1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iova.h> 21 #include <linux/irq.h> 22 #include <linux/list_sort.h> 23 #include <linux/memremap.h> 24 #include <linux/mm.h> 25 #include <linux/mutex.h> 26 #include <linux/pci.h> 27 #include <linux/scatterlist.h> 28 #include <linux/spinlock.h> 29 #include <linux/swiotlb.h> 30 #include <linux/vmalloc.h> 31 32 #include "dma-iommu.h" 33 34 struct iommu_dma_msi_page { 35 struct list_head list; 36 dma_addr_t iova; 37 phys_addr_t phys; 38 }; 39 40 enum iommu_dma_cookie_type { 41 IOMMU_DMA_IOVA_COOKIE, 42 IOMMU_DMA_MSI_COOKIE, 43 }; 44 45 struct iommu_dma_cookie { 46 enum iommu_dma_cookie_type type; 47 union { 48 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 49 struct { 50 struct iova_domain iovad; 51 52 struct iova_fq __percpu *fq; /* Flush queue */ 53 /* Number of TLB flushes that have been started */ 54 atomic64_t fq_flush_start_cnt; 55 /* Number of TLB flushes that have been finished */ 56 atomic64_t fq_flush_finish_cnt; 57 /* Timer to regularily empty the flush queues */ 58 struct timer_list fq_timer; 59 /* 1 when timer is active, 0 when not */ 60 atomic_t fq_timer_on; 61 }; 62 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 63 dma_addr_t msi_iova; 64 }; 65 struct list_head msi_page_list; 66 67 /* Domain for flush queue callback; NULL if flush queue not in use */ 68 struct iommu_domain *fq_domain; 69 struct mutex mutex; 70 }; 71 72 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 73 bool iommu_dma_forcedac __read_mostly; 74 75 static int __init iommu_dma_forcedac_setup(char *str) 76 { 77 int ret = kstrtobool(str, &iommu_dma_forcedac); 78 79 if (!ret && iommu_dma_forcedac) 80 pr_info("Forcing DAC for PCI devices\n"); 81 return ret; 82 } 83 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 84 85 /* Number of entries per flush queue */ 86 #define IOVA_FQ_SIZE 256 87 88 /* Timeout (in ms) after which entries are flushed from the queue */ 89 #define IOVA_FQ_TIMEOUT 10 90 91 /* Flush queue entry for deferred flushing */ 92 struct iova_fq_entry { 93 unsigned long iova_pfn; 94 unsigned long pages; 95 struct list_head freelist; 96 u64 counter; /* Flush counter when this entry was added */ 97 }; 98 99 /* Per-CPU flush queue structure */ 100 struct iova_fq { 101 struct iova_fq_entry entries[IOVA_FQ_SIZE]; 102 unsigned int head, tail; 103 spinlock_t lock; 104 }; 105 106 #define fq_ring_for_each(i, fq) \ 107 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 108 109 static inline bool fq_full(struct iova_fq *fq) 110 { 111 assert_spin_locked(&fq->lock); 112 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 113 } 114 115 static inline unsigned int fq_ring_add(struct iova_fq *fq) 116 { 117 unsigned int idx = fq->tail; 118 119 assert_spin_locked(&fq->lock); 120 121 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 122 123 return idx; 124 } 125 126 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 127 { 128 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 129 unsigned int idx; 130 131 assert_spin_locked(&fq->lock); 132 133 fq_ring_for_each(idx, fq) { 134 135 if (fq->entries[idx].counter >= counter) 136 break; 137 138 put_pages_list(&fq->entries[idx].freelist); 139 free_iova_fast(&cookie->iovad, 140 fq->entries[idx].iova_pfn, 141 fq->entries[idx].pages); 142 143 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 144 } 145 } 146 147 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 148 { 149 atomic64_inc(&cookie->fq_flush_start_cnt); 150 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 151 atomic64_inc(&cookie->fq_flush_finish_cnt); 152 } 153 154 static void fq_flush_timeout(struct timer_list *t) 155 { 156 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 157 int cpu; 158 159 atomic_set(&cookie->fq_timer_on, 0); 160 fq_flush_iotlb(cookie); 161 162 for_each_possible_cpu(cpu) { 163 unsigned long flags; 164 struct iova_fq *fq; 165 166 fq = per_cpu_ptr(cookie->fq, cpu); 167 spin_lock_irqsave(&fq->lock, flags); 168 fq_ring_free(cookie, fq); 169 spin_unlock_irqrestore(&fq->lock, flags); 170 } 171 } 172 173 static void queue_iova(struct iommu_dma_cookie *cookie, 174 unsigned long pfn, unsigned long pages, 175 struct list_head *freelist) 176 { 177 struct iova_fq *fq; 178 unsigned long flags; 179 unsigned int idx; 180 181 /* 182 * Order against the IOMMU driver's pagetable update from unmapping 183 * @pte, to guarantee that fq_flush_iotlb() observes that if called 184 * from a different CPU before we release the lock below. Full barrier 185 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 186 * written fq state here. 187 */ 188 smp_mb(); 189 190 fq = raw_cpu_ptr(cookie->fq); 191 spin_lock_irqsave(&fq->lock, flags); 192 193 /* 194 * First remove all entries from the flush queue that have already been 195 * flushed out on another CPU. This makes the fq_full() check below less 196 * likely to be true. 197 */ 198 fq_ring_free(cookie, fq); 199 200 if (fq_full(fq)) { 201 fq_flush_iotlb(cookie); 202 fq_ring_free(cookie, fq); 203 } 204 205 idx = fq_ring_add(fq); 206 207 fq->entries[idx].iova_pfn = pfn; 208 fq->entries[idx].pages = pages; 209 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 210 list_splice(freelist, &fq->entries[idx].freelist); 211 212 spin_unlock_irqrestore(&fq->lock, flags); 213 214 /* Avoid false sharing as much as possible. */ 215 if (!atomic_read(&cookie->fq_timer_on) && 216 !atomic_xchg(&cookie->fq_timer_on, 1)) 217 mod_timer(&cookie->fq_timer, 218 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 219 } 220 221 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 222 { 223 int cpu, idx; 224 225 if (!cookie->fq) 226 return; 227 228 del_timer_sync(&cookie->fq_timer); 229 /* The IOVAs will be torn down separately, so just free our queued pages */ 230 for_each_possible_cpu(cpu) { 231 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu); 232 233 fq_ring_for_each(idx, fq) 234 put_pages_list(&fq->entries[idx].freelist); 235 } 236 237 free_percpu(cookie->fq); 238 } 239 240 /* sysfs updates are serialised by the mutex of the group owning @domain */ 241 int iommu_dma_init_fq(struct iommu_domain *domain) 242 { 243 struct iommu_dma_cookie *cookie = domain->iova_cookie; 244 struct iova_fq __percpu *queue; 