PAGE_SIZE;
65 }
66 
67 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
68 {
69 	struct iommu_dma_cookie *cookie;
70 
71 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
72 	if (cookie) {
73 		spin_lock_init(&cookie->msi_lock);
74 		INIT_LIST_HEAD(&cookie->msi_page_list);
75 		cookie->type = type;
76 	}
77 	return cookie;
78 }
79 
80 int iommu_dma_init(void)
81 {
82 	return iova_cache_get();
83 }
84 
85 /**
86  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
87  * @domain: IOMMU domain to prepare for DMA-API usage
88  *
89  * IOMMU drivers should normally call this from their domain_alloc
90  * callback when domain->type == IOMMU_DOMAIN_DMA.
91  */
92 int iommu_get_dma_cookie(struct iommu_domain *domain)
93 {
94 	if (domain->iova_cookie)
95 		return -EEXIST;
96 
97 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
98 	if (!domain->iova_cookie)
99 		return -ENOMEM;
100 
101 	return 0;
102 }
103 EXPORT_SYMBOL(iommu_get_dma_cookie);
104 
105 /**
106  * iommu_get_msi_cookie - Acquire just MSI remapping resources
107  * @domain: IOMMU domain to prepare
108  * @base: Start address of IOVA region for MSI mappings
109  *
110  * Users who manage their own IOVA allocation and do not want DMA API support,
111  * but would still like to take advantage of automatic MSI remapping, can use
112  * this to initialise their own domain appropriately. Users should reserve a
113  * contiguous IOVA region, starting at @base, large enough to accommodate the
114  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
115  * used by the devices attached to @domain.
116  */
117 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
118 {
119 	struct iommu_dma_cookie *cookie;
120 
121 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
122 		return -EINVAL;
123 
124 	if (domain->iova_cookie)
125 		return -EEXIST;
126 
127 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
128 	if (!cookie)
129 		return -ENOMEM;
130 
131 	cookie->msi_iova = base;
132 	domain->iova_cookie = cookie;
133 	return 0;
134 }
135 EXPORT_SYMBOL(iommu_get_msi_cookie);
136 
137 /**
138  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
139  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
140  *          iommu_get_msi_cookie()
141  *
142  * IOMMU drivers should normally call this from their domain_free callback.
143  */
144 void iommu_put_dma_cookie(struct iommu_domain *domain)
145 {
146 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
147 	struct iommu_dma_msi_page *msi, *tmp;
148 
149 	if (!cookie)
150 		return;
151 
152 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
153 		put_iova_domain(&cookie->iovad);
154 
155 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
156 		list_del(&msi->list);
157 		kfree(msi);
158 	}
159 	kfree(cookie);
160 	domain->iova_cookie = NULL;
161 }
162 EXPORT_SYMBOL(iommu_put_dma_cookie);
163 
164 /**
165  * iommu_dma_get_resv_regions - Reserved region driver helper
166  * @dev: Device from iommu_get_resv_regions()
167  * @list: Reserved region list from iommu_get_resv_regions()
168  *
169  * IOMMU drivers can use this to implement their .get_resv_regions callback
170  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
171  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
172  * reservation.
