xref: /linux/drivers/iommu/dma-iommu.c (revision 7fc7f25419f5a6b09199ba4b5026b94ef184fa79)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/pci.h>
27 #include <linux/scatterlist.h>
28 #include <linux/spinlock.h>
29 #include <linux/swiotlb.h>
30 #include <linux/vmalloc.h>
31 
32 #include "dma-iommu.h"
33 
34 struct iommu_dma_msi_page {
35 	struct list_head	list;
36 	dma_addr_t		iova;
37 	phys_addr_t		phys;
38 };
39 
40 enum iommu_dma_cookie_type {
41 	IOMMU_DMA_IOVA_COOKIE,
42 	IOMMU_DMA_MSI_COOKIE,
43 };
44 
45 struct iommu_dma_cookie {
46 	enum iommu_dma_cookie_type	type;
47 	union {
48 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
49 		struct {
50 			struct iova_domain	iovad;
51 
52 			struct iova_fq __percpu *fq;	/* Flush queue */
53 			/* Number of TLB flushes that have been started */
54 			atomic64_t		fq_flush_start_cnt;
55 			/* Number of TLB flushes that have been finished */
56 			atomic64_t		fq_flush_finish_cnt;
57 			/* Timer to regularily empty the flush queues */
58 			struct timer_list	fq_timer;
59 			/* 1 when timer is active, 0 when not */
60 			atomic_t		fq_timer_on;
61 		};
62 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
63 		dma_addr_t		msi_iova;
64 	};
65 	struct list_head		msi_page_list;
66 
67 	/* Domain for flush queue callback; NULL if flush queue not in use */
68 	struct iommu_domain		*fq_domain;
69 	struct mutex			mutex;
70 };
71 
72 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
73 bool iommu_dma_forcedac __read_mostly;
74 
75 static int __init iommu_dma_forcedac_setup(char *str)
76 {
77 	int ret = kstrtobool(str, &iommu_dma_forcedac);
78 
79 	if (!ret && iommu_dma_forcedac)
80 		pr_info("Forcing DAC for PCI devices\n");
81 	return ret;
82 }
83 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
84 
85 /* Number of entries per flush queue */
86 #define IOVA_FQ_SIZE	256
87 
88 /* Timeout (in ms) after which entries are flushed from the queue */
89 #define IOVA_FQ_TIMEOUT	10
90 
91 /* Flush queue entry for deferred flushing */
92 struct iova_fq_entry {
93 	unsigned long iova_pfn;
94 	unsigned long pages;
95 	struct list_head freelist;
96 	u64 counter; /* Flush counter when this entry was added */
97 };
98 
99 /* Per-CPU flush queue structure */
100 struct iova_fq {
101 	struct iova_fq_entry entries[IOVA_FQ_SIZE];
102 	unsigned int head, tail;
103 	spinlock_t lock;
104 };
105 
106 #define fq_ring_for_each(i, fq) \
107 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
108 
109 static inline bool fq_full(struct iova_fq *fq)
110 {
111 	assert_spin_locked(&fq->lock);
112 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
113 }
114 
115 static inline unsigned int fq_ring_add(struct iova_fq *fq)
116 {
117 	unsigned int idx = fq->tail;
118 
119 	assert_spin_locked(&fq->lock);
120 
121 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
122 
123 	return idx;
124 }
125 
126 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
127 {
128 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
129 	unsigned int idx;
130 
131 	assert_spin_locked(&fq->lock);
132 
133 	fq_ring_for_each(idx, fq) {
134 
135 		if (fq->entries[idx].counter >= counter)
136 			break;
137 
138 		put_pages_list(&fq->entries[idx].freelist);
139 		free_iova_fast(&cookie->iovad,
140 			       fq->entries[idx].iova_pfn,
141 			       fq->entries[idx].pages);
142 
143 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
144 	}
145 }
146 
147 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
148 {
149 	atomic64_inc(&cookie->fq_flush_start_cnt);
150 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
151 	atomic64_inc(&cookie->fq_flush_finish_cnt);
152 }
153 
154 static void fq_flush_timeout(struct timer_list *t)
155 {
156 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
157 	int cpu;
158 
159 	atomic_set(&cookie->fq_timer_on, 0);
160 	fq_flush_iotlb(cookie);
161 
162 	for_each_possible_cpu(cpu) {
163 		unsigned long flags;
164 		struct iova_fq *fq;
165 
166 		fq = per_cpu_ptr(cookie->fq, cpu);
167 		spin_lock_irqsave(&fq->lock, flags);
168 		fq_ring_free(cookie, fq);
169 		spin_unlock_irqrestore(&fq->lock, flags);
170 	}
171 }
172 
173 static void queue_iova(struct iommu_dma_cookie *cookie,
174 		unsigned long pfn, unsigned long pages,
175 		struct list_head *freelist)
176 {
177 	struct iova_fq *fq;
178 	unsigned long flags;
179 	unsigned int idx;
180 
181 	/*
182 	 * Order against the IOMMU driver's pagetable update from unmapping
183 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
184 	 * from a different CPU before we release the lock below. Full barrier
185 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
186 	 * written fq state here.
187 	 */
188 	smp_mb();
189 
190 	fq = raw_cpu_ptr(cookie->fq);
191 	spin_lock_irqsave(&fq->lock, flags);
192 
193 	/*
194 	 * First remove all entries from the flush queue that have already been
195 	 * flushed out on another CPU. This makes the fq_full() check below less
196 	 * likely to be true.