245 int i, cpu; 246 247 if (cookie->fq_domain) 248 return 0; 249 250 atomic64_set(&cookie->fq_flush_start_cnt, 0); 251 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 252 253 queue = alloc_percpu(struct iova_fq); 254 if (!queue) { 255 pr_warn("iova flush queue initialization failed\n"); 256 return -ENOMEM; 257 } 258 259 for_each_possible_cpu(cpu) { 260 struct iova_fq *fq = per_cpu_ptr(queue, cpu); 261 262 fq->head = 0; 263 fq->tail = 0; 264 265 spin_lock_init(&fq->lock); 266 267 for (i = 0; i < IOVA_FQ_SIZE; i++) 268 INIT_LIST_HEAD(&fq->entries[i].freelist); 269 } 270 271 cookie->fq = queue; 272 273 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 274 atomic_set(&cookie->fq_timer_on, 0); 275 /* 276 * Prevent incomplete fq state being observable. Pairs with path from 277 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 278 */ 279 smp_wmb(); 280 WRITE_ONCE(cookie->fq_domain, domain); 281 return 0; 282 } 283 284 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 285 { 286 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 287 return cookie->iovad.granule; 288 return PAGE_SIZE; 289 } 290 291 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 292 { 293 struct iommu_dma_cookie *cookie; 294 295 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 296 if (cookie) { 297 INIT_LIST_HEAD(&cookie->msi_page_list); 298 cookie->type = type; 299 } 300 return cookie; 301 } 302 303 /** 304 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 305 * @domain: IOMMU domain to prepare for DMA-API usage 306 */ 307 int iommu_get_dma_cookie(struct iommu_domain *domain) 308 { 309 if (domain->iova_cookie) 310 return -EEXIST; 311 312 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 313 if (!domain->iova_cookie) 314 return -ENOMEM; 315 316 mutex_init(&domain->iova_cookie->mutex); 317 return 0; 318 } 319 320 /** 321 * iommu_get_msi_cookie - Acquire just MSI remapping resources 322 * @domain: IOMMU domain to prepare 323 * @base: Start address of IOVA region for MSI mappings 324 * 325 * Users who manage their own IOVA allocation and do not want DMA API support, 326 * but would still like to take advantage of automatic MSI remapping, can use 327 * this to initialise their own domain appropriately. Users should reserve a 328 * contiguous IOVA region, starting at @base, large enough to accommodate the 329 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 330 * used by the devices attached to @domain. 331 */ 332 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 333 { 334 struct iommu_dma_cookie *cookie; 335 336 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 337 return -EINVAL; 338 339 if (domain->iova_cookie) 340 return -EEXIST; 341 342 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 343 if (!cookie) 344 return -ENOMEM; 345 346 cookie->msi_iova = base; 347 domain->iova_cookie = cookie; 348 return 0; 349 } 350 EXPORT_SYMBOL(iommu_get_msi_cookie); 351 352 /** 353 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 354 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 355 * iommu_get_msi_cookie() 356 */ 357 void iommu_put_dma_cookie(struct iommu_domain *domain) 358 { 359 struct iommu_dma_cookie *cookie = domain->iova_cookie; 360 struct iommu_dma_msi_page *msi, *tmp; 361 362 if (!cookie) 363 return; 364 365 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { 366 iommu_dma_free_fq(cookie); 367 put_iova_domain(&cookie->iovad); 368 } 369 370 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 371 list_del(&msi->list); 372 kfree(msi); 373 } 374 kfree(cookie); 375 domain->iova_cookie = NULL; 376 } 377 378 /** 379 * iommu_dma_get_resv_regions - Reserved region driver helper 380 * @dev: Device from iommu_get_resv_regions() 381 * @list: Reserved region list from iommu_get_resv_regions() 382 * 383 * IOMMU drivers can use this to implement their .get_resv_regions callback 384 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 385 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 386 * reservation. 387 */ 388 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 389 { 390 391 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 392 iort_iommu_get_resv_regions(dev, list); 393 394 } 395 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 396 397 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 398 phys_addr_t start, phys_addr_t end) 399 { 400 struct iova_domain *iovad = &cookie->iovad; 401 struct iommu_dma_msi_page *msi_page; 402 int i, num_pages; 403 404 start -= iova_offset(iovad, start); 405 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 406 407 for (i = 0; i < num_pages; i++) { 408 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 409 if (!msi_page) 410 return -ENOMEM; 411 412 msi_page->phys = start; 413 msi_page->iova = start; 414 INIT_LIST_HEAD(&msi_page->list); 415 list_add(&msi_page->list, &cookie->msi_page_list); 416 start += iovad->granule; 417 } 418 419 return 0; 420 } 421 422 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 423 const struct list_head *b) 424 { 425 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 426 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 427 428 return res_a->res->start > res_b->res->start; 429 } 430 431 static int iova_reserve_pci_windows(struct pci_dev *dev, 432 struct iova_domain *iovad) 433 { 434 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 435 struct resource_entry *window; 436 unsigned long lo, hi; 437 phys_addr_t start = 0, end; 438 439 resource_list_for_each_entry(window, &bridge->windows) { 440 if (resource_type(window->res) != IORESOURCE_MEM) 441 continue; 442 443 lo = iova_pfn(iovad, window->res->start - window->offset); 444 hi = iova_pfn(iovad, window->res->end - window->offset); 445 reserve_iova(iovad, lo, hi); 446 } 447 448 /* Get reserved DMA windows from host bridge */ 449 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 450 resource_list_for_each_entry(window, &bridge->dma_ranges) { 451 end = window->res->start - window->offset; 452 resv_iova: 453 if (end > start) { 454 lo = iova_pfn(iovad, start); 455 hi = iova_pfn(iovad, end); 456 reserve_iova(iovad, lo, hi); 457 } else if (end < start) { 458 /* DMA ranges should be non-overlapping */ 459 dev_err(&dev->dev, 460 "Failed to reserve