173  */
174 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
175 {
176 
177 	if (!is_of_node(dev->iommu_fwspec->iommu_fwnode))
178 		iort_iommu_msi_get_resv_regions(dev, list);
179 
180 }
181 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
182 
183 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
184 		phys_addr_t start, phys_addr_t end)
185 {
186 	struct iova_domain *iovad = &cookie->iovad;
187 	struct iommu_dma_msi_page *msi_page;
188 	int i, num_pages;
189 
190 	start -= iova_offset(iovad, start);
191 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
192 
193 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
194 	if (!msi_page)
195 		return -ENOMEM;
196 
197 	for (i = 0; i < num_pages; i++) {
198 		msi_page[i].phys = start;
199 		msi_page[i].iova = start;
200 		INIT_LIST_HEAD(&msi_page[i].list);
201 		list_add(&msi_page[i].list, &cookie->msi_page_list);
202 		start += iovad->granule;
203 	}
204 
205 	return 0;
206 }
207 
208 static void iova_reserve_pci_windows(struct pci_dev *dev,
209 		struct iova_domain *iovad)
210 {
211 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
212 	struct resource_entry *window;
213 	unsigned long lo, hi;
214 
215 	resource_list_for_each_entry(window, &bridge->windows) {
216 		if (resource_type(window->res) != IORESOURCE_MEM)
217 			continue;
218 
219 		lo = iova_pfn(iovad, window->res->start - window->offset);
220 		hi = iova_pfn(iovad, window->res->end - window->offset);
221 		reserve_iova(iovad, lo, hi);
222 	}
223 }
224 
225 static int iova_reserve_iommu_regions(struct device *dev,
226 		struct iommu_domain *domain)
227 {
228 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
229 	struct iova_domain *iovad = &cookie->iovad;
230 	struct iommu_resv_region *region;
231 	LIST_HEAD(resv_regions);
232 	int ret = 0;
233 
234 	if (dev_is_pci(dev))
235 		iova_reserve_pci_windows(to_pci_dev(dev), iovad);
236 
237 	iommu_get_resv_regions(dev, &resv_regions);
238 	list_for_each_entry(region, &resv_regions, list) {
239 		unsigned long lo, hi;
240 
241 		/* We ARE the software that manages these! */
242 		if (region->type == IOMMU_RESV_SW_MSI)
243 			continue;
244 
245 		lo = iova_pfn(iovad, region->start);
246 		hi = iova_pfn(iovad, region->start + region->length - 1);
247 		reserve_iova(iovad, lo, hi);
248 
249 		if (region->type == IOMMU_RESV_MSI)
250 			ret = cookie_init_hw_msi_region(cookie, region->start,
251 					region->start + region->length);
252 		if (ret)
253 			break;
254 	}
255 	iommu_put_resv_regions(dev, &resv_regions);
256 
257 	return ret;
258 }
259 
260 /**
261  * iommu_dma_init_domain - Initialise a DMA mapping domain
262  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
263  * @base: IOVA at which the mappable address space starts
264  * @size: Size of IOVA space
265  * @dev: Device the domain is being initialised for
266  *
267  * @base and @size should be exact multiples of IOMMU page granularity to
268  * avoid rounding surprises. If necessary, we reserve the page at address 0
269  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
270  * any change which could make prior IOVAs invalid will fail.
271  */
272 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
273 		u64 size, struct device *dev)
274 {
275 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
276 	struct iova_domain *iovad = &cookie->iovad;
277 	unsigned long order, base_pfn, end_pfn;
278 
279 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
280 		return -EINVAL;
281 
282 	/* Use the smallest supported page size for IOVA granularity */
283 	order = __ffs(domain->pgsize_bitmap);
284 	base_pfn = max_t(unsigned long, 1, base >> order);
285 	end_pfn = (base + size - 1) >> order;
286 
287 	/* Check the domain allows at least some access to the device... */
288 	if (domain->geometry.force_aperture) {
289 		if (base > domain->geometry.aperture_end ||
290 		    base + size <= domain->geometry.aperture_start) {
291 			pr_warn("specified DMA range outside IOMMU capability\n");
292 			return -EFAULT;
293 		}
294 		/* ...then finally give it a kicking to make sure it fits */
295 		base_pfn = max_t(unsigned long, base_pfn,
296 				domain->geometry.aperture_start >> order);
297 	}
298 
299 	/* start_pfn is always nonzero for an already-initialised domain */
300 	if (iovad->start_pfn) {
301 		if (1UL << order != iovad->granule ||
302 		    base_pfn != iovad->start_pfn) {
303 			pr_warn("Incompatible range for DMA domain\n");
304 			return -EFAULT;
305 		}
306 
307 		return 0;
308 	}
309 
310 	init_iova_domain(iovad, 1UL << order, base_pfn);
311 	if (!dev)
312 		return 0;
313 
314 	return iova_reserve_iommu_regions(dev, domain);
315 }
316 EXPORT_SYMBOL(iommu_dma_init_domain);
317 
318 /**
319  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
320  *                    page flags.
321  * @dir: Direction of DMA transfer
322  * @coherent: Is the DMA master cache-coherent?
