1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/device.h> 13 #include <linux/dma-map-ops.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/gfp.h> 16 #include <linux/huge_mm.h> 17 #include <linux/iommu.h> 18 #include <linux/iova.h> 19 #include <linux/irq.h> 20 #include <linux/mm.h> 21 #include <linux/mutex.h> 22 #include <linux/pci.h> 23 #include <linux/swiotlb.h> 24 #include <linux/scatterlist.h> 25 #include <linux/vmalloc.h> 26 #include <linux/crash_dump.h> 27 #include <linux/dma-direct.h> 28 29 struct iommu_dma_msi_page { 30 struct list_head list; 31 dma_addr_t iova; 32 phys_addr_t phys; 33 }; 34 35 enum iommu_dma_cookie_type { 36 IOMMU_DMA_IOVA_COOKIE, 37 IOMMU_DMA_MSI_COOKIE, 38 }; 39 40 struct iommu_dma_cookie { 41 enum iommu_dma_cookie_type type; 42 union { 43 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 44 struct iova_domain iovad; 45 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 46 dma_addr_t msi_iova; 47 }; 48 struct list_head msi_page_list; 49 50 /* Domain for flush queue callback; NULL if flush queue not in use */ 51 struct iommu_domain *fq_domain; 52 }; 53 54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 55 56 void iommu_dma_free_cpu_cached_iovas(unsigned int cpu, 57 struct iommu_domain *domain) 58 { 59 struct iommu_dma_cookie *cookie = domain->iova_cookie; 60 struct iova_domain *iovad = &cookie->iovad; 61 62 free_cpu_cached_iovas(cpu, iovad); 63 } 64 65 static void iommu_dma_entry_dtor(unsigned long data) 66 { 67 struct page *freelist = (struct page *)data; 68 69 while (freelist) { 70 unsigned long p = (unsigned long)page_address(freelist); 71 72 freelist = freelist->freelist; 73 free_page(p); 74 } 75 } 76 77 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 78 { 79 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 80 return cookie->iovad.granule; 81 return PAGE_SIZE; 82 } 83 84 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 85 { 86 struct iommu_dma_cookie *cookie; 87 88 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 89 if (cookie) { 90 INIT_LIST_HEAD(&cookie->msi_page_list); 91 cookie->type = type; 92 } 93 return cookie; 94 } 95 96 /** 97 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 98 * @domain: IOMMU domain to prepare for DMA-API usage 99 * 100 * IOMMU drivers should normally call this from their domain_alloc 101 * callback when domain->type == IOMMU_DOMAIN_DMA. 102 */ 103 int iommu_get_dma_cookie(struct iommu_domain *domain) 104 { 105 if (domain->iova_cookie) 106 return -EEXIST; 107 108 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 109 if (!domain->iova_cookie) 110 return -ENOMEM; 111 112 return 0; 113 } 114 EXPORT_SYMBOL(iommu_get_dma_cookie); 115 116 /** 117 * iommu_get_msi_cookie - Acquire just MSI remapping resources 118 * @domain: IOMMU domain to prepare 119 * @base: Start address of IOVA region for MSI mappings 120 * 121 * Users who manage their own IOVA allocation and do not want DMA API support, 122 * but would still like to take advantage of automatic MSI remapping, can use 123 * this to initialise their own domain appropriately. Users should reserve a 124 * contiguous IOVA region, starting at @base, large enough to accommodate the 125 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 126 * used by the devices attached to @domain. 127 */ 128 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 129 { 130 struct iommu_dma_cookie *cookie; 131 132 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 133 return -EINVAL; 134 135 if (domain->iova_cookie) 136 return -EEXIST; 137 138 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 139 if (!cookie) 140 return -ENOMEM; 141 142 cookie->msi_iova = base; 143 domain->iova_cookie = cookie; 144 return 0; 145 } 146 EXPORT_SYMBOL(iommu_get_msi_cookie); 147 148 /** 149 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 150 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 151 * iommu_get_msi_cookie() 152 * 153 * IOMMU drivers should normally call this from their domain_free callback. 154 */ 155 void iommu_put_dma_cookie(struct iommu_domain *domain) 156 { 157 struct iommu_dma_cookie *cookie = domain->iova_cookie; 158 struct iommu_dma_msi_page *msi, *tmp; 159 160 if (!cookie) 161 return; 162 163 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 164 put_iova_domain(&cookie->iovad); 165 166 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 167 list_del(&msi->list); 168 kfree(msi); 169 } 170 kfree(cookie); 171 domain->iova_cookie = NULL; 172 } 173 EXPORT_SYMBOL(iommu_put_dma_cookie); 174 175 /** 176 * iommu_dma_get_resv_regions - Reserved region driver helper 177 * @dev: Device from iommu_get_resv_regions() 178 * @list: Reserved region list from iommu_get_resv_regions() 179 * 180 * IOMMU drivers can use this to implement their .get_resv_regions callback 181 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 182 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 183 * reservation. 