IOVA [%pa-%pa]\n", 461 &start, &end); 462 return -EINVAL; 463 } 464 465 start = window->res->end - window->offset + 1; 466 /* If window is last entry */ 467 if (window->node.next == &bridge->dma_ranges && 468 end != ~(phys_addr_t)0) { 469 end = ~(phys_addr_t)0; 470 goto resv_iova; 471 } 472 } 473 474 return 0; 475 } 476 477 static int iova_reserve_iommu_regions(struct device *dev, 478 struct iommu_domain *domain) 479 { 480 struct iommu_dma_cookie *cookie = domain->iova_cookie; 481 struct iova_domain *iovad = &cookie->iovad; 482 struct iommu_resv_region *region; 483 LIST_HEAD(resv_regions); 484 int ret = 0; 485 486 if (dev_is_pci(dev)) { 487 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 488 if (ret) 489 return ret; 490 } 491 492 iommu_get_resv_regions(dev, &resv_regions); 493 list_for_each_entry(region, &resv_regions, list) { 494 unsigned long lo, hi; 495 496 /* We ARE the software that manages these! */ 497 if (region->type == IOMMU_RESV_SW_MSI) 498 continue; 499 500 lo = iova_pfn(iovad, region->start); 501 hi = iova_pfn(iovad, region->start + region->length - 1); 502 reserve_iova(iovad, lo, hi); 503 504 if (region->type == IOMMU_RESV_MSI) 505 ret = cookie_init_hw_msi_region(cookie, region->start, 506 region->start + region->length); 507 if (ret) 508 break; 509 } 510 iommu_put_resv_regions(dev, &resv_regions); 511 512 return ret; 513 } 514 515 static bool dev_is_untrusted(struct device *dev) 516 { 517 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 518 } 519 520 static bool dev_use_swiotlb(struct device *dev) 521 { 522 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev); 523 } 524 525 /** 526 * iommu_dma_init_domain - Initialise a DMA mapping domain 527 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 528 * @base: IOVA at which the mappable address space starts 529 * @limit: Last address of the IOVA space 530 * @dev: Device the domain is being initialised for 531 * 532 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to 533 * avoid rounding surprises. If necessary, we reserve the page at address 0 534 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 535 * any change which could make prior IOVAs invalid will fail. 536 */ 537 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 538 dma_addr_t limit, struct device *dev) 539 { 540 struct iommu_dma_cookie *cookie = domain->iova_cookie; 541 unsigned long order, base_pfn; 542 struct iova_domain *iovad; 543 int ret; 544 545 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 546 return -EINVAL; 547 548 iovad = &cookie->iovad; 549 550 /* Use the smallest supported page size for IOVA granularity */ 551 order = __ffs(domain->pgsize_bitmap); 552 base_pfn = max_t(unsigned long, 1, base >> order); 553 554 /* Check the domain allows at least some access to the device... */ 555 if (domain->geometry.force_aperture) { 556 if (base > domain->geometry.aperture_end || 557 limit < domain->geometry.aperture_start) { 558 pr_warn("specified DMA range outside IOMMU capability\n"); 559 return -EFAULT; 560 } 561 /* ...then finally give it a kicking to make sure it fits */ 562 base_pfn = max_t(unsigned long, base_pfn, 563 domain->geometry.aperture_start >> order); 564 } 565 566 /* start_pfn is always nonzero for an already-initialised domain */ 567 mutex_lock(&cookie->mutex); 568 if (iovad->start_pfn) { 569 if (1UL << order != iovad->granule || 570 base_pfn != iovad->start_pfn) { 571 pr_warn("Incompatible range for DMA domain\n"); 572 ret = -EFAULT; 573 goto done_unlock; 574 } 575 576 ret = 0; 577 goto done_unlock; 578 } 579 580 init_iova_domain(iovad, 1UL << order, base_pfn); 581 ret = iova_domain_init_rcaches(iovad); 582 if (ret) 583 goto done_unlock; 584 585 /* If the FQ fails we can simply fall back to strict mode */ 586 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain)) 587 domain->type = IOMMU_DOMAIN_DMA; 588 589 ret = iova_reserve_iommu_regions(dev, domain); 590 591 done_unlock: 592 mutex_unlock(&cookie->mutex); 593 return ret; 594 } 595 596 /** 597 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 598 * page flags. 599 * @dir: Direction of DMA transfer 600 * @coherent: Is the DMA master cache-coherent? 601 * @attrs: DMA attributes for the mapping 602 * 603 * Return: corresponding IOMMU API page protection flags 604 */ 605 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 606 unsigned long attrs) 607 { 608 int prot = coherent ? IOMMU_CACHE : 0; 609 610 if (attrs & DMA_ATTR_PRIVILEGED) 611 prot |= IOMMU_PRIV; 612 613 switch (dir) { 614 case DMA_BIDIRECTIONAL: 615 return prot | IOMMU_READ | IOMMU_WRITE; 616 case DMA_TO_DEVICE: 617 return prot | IOMMU_READ; 618 case DMA_FROM_DEVICE: 619 return prot | IOMMU_WRITE; 620 default: 621 return 0; 622 } 623 } 624 625 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 626 size_t size, u64 dma_limit, struct device *dev) 627 { 628 struct iommu_dma_cookie *cookie = domain->iova_cookie; 629 struct iova_domain *iovad = &cookie->iovad; 630 unsigned long shift, iova_len, iova = 0; 631 632 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 633 cookie->msi_iova += size; 634 return cookie->msi_iova - size; 635 } 636 637 shift = iova_shift(iovad); 638 iova_len = size >> shift; 639 640 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 641 642 if (domain->geometry.force_aperture) 643 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 644 645 /* Try to get PCI devices a SAC address */ 646 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) 647 iova = alloc_iova_fast(iovad, iova_len, 648 DMA_BIT_MASK(32) >> shift, false); 649 650 if (!iova) 651 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 652 true); 653 654 return (dma_addr_t)iova << shift; 655 } 656 657 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 658 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) 659 { 660 struct iova_domain *iovad = &cookie->iovad; 661 662 /* The MSI case is only ever cleaning up its most recent allocation */ 663 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 664 cookie->msi_iova -= size; 665 else if (gather && gather->queued) 666 queue_iova(cookie, iova_pfn(iovad, iova), 667 size >> iova_shift(iovad), 668 &gather->freelist); 669 else 670 free_iova_fast(iovad, iova_pfn(iovad, iova), 