323  * @attrs: DMA attributes for the mapping
324  *
325  * Return: corresponding IOMMU API page protection flags
326  */
327 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
328 		     unsigned long attrs)
329 {
330 	int prot = coherent ? IOMMU_CACHE : 0;
331 
332 	if (attrs & DMA_ATTR_PRIVILEGED)
333 		prot |= IOMMU_PRIV;
334 
335 	switch (dir) {
336 	case DMA_BIDIRECTIONAL:
337 		return prot | IOMMU_READ | IOMMU_WRITE;
338 	case DMA_TO_DEVICE:
339 		return prot | IOMMU_READ;
340 	case DMA_FROM_DEVICE:
341 		return prot | IOMMU_WRITE;
342 	default:
343 		return 0;
344 	}
345 }
346 
347 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
348 		size_t size, dma_addr_t dma_limit, struct device *dev)
349 {
350 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
351 	struct iova_domain *iovad = &cookie->iovad;
352 	unsigned long shift, iova_len, iova = 0;
353 
354 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
355 		cookie->msi_iova += size;
356 		return cookie->msi_iova - size;
357 	}
358 
359 	shift = iova_shift(iovad);
360 	iova_len = size >> shift;
361 	/*
362 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
363 	 * will come back to bite us badly, so we have to waste a bit of space
364 	 * rounding up anything cacheable to make sure that can't happen. The
365 	 * order of the unadjusted size will still match upon freeing.
366 	 */
367 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
368 		iova_len = roundup_pow_of_two(iova_len);
369 
370 	if (domain->geometry.force_aperture)
371 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
372 
373 	/* Try to get PCI devices a SAC address */
374 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
375 		iova = alloc_iova_fast(iovad, iova_len,
376 				       DMA_BIT_MASK(32) >> shift, false);
377 
378 	if (!iova)
379 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
380 				       true);
381 
382 	return (dma_addr_t)iova << shift;
383 }
384 
385 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
386 		dma_addr_t iova, size_t size)
387 {
388 	struct iova_domain *iovad = &cookie->iovad;
389 
390 	/* The MSI case is only ever cleaning up its most recent allocation */
391 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
392 		cookie->msi_iova -= size;
393 	else
394 		free_iova_fast(iovad, iova_pfn(iovad, iova),
395 				size >> iova_shift(iovad));
396 }
397 
398 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
399 		size_t size)
400 {
401 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
402 	struct iova_domain *iovad = &cookie->iovad;
403 	size_t iova_off = iova_offset(iovad, dma_addr);
404 
405 	dma_addr -= iova_off;
406 	size = iova_align(iovad, size + iova_off);
407 
408 	WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
409 	iommu_dma_free_iova(cookie, dma_addr, size);
410 }
411 
412 static void __iommu_dma_free_pages(struct page **pages, int count)
413 {
414 	while (count--)
415 		__free_page(pages[count]);
416 	kvfree(pages);
417 }
418 
419 static struct page **__iommu_dma_alloc_pages(unsigned int count,
420 		unsigned long order_mask, gfp_t gfp)
421 {
422 	struct page **pages;
423 	unsigned int i = 0, array_size = count * sizeof(*pages);
424 
425 	order_mask &= (2U << MAX_ORDER) - 1;
426 	if (!order_mask)
427 		return NULL;
428 
429 	if (array_size <= PAGE_SIZE)
430 		pages = kzalloc(array_size, GFP_KERNEL);
431 	else
432 		pages = vzalloc(array_size);
433 	if (!pages)
434 		return NULL;
435 
436 	/* IOMMU can map any pages, so himem can also be used here */
437 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
438 
439 	while (count) {
440 		struct page *page = NULL;
441 		unsigned int order_size;
442 
443 		/*
444 		 * Higher-order allocations are a convenience rather
445 		 * than a necessity, hence using __GFP_NORETRY until
446 		 * falling back to minimum-order allocations.
447 		 */
448 		for (order_mask &= (2U << __fls(count)) - 1;
449 		     order_mask; order_mask &= ~order_size) {
450 			unsigned int order = __fls(order_mask);
451 
452 			order_size = 1U << order;
453 			page = alloc_pages((order_mask - order_size) ?
454 					   gfp | __GFP_NORETRY : gfp, order);
455 			if (!page)
456 				continue;
457 			if (!order)
458 				break;
459 			if (!PageCompound(page)) {
460 				split_page(page, order);
461 				break;
462 			} else if (!split_huge_page(page)) {
463 				break;
464 			}
465 			__free_pages(page, order);
466 		}
467 		if (!page) {
468 			__iommu_dma_free_pages(pages, i);
469 			return NULL;
470 		}
471 		count -= order_size;
472 		while (order_size--)
473 			pages[i++] = page++;
474 	}
475 	return pages;
476 }
477 
478 /**
479  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
480  * @dev: Device which owns this buffer
481  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
482  * @size: Size of buffer in bytes
483  * @handle: DMA address of buffer
484  *
485  * Frees both the pages associated with the buffer, and the array
486  * describing them
487  */
488 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
489 		dma_addr_t *handle)
490 {
491 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
492 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
493 	*handle = IOMMU_MAPPING_ERROR;
494 }
495 
496 /**
497  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
498  * @dev: Device to allocate memory for. Must be a real device
499  *	 attached to an iommu_dma_domain
500  * @size: Size of buffer in bytes
501  * @gfp: Allocation flags
502  * @attrs: DMA attributes for this allocation
503  * @prot: IOMMU mapping flags
504  * @handle: Out argument for allocated DMA handle
505  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
506  *		given VA/PA are visible to the given non-coherent device.