197 	 */
198 	fq_ring_free(cookie, fq);
199 
200 	if (fq_full(fq)) {
201 		fq_flush_iotlb(cookie);
202 		fq_ring_free(cookie, fq);
203 	}
204 
205 	idx = fq_ring_add(fq);
206 
207 	fq->entries[idx].iova_pfn = pfn;
208 	fq->entries[idx].pages    = pages;
209 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
210 	list_splice(freelist, &fq->entries[idx].freelist);
211 
212 	spin_unlock_irqrestore(&fq->lock, flags);
213 
214 	/* Avoid false sharing as much as possible. */
215 	if (!atomic_read(&cookie->fq_timer_on) &&
216 	    !atomic_xchg(&cookie->fq_timer_on, 1))
217 		mod_timer(&cookie->fq_timer,
218 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
219 }
220 
221 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
222 {
223 	int cpu, idx;
224 
225 	if (!cookie->fq)
226 		return;
227 
228 	del_timer_sync(&cookie->fq_timer);
229 	/* The IOVAs will be torn down separately, so just free our queued pages */
230 	for_each_possible_cpu(cpu) {
231 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
232 
233 		fq_ring_for_each(idx, fq)
234 			put_pages_list(&fq->entries[idx].freelist);
235 	}
236 
237 	free_percpu(cookie->fq);
238 }
239 
240 /* sysfs updates are serialised by the mutex of the group owning @domain */
241 int iommu_dma_init_fq(struct iommu_domain *domain)
242 {
243 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
244 	struct iova_fq __percpu *queue;
245 	int i, cpu;
246 
247 	if (cookie->fq_domain)
248 		return 0;
249 
250 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
251 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
252 
253 	queue = alloc_percpu(struct iova_fq);
254 	if (!queue) {
255 		pr_warn("iova flush queue initialization failed\n");
256 		return -ENOMEM;
257 	}
258 
259 	for_each_possible_cpu(cpu) {
260 		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
261 
262 		fq->head = 0;
263 		fq->tail = 0;
264 
265 		spin_lock_init(&fq->lock);
266 
267 		for (i = 0; i < IOVA_FQ_SIZE; i++)
268 			INIT_LIST_HEAD(&fq->entries[i].freelist);
269 	}
270 
271 	cookie->fq = queue;
272 
273 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
274 	atomic_set(&cookie->fq_timer_on, 0);
275 	/*
276 	 * Prevent incomplete fq state being observable. Pairs with path from
277 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
278 	 */
279 	smp_wmb();
280 	WRITE_ONCE(cookie->fq_domain, domain);
281 	return 0;
282 }
283 
284 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
285 {
286 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
287 		return cookie->iovad.granule;
288 	return PAGE_SIZE;
289 }
290 
291 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
292 {
293 	struct iommu_dma_cookie *cookie;
294 
295 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
296 	if (cookie) {
297 		INIT_LIST_HEAD(&cookie->msi_page_list);
298 		cookie->type = type;
299 	}
300 	return cookie;
301 }
302 
303 /**
304  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
305  * @domain: IOMMU domain to prepare for DMA-API usage
306  */
307 int iommu_get_dma_cookie(struct iommu_domain *domain)
308 {
309 	if (domain->iova_cookie)
310 		return -EEXIST;
311 
312 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
313 	if (!domain->iova_cookie)
314 		return -ENOMEM;
315 
316 	mutex_init(&domain->iova_cookie->mutex);
317 	return 0;
318 }
319 
320 /**
321  * iommu_get_msi_cookie - Acquire just MSI remapping resources
322  * @domain: IOMMU domain to prepare
323  * @base: Start address of IOVA region for MSI mappings
324  *
325  * Users who manage their own IOVA allocation and do not want DMA API support,
326  * but would still like to take advantage of automatic MSI remapping, can use
327  * this to initialise their own domain appropriately. Users should reserve a
328  * contiguous IOVA region, starting at @base, large enough to accommodate the
329  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
330  * used by the devices attached to @domain.
331  */
332 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
333 {
334 	struct iommu_dma_cookie *cookie;
335 
336 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
337 		return -EINVAL;
338 
339 	if (domain->iova_cookie)
340 		return -EEXIST;
341 
342 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
343 	if (!cookie)
344 		return -ENOMEM;
345 
346 	cookie->msi_iova = base;
347 	domain->iova_cookie = cookie;
348 	return 0;
349 }
350 EXPORT_SYMBOL(iommu_get_msi_cookie);
351 
352 /**
353  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
354  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
355  *          iommu_get_msi_cookie()
356  */
357 void iommu_put_dma_cookie(struct iommu_domain *domain)
358 {
359 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
360 	struct iommu_dma_msi_page *msi, *tmp;
361 
362 	if (!cookie)
363 		return;
364 
365 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
366 		iommu_dma_free_fq(cookie);
367 		put_iova_domain(&cookie->iovad);
368 	}
369 
370 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
371 		list_del(&msi->list);
372 		kfree(msi);
373 	}
374 	kfree(cookie);
375 	domain->iova_cookie = NULL;
376 }
377 
378 /**
379  * iommu_dma_get_resv_regions - Reserved region driver helper
380  * @dev: Device from iommu_get_resv_regions()
381  * @list: Reserved region list from iommu_get_resv_regions()
382  *
383  * IOMMU drivers can use this to implement their .get_resv_regions callback
384  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
385  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
386  * reservation.