671 size >> iova_shift(iovad)); 672 } 673 674 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 675 size_t size) 676 { 677 struct iommu_domain *domain = iommu_get_dma_domain(dev); 678 struct iommu_dma_cookie *cookie = domain->iova_cookie; 679 struct iova_domain *iovad = &cookie->iovad; 680 size_t iova_off = iova_offset(iovad, dma_addr); 681 struct iommu_iotlb_gather iotlb_gather; 682 size_t unmapped; 683 684 dma_addr -= iova_off; 685 size = iova_align(iovad, size + iova_off); 686 iommu_iotlb_gather_init(&iotlb_gather); 687 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 688 689 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 690 WARN_ON(unmapped != size); 691 692 if (!iotlb_gather.queued) 693 iommu_iotlb_sync(domain, &iotlb_gather); 694 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); 695 } 696 697 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 698 size_t size, int prot, u64 dma_mask) 699 { 700 struct iommu_domain *domain = iommu_get_dma_domain(dev); 701 struct iommu_dma_cookie *cookie = domain->iova_cookie; 702 struct iova_domain *iovad = &cookie->iovad; 703 size_t iova_off = iova_offset(iovad, phys); 704 dma_addr_t iova; 705 706 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 707 iommu_deferred_attach(dev, domain)) 708 return DMA_MAPPING_ERROR; 709 710 size = iova_align(iovad, size + iova_off); 711 712 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 713 if (!iova) 714 return DMA_MAPPING_ERROR; 715 716 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { 717 iommu_dma_free_iova(cookie, iova, size, NULL); 718 return DMA_MAPPING_ERROR; 719 } 720 return iova + iova_off; 721 } 722 723 static void __iommu_dma_free_pages(struct page **pages, int count) 724 { 725 while (count--) 726 __free_page(pages[count]); 727 kvfree(pages); 728 } 729 730 static struct page **__iommu_dma_alloc_pages(struct device *dev, 731 unsigned int count, unsigned long order_mask, gfp_t gfp) 732 { 733 struct page **pages; 734 unsigned int i = 0, nid = dev_to_node(dev); 735 736 order_mask &= (2U << MAX_ORDER) - 1; 737 if (!order_mask) 738 return NULL; 739 740 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 741 if (!pages) 742 return NULL; 743 744 /* IOMMU can map any pages, so himem can also be used here */ 745 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 746 747 /* It makes no sense to muck about with huge pages */ 748 gfp &= ~__GFP_COMP; 749 750 while (count) { 751 struct page *page = NULL; 752 unsigned int order_size; 753 754 /* 755 * Higher-order allocations are a convenience rather 756 * than a necessity, hence using __GFP_NORETRY until 757 * falling back to minimum-order allocations. 758 */ 759 for (order_mask &= (2U << __fls(count)) - 1; 760 order_mask; order_mask &= ~order_size) { 761 unsigned int order = __fls(order_mask); 762 gfp_t alloc_flags = gfp; 763 764 order_size = 1U << order; 765 if (order_mask > order_size) 766 alloc_flags |= __GFP_NORETRY; 767 page = alloc_pages_node(nid, alloc_flags, order); 768 if (!page) 769 continue; 770 if (order) 771 split_page(page, order); 772 break; 773 } 774 if (!page) { 775 __iommu_dma_free_pages(pages, i); 776 return NULL; 777 } 778 count -= order_size; 779 while (order_size--) 780 pages[i++] = page++; 781 } 782 return pages; 783 } 784 785 /* 786 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 787 * but an IOMMU which supports smaller pages might not map the whole thing. 788 */ 789 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 790 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, 791 unsigned long attrs) 792 { 793 struct iommu_domain *domain = iommu_get_dma_domain(dev); 794 struct iommu_dma_cookie *cookie = domain->iova_cookie; 795 struct iova_domain *iovad = &cookie->iovad; 796 bool coherent = dev_is_dma_coherent(dev); 797 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 798 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 799 struct page **pages; 800 dma_addr_t iova; 801 ssize_t ret; 802 803 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 804 iommu_deferred_attach(dev, domain)) 805 return NULL; 806 807 min_size = alloc_sizes & -alloc_sizes; 808 if (min_size < PAGE_SIZE) { 809 min_size = PAGE_SIZE; 810 alloc_sizes |= PAGE_SIZE; 811 } else { 812 size = ALIGN(size, min_size); 813 } 814 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 815 alloc_sizes = min_size; 816 817 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 818 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 819 gfp); 820 if (!pages) 821 return NULL; 822 823 size = iova_align(iovad, size); 824 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 825 if (!iova) 826 goto out_free_pages; 827 828 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL)) 829 goto out_free_iova; 830 831 if (!(ioprot & IOMMU_CACHE)) { 832 struct scatterlist *sg; 833 int i; 834 835 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 836 arch_dma_prep_coherent(sg_page(sg), sg->length); 837 } 838 839 ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot); 840 if (ret < 0 || ret < size) 841 goto out_free_sg; 842 843 sgt->sgl->dma_address = iova; 844 sgt->sgl->dma_length = size; 845 return pages; 846 847 out_free_sg: 848 sg_free_table(sgt); 849 out_free_iova: 850 iommu_dma_free_iova(cookie, iova, size, NULL); 851 out_free_pages: 852 __iommu_dma_free_pages(pages, count); 853 return NULL; 854 } 855 856 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 857 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 858 unsigned long attrs) 859 { 860 struct page **pages; 861 struct sg_table sgt; 862 void *vaddr; 863 864 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, 865 attrs); 866 if (!pages) 867 return NULL; 868 *dma_handle = sgt.sgl->dma_address; 869 sg_free_table(&sgt); 870 vaddr = dma_common_pages_remap(pages, size, prot, 871 __builtin_return_address(0)); 872 if (!vaddr) 873 goto out_unmap; 874 return vaddr; 875 876 out_unmap: 877 __iommu_dma_unmap(dev, *dma_handle, size); 878 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 879 return NULL; 880 } 881 882 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, 883 size_t size, enum dma_data_direction dir, gfp_t gfp, 884 unsigned long attrs) 885 { 886 struct dma_sgt_handle *sh; 