507  *
508  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
509  * but an IOMMU which supports smaller pages might not map the whole thing.
510  *
511  * Return: Array of struct page pointers describing the buffer,
512  *	   or NULL on failure.
513  */
514 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
515 		unsigned long attrs, int prot, dma_addr_t *handle,
516 		void (*flush_page)(struct device *, const void *, phys_addr_t))
517 {
518 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
519 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
520 	struct iova_domain *iovad = &cookie->iovad;
521 	struct page **pages;
522 	struct sg_table sgt;
523 	dma_addr_t iova;
524 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
525 
526 	*handle = IOMMU_MAPPING_ERROR;
527 
528 	min_size = alloc_sizes & -alloc_sizes;
529 	if (min_size < PAGE_SIZE) {
530 		min_size = PAGE_SIZE;
531 		alloc_sizes |= PAGE_SIZE;
532 	} else {
533 		size = ALIGN(size, min_size);
534 	}
535 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
536 		alloc_sizes = min_size;
537 
538 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
539 	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
540 	if (!pages)
541 		return NULL;
542 
543 	size = iova_align(iovad, size);
544 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
545 	if (!iova)
546 		goto out_free_pages;
547 
548 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
549 		goto out_free_iova;
550 
551 	if (!(prot & IOMMU_CACHE)) {
552 		struct sg_mapping_iter miter;
553 		/*
554 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
555 		 * sufficient here, so skip it by using the "wrong" direction.
556 		 */
557 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
558 		while (sg_miter_next(&miter))
559 			flush_page(dev, miter.addr, page_to_phys(miter.page));
560 		sg_miter_stop(&miter);
561 	}
562 
563 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
564 			< size)
565 		goto out_free_sg;
566 
567 	*handle = iova;
568 	sg_free_table(&sgt);
569 	return pages;
570 
571 out_free_sg:
572 	sg_free_table(&sgt);
573 out_free_iova:
574 	iommu_dma_free_iova(cookie, iova, size);
575 out_free_pages:
576 	__iommu_dma_free_pages(pages, count);
577 	return NULL;
578 }
579 
580 /**
581  * iommu_dma_mmap - Map a buffer into provided user VMA
582  * @pages: Array representing buffer from iommu_dma_alloc()
583  * @size: Size of buffer in bytes
584  * @vma: VMA describing requested userspace mapping
585  *
586  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
587  * for verifying the correct size and protection of @vma beforehand.
588  */
589 
590 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
591 {
592 	unsigned long uaddr = vma->vm_start;
593 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
594 	int ret = -ENXIO;
595 
596 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
597 		ret = vm_insert_page(vma, uaddr, pages[i]);
598 		if (ret)
599 			break;
600 		uaddr += PAGE_SIZE;
601 	}
602 	return ret;
603 }
604 
605 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
606 		size_t size, int prot)
607 {
608 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
609 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
610 	size_t iova_off = 0;
611 	dma_addr_t iova;
612 
613 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
614 		iova_off = iova_offset(&cookie->iovad, phys);
615 		size = iova_align(&cookie->iovad, size + iova_off);
616 	}
617 
618 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
619 	if (!iova)
620 		return IOMMU_MAPPING_ERROR;
621 
622 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
623 		iommu_dma_free_iova(cookie, iova, size);
624 		return IOMMU_MAPPING_ERROR;
625 	}
626 	return iova + iova_off;
627 }
628 
629 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
630 		unsigned long offset, size_t size, int prot)
631 {
632 	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
633 }
634 
635 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
636 		enum dma_data_direction dir, unsigned long attrs)
637 {
638 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
639 }
640 
641 /*
642  * Prepare a successfully-mapped scatterlist to give back to the caller.