184 */ 185 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 186 { 187 188 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 189 iort_iommu_msi_get_resv_regions(dev, list); 190 191 } 192 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 193 194 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 195 phys_addr_t start, phys_addr_t end) 196 { 197 struct iova_domain *iovad = &cookie->iovad; 198 struct iommu_dma_msi_page *msi_page; 199 int i, num_pages; 200 201 start -= iova_offset(iovad, start); 202 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 203 204 for (i = 0; i < num_pages; i++) { 205 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 206 if (!msi_page) 207 return -ENOMEM; 208 209 msi_page->phys = start; 210 msi_page->iova = start; 211 INIT_LIST_HEAD(&msi_page->list); 212 list_add(&msi_page->list, &cookie->msi_page_list); 213 start += iovad->granule; 214 } 215 216 return 0; 217 } 218 219 static int iova_reserve_pci_windows(struct pci_dev *dev, 220 struct iova_domain *iovad) 221 { 222 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 223 struct resource_entry *window; 224 unsigned long lo, hi; 225 phys_addr_t start = 0, end; 226 227 resource_list_for_each_entry(window, &bridge->windows) { 228 if (resource_type(window->res) != IORESOURCE_MEM) 229 continue; 230 231 lo = iova_pfn(iovad, window->res->start - window->offset); 232 hi = iova_pfn(iovad, window->res->end - window->offset); 233 reserve_iova(iovad, lo, hi); 234 } 235 236 /* Get reserved DMA windows from host bridge */ 237 resource_list_for_each_entry(window, &bridge->dma_ranges) { 238 end = window->res->start - window->offset; 239 resv_iova: 240 if (end > start) { 241 lo = iova_pfn(iovad, start); 242 hi = iova_pfn(iovad, end); 243 reserve_iova(iovad, lo, hi); 244 } else { 245 /* dma_ranges list should be sorted */ 246 dev_err(&dev->dev, "Failed to reserve IOVA\n"); 247 return -EINVAL; 248 } 249 250 start = window->res->end - window->offset + 1; 251 /* If window is last entry */ 252 if (window->node.next == &bridge->dma_ranges && 253 end != ~(phys_addr_t)0) { 254 end = ~(phys_addr_t)0; 255 goto resv_iova; 256 } 257 } 258 259 return 0; 260 } 261 262 static int iova_reserve_iommu_regions(struct device *dev, 263 struct iommu_domain *domain) 264 { 265 struct iommu_dma_cookie *cookie = domain->iova_cookie; 266 struct iova_domain *iovad = &cookie->iovad; 267 struct iommu_resv_region *region; 268 LIST_HEAD(resv_regions); 269 int ret = 0; 270 271 if (dev_is_pci(dev)) { 272 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 273 if (ret) 274 return ret; 275 } 276 277 iommu_get_resv_regions(dev, &resv_regions); 278 list_for_each_entry(region, &resv_regions, list) { 279 unsigned long lo, hi; 280 281 /* We ARE the software that manages these! */ 282 if (region->type == IOMMU_RESV_SW_MSI) 283 continue; 284 285 lo = iova_pfn(iovad, region->start); 286 hi = iova_pfn(iovad, region->start + region->length - 1); 287 reserve_iova(iovad, lo, hi); 288 289 if (region->type == IOMMU_RESV_MSI) 290 ret = cookie_init_hw_msi_region(cookie, region->start, 291 region->start + region->length); 292 if (ret) 293 break; 294 } 295 iommu_put_resv_regions(dev, &resv_regions); 296 297 return ret; 298 } 299 300 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 301 { 302 struct iommu_dma_cookie *cookie; 303 struct iommu_domain *domain; 304 305 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 306 domain = cookie->fq_domain; 307 /* 308 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE 309 * implies that ops->flush_iotlb_all must be non-NULL. 310 */ 311 domain->ops->flush_iotlb_all(domain); 312 } 313 314 static bool dev_is_untrusted(struct device *dev) 315 { 316 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 317 } 318 319 /** 320 * iommu_dma_init_domain - Initialise a DMA mapping domain 321 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 322 * @base: IOVA at which the mappable address space starts 323 * @size: Size of IOVA space 324 * @dev: Device the domain is being initialised for 325 * 326 * @base and @size should be exact multiples of IOMMU page granularity to 327 * avoid rounding surprises. If necessary, we reserve the page at address 0 328 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 329 * any change which could make prior IOVAs invalid will fail. 330 */ 331 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 332 u64 size, struct device *dev) 333 { 334 struct iommu_dma_cookie *cookie = domain->iova_cookie; 335 unsigned long order, base_pfn; 336 struct iova_domain *iovad; 337 int attr; 338 339 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 340 return -EINVAL; 341 342 iovad = &cookie->iovad; 343 344 /* Use the smallest supported