887 888 sh = kmalloc(sizeof(*sh), gfp); 889 if (!sh) 890 return NULL; 891 892 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, 893 PAGE_KERNEL, attrs); 894 if (!sh->pages) { 895 kfree(sh); 896 return NULL; 897 } 898 return &sh->sgt; 899 } 900 901 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 902 struct sg_table *sgt, enum dma_data_direction dir) 903 { 904 struct dma_sgt_handle *sh = sgt_handle(sgt); 905 906 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 907 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 908 sg_free_table(&sh->sgt); 909 kfree(sh); 910 } 911 912 static void iommu_dma_sync_single_for_cpu(struct device *dev, 913 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 914 { 915 phys_addr_t phys; 916 917 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 918 return; 919 920 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 921 if (!dev_is_dma_coherent(dev)) 922 arch_sync_dma_for_cpu(phys, size, dir); 923 924 if (is_swiotlb_buffer(dev, phys)) 925 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 926 } 927 928 static void iommu_dma_sync_single_for_device(struct device *dev, 929 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 930 { 931 phys_addr_t phys; 932 933 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 934 return; 935 936 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 937 if (is_swiotlb_buffer(dev, phys)) 938 swiotlb_sync_single_for_device(dev, phys, size, dir); 939 940 if (!dev_is_dma_coherent(dev)) 941 arch_sync_dma_for_device(phys, size, dir); 942 } 943 944 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 945 struct scatterlist *sgl, int nelems, 946 enum dma_data_direction dir) 947 { 948 struct scatterlist *sg; 949 int i; 950 951 if (dev_use_swiotlb(dev)) 952 for_each_sg(sgl, sg, nelems, i) 953 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 954 sg->length, dir); 955 else if (!dev_is_dma_coherent(dev)) 956 for_each_sg(sgl, sg, nelems, i) 957 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 958 } 959 960 static void iommu_dma_sync_sg_for_device(struct device *dev, 961 struct scatterlist *sgl, int nelems, 962 enum dma_data_direction dir) 963 { 964 struct scatterlist *sg; 965 int i; 966 967 if (dev_use_swiotlb(dev)) 968 for_each_sg(sgl, sg, nelems, i) 969 iommu_dma_sync_single_for_device(dev, 970 sg_dma_address(sg), 971 sg->length, dir); 972 else if (!dev_is_dma_coherent(dev)) 973 for_each_sg(sgl, sg, nelems, i) 974 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 975 } 976 977 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 978 unsigned long offset, size_t size, enum dma_data_direction dir, 979 unsigned long attrs) 980 { 981 phys_addr_t phys = page_to_phys(page) + offset; 982 bool coherent = dev_is_dma_coherent(dev); 983 int prot = dma_info_to_prot(dir, coherent, attrs); 984 struct iommu_domain *domain = iommu_get_dma_domain(dev); 985 struct iommu_dma_cookie *cookie = domain->iova_cookie; 986 struct iova_domain *iovad = &cookie->iovad; 987 dma_addr_t iova, dma_mask = dma_get_mask(dev); 988 989 /* 990 * If both the physical buffer start address and size are 991 * page aligned, we don't need to use a bounce page. 992 */ 993 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) { 994 void *padding_start; 995 size_t padding_size, aligned_size; 996 997 if (!is_swiotlb_active(dev)) { 998 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 999 return DMA_MAPPING_ERROR; 1000 } 1001 1002 aligned_size = iova_align(iovad, size); 1003 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, 1004 iova_mask(iovad), dir, attrs); 1005 1006 if (phys == DMA_MAPPING_ERROR) 1007 return DMA_MAPPING_ERROR; 1008 1009 /* Cleanup the padding area. */ 1010 padding_start = phys_to_virt(phys); 1011 padding_size = aligned_size; 1012 1013 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 1014 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { 1015 padding_start += size; 1016 padding_size -= size; 1017 } 1018 1019 memset(padding_start, 0, padding_size); 1020 } 1021 1022 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1023 arch_sync_dma_for_device(phys, size, dir); 1024 1025 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1026 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) 1027 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1028 return iova; 1029 } 1030 1031 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1032 size_t size, enum dma_data_direction dir, unsigned long attrs) 1033 { 1034 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1035 phys_addr_t phys; 1036 1037 phys = iommu_iova_to_phys(domain, dma_handle); 1038 if (WARN_ON(!phys)) 1039 return; 1040 1041 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1042 arch_sync_dma_for_cpu(phys, size, dir); 1043 1044 __iommu_dma_unmap(dev, dma_handle, size); 1045 1046 if (unlikely(is_swiotlb_buffer(dev, phys))) 1047 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1048 } 1049 1050 /* 1051 * Prepare a successfully-mapped scatterlist to give back to the caller. 1052 * 1053 * At this point the segments are already laid out by iommu_dma_map_sg() to 1054 * avoid individually crossing any boundaries, so we merely need to check a 1055 * segment's start address to avoid concatenating across one. 1056 */ 1057 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1058 dma_addr_t dma_addr) 1059 { 1060 struct scatterlist *s, *cur = sg; 1061 unsigned long seg_mask = dma_get_seg_boundary(dev); 1062 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1063 int i, count = 0; 1064 1065 for_each_sg(sg, s, nents, i) { 1066 /* Restore this segment's original unaligned fields first */ 1067 dma_addr_t s_dma_addr = sg_dma_address(s); 1068 unsigned int s_iova_off = sg_dma_address(s); 1069 unsigned int s_length = sg_dma_len(s); 1070 unsigned int s_iova_len = s->length; 1071 1072 sg_dma_address(s) = DMA_MAPPING_ERROR; 1073 sg_dma_len(s) = 0; 1074 1075 if (sg_is_dma_bus_address(s)) { 1076 if (i > 0) 1077 cur = sg_next(cur); 1078 1079 sg_dma_unmark_bus_address(s); 1080 sg_dma_address(cur) = s_dma_addr; 1081 sg_dma_len(cur) = s_length; 1082 sg_dma_mark_bus_address(cur); 1083 count++; 1084 cur_len = 0; 1085 continue; 1086 } 1087 1088 s->offset += s_iova_off; 1089 s->length = s_length; 1090 1091 /* 1092 * Now fill in the real DMA data. If... 1093 * - there is a valid output segment to append to 1094 * - and this segment starts on an IOVA page boundary 1095 * - but doesn't fall at a segment boundary 1096 * - and wouldn't make the resulting output segment too long 1097 */ 1098 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1099 (max_len - cur_len >= s_length)) { 1100 /* ...then concatenate it with the previous one */ 1101 cur_len += s_length; 1102 } else { 1103 /* Otherwise start the next output segment */ 1104 if (i > 0) 1105 cur = sg_next(cur); 1106 cur_len = s_length; 1107 count++; 1108 1109 sg_dma_address(cur) = dma_addr + s_iova_off; 1110 } 1111 1112 sg_dma_len(cur) = cur_len; 1113 dma_addr += s_iova_len; 1114 1115 if (s_length + s_iova_off < s_iova_len) 1116 cur_len = 0; 1117 } 1118 return count; 1119 } 1120 1121 /* 1122 * If mapping failed, then just restore the original list, 1123 * but making sure the DMA fields are invalidated. 1124 */ 1125 static void __invalidate_sg(struct scatterlist *sg, int nents) 1126 { 1127 struct scatterlist *s; 1128 int i; 1129 1130 for_each_sg(sg, s, nents, i) { 1131 if (sg_is_dma_bus_address(s)) { 1132 sg_dma_unmark_bus_address(s); 1133 } else { 1134 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1135 s->offset += sg_dma_address(s); 1136 if (sg_dma_len(s)) 1137 s->length = sg_dma_len(s); 1138 } 1139 sg_dma_address(s) = DMA_MAPPING_ERROR; 1140 sg_dma_len(s) = 0; 1141 } 1142 } 1143 1144 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1145 int nents, enum dma_data_direction dir, unsigned long attrs) 1146 { 1147 struct scatterlist *s; 1148 int i; 1149 1150 for_each_sg(sg, s, nents, i) 1151 iommu_dma_unmap_page(dev, sg_dma_address(s), 1152 sg_dma_len(s), dir, attrs); 1153 } 1154 1155 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1156 int nents, enum dma_data_direction dir, unsigned long attrs) 1157 { 1158 struct scatterlist *s; 1159 int i; 1160 1161 for_each_sg(sg, s, nents, i) { 1162 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1163 s->offset, s->length, dir, attrs); 1164 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1165 goto out_unmap; 1166 sg_dma_len(s) = s->length; 1167 } 1168 1169 return nents; 1170 1171 out_unmap: 1172 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1173 return -EIO; 1174 } 1175 1176 /* 1177 * The DMA API client is passing in a scatterlist which could describe 1178 * any old buffer layout, but the IOMMU API requires everything to be 1179 * aligned to IOMMU pages. Hence the need for this complicated bit of 1180 * impedance-matching, to be able to hand off a suitably-aligned list, 1181 * but still preserve the original offsets and sizes for the caller. 1182 */ 1183 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 1184 int nents, enum dma_data_direction dir, unsigned long attrs) 1185 { 1186 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1187 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1188 struct iova_domain *iovad = &cookie->iovad; 1189 struct scatterlist *s, *prev = NULL; 1190 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1191 struct pci_p2pdma_map_state p2pdma_state = {}; 1192 enum pci_p2pdma_map_type map; 1193 dma_addr_t iova; 1194 size_t iova_len = 0; 1195 unsigned long mask = dma_get_seg_boundary(dev); 1196 ssize_t ret; 1197 int i; 1198 1199 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1200 ret = iommu_deferred_attach(dev, domain); 1201 if (ret) 1202 goto out; 1203 } 1204 1205 if (dev_use_swiotlb(dev)) 1206 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1207 1208 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1209 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1210 1211 /* 1212 * Work out how much IOVA space we need, and align the segments to 1213 * IOVA granules for the IOMMU driver to handle. With some clever 1214 * trickery we can modify the list in-place, but reversibly, by 1215 * stashing the unaligned parts in the as-yet-unused DMA fields. 1216 */ 1217 for_each_sg(sg, s, nents, i) { 1218 size_t s_iova_off = iova_offset(iovad, s->offset); 1219 size_t s_length = s->length; 1220 size_t pad_len = (mask - iova_len + 1) & mask; 1221 1222 if (is_pci_p2pdma_page(sg_page(s))) { 1223 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); 1224 switch (map) { 1225 case PCI_P2PDMA_MAP_BUS_ADDR: 1226 /* 1227 * iommu_map_sg() will skip this segment as 1228 * it is marked as a bus address, 1229 * __finalise_sg() will copy the dma address 1230 * into the output segment. 1231 */ 1232 continue; 1233 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1234 /* 1235 * Mapping through host bridge should be 1236 * mapped with regular IOVAs, thus we 1237 * do nothing here and continue below. 1238 */ 1239 break; 1240 default: 1241 ret = -EREMOTEIO; 1242 goto out_restore_sg; 1243 } 1244 } 1245 1246 sg_dma_address(s) = s_iova_off; 1247 sg_dma_len(s) = s_length; 1248 s->offset -= s_iova_off; 1249 s_length = iova_align(iovad, s_length + s_iova_off); 1250 s->length = s_length; 1251 1252 /* 1253 * Due to the alignment of our single IOVA allocation, we can 1254 * depend on these assumptions about the segment boundary mask: 1255 * - If mask size >= IOVA size, then the IOVA range cannot 1256 * possibly fall across a boundary, so we don't care. 1257 * - If mask size < IOVA size, then the IOVA range must start 1258 * exactly on a boundary, therefore we can lay things out 1259 * based purely on segment lengths without needing to know 1260 * the actual addresses beforehand. 1261 * - The mask must be a power of 2, so pad_len == 0 if 1262 * iova_len == 0, thus we cannot dereference prev the first 1263 * time through here (i.e. before it has a meaningful value). 