387  */
388 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
389 {
390 
391 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
392 		iort_iommu_get_resv_regions(dev, list);
393 
394 }
395 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
396 
397 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
398 		phys_addr_t start, phys_addr_t end)
399 {
400 	struct iova_domain *iovad = &cookie->iovad;
401 	struct iommu_dma_msi_page *msi_page;
402 	int i, num_pages;
403 
404 	start -= iova_offset(iovad, start);
405 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
406 
407 	for (i = 0; i < num_pages; i++) {
408 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
409 		if (!msi_page)
410 			return -ENOMEM;
411 
412 		msi_page->phys = start;
413 		msi_page->iova = start;
414 		INIT_LIST_HEAD(&msi_page->list);
415 		list_add(&msi_page->list, &cookie->msi_page_list);
416 		start += iovad->granule;
417 	}
418 
419 	return 0;
420 }
421 
422 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
423 		const struct list_head *b)
424 {
425 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
426 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
427 
428 	return res_a->res->start > res_b->res->start;
429 }
430 
431 static int iova_reserve_pci_windows(struct pci_dev *dev,
432 		struct iova_domain *iovad)
433 {
434 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
435 	struct resource_entry *window;
436 	unsigned long lo, hi;
437 	phys_addr_t start = 0, end;
438 
439 	resource_list_for_each_entry(window, &bridge->windows) {
440 		if (resource_type(window->res) != IORESOURCE_MEM)
441 			continue;
442 
443 		lo = iova_pfn(iovad, window->res->start - window->offset);
444 		hi = iova_pfn(iovad, window->res->end - window->offset);
445 		reserve_iova(iovad, lo, hi);
446 	}
447 
448 	/* Get reserved DMA windows from host bridge */
449 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
450 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
451 		end = window->res->start - window->offset;
452 resv_iova:
453 		if (end > start) {
454 			lo = iova_pfn(iovad, start);
455 			hi = iova_pfn(iovad, end);
456 			reserve_iova(iovad, lo, hi);
457 		} else if (end < start) {
458 			/* DMA ranges should be non-overlapping */
459 			dev_err(&dev->dev,
460 				"Failed to reserve IOVA [%pa-%pa]\n",
461 				&start, &end);
462 			return -EINVAL;
463 		}
464 
465 		start = window->res->end - window->offset + 1;
466 		/* If window is last entry */
467 		if (window->node.next == &bridge->dma_ranges &&
468 		    end != ~(phys_addr_t)0) {
469 			end = ~(phys_addr_t)0;
470 			goto resv_iova;
471 		}
472 	}
473 
474 	return 0;
475 }
476 
477 static int iova_reserve_iommu_regions(struct device *dev,
478 		struct iommu_domain *domain)
479 {
480 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
481 	struct iova_domain *iovad = &cookie->iovad;
482 	struct iommu_resv_region *region;
483 	LIST_HEAD(resv_regions);
484 	int ret = 0;
485 
486 	if (dev_is_pci(dev)) {
487 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
488 		if (ret)
489 			return ret;
490 	}
491 
492 	iommu_get_resv_regions(dev, &resv_regions);
493 	list_for_each_entry(region, &resv_regions, list) {
494 		unsigned long lo, hi;
495 
496 		/* We ARE the software that manages these! */
497 		if (region->type == IOMMU_RESV_SW_MSI)
498 			continue;
499 
500 		lo = iova_pfn(iovad, region->start);
501 		hi = iova_pfn(iovad, region->start + region->length - 1);
502 		reserve_iova(iovad, lo, hi);
503 
504 		if (region->type == IOMMU_RESV_MSI)
505 			ret = cookie_init_hw_msi_region(cookie, region->start,
506 					region->start + region->length);
507 		if (ret)
508 			break;
509 	}
510 	iommu_put_resv_regions(dev, &resv_regions);
511 
512 	return ret;
513 }
514 
515 static bool dev_is_untrusted(struct device *dev)
516 {
517 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
518 }
519 
520 static bool dev_use_swiotlb(struct device *dev)
521 {
522 	return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
523 }
524 
525 /**
526  * iommu_dma_init_domain - Initialise a DMA mapping domain
527  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
528  * @base: IOVA at which the mappable address space starts
529  * @limit: Last address of the IOVA space
530  * @dev: Device the domain is being initialised for
531  *
532  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
533  * avoid rounding surprises. If necessary, we reserve the page at address 0
534  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
535  * any change which could make prior IOVAs invalid will fail.
536  */
537 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
538 				 dma_addr_t limit, struct device *dev)
539 {
540 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
541 	unsigned long order, base_pfn;
542 	struct iova_domain *iovad;
543 	int ret;
544 
545 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
546 		return -EINVAL;
547 
548 	iovad = &cookie->iovad;
549 
550 	/* Use the smallest supported page size for IOVA granularity */
551 	order = __ffs(domain->pgsize_bitmap);
552 	base_pfn = max_t(unsigned long, 1, base >> order);
553 
554 	/* Check the domain allows at least some access to the device... */
555 	if (domain->geometry.force_aperture) {
556 		if (base > domain->geometry.aperture_end ||
557 		    limit < domain->geometry.aperture_start) {
558 			pr_warn("specified DMA range outside IOMMU capability\n");
559 			return -EFAULT;
560 		}
561 		/* ...then finally give it a kicking to make sure it fits */
562 		base_pfn = max_t(unsigned long, base_pfn,
563 				domain->geometry.aperture_start >> order);
564 	}
565 
566 	/* start_pfn is always nonzero for an already-initialised domain */
567 	mutex_lock(&cookie->mutex);
568 	if (iovad->start_pfn) {
569 		if (1UL << order != iovad->granule ||
570 		    base_pfn != iovad->start_pfn) {
571 			pr_warn("Incompatible range for DMA domain\n");
572 			ret = -EFAULT;
573 			goto done_unlock;
574 		}
575 
576 		ret = 0;
577 		goto done_unlock;
578 	}
579 
580 	init_iova_domain(iovad, 1UL << order, base_pfn);
581 	ret = iova_domain_init_rcaches(iovad);
582 	if (ret)
583 		goto done_unlock;
584 
585 	/* If the FQ fails we can simply fall back to strict mode */
586 	if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
587 		domain->type = IOMMU_DOMAIN_DMA;
588 
589 	ret = iova_reserve_iommu_regions(dev, domain);
590 
591 done_unlock:
592 	mutex_unlock(&cookie->mutex);
593 	return ret;
594 }
595 
596 /**
597  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
598  *                    page flags.
599  * @dir: Direction of DMA transfer
600  * @coherent: Is the DMA master cache-coherent?