643  *
644  * At this point the segments are already laid out by iommu_dma_map_sg() to
645  * avoid individually crossing any boundaries, so we merely need to check a
646  * segment's start address to avoid concatenating across one.
647  */
648 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
649 		dma_addr_t dma_addr)
650 {
651 	struct scatterlist *s, *cur = sg;
652 	unsigned long seg_mask = dma_get_seg_boundary(dev);
653 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
654 	int i, count = 0;
655 
656 	for_each_sg(sg, s, nents, i) {
657 		/* Restore this segment's original unaligned fields first */
658 		unsigned int s_iova_off = sg_dma_address(s);
659 		unsigned int s_length = sg_dma_len(s);
660 		unsigned int s_iova_len = s->length;
661 
662 		s->offset += s_iova_off;
663 		s->length = s_length;
664 		sg_dma_address(s) = IOMMU_MAPPING_ERROR;
665 		sg_dma_len(s) = 0;
666 
667 		/*
668 		 * Now fill in the real DMA data. If...
669 		 * - there is a valid output segment to append to
670 		 * - and this segment starts on an IOVA page boundary
671 		 * - but doesn't fall at a segment boundary
672 		 * - and wouldn't make the resulting output segment too long
673 		 */
674 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
675 		    (cur_len + s_length <= max_len)) {
676 			/* ...then concatenate it with the previous one */
677 			cur_len += s_length;
678 		} else {
679 			/* Otherwise start the next output segment */
680 			if (i > 0)
681 				cur = sg_next(cur);
682 			cur_len = s_length;
683 			count++;
684 
685 			sg_dma_address(cur) = dma_addr + s_iova_off;
686 		}
687 
688 		sg_dma_len(cur) = cur_len;
689 		dma_addr += s_iova_len;
690 
691 		if (s_length + s_iova_off < s_iova_len)
692 			cur_len = 0;
693 	}
694 	return count;
695 }
696 
697 /*
698  * If mapping failed, then just restore the original list,
699  * but making sure the DMA fields are invalidated.
700  */
701 static void __invalidate_sg(struct scatterlist *sg, int nents)
702 {
703 	struct scatterlist *s;
704 	int i;
705 
706 	for_each_sg(sg, s, nents, i) {
707 		if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
708 			s->offset += sg_dma_address(s);
709 		if (sg_dma_len(s))
710 			s->length = sg_dma_len(s);
711 		sg_dma_address(s) = IOMMU_MAPPING_ERROR;
712 		sg_dma_len(s) = 0;
713 	}
714 }
715 
716 /*
717  * The DMA API client is passing in a scatterlist which could describe
718  * any old buffer layout, but the IOMMU API requires everything to be
719  * aligned to IOMMU pages. Hence the need for this complicated bit of
720  * impedance-matching, to be able to hand off a suitably-aligned list,
721  * but still preserve the original offsets and sizes for the caller.
722  */
723 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
724 		int nents, int prot)
725 {
726 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
727 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
728 	struct iova_domain *iovad = &cookie->iovad;
729 	struct scatterlist *s, *prev = NULL;
730 	dma_addr_t iova;
731 	size_t iova_len = 0;
732 	unsigned long mask = dma_get_seg_boundary(dev);
733 	int i;
734 
735 	/*
736 	 * Work out how much IOVA space we need, and align the segments to
737 	 * IOVA granules for the IOMMU driver to handle. With some clever
738 	 * trickery we can modify the list in-place, but reversibly, by
739 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
740 	 */
741 	for_each_sg(sg, s, nents, i) {
742 		size_t s_iova_off = iova_offset(iovad, s->offset);
743 		size_t s_length = s->length;
744 		size_t pad_len = (mask - iova_len + 1) & mask;
745 
746 		sg_dma_address(s) = s_iova_off;
747 		sg_dma_len(s) = s_length;
748 		s->offset -= s_iova_off;
749 		s_length = iova_align(iovad, s_length + s_iova_off);
750 		s->length = s_length;
751 
752 		/*
753 		 * Due to the alignment of our single IOVA allocation, we can
754 		 * depend on these assumptions about the segment boundary mask:
755 		 * - If mask size >= IOVA size, then the IOVA range cannot
756 		 *   possibly fall across a boundary, so we don't care.
757 		 * - If mask size < IOVA size, then the IOVA range must start
758 		 *   exactly on a boundary, therefore we can lay things out
759 		 *   based purely on segment lengths without needing to know
760 		 *   the actual addresses beforehand.