page size for IOVA granularity */ 345 order = __ffs(domain->pgsize_bitmap); 346 base_pfn = max_t(unsigned long, 1, base >> order); 347 348 /* Check the domain allows at least some access to the device... */ 349 if (domain->geometry.force_aperture) { 350 if (base > domain->geometry.aperture_end || 351 base + size <= domain->geometry.aperture_start) { 352 pr_warn("specified DMA range outside IOMMU capability\n"); 353 return -EFAULT; 354 } 355 /* ...then finally give it a kicking to make sure it fits */ 356 base_pfn = max_t(unsigned long, base_pfn, 357 domain->geometry.aperture_start >> order); 358 } 359 360 /* start_pfn is always nonzero for an already-initialised domain */ 361 if (iovad->start_pfn) { 362 if (1UL << order != iovad->granule || 363 base_pfn != iovad->start_pfn) { 364 pr_warn("Incompatible range for DMA domain\n"); 365 return -EFAULT; 366 } 367 368 return 0; 369 } 370 371 init_iova_domain(iovad, 1UL << order, base_pfn); 372 373 if (!cookie->fq_domain && (!dev || !dev_is_untrusted(dev)) && 374 !iommu_domain_get_attr(domain, DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && 375 attr) { 376 if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, 377 iommu_dma_entry_dtor)) 378 pr_warn("iova flush queue initialization failed\n"); 379 else 380 cookie->fq_domain = domain; 381 } 382 383 if (!dev) 384 return 0; 385 386 return iova_reserve_iommu_regions(dev, domain); 387 } 388 389 /** 390 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 391 * page flags. 392 * @dir: Direction of DMA transfer 393 * @coherent: Is the DMA master cache-coherent? 394 * @attrs: DMA attributes for the mapping 395 * 396 * Return: corresponding IOMMU API page protection flags 397 */ 398 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 399 unsigned long attrs) 400 { 401 int prot = coherent ? IOMMU_CACHE : 0; 402 403 if (attrs & DMA_ATTR_PRIVILEGED) 404 prot |= IOMMU_PRIV; 405 406 switch (dir) { 407 case DMA_BIDIRECTIONAL: 408 return prot | IOMMU_READ | IOMMU_WRITE; 409 case DMA_TO_DEVICE: 410 return prot | IOMMU_READ; 411 case DMA_FROM_DEVICE: 412 return prot | IOMMU_WRITE; 413 default: 414 return 0; 415 } 416 } 417 418 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 419 size_t size, u64 dma_limit, struct device *dev) 420 { 421 struct iommu_dma_cookie *cookie = domain->iova_cookie; 422 struct iova_domain *iovad = &cookie->iovad; 423 unsigned long shift, iova_len, iova = 0; 424 425 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 426 cookie->msi_iova += size; 427 return cookie->msi_iova - size; 428 } 429 430 shift = iova_shift(iovad); 431 iova_len = size >> shift; 432 /* 433 * Freeing non-power-of-two-sized allocations back into the IOVA caches 434 * will come back to bite us badly, so we have to waste a bit of space 435 * rounding up anything cacheable to make sure that can't happen. The 436 * order of the unadjusted size will still match upon freeing. 437 */ 438 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 439 iova_len = roundup_pow_of_two(iova_len); 440 441 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 442 443 if (domain->geometry.force_aperture) 444 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 445 446 /* Try to get PCI devices a SAC address */ 447 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) 448 iova = alloc_iova_fast(iovad, iova_len, 449 DMA_BIT_MASK(32) >> shift, false); 450 451 if (!iova) 452 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 453 true); 454 455 return (dma_addr_t)iova << shift; 456 } 457 458 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 459 dma_addr_t iova, size_t size, struct page *freelist) 460 { 461 struct iova_domain *iovad = &cookie->iovad; 462 463 /* The MSI case is only ever cleaning up its most recent allocation */ 464 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 465 cookie->msi_iova -= size; 466 else if (cookie->fq_domain) /* non-strict mode */ 467 queue_iova(iovad, iova_pfn(iovad, iova), 468 size >> iova_shift(iovad), 469 (unsigned long)freelist); 470 else 471 free_iova_fast(iovad, iova_pfn(iovad, iova), 472 size >> iova_shift(iovad)); 473 } 474 475 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 476 size_t size) 477 { 478 struct iommu_domain *domain = iommu_get_dma_domain(dev); 479 struct iommu_dma_cookie *cookie = domain->iova_cookie; 480 struct iova_domain *iovad = &cookie->iovad; 481 size_t iova_off = iova_offset(iovad, dma_addr); 482 struct iommu_iotlb_gather iotlb_gather; 483 size_t unmapped; 484 485 dma_addr -= iova_off; 486 size = iova_align(iovad, size + iova_off); 487 iommu_iotlb_gather_init(&iotlb_gather); 488 489 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 490 WARN_ON(unmapped != size); 491 492 if (!cookie->fq_domain) 493 iommu_iotlb_sync(domain, &iotlb_gather); 494 iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist); 