601  * @attrs: DMA attributes for the mapping
602  *
603  * Return: corresponding IOMMU API page protection flags
604  */
605 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
606 		     unsigned long attrs)
607 {
608 	int prot = coherent ? IOMMU_CACHE : 0;
609 
610 	if (attrs & DMA_ATTR_PRIVILEGED)
611 		prot |= IOMMU_PRIV;
612 
613 	switch (dir) {
614 	case DMA_BIDIRECTIONAL:
615 		return prot | IOMMU_READ | IOMMU_WRITE;
616 	case DMA_TO_DEVICE:
617 		return prot | IOMMU_READ;
618 	case DMA_FROM_DEVICE:
619 		return prot | IOMMU_WRITE;
620 	default:
621 		return 0;
622 	}
623 }
624 
625 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
626 		size_t size, u64 dma_limit, struct device *dev)
627 {
628 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
629 	struct iova_domain *iovad = &cookie->iovad;
630 	unsigned long shift, iova_len, iova = 0;
631 
632 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
633 		cookie->msi_iova += size;
634 		return cookie->msi_iova - size;
635 	}
636 
637 	shift = iova_shift(iovad);
638 	iova_len = size >> shift;
639 
640 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
641 
642 	if (domain->geometry.force_aperture)
643 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
644 
645 	/* Try to get PCI devices a SAC address */
646 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
647 		iova = alloc_iova_fast(iovad, iova_len,
648 				       DMA_BIT_MASK(32) >> shift, false);
649 
650 	if (!iova)
651 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
652 				       true);
653 
654 	return (dma_addr_t)iova << shift;
655 }
656 
657 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
658 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
659 {
660 	struct iova_domain *iovad = &cookie->iovad;
661 
662 	/* The MSI case is only ever cleaning up its most recent allocation */
663 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
664 		cookie->msi_iova -= size;
665 	else if (gather && gather->queued)
666 		queue_iova(cookie, iova_pfn(iovad, iova),
667 				size >> iova_shift(iovad),
668 				&gather->freelist);
669 	else
670 		free_iova_fast(iovad, iova_pfn(iovad, iova),
671 				size >> iova_shift(iovad));
672 }
673 
674 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
675 		size_t size)
676 {
677 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
678 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
679 	struct iova_domain *iovad = &cookie->iovad;
680 	size_t iova_off = iova_offset(iovad, dma_addr);
681 	struct iommu_iotlb_gather iotlb_gather;
682 	size_t unmapped;
683 
684 	dma_addr -= iova_off;
685 	size = iova_align(iovad, size + iova_off);
686 	iommu_iotlb_gather_init(&iotlb_gather);
687 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
688 
689 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
690 	WARN_ON(unmapped != size);
691 
692 	if (!iotlb_gather.queued)
693 		iommu_iotlb_sync(domain, &iotlb_gather);
694 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
695 }
696 
697 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
698 		size_t size, int prot, u64 dma_mask)
699 {
700 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
701 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
702 	struct iova_domain *iovad = &cookie->iovad;
703 	size_t iova_off = iova_offset(iovad, phys);
704 	dma_addr_t iova;
705 
706 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
707 	    iommu_deferred_attach(dev, domain))
708 		return DMA_MAPPING_ERROR;
709 
710 	size = iova_align(iovad, size + iova_off);
711 
712 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
713 	if (!iova)
714 		return DMA_MAPPING_ERROR;
715 
716 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
717 		iommu_dma_free_iova(cookie, iova, size, NULL);
718 		return DMA_MAPPING_ERROR;
719 	}
720 	return iova + iova_off;
721 }
722 
723 static void __iommu_dma_free_pages(struct page **pages, int count)
724 {
725 	while (count--)
726 		__free_page(pages[count]);
727 	kvfree(pages);
728 }
729 
730 static struct page **__iommu_dma_alloc_pages(struct device *dev,
731 		unsigned int count, unsigned long order_mask, gfp_t gfp)
732 {
733 	struct page **pages;
734 	unsigned int i = 0, nid = dev_to_node(dev);
735 
736 	order_mask &= (2U << MAX_ORDER) - 1;
737 	if (!order_mask)
738 		return NULL;
739 
740 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
741 	if (!pages)
742 		return NULL;
743 
744 	/* IOMMU can map any pages, so himem can also be used here */
745 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
746 
747 	/* It makes no sense to muck about with huge pages */
748 	gfp &= ~__GFP_COMP;
749 
750 	while (count) {
751 		struct page *page = NULL;
752 		unsigned int order_size;
753 
754 		/*
755 		 * Higher-order allocations are a convenience rather
756 		 * than a necessity, hence using __GFP_NORETRY until
757 		 * falling back to minimum-order allocations.
758 		 */
759 		for (order_mask &= (2U << __fls(count)) - 1;
760 		     order_mask; order_mask &= ~order_size) {
761 			unsigned int order = __fls(order_mask);
762 			gfp_t alloc_flags = gfp;
763 
764 			order_size = 1U << order;
765 			if (order_mask > order_size)
766 				alloc_flags |= __GFP_NORETRY;
767 			page = alloc_pages_node(nid, alloc_flags, order);
768 			if (!page)
769 				continue;
770 			if (order)
771 				split_page(page, order);
772 			break;
773 		}
774 		if (!page) {
775 			__iommu_dma_free_pages(pages, i);
776 			return NULL;
777 		}
778 		count -= order_size;
779 		while (order_size--)
780 			pages[i++] = page++;
781 	}
782 	return pages;
783 }
784 
785 /*
786  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
787  * but an IOMMU which supports smaller pages might not map the whole thing.
788  */
789 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
790 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
791 		unsigned long attrs)
792 {
793 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
794 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
795 	struct iova_domain *iovad = &cookie->iovad;
796 	bool coherent = dev_is_dma_coherent(dev);
797 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
798 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
799 	struct page **pages;
800 	dma_addr_t iova;
801 	ssize_t ret;
802 
803 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
804 	    iommu_deferred_attach(dev, domain))
805 		return NULL;
806 
807 	min_size = alloc_sizes & -alloc_sizes;
808 	if (min_size < PAGE_SIZE) {
809 		min_size = PAGE_SIZE;
810 		alloc_sizes |= PAGE_SIZE;
811 	} else {
812 		size = ALIGN(size, min_size);
813 	}
814 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
815 		alloc_sizes = min_size;
816 
817 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
818 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
819 					gfp);
820 	if (!pages)
821 		return NULL;
822 
823 	size = iova_align(iovad, size);
824 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
825 	if (!iova)
826 		goto out_free_pages;
827 
828 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
829 		goto out_free_iova;
830 
831 	if (!(ioprot & IOMMU_CACHE)) {
832 		struct scatterlist *sg;
833 		int i;
834 
835 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
836 			arch_dma_prep_coherent(sg_page(sg), sg->length);
837 	}
838 
839 	ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot);
840 	if (ret < 0 || ret < size)
841 		goto out_free_sg;
842 
843 	sgt->sgl->dma_address = iova;
844 	sgt->sgl->dma_length = size;
845 	return pages;
846 
847 out_free_sg:
848 	sg_free_table(sgt);
849 out_free_iova:
850 	iommu_dma_free_iova(cookie, iova, size, NULL);
851 out_free_pages:
852 	__iommu_dma_free_pages(pages, count);
853 	return NULL;
854 }
855 
856 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
857 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
858 		unsigned long attrs)
859 {
860 	struct page **pages;
861 	struct sg_table sgt;
862 	void *vaddr;
863 
864 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
865 						attrs);
866 	if (!pages)
867 		return NULL;
868 	*dma_handle = sgt.sgl->dma_address;
869 	sg_free_table(&sgt);
870 	vaddr = dma_common_pages_remap(pages, size, prot,
871 			__builtin_return_address(0));
872 	if (!vaddr)
873 		goto out_unmap;
874 	return vaddr;
875 
876 out_unmap:
877 	__iommu_dma_unmap(dev, *dma_handle, size);
878 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
879 	return NULL;
880 }
881 
882 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
883 		size_t size, enum dma_data_direction dir, gfp_t gfp,
884 		unsigned long attrs)
885 {
886 	struct dma_sgt_handle *sh;
887 
888 	sh = kmalloc(sizeof(*sh), gfp);
889 	if (!sh)
890 		return NULL;
891 
892 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
893 						    PAGE_KERNEL, attrs);
894 	if (!sh->pages) {
895 		kfree(sh);
896 		return NULL;
897 	}
898 	return &sh->sgt;
899 }
900 
901 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
902 		struct sg_table *sgt, enum dma_data_direction dir)
903 {
904 	struct dma_sgt_handle *sh = sgt_handle(sgt);
905 
906 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
907 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
908 	sg_free_table(&sh->sgt);
909 	kfree(sh);
910 }
911 
912 static void iommu_dma_sync_single_for_cpu(struct device *dev,
913 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
914 {
915 	phys_addr_t phys;
916 
917 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
918 		return;
919 
920 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
921 	if (!dev_is_dma_coherent(dev))
922 		arch_sync_dma_for_cpu(phys, size, dir);
923 
924 	if (is_swiotlb_buffer(dev, phys))
925 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
926 }
927 
928 static void iommu_dma_sync_single_for_device(struct device *dev,
929 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
930 {
931 	phys_addr_t phys;
932 
933 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
934 		return;
935 
936 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
937 	if (is_swiotlb_buffer(dev, phys))
938 		swiotlb_sync_single_for_device(dev, phys, size, dir);
939 
940 	if (!dev_is_dma_coherent(dev))
941 		arch_sync_dma_for_device(phys, size, dir);
942 }
943 
944 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
945 		struct scatterlist *sgl, int nelems,
946 		enum dma_data_direction dir)
947 {
948 	struct scatterlist *sg;
949 	int i;
950 
951 	if (dev_use_swiotlb(dev))
952 		for_each_sg(sgl, sg, nelems, i)
953 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
954 						      sg->length, dir);
955 	else if (!dev_is_dma_coherent(dev))
956 		for_each_sg(sgl, sg, nelems, i)
957 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
958 }
959 
960 static void iommu_dma_sync_sg_for_device(struct device *dev,
961 		struct scatterlist *sgl, int nelems,
962 		enum dma_data_direction dir)
963 {
964 	struct scatterlist *sg;
965 	int i;
966 
967 	if (dev_use_swiotlb(dev))
968 		for_each_sg(sgl, sg, nelems, i)
969 			iommu_dma_sync_single_for_device(dev,
970 							 sg_dma_address(sg),
971 							 sg->length, dir);
972 	else if (!dev_is_dma_coherent(dev))
973 		for_each_sg(sgl, sg, nelems, i)
974 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
975 }
976 
977 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
978 		unsigned long offset, size_t size, enum dma_data_direction dir,
979 		unsigned long attrs)
980 {
981 	phys_addr_t phys = page_to_phys(page) + offset;
982 	bool coherent = dev_is_dma_coherent(dev);
983 	int prot = dma_info_to_prot(dir, coherent, attrs);
984 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
985 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
986 	struct iova_domain *iovad = &cookie->iovad;
987 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
988 
989 	/*
990 	 * If both the physical buffer start address and size are
991 	 * page aligned, we don't need to use a bounce page.
992 	 */
993 	if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
994 		void *padding_start;
995 		size_t padding_size, aligned_size;
996 
997 		if (!is_swiotlb_active(dev)) {
998 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
999 			return DMA_MAPPING_ERROR;
1000 		}
1001 
1002 		aligned_size = iova_align(iovad, size);
1003 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1004 					      iova_mask(iovad), dir, attrs);
1005 
1006 		if (phys == DMA_MAPPING_ERROR)
1007 			return DMA_MAPPING_ERROR;
1008 
1009 		/* Cleanup the padding area. */
1010 		padding_start = phys_to_virt(phys);
1011 		padding_size = aligned_size;
1012 
1013 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1014 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1015 			padding_start += size;
1016 			padding_size -= size;
1017 		}
1018 
1019 		memset(padding_start, 0, padding_size);
1020 	}
1021 
1022 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1023 		arch_sync_dma_for_device(phys, size, dir);
1024 
1025 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1026 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1027 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1028 	return iova;
1029 }
1030 
1031 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1032 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1033 {
1034 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1035 	phys_addr_t phys;
1036 
1037 	phys = iommu_iova_to_phys(domain, dma_handle);
1038 	if (WARN_ON(!phys))
1039 		return;
1040 
1041 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1042 		arch_sync_dma_for_cpu(phys, size, dir);
1043 
1044 	__iommu_dma_unmap(dev, dma_handle, size);
1045 
1046 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1047 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1048 }
1049 
1050 /*
1051  * Prepare a successfully-mapped scatterlist to give back to the caller.
1052  *
1053  * At this point the segments are already laid out by iommu_dma_map_sg() to
1054  * avoid individually crossing any boundaries, so we merely need to check a
1055  * segment's start address to avoid concatenating across one.
1056  */
1057 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1058 		dma_addr_t dma_addr)
1059 {
1060 	struct scatterlist *s, *cur = sg;
1061 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1062 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1063 	int i, count = 0;
1064 
1065 	for_each_sg(sg, s, nents, i) {
1066 		/* Restore this segment's original unaligned fields first */
1067 		dma_addr_t s_dma_addr = sg_dma_address(s);
1068 		unsigned int s_iova_off = sg_dma_address(s);
1069 		unsigned int s_length = sg_dma_len(s);
1070 		unsigned int s_iova_len = s->length;
1071 
1072 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1073 		sg_dma_len(s) = 0;
1074 
1075 		if (sg_is_dma_bus_address(s)) {
1076 			if (i > 0)
1077 				cur = sg_next(cur);
1078 
1079 			sg_dma_unmark_bus_address(s);
1080 			sg_dma_address(cur) = s_dma_addr;
1081 			sg_dma_len(cur) = s_length;
1082 			sg_dma_mark_bus_address(cur);
1083 			count++;
1084 			cur_len = 0;
1085 			continue;
1086 		}
1087 
1088 		s->offset += s_iova_off;
1089 		s->length = s_length;
1090 
1091 		/*
1092 		 * Now fill in the real DMA data. If...