1264 */ 1265 if (pad_len && pad_len < s_length - 1) { 1266 prev->length += pad_len; 1267 iova_len += pad_len; 1268 } 1269 1270 iova_len += s_length; 1271 prev = s; 1272 } 1273 1274 if (!iova_len) 1275 return __finalise_sg(dev, sg, nents, 0); 1276 1277 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1278 if (!iova) { 1279 ret = -ENOMEM; 1280 goto out_restore_sg; 1281 } 1282 1283 /* 1284 * We'll leave any physical concatenation to the IOMMU driver's 1285 * implementation - it knows better than we do. 1286 */ 1287 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot); 1288 if (ret < 0 || ret < iova_len) 1289 goto out_free_iova; 1290 1291 return __finalise_sg(dev, sg, nents, iova); 1292 1293 out_free_iova: 1294 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1295 out_restore_sg: 1296 __invalidate_sg(sg, nents); 1297 out: 1298 if (ret != -ENOMEM && ret != -EREMOTEIO) 1299 return -EINVAL; 1300 return ret; 1301 } 1302 1303 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1304 int nents, enum dma_data_direction dir, unsigned long attrs) 1305 { 1306 dma_addr_t end = 0, start; 1307 struct scatterlist *tmp; 1308 int i; 1309 1310 if (dev_use_swiotlb(dev)) { 1311 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1312 return; 1313 } 1314 1315 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1316 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1317 1318 /* 1319 * The scatterlist segments are mapped into a single 1320 * contiguous IOVA allocation, the start and end points 1321 * just have to be determined. 1322 */ 1323 for_each_sg(sg, tmp, nents, i) { 1324 if (sg_is_dma_bus_address(tmp)) { 1325 sg_dma_unmark_bus_address(tmp); 1326 continue; 1327 } 1328 1329 if (sg_dma_len(tmp) == 0) 1330 break; 1331 1332 start = sg_dma_address(tmp); 1333 break; 1334 } 1335 1336 nents -= i; 1337 for_each_sg(tmp, tmp, nents, i) { 1338 if (sg_is_dma_bus_address(tmp)) { 1339 sg_dma_unmark_bus_address(tmp); 1340 continue; 1341 } 1342 1343 if (sg_dma_len(tmp) == 0) 1344 break; 1345 1346 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1347 } 1348 1349 if (end) 1350 __iommu_dma_unmap(dev, start, end - start); 1351 } 1352 1353 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1354 size_t size, enum dma_data_direction dir, unsigned long attrs) 1355 { 1356 return __iommu_dma_map(dev, phys, size, 1357 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1358 dma_get_mask(dev)); 1359 } 1360 1361 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1362 size_t size, enum dma_data_direction dir, unsigned long attrs) 1363 { 1364 __iommu_dma_unmap(dev, handle, size); 1365 } 1366 1367 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1368 { 1369 size_t alloc_size = PAGE_ALIGN(size); 1370 int count = alloc_size >> PAGE_SHIFT; 1371 struct page *page = NULL, **pages = NULL; 1372 1373 /* Non-coherent atomic allocation? Easy */ 1374 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1375 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1376 return; 1377 1378 if (is_vmalloc_addr(cpu_addr)) { 1379 /* 1380 * If it the address is remapped, then it's either non-coherent 1381 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1382 */ 1383 pages = dma_common_find_pages(cpu_addr); 1384 if (!pages) 1385 page = vmalloc_to_page(cpu_addr); 1386 dma_common_free_remap(cpu_addr, alloc_size); 1387 } else { 1388 /* Lowmem means a coherent atomic or CMA allocation */ 1389 page = virt_to_page(cpu_addr); 1390 } 1391 1392 if (pages) 1393 __iommu_dma_free_pages(pages, count); 1394 if (page) 1395 dma_free_contiguous(dev, page, alloc_size); 1396 } 1397 1398 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1399 dma_addr_t handle, unsigned long attrs) 1400 { 1401 __iommu_dma_unmap(dev, handle, size); 1402 __iommu_dma_free(dev, size, cpu_addr); 1403 } 1404 1405 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1406 struct page **pagep, gfp_t gfp, unsigned long attrs) 1407 { 1408 bool coherent = dev_is_dma_coherent(dev); 1409 size_t alloc_size = PAGE_ALIGN(size); 1410 int node = dev_to_node(dev); 1411 struct page *page = NULL; 1412 void *cpu_addr; 1413 1414 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1415 if (!page) 1416 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1417 if (!page) 1418 return NULL; 1419 1420 if (!coherent || PageHighMem(page)) { 1421 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1422 1423 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1424 prot, __builtin_return_address(0)); 1425 if (!cpu_addr) 1426 goto out_free_pages; 1427 1428 if (!coherent) 1429 arch_dma_prep_coherent(page, size); 1430 } else { 1431 cpu_addr = page_address(page); 1432 } 1433 1434 *pagep = page; 1435 memset(cpu_addr, 0, alloc_size); 1436 return cpu_addr; 1437 out_free_pages: 1438 dma_free_contiguous(dev, page, alloc_size); 1439 return NULL; 1440 } 1441 1442 static void *iommu_dma_alloc(struct device *dev, size_t size, 1443 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1444 { 1445 bool coherent = dev_is_dma_coherent(dev); 1446 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1447 struct page *page = NULL; 1448 void *cpu_addr; 1449 1450 gfp |= __GFP_ZERO; 1451 1452 if (gfpflags_allow_blocking(gfp) && 1453 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1454 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1455 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1456 } 1457 1458 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1459 !gfpflags_allow_blocking(gfp) && !coherent) 1460 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1461 gfp, NULL); 1462 else 1463 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1464 if (!cpu_addr) 1465 return NULL; 1466 1467 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1468 dev->coherent_dma_mask); 1469 if (*handle == DMA_MAPPING_ERROR) { 1470 __iommu_dma_free(dev, size, cpu_addr); 1471 return NULL; 1472 } 1473 1474 return cpu_addr; 1475 } 1476 1477 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1478 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1479 unsigned long attrs) 1480 { 1481 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1482 unsigned long pfn, off = vma->vm_pgoff; 1483 int ret; 1484 1485 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1486 1487 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1488 return ret; 1489 1490 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1491 return -ENXIO; 1492 1493 if (is_vmalloc_addr(cpu_addr)) { 1494 struct page **pages = dma_common_find_pages(cpu_addr); 1495 1496 if (pages) 1497 return vm_map_pages(vma, pages, nr_pages); 1498 pfn = vmalloc_to_pfn(cpu_addr); 1499 } else { 1500 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1501 } 1502 1503 