495 } 496 497 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr, 498 size_t size, enum dma_data_direction dir, 499 unsigned long attrs) 500 { 501 struct iommu_domain *domain = iommu_get_dma_domain(dev); 502 struct iommu_dma_cookie *cookie = domain->iova_cookie; 503 struct iova_domain *iovad = &cookie->iovad; 504 phys_addr_t phys; 505 506 phys = iommu_iova_to_phys(domain, dma_addr); 507 if (WARN_ON(!phys)) 508 return; 509 510 __iommu_dma_unmap(dev, dma_addr, size); 511 512 if (unlikely(is_swiotlb_buffer(phys))) 513 swiotlb_tbl_unmap_single(dev, phys, size, 514 iova_align(iovad, size), dir, attrs); 515 } 516 517 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 518 size_t size, int prot, u64 dma_mask) 519 { 520 struct iommu_domain *domain = iommu_get_dma_domain(dev); 521 struct iommu_dma_cookie *cookie = domain->iova_cookie; 522 struct iova_domain *iovad = &cookie->iovad; 523 size_t iova_off = iova_offset(iovad, phys); 524 dma_addr_t iova; 525 526 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 527 iommu_deferred_attach(dev, domain)) 528 return DMA_MAPPING_ERROR; 529 530 size = iova_align(iovad, size + iova_off); 531 532 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 533 if (!iova) 534 return DMA_MAPPING_ERROR; 535 536 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { 537 iommu_dma_free_iova(cookie, iova, size, NULL); 538 return DMA_MAPPING_ERROR; 539 } 540 return iova + iova_off; 541 } 542 543 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys, 544 size_t org_size, dma_addr_t dma_mask, bool coherent, 545 enum dma_data_direction dir, unsigned long attrs) 546 { 547 int prot = dma_info_to_prot(dir, coherent, attrs); 548 struct iommu_domain *domain = iommu_get_dma_domain(dev); 549 struct iommu_dma_cookie *cookie = domain->iova_cookie; 550 struct iova_domain *iovad = &cookie->iovad; 551 size_t aligned_size = org_size; 552 void *padding_start; 553 size_t padding_size; 554 dma_addr_t iova; 555 556 /* 557 * If both the physical buffer start address and size are 558 * page aligned, we don't need to use a bounce page. 559 */ 560 if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) && 561 iova_offset(iovad, phys | org_size)) { 562 aligned_size = iova_align(iovad, org_size); 563 phys = swiotlb_tbl_map_single(dev, phys, org_size, 564 aligned_size, dir, attrs); 565 566 if (phys == DMA_MAPPING_ERROR) 567 return DMA_MAPPING_ERROR; 568 569 /* Cleanup the padding area. */ 570 padding_start = phys_to_virt(phys); 571 padding_size = aligned_size; 572 573 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 574 (dir == DMA_TO_DEVICE || 575 dir == DMA_BIDIRECTIONAL)) { 576 padding_start += org_size; 577 padding_size -= org_size; 578 } 579 580 memset(padding_start, 0, padding_size); 581 } 582 583 iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask); 584 if ((iova == DMA_MAPPING_ERROR) && is_swiotlb_buffer(phys)) 585 swiotlb_tbl_unmap_single(dev, phys, org_size, 586 aligned_size, dir, attrs); 587 588 return iova; 589 } 590 591 static void __iommu_dma_free_pages(struct page **pages, int count) 592 { 593 while (count--) 594 __free_page(pages[count]); 595 kvfree(pages); 596 } 597 598 static struct page **__iommu_dma_alloc_pages(struct device *dev, 599 unsigned int count, unsigned long order_mask, gfp_t gfp) 600 { 601 struct page **pages; 602 unsigned int i = 0, nid = dev_to_node(dev); 603 604 order_mask &= (2U << MAX_ORDER) - 1; 605 if (!order_mask) 606 return NULL; 607 608 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); 609 if (!pages) 610 return NULL; 611 612 /* IOMMU can map any pages, so himem can also be used here */ 613 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 614 615 /* It makes no sense to muck about with huge pages */ 616 gfp &= ~__GFP_COMP; 617 618 while (count) { 619 struct page *page = NULL; 620 unsigned int order_size; 621 622 /* 623 * Higher-order allocations are a convenience rather 624 * than a necessity, hence using __GFP_NORETRY until 625 * falling back to minimum-order allocations. 626 */ 627 for (order_mask &= (2U << __fls(count)) - 1; 628 order_mask; order_mask &= ~order_size) { 629 unsigned int order = __fls(order_mask); 630 gfp_t alloc_flags = gfp; 631 632 order_size = 1U << order; 633 if (order_mask > order_size) 634 alloc_flags |= __GFP_NORETRY; 635 page = alloc_pages_node(nid, alloc_flags, order); 636 if (!page) 637 continue; 638 if (order) 639 split_page(page, order); 640 break; 641 } 642 if (!page) { 643 __iommu_dma_free_pages(pages, i); 644 return NULL; 645 } 646 count -= order_size; 647 while (order_size--) 648 pages[i++] = page++; 649 } 650 return pages; 651 } 652 653 /** 654 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space 655 * @dev: Device to allocate memory for. Must be a real device 656 * attached to an iommu_dma_domain 657 * @size: Size of buffer in bytes 658 * @dma_handle: Out argument for allocated DMA handle 659 * @gfp: Allocation flags 660 * @prot: pgprot_t to use for the remapped mapping 661 * @attrs: DMA attributes for this allocation 662 * 663 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 664 * but an IOMMU which supports smaller pages might not map the whole thing. 