1093 		 * - there is a valid output segment to append to
1094 		 * - and this segment starts on an IOVA page boundary
1095 		 * - but doesn't fall at a segment boundary
1096 		 * - and wouldn't make the resulting output segment too long
1097 		 */
1098 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1099 		    (max_len - cur_len >= s_length)) {
1100 			/* ...then concatenate it with the previous one */
1101 			cur_len += s_length;
1102 		} else {
1103 			/* Otherwise start the next output segment */
1104 			if (i > 0)
1105 				cur = sg_next(cur);
1106 			cur_len = s_length;
1107 			count++;
1108 
1109 			sg_dma_address(cur) = dma_addr + s_iova_off;
1110 		}
1111 
1112 		sg_dma_len(cur) = cur_len;
1113 		dma_addr += s_iova_len;
1114 
1115 		if (s_length + s_iova_off < s_iova_len)
1116 			cur_len = 0;
1117 	}
1118 	return count;
1119 }
1120 
1121 /*
1122  * If mapping failed, then just restore the original list,
1123  * but making sure the DMA fields are invalidated.
1124  */
1125 static void __invalidate_sg(struct scatterlist *sg, int nents)
1126 {
1127 	struct scatterlist *s;
1128 	int i;
1129 
1130 	for_each_sg(sg, s, nents, i) {
1131 		if (sg_is_dma_bus_address(s)) {
1132 			sg_dma_unmark_bus_address(s);
1133 		} else {
1134 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1135 				s->offset += sg_dma_address(s);
1136 			if (sg_dma_len(s))
1137 				s->length = sg_dma_len(s);
1138 		}
1139 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1140 		sg_dma_len(s) = 0;
1141 	}
1142 }
1143 
1144 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1145 		int nents, enum dma_data_direction dir, unsigned long attrs)
1146 {
1147 	struct scatterlist *s;
1148 	int i;
1149 
1150 	for_each_sg(sg, s, nents, i)
1151 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1152 				sg_dma_len(s), dir, attrs);
1153 }
1154 
1155 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1156 		int nents, enum dma_data_direction dir, unsigned long attrs)
1157 {
1158 	struct scatterlist *s;
1159 	int i;
1160 
1161 	for_each_sg(sg, s, nents, i) {
1162 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1163 				s->offset, s->length, dir, attrs);
1164 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1165 			goto out_unmap;
1166 		sg_dma_len(s) = s->length;
1167 	}
1168 
1169 	return nents;
1170 
1171 out_unmap:
1172 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1173 	return -EIO;
1174 }
1175 
1176 /*
1177  * The DMA API client is passing in a scatterlist which could describe
1178  * any old buffer layout, but the IOMMU API requires everything to be
1179  * aligned to IOMMU pages. Hence the need for this complicated bit of
1180  * impedance-matching, to be able to hand off a suitably-aligned list,
1181  * but still preserve the original offsets and sizes for the caller.
1182  */
1183 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1184 		int nents, enum dma_data_direction dir, unsigned long attrs)
1185 {
1186 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1187 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1188 	struct iova_domain *iovad = &cookie->iovad;
1189 	struct scatterlist *s, *prev = NULL;
1190 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1191 	struct pci_p2pdma_map_state p2pdma_state = {};
1192 	enum pci_p2pdma_map_type map;
1193 	dma_addr_t iova;
1194 	size_t iova_len = 0;
1195 	unsigned long mask = dma_get_seg_boundary(dev);
1196 	ssize_t ret;
1197 	int i;
1198 
1199 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1200 		ret = iommu_deferred_attach(dev, domain);
1201 		if (ret)
1202 			goto out;
1203 	}
1204 
1205 	if (dev_use_swiotlb(dev))
1206 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1207 
1208 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1209 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1210 
1211 	/*
1212 	 * Work out how much IOVA space we need, and align the segments to
1213 	 * IOVA granules for the IOMMU driver to handle. With some clever
1214 	 * trickery we can modify the list in-place, but reversibly, by
1215 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1216 	 */
1217 	for_each_sg(sg, s, nents, i) {
1218 		size_t s_iova_off = iova_offset(iovad, s->offset);
1219 		size_t s_length = s->length;
1220 		size_t pad_len = (mask - iova_len + 1) & mask;
1221 
1222 		if (is_pci_p2pdma_page(sg_page(s))) {
1223 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1224 			switch (map) {
1225 			case PCI_P2PDMA_MAP_BUS_ADDR:
1226 				/*
1227 				 * iommu_map_sg() will skip this segment as
1228 				 * it is marked as a bus address,
1229 				 * __finalise_sg() will copy the dma address
1230 				 * into the output segment.
1231 				 */
1232 				continue;
1233 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1234 				/*
1235 				 * Mapping through host bridge should be
1236 				 * mapped with regular IOVAs, thus we
1237 				 * do nothing here and continue below.
1238 				 */
1239 				break;
1240 			default:
1241 				ret = -EREMOTEIO;
1242 				goto out_restore_sg;
1243 			}
1244 		}
1245 
1246 		sg_dma_address(s) = s_iova_off;
1247 		sg_dma_len(s) = s_length;
1248 		s->offset -= s_iova_off;
1249 		s_length = iova_align(iovad, s_length + s_iova_off);
1250 		s->length = s_length;
1251 
1252 		/*
1253 		 * Due to the alignment of our single IOVA allocation, we can
1254 		 * depend on these assumptions about the segment boundary mask:
1255 		 * - If mask size >= IOVA size, then the IOVA range cannot
1256 		 *   possibly fall across a boundary, so we don't care.
1257 		 * - If mask size < IOVA size, then the IOVA range must start
1258 		 *   exactly on a boundary, therefore we can lay things out
1259 		 *   based purely on segment lengths without needing to know
1260 		 *   the actual addresses beforehand.
1261 		 * - The mask must be a power of 2, so pad_len == 0 if
1262 		 *   iova_len == 0, thus we cannot dereference prev the first
1263 		 *   time through here (i.e. before it has a meaningful value).