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1504 vma->vm_end - vma->vm_start, 1505 vma->vm_page_prot); 1506 } 1507 1508 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1509 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1510 unsigned long attrs) 1511 { 1512 struct page *page; 1513 int ret; 1514 1515 if (is_vmalloc_addr(cpu_addr)) { 1516 struct page **pages = dma_common_find_pages(cpu_addr); 1517 1518 if (pages) { 1519 return sg_alloc_table_from_pages(sgt, pages, 1520 PAGE_ALIGN(size) >> PAGE_SHIFT, 1521 0, size, GFP_KERNEL); 1522 } 1523 1524 page = vmalloc_to_page(cpu_addr); 1525 } else { 1526 page = virt_to_page(cpu_addr); 1527 } 1528 1529 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1530 if (!ret) 1531 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1532 return ret; 1533 } 1534 1535 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1536 { 1537 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1538 1539 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1540 } 1541 1542 static size_t iommu_dma_opt_mapping_size(void) 1543 { 1544 return iova_rcache_range(); 1545 } 1546 1547 static const struct dma_map_ops iommu_dma_ops = { 1548 .flags = DMA_F_PCI_P2PDMA_SUPPORTED, 1549 .alloc = iommu_dma_alloc, 1550 .free = iommu_dma_free, 1551 .alloc_pages = dma_common_alloc_pages, 1552 .free_pages = dma_common_free_pages, 1553 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, 1554 .free_noncontiguous = iommu_dma_free_noncontiguous, 1555 .mmap = iommu_dma_mmap, 1556 .get_sgtable = iommu_dma_get_sgtable, 1557 .map_page = iommu_dma_map_page, 1558 .unmap_page = iommu_dma_unmap_page, 1559 .map_sg = iommu_dma_map_sg, 1560 .unmap_sg = iommu_dma_unmap_sg, 1561 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1562 .sync_single_for_device = iommu_dma_sync_single_for_device, 1563 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1564 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1565 .map_resource = iommu_dma_map_resource, 1566 .unmap_resource = iommu_dma_unmap_resource, 1567 .get_merge_boundary = iommu_dma_get_merge_boundary, 1568 .opt_mapping_size = iommu_dma_opt_mapping_size, 1569 }; 1570 1571 /* 1572 * The IOMMU core code allocates the default DMA domain, which the underlying 1573 * IOMMU driver needs to support via the dma-iommu layer. 1574 */ 1575 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) 1576 { 1577 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1578 1579 if (!domain) 1580 goto out_err; 1581 1582 /* 1583 * The IOMMU core code allocates the default DMA domain, which the 1584 * underlying IOMMU driver needs to support via the dma-iommu layer. 1585 */ 1586 if (iommu_is_dma_domain(domain)) { 1587 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) 1588 goto out_err; 1589 dev->dma_ops = &iommu_dma_ops; 1590 } 1591 1592 return; 1593 out_err: 1594 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1595 dev_name(dev)); 1596 } 1597 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); 1598 1599 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1600 phys_addr_t msi_addr, struct iommu_domain *domain) 1601 { 1602 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1603 struct iommu_dma_msi_page *msi_page; 1604 dma_addr_t iova; 1605 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1606 size_t size = cookie_msi_granule(cookie); 1607 1608 msi_addr &= ~(phys_addr_t)(size - 1); 1609 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1610 if (msi_page->phys == msi_addr) 1611 return msi_page; 1612 1613 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1614 if (!msi_page) 1615 return NULL; 1616 1617 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1618 if (!iova) 1619 goto out_free_page; 1620 1621 if (iommu_map(domain, iova, msi_addr, size, prot)) 1622 goto out_free_iova; 1623 1624 INIT_LIST_HEAD(&msi_page->list); 1625 msi_page->phys = msi_addr; 1626 msi_page->iova = iova; 1627 list_add(&msi_page->list, &cookie->msi_page_list); 1628 return msi_page; 1629 1630 out_free_iova: 1631 iommu_dma_free_iova(cookie, iova, size, NULL); 1632 out_free_page: 1633 kfree(msi_page); 1634 return NULL; 1635 } 1636 1637 /** 1638 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain 1639 * @desc: MSI descriptor, will store the MSI page 1640 * @msi_addr: MSI target address to be mapped 1641 * 1642 * Return: 0 on success or negative error code if the mapping failed. 1643 */ 1644 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1645 { 1646 struct device *dev = msi_desc_to_dev(desc); 1647 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1648 struct iommu_dma_msi_page *msi_page; 1649 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1650 1651 if (!domain || !domain->iova_cookie) { 1652 desc->iommu_cookie = NULL; 1653 return 0; 1654 } 1655 1656 /* 1657 * In fact the whole prepare operation should already be serialised by 1658 * irq_domain_mutex further up the callchain, but that's pretty subtle 1659 * on its own, so consider this locking as failsafe documentation... 1660 */ 1661 mutex_lock(&msi_prepare_lock); 1662 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1663 mutex_unlock(&msi_prepare_lock); 1664 1665 msi_desc_set_iommu_cookie(desc, msi_page); 1666 1667 if (!msi_page) 1668 return -ENOMEM; 1669 return 0; 1670 } 1671 1672 /** 1673 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message 1674 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi() 1675 * @msg: MSI message containing target physical address 1676 */ 1677 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg) 1678 { 1679 struct device *dev = msi_desc_to_dev(desc); 1680 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1681 const struct iommu_dma_msi_page *msi_page; 1682 1683 msi_page = msi_desc_get_iommu_cookie(desc); 1684 1685 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1686 return; 1687 1688 msg->address_hi = upper_32_bits(msi_page->iova); 1689 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1690 msg->address_lo += lower_32_bits(msi_page->iova); 1691 } 1692 1693 static int iommu_dma_init(void) 1694 { 1695 if (is_kdump_kernel()) 1696 static_branch_enable(&iommu_deferred_attach_enabled); 1697 1698 return iova_cache_get(); 1699 } 1700 arch_initcall(iommu_dma_init); 1701