761 		 * - The mask must be a power of 2, so pad_len == 0 if
762 		 *   iova_len == 0, thus we cannot dereference prev the first
763 		 *   time through here (i.e. before it has a meaningful value).
764 		 */
765 		if (pad_len && pad_len < s_length - 1) {
766 			prev->length += pad_len;
767 			iova_len += pad_len;
768 		}
769 
770 		iova_len += s_length;
771 		prev = s;
772 	}
773 
774 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
775 	if (!iova)
776 		goto out_restore_sg;
777 
778 	/*
779 	 * We'll leave any physical concatenation to the IOMMU driver's
780 	 * implementation - it knows better than we do.
781 	 */
782 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
783 		goto out_free_iova;
784 
785 	return __finalise_sg(dev, sg, nents, iova);
786 
787 out_free_iova:
788 	iommu_dma_free_iova(cookie, iova, iova_len);
789 out_restore_sg:
790 	__invalidate_sg(sg, nents);
791 	return 0;
792 }
793 
794 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
795 		enum dma_data_direction dir, unsigned long attrs)
796 {
797 	dma_addr_t start, end;
798 	struct scatterlist *tmp;
799 	int i;
800 	/*
801 	 * The scatterlist segments are mapped into a single
802 	 * contiguous IOVA allocation, so this is incredibly easy.
803 	 */
804 	start = sg_dma_address(sg);
805 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
806 		if (sg_dma_len(tmp) == 0)
807 			break;
808 		sg = tmp;
809 	}
810 	end = sg_dma_address(sg) + sg_dma_len(sg);
811 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
812 }
813 
814 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
815 		size_t size, enum dma_data_direction dir, unsigned long attrs)
816 {
817 	return __iommu_dma_map(dev, phys, size,
818 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
819 }
820 
821 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
822 		size_t size, enum dma_data_direction dir, unsigned long attrs)
823 {
824 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
825 }
826 
827 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
828 {
829 	return dma_addr == IOMMU_MAPPING_ERROR;
830 }
831 
832 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
833 		phys_addr_t msi_addr, struct iommu_domain *domain)
834 {
835 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
836 	struct iommu_dma_msi_page *msi_page;
837 	dma_addr_t iova;
838 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
839 	size_t size = cookie_msi_granule(cookie);
840 
841 	msi_addr &= ~(phys_addr_t)(size - 1);
842 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
843 		if (msi_page->phys == msi_addr)
844 			return msi_page;
845 
846 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
847 	if (!msi_page)
848 		return NULL;
849 
850 	iova = __iommu_dma_map(dev, msi_addr, size, prot);
851 	if (iommu_dma_mapping_error(dev, iova))
852 		goto out_free_page;
853 
854 	INIT_LIST_HEAD(&msi_page->list);
855 	msi_page->phys = msi_addr;
856 	msi_page->iova = iova;
857 	list_add(&msi_page->list, &cookie->msi_page_list);
858 	return msi_page;
859 
860 out_free_page:
861 	kfree(msi_page);
862 	return NULL;
863 }
864 
865 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
866 {
867 	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
868 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
869 	struct iommu_dma_cookie *cookie;
870 	struct iommu_dma_msi_page *msi_page;
871 	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
872 	unsigned long flags;
873 
874 	if (!domain || !domain->iova_cookie)
875 		return;
876 
877 	cookie = domain->iova_cookie;
878 
879 	/*
880 	 * We disable IRQs to rule out a possible inversion against
881 	 * irq_desc_lock if, say, someone tries to retarget the affinity
882 	 * of an MSI from within an IPI handler.
883 	 */
884 	spin_lock_irqsave(&cookie->msi_lock, flags);
885 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
886 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
887 
888 	if (WARN_ON(!msi_page)) {
889 		/*
890 		 * We're called from a void callback, so the best we can do is
891 		 * 'fail' by filling the message with obviously bogus values.
892 		 * Since we got this far due to an IOMMU being present, it's
893 		 * not like the existing address would have worked anyway...
894 		 */
895 		msg->address_hi = ~0U;
896 		msg->address_lo = ~0U;
897 		msg->data = ~0U;
898 	} else {
899 		msg->address_hi = upper_32_bits(msi_page->iova);
900 		msg->address_lo &= cookie_msi_granule(cookie) - 1;
901 		msg->address_lo += lower_32_bits(msi_page->iova);
902 	}
903 }
904