1264 		 */
1265 		if (pad_len && pad_len < s_length - 1) {
1266 			prev->length += pad_len;
1267 			iova_len += pad_len;
1268 		}
1269 
1270 		iova_len += s_length;
1271 		prev = s;
1272 	}
1273 
1274 	if (!iova_len)
1275 		return __finalise_sg(dev, sg, nents, 0);
1276 
1277 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1278 	if (!iova) {
1279 		ret = -ENOMEM;
1280 		goto out_restore_sg;
1281 	}
1282 
1283 	/*
1284 	 * We'll leave any physical concatenation to the IOMMU driver's
1285 	 * implementation - it knows better than we do.
1286 	 */
1287 	ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1288 	if (ret < 0 || ret < iova_len)
1289 		goto out_free_iova;
1290 
1291 	return __finalise_sg(dev, sg, nents, iova);
1292 
1293 out_free_iova:
1294 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1295 out_restore_sg:
1296 	__invalidate_sg(sg, nents);
1297 out:
1298 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1299 		return -EINVAL;
1300 	return ret;
1301 }
1302 
1303 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1304 		int nents, enum dma_data_direction dir, unsigned long attrs)
1305 {
1306 	dma_addr_t end = 0, start;
1307 	struct scatterlist *tmp;
1308 	int i;
1309 
1310 	if (dev_use_swiotlb(dev)) {
1311 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1312 		return;
1313 	}
1314 
1315 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1316 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1317 
1318 	/*
1319 	 * The scatterlist segments are mapped into a single
1320 	 * contiguous IOVA allocation, the start and end points
1321 	 * just have to be determined.
1322 	 */
1323 	for_each_sg(sg, tmp, nents, i) {
1324 		if (sg_is_dma_bus_address(tmp)) {
1325 			sg_dma_unmark_bus_address(tmp);
1326 			continue;
1327 		}
1328 
1329 		if (sg_dma_len(tmp) == 0)
1330 			break;
1331 
1332 		start = sg_dma_address(tmp);
1333 		break;
1334 	}
1335 
1336 	nents -= i;
1337 	for_each_sg(tmp, tmp, nents, i) {
1338 		if (sg_is_dma_bus_address(tmp)) {
1339 			sg_dma_unmark_bus_address(tmp);
1340 			continue;
1341 		}
1342 
1343 		if (sg_dma_len(tmp) == 0)
1344 			break;
1345 
1346 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1347 	}
1348 
1349 	if (end)
1350 		__iommu_dma_unmap(dev, start, end - start);
1351 }
1352 
1353 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1354 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1355 {
1356 	return __iommu_dma_map(dev, phys, size,
1357 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1358 			dma_get_mask(dev));
1359 }
1360 
1361 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1362 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1363 {
1364 	__iommu_dma_unmap(dev, handle, size);
1365 }
1366 
1367 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1368 {
1369 	size_t alloc_size = PAGE_ALIGN(size);
1370 	int count = alloc_size >> PAGE_SHIFT;
1371 	struct page *page = NULL, **pages = NULL;
1372 
1373 	/* Non-coherent atomic allocation? Easy */
1374 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1375 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1376 		return;
1377 
1378 	if (is_vmalloc_addr(cpu_addr)) {
1379 		/*
1380 		 * If it the address is remapped, then it's either non-coherent
1381 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1382 		 */
1383 		pages = dma_common_find_pages(cpu_addr);
1384 		if (!pages)
1385 			page = vmalloc_to_page(cpu_addr);
1386 		dma_common_free_remap(cpu_addr, alloc_size);
1387 	} else {
1388 		/* Lowmem means a coherent atomic or CMA allocation */
1389 		page = virt_to_page(cpu_addr);
1390 	}
1391 
1392 	if (pages)
1393 		__iommu_dma_free_pages(pages, count);
1394 	if (page)
1395 		dma_free_contiguous(dev, page, alloc_size);
1396 }
1397 
1398 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1399 		dma_addr_t handle, unsigned long attrs)
1400 {
1401 	__iommu_dma_unmap(dev, handle, size);
1402 	__iommu_dma_free(dev, size, cpu_addr);
1403 }
1404 
1405 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1406 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1407 {
1408 	bool coherent = dev_is_dma_coherent(dev);
1409 	size_t alloc_size = PAGE_ALIGN(size);
1410 	int node = dev_to_node(dev);
1411 	struct page *page = NULL;
1412 	void *cpu_addr;
1413 
1414 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1415 	if (!page)
1416 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1417 	if (!page)
1418 		return NULL;
1419 
1420 	if (!coherent || PageHighMem(page)) {
1421 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1422 
1423 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1424 				prot, __builtin_return_address(0));
1425 		if (!cpu_addr)
1426 			goto out_free_pages;
1427 
1428 		if (!coherent)
1429 			arch_dma_prep_coherent(page, size);
1430 	} else {
1431 		cpu_addr = page_address(page);
1432 	}
1433 
1434 	*pagep = page;
1435 	memset(cpu_addr, 0, alloc_size);
1436 	return cpu_addr;
1437 out_free_pages:
1438 	dma_free_contiguous(dev, page, alloc_size);
1439 	return NULL;
1440 }
1441 
1442 static void *iommu_dma_alloc(struct device *dev, size_t size,
1443 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1444 {
1445 	bool coherent = dev_is_dma_coherent(dev);
1446 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1447 	struct page *page = NULL;
1448 	void *cpu_addr;
1449 
1450 	gfp |= __GFP_ZERO;
1451 
1452 	if (gfpflags_allow_blocking(gfp) &&
1453 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1454 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1455 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1456 	}
1457 
1458 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1459 	    !gfpflags_allow_blocking(gfp) && !coherent)
1460 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1461 					       gfp, NULL);
1462 	else
1463 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1464 	if (!cpu_addr)
1465 		return NULL;
1466 
1467 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1468 			dev->coherent_dma_mask);
1469 	if (*handle == DMA_MAPPING_ERROR) {
1470 		__iommu_dma_free(dev, size, cpu_addr);
1471 		return NULL;
1472 	}
1473 
1474 	return cpu_addr;
1475 }
1476 
1477 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1478 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1479 		unsigned long attrs)
1480 {
1481 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1482 	unsigned long pfn, off = vma->vm_pgoff;
1483 	int ret;
1484 
1485 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1486 
1487 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1488 		return ret;
1489 
1490 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1491 		return -ENXIO;
1492 
1493 	if (is_vmalloc_addr(cpu_addr)) {