665 * 666 * Return: Mapped virtual address, or NULL on failure. 667 */ 668 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 669 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 670 unsigned long attrs) 671 { 672 struct iommu_domain *domain = iommu_get_dma_domain(dev); 673 struct iommu_dma_cookie *cookie = domain->iova_cookie; 674 struct iova_domain *iovad = &cookie->iovad; 675 bool coherent = dev_is_dma_coherent(dev); 676 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 677 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 678 struct page **pages; 679 struct sg_table sgt; 680 dma_addr_t iova; 681 void *vaddr; 682 683 *dma_handle = DMA_MAPPING_ERROR; 684 685 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 686 iommu_deferred_attach(dev, domain)) 687 return NULL; 688 689 min_size = alloc_sizes & -alloc_sizes; 690 if (min_size < PAGE_SIZE) { 691 min_size = PAGE_SIZE; 692 alloc_sizes |= PAGE_SIZE; 693 } else { 694 size = ALIGN(size, min_size); 695 } 696 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 697 alloc_sizes = min_size; 698 699 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 700 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 701 gfp); 702 if (!pages) 703 return NULL; 704 705 size = iova_align(iovad, size); 706 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 707 if (!iova) 708 goto out_free_pages; 709 710 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 711 goto out_free_iova; 712 713 if (!(ioprot & IOMMU_CACHE)) { 714 struct scatterlist *sg; 715 int i; 716 717 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i) 718 arch_dma_prep_coherent(sg_page(sg), sg->length); 719 } 720 721 if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot) 722 < size) 723 goto out_free_sg; 724 725 vaddr = dma_common_pages_remap(pages, size, prot, 726 __builtin_return_address(0)); 727 if (!vaddr) 728 goto out_unmap; 729 730 *dma_handle = iova; 731 sg_free_table(&sgt); 732 return vaddr; 733 734 out_unmap: 735 __iommu_dma_unmap(dev, iova, size); 736 out_free_sg: 737 sg_free_table(&sgt); 738 out_free_iova: 739 iommu_dma_free_iova(cookie, iova, size, NULL); 740 out_free_pages: 741 __iommu_dma_free_pages(pages, count); 742 return NULL; 743 } 744 745 static void iommu_dma_sync_single_for_cpu(struct device *dev, 746 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 747 { 748 phys_addr_t phys; 749 750 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 751 return; 752 753 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 754 if (!dev_is_dma_coherent(dev)) 755 arch_sync_dma_for_cpu(phys, size, dir); 756 757 if (is_swiotlb_buffer(phys)) 758 swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_CPU); 759 } 760 761 static void iommu_dma_sync_single_for_device(struct device *dev, 762 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 763 { 764 phys_addr_t phys; 765 766 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 767 return; 768 769 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 770 if (is_swiotlb_buffer(phys)) 771 swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_DEVICE); 772 773 if (!dev_is_dma_coherent(dev)) 774 arch_sync_dma_for_device(phys, size, dir); 775 } 776 777 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 778 struct scatterlist *sgl, int nelems, 779 enum dma_data_direction dir) 780 { 781 struct scatterlist *sg; 782 int i; 783 784 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 785 return; 786 787 for_each_sg(sgl, sg, nelems, i) { 788 if (!dev_is_dma_coherent(dev)) 789 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 790 791 if (is_swiotlb_buffer(sg_phys(sg))) 792 swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, 793 dir, SYNC_FOR_CPU); 794 } 795 } 796 797 static void iommu_dma_sync_sg_for_device(struct device *dev, 798 struct scatterlist *sgl, int nelems, 799 enum dma_data_direction dir) 800 { 801 struct scatterlist *sg; 802 int i; 803 804 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 805 return; 806 807 for_each_sg(sgl, sg, nelems, i) { 808 if (is_swiotlb_buffer(sg_phys(sg))) 809 swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, 810 dir, SYNC_FOR_DEVICE); 811 812 if (!dev_is_dma_coherent(dev)) 813 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 814 } 815 } 816 817 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 818 unsigned long offset, size_t size, enum dma_data_direction dir, 819 unsigned long attrs) 820 { 821 phys_addr_t phys = page_to_phys(page) + offset; 822 bool coherent = dev_is_dma_coherent(dev); 823 dma_addr_t dma_handle; 824 825 dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev), 826 coherent, dir, attrs); 827 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 828 dma_handle != DMA_MAPPING_ERROR) 829 arch_sync_dma_for_device(phys, size, dir); 830 return dma_handle; 831 } 832 833 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 834 size_t size, enum dma_data_direction dir, unsigned long attrs) 835 { 836 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 837 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir); 838 __iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs); 839 } 840 841 /* 842 * Prepare a successfully-mapped scatterlist to give back to the caller. 843 * 844 * At this point the segments are already laid out by iommu_dma_map_sg() to 845 * avoid individually crossing any boundaries, so we merely need to check a 846 * segment's start address to avoid concatenating across one. 847 */ 848 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 849 dma_addr_t dma_addr) 850 { 851 struct scatterlist *s, *cur = sg; 852 unsigned long seg_mask = dma_get_seg_boundary(dev); 853 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 854 int i, count = 0; 855 856 for_each_sg(sg, s, nents, i) { 857 /* Restore this segment's original unaligned fields first */ 858 unsigned int s_iova_off = sg_dma_address(s); 859 unsigned int s_length = sg_dma_len(s); 860 unsigned int s_iova_len = s->length; 861 862 s->offset += s_iova_off; 863 s->length = s_length; 864 sg_dma_address(s) = DMA_MAPPING_ERROR; 865 sg_dma_len(s) = 0; 866 867 /* 868 * Now fill in the real DMA data. If... 869 * - there is a valid output segment to append to 870 * - and this segment starts on an IOVA page boundary 871 * - but doesn't fall at a segment boundary 872 * - and wouldn't make the resulting output segment too long 873 */ 874 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 875 (max_len - cur_len >= s_length)) { 876 /* ...then concatenate it with the previous one */ 877 cur_len += s_length; 878 } else { 879 /* Otherwise start the next output segment */ 880 if (i > 0) 881 cur = sg_next(cur); 882 cur_len = s_length; 883 count++; 884 885 sg_dma_address(cur) = dma_addr + s_iova_off; 886 } 887 888 sg_dma_len(cur) = cur_len; 889 dma_addr += s_iova_len; 890 891 if (s_length + s_iova_off < s_iova_len) 892 cur_len = 0; 893 } 894 return count; 895 } 896 897 /* 898 * If mapping failed, then just restore the original list, 899 * but making sure the DMA fields are invalidated. 900 */ 901 static void __invalidate_sg(struct scatterlist *sg, int nents) 902 { 903 struct scatterlist *s; 904 int i; 905 906 for_each_sg(sg, s, nents, i) { 907 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 908 s->offset += sg_dma_address(s); 909 if (sg_dma_len(s)) 910 s->length = sg_dma_len(s); 911 sg_dma_address(s) = DMA_MAPPING_ERROR; 912 sg_dma_len(s) = 0; 913 } 914 } 915 916 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 917 int nents, enum dma_data_direction dir, unsigned long attrs) 918 { 919 struct scatterlist *s; 920 int i; 921 922 for_each_sg(sg, s, nents, i) 923 __iommu_dma_unmap_swiotlb(dev, sg_dma_address(s), 924 sg_dma_len(s), dir, attrs); 925 } 926 927 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 928 int nents, enum dma_data_direction dir, unsigned long attrs) 929 { 930 struct scatterlist *s; 931 int i; 932 933 for_each_sg(sg, s, nents, i) { 934 sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s), 935 s->length, dma_get_mask(dev), 936 dev_is_dma_coherent(dev), dir, attrs); 937 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 938 goto out_unmap; 939 sg_dma_len(s) = s->length; 940 } 941 942 return nents; 943 944 out_unmap: 945 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 946 return 0; 947 } 948 949 /* 950 * The DMA API client is passing in a scatterlist which could describe 951 * any old buffer layout, but the IOMMU API requires everything to be 952 * aligned to IOMMU pages. Hence the need for this complicated bit of 953 * impedance-matching, to be able to hand off a suitably-aligned list, 954 * but still preserve the original offsets and sizes for the caller. 955 */ 956 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 957 int nents, enum dma_data_direction dir, unsigned long attrs) 958 { 959 struct iommu_domain *domain = iommu_get_dma_domain(dev); 960 struct iommu_dma_cookie *cookie = domain->iova_cookie; 961 struct iova_domain *iovad = &cookie->iovad; 962 struct scatterlist *s, *prev = NULL; 963 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 964 dma_addr_t iova; 965 size_t iova_len = 0; 966 unsigned long mask = dma_get_seg_boundary(dev); 967 int i; 968 969 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 970 iommu_deferred_attach(dev, domain)) 971 return 0; 972 973 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 974 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 975 976 if (dev_is_untrusted(dev)) 977 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 978 979 /* 980 * Work out how much IOVA space we need, and align the segments to 981 * IOVA granules for the IOMMU driver to handle. With some clever 982 * trickery we can modify the list in-place, but reversibly, by 983 * stashing the unaligned parts in the as-yet-unused DMA fields. 984 */ 985 for_each_sg(sg, s, nents, i) { 986 size_t s_iova_off = iova_offset(iovad, s->offset); 987 size_t s_length = s->length; 988 size_t pad_len = (mask - iova_len + 1) & mask; 989 990 sg_dma_address(s) = s_iova_off; 991 sg_dma_len(s) = s_length; 992 s->offset -= s_iova_off; 993 s_length = iova_align(iovad, s_length + s_iova_off); 994 s->length = s_length; 995 996 /* 997 * Due to the alignment of our single IOVA allocation, we can 998 * depend on these assumptions about the segment boundary mask: 999 * - If mask size >= IOVA size, then the IOVA range cannot 1000 * possibly fall across a boundary, so we don't care. 1001 * - If mask size < IOVA size, then the IOVA range must start 1002 * exactly on a boundary, therefore we can lay things out 1003 * based purely on segment lengths without needing to know 1004 * the actual addresses beforehand. 1005 * - The mask must be a power of 2, so pad_len == 0 if 1006 * iova_len == 0, thus we cannot dereference prev the first 1007 * time through here (i.e. before it has a meaningful value). 1008 */ 1009 if (pad_len && pad_len < s_length - 1) { 1010 prev->length += pad_len; 1011 iova_len += pad_len; 1012 } 1013 1014 iova_len += s_length; 1015 prev = s; 1016 } 1017 1018 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1019 if (!iova) 1020 goto out_restore_sg; 1021 1022 /* 1023 * We'll leave any physical concatenation to the IOMMU driver's 1024 * implementation - it knows better than we do. 1025 */ 1026 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len) 1027 goto out_free_iova; 1028 1029 return __finalise_sg(dev, sg, nents, iova); 1030 1031 out_free_iova: 1032 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1033 out_restore_sg: 1034 __invalidate_sg(sg, nents); 1035 return 0; 1036 } 1037 1038 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1039 int nents, enum dma_data_direction dir, unsigned long attrs) 1040 { 1041 dma_addr_t start, end; 1042 struct scatterlist *tmp; 1043 int i; 1044 1045 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1046 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1047 1048 if (dev_is_untrusted(dev)) { 1049 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1050 return; 1051 } 1052 1053 /* 1054 * The scatterlist segments are mapped into a single 1055 * contiguous IOVA allocation, so this is incredibly easy. 1056 */ 1057 start = sg_dma_address(sg); 1058 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 1059 if (sg_dma_len(tmp) == 0) 1060 break; 1061 sg = tmp; 1062 } 1063 end = sg_dma_address(sg) + sg_dma_len(sg); 1064 __iommu_dma_unmap(dev, start, end - start); 1065 } 1066 1067 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1068 size_t size, enum dma_data_direction dir, unsigned long attrs) 1069 { 1070 return __iommu_dma_map(dev, phys, size, 1071 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1072 dma_get_mask(dev)); 1073 } 1074 1075 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1076 size_t size, enum dma_data_direction dir, unsigned long attrs) 1077 { 1078 __iommu_dma_unmap(dev, handle, size); 1079 } 1080 1081 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1082 { 1083 size_t alloc_size = PAGE_ALIGN(size); 1084 int count = alloc_size >> PAGE_SHIFT; 1085 struct page *page = NULL, **pages = NULL; 1086 1087 /* Non-coherent atomic allocation? Easy */ 1088 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1089 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1090 return; 1091 1092 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1093 /* 1094 * If it the address is remapped, then it's either non-coherent 1095 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1096 */ 1097 pages = dma_common_find_pages(cpu_addr); 1098 if (!pages) 1099 page = vmalloc_to_page(cpu_addr); 1100 dma_common_free_remap(cpu_addr, alloc_size); 1101 } else { 1102 /* Lowmem means a coherent atomic or CMA allocation */ 1103 page = virt_to_page(cpu_addr); 1104 } 1105 1106 if (pages) 1107 __iommu_dma_free_pages(pages, count); 1108 if (page) 1109 dma_free_contiguous(dev, page, alloc_size); 1110 } 1111 1112 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1113 dma_addr_t handle, unsigned long attrs) 1114 { 1115 __iommu_dma_unmap(dev, handle, size); 1116 __iommu_dma_free(dev, size, cpu_addr); 1117 } 1118 1119 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1120 struct page **pagep, gfp_t gfp, unsigned long attrs) 1121 { 1122 bool coherent = dev_is_dma_coherent(dev); 1123 size_t alloc_size = PAGE_ALIGN(size); 1124 int node = dev_to_node(dev); 1125 struct page *page = NULL; 1126 void *cpu_addr; 1127 1128 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1129 if (!page) 1130 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1131 if (!page) 1132 return NULL; 1133 1134 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) { 1135 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1136 1137 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1138 prot, __builtin_return_address(0)); 1139 if (!cpu_addr) 1140 goto out_free_pages; 1141 1142 if (!coherent) 1143 arch_dma_prep_coherent(page, size); 1144 } else { 1145 cpu_addr = page_address(page); 1146 } 1147 1148 *pagep = page; 1149 memset(cpu_addr, 0, alloc_size); 1150 return cpu_addr; 1151 out_free_pages: 1152 dma_free_contiguous(dev, page, alloc_size); 1153 return NULL; 1154 } 1155 1156 static void *iommu_dma_alloc(struct device *dev, size_t size, 1157 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1158 { 1159 bool coherent = dev_is_dma_coherent(dev); 1160 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1161 struct page *page = NULL; 1162 void *cpu_addr; 1163 1164 gfp |= __GFP_ZERO; 1165 1166 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) && 1167 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1168 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1169 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1170 } 1171 1172 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1173 !gfpflags_allow_blocking(gfp) && !coherent) 1174 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1175 gfp, NULL); 1176 else 1177 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1178 if (!cpu_addr) 1179 return NULL; 1180 1181 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1182 dev->coherent_dma_mask); 1183 if (*handle == DMA_MAPPING_ERROR) { 1184 __iommu_dma_free(dev, size, cpu_addr); 1185 return NULL; 1186 } 1187 1188 return cpu_addr; 1189 } 1190 1191 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1192 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1193 unsigned long attrs) 1194 { 1195 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1196 unsigned long pfn, off = vma->vm_pgoff; 1197 int ret; 1198 1199 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1200 1201 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1202 return ret; 1203 1204 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1205 return -ENXIO; 1206 1207 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1208 struct page **pages = dma_common_find_pages(cpu_addr); 1209 1210 if (pages) 1211 return vm_map_pages(vma, pages, nr_pages); 1212 pfn = vmalloc_to_pfn(cpu_addr); 1213 } else { 1214 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1215 } 1216 1217 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1218 vma->vm_end - vma->vm_start, 1219 vma->vm_page_prot); 1220 } 1221 1222 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1223 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1224 unsigned long attrs) 1225 { 1226 struct page *page; 1227 int ret; 1228 1229 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1230 struct page **pages = dma_common_find_pages(cpu_addr); 1231 1232 if (pages) { 1233 return sg_alloc_table_from_pages(sgt, pages, 1234 PAGE_ALIGN(size) >> PAGE_SHIFT, 1235 0, size, GFP_KERNEL); 1236 } 1237 1238 page = vmalloc_to_page(cpu_addr); 1239 } else { 1240 page = virt_to_page(cpu_addr); 1241 } 1242 1243 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1244 if (!ret) 1245 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1246 return ret; 1247 } 1248 1249 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1250 { 1251 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1252 1253 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1254 } 1255 1256 static const struct dma_map_ops iommu_dma_ops = { 1257 .alloc = iommu_dma_alloc, 1258 .free = iommu_dma_free, 1259 .alloc_pages = dma_common_alloc_pages, 1260 .free_pages = dma_common_free_pages, 1261 .mmap = iommu_dma_mmap, 1262 .get_sgtable = iommu_dma_get_sgtable, 1263 .map_page = iommu_dma_map_page, 1264 .unmap_page = iommu_dma_unmap_page, 1265 .map_sg = iommu_dma_map_sg, 1266 .unmap_sg = iommu_dma_unmap_sg, 1267 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1268 .sync_single_for_device = iommu_dma_sync_single_for_device, 1269 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1270 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1271 .map_resource = iommu_dma_map_resource, 1272 .unmap_resource = iommu_dma_unmap_resource, 1273 .get_merge_boundary = iommu_dma_get_merge_boundary, 1274 }; 1275 1276 