1494 		struct page **pages = dma_common_find_pages(cpu_addr);
1495 
1496 		if (pages)
1497 			return vm_map_pages(vma, pages, nr_pages);
1498 		pfn = vmalloc_to_pfn(cpu_addr);
1499 	} else {
1500 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1501 	}
1502 
1503 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1504 			       vma->vm_end - vma->vm_start,
1505 			       vma->vm_page_prot);
1506 }
1507 
1508 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1509 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1510 		unsigned long attrs)
1511 {
1512 	struct page *page;
1513 	int ret;
1514 
1515 	if (is_vmalloc_addr(cpu_addr)) {
1516 		struct page **pages = dma_common_find_pages(cpu_addr);
1517 
1518 		if (pages) {
1519 			return sg_alloc_table_from_pages(sgt, pages,
1520 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1521 					0, size, GFP_KERNEL);
1522 		}
1523 
1524 		page = vmalloc_to_page(cpu_addr);
1525 	} else {
1526 		page = virt_to_page(cpu_addr);
1527 	}
1528 
1529 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1530 	if (!ret)
1531 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1532 	return ret;
1533 }
1534 
1535 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1536 {
1537 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1538 
1539 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1540 }
1541 
1542 static size_t iommu_dma_opt_mapping_size(void)
1543 {
1544 	return iova_rcache_range();
1545 }
1546 
1547 static const struct dma_map_ops iommu_dma_ops = {
1548 	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED,
1549 	.alloc			= iommu_dma_alloc,
1550 	.free			= iommu_dma_free,
1551 	.alloc_pages		= dma_common_alloc_pages,
1552 	.free_pages		= dma_common_free_pages,
1553 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1554 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1555 	.mmap			= iommu_dma_mmap,
1556 	.get_sgtable		= iommu_dma_get_sgtable,
1557 	.map_page		= iommu_dma_map_page,
1558 	.unmap_page		= iommu_dma_unmap_page,
1559 	.map_sg			= iommu_dma_map_sg,
1560 	.unmap_sg		= iommu_dma_unmap_sg,
1561 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1562 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1563 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1564 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1565 	.map_resource		= iommu_dma_map_resource,
1566 	.unmap_resource		= iommu_dma_unmap_resource,
1567 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1568 	.opt_mapping_size	= iommu_dma_opt_mapping_size,
1569 };
1570 
1571 /*
1572  * The IOMMU core code allocates the default DMA domain, which the underlying
1573  * IOMMU driver needs to support via the dma-iommu layer.
1574  */
1575 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1576 {
1577 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1578 
1579 	if (!domain)
1580 		goto out_err;
1581 
1582 	/*
1583 	 * The IOMMU core code allocates the default DMA domain, which the
1584 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1585 	 */
1586 	if (iommu_is_dma_domain(domain)) {
1587 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1588 			goto out_err;
1589 		dev->dma_ops = &iommu_dma_ops;
1590 	}
1591 
1592 	return;
1593 out_err:
1594 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1595 		 dev_name(dev));
1596 }
1597 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1598 
1599 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1600 		phys_addr_t msi_addr, struct iommu_domain *domain)
1601 {
1602 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1603 	struct iommu_dma_msi_page *msi_page;
1604 	dma_addr_t iova;
1605 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1606 	size_t size = cookie_msi_granule(cookie);
1607 
1608 	msi_addr &= ~(phys_addr_t)(size - 1);
1609 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1610 		if (msi_page->phys == msi_addr)
1611 			return msi_page;
1612 
1613 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1614 	if (!msi_page)
1615 		return NULL;
1616 
1617 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1618 	if (!iova)
1619 		goto out_free_page;
1620 
1621 	if (iommu_map(domain, iova, msi_addr, size, prot))
1622 		goto out_free_iova;
1623 
1624 	INIT_LIST_HEAD(&msi_page->list);
1625 	msi_page->phys = msi_addr;
1626 	msi_page->iova = iova;
1627 	list_add(&msi_page->list, &cookie->msi_page_list);
1628 	return msi_page;
1629 
1630 out_free_iova:
1631 	iommu_dma_free_iova(cookie, iova, size, NULL);
1632 out_free_page:
1633 	kfree(msi_page);
1634 	return NULL;
1635 }
1636 
1637 /**
1638  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1639  * @desc: MSI descriptor, will store the MSI page
1640  * @msi_addr: MSI target address to be mapped
1641  *
1642  * Return: 0 on success or negative error code if the mapping failed.
1643  */
1644 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1645 {
1646 	struct device *dev = msi_desc_to_dev(desc);
1647 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1648 	struct iommu_dma_msi_page *msi_page;
1649 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1650 
1651 	if (!domain || !domain->iova_cookie) {
1652 		desc->iommu_cookie = NULL;
1653 		return 0;
1654 	}
1655 
1656 	/*
1657 	 * In fact the whole prepare operation should already be serialised by
1658 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1659 	 * on its own, so consider this locking as failsafe documentation...
1660 	 */
1661 	mutex_lock(&msi_prepare_lock);
1662 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1663 	mutex_unlock(&msi_prepare_lock);
1664 
1665 	msi_desc_set_iommu_cookie(desc, msi_page);
1666 
1667 	if (!msi_page)
1668 		return -ENOMEM;
1669 	return 0;
1670 }
1671 
1672 /**
1673  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1674  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1675  * @msg: MSI message containing target physical address
1676  */
1677 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1678 {
1679 	struct device *dev = msi_desc_to_dev(desc);
1680 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1681 	const struct iommu_dma_msi_page *msi_page;
1682 
1683 	msi_page = msi_desc_get_iommu_cookie(desc);
1684 
1685 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1686 		return;
1687 
1688 	msg->address_hi = upper_32_bits(msi_page->iova);
1689 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1690 	msg->address_lo += lower_32_bits(msi_page->iova);
1691 }
1692 
1693 static int iommu_dma_init(void)
1694 {
1695 	if (is_kdump_kernel())
1696 		static_branch_enable(&iommu_deferred_attach_enabled);
1697 
1698 	return iova_cache_get();
1699 }
1700 arch_initcall(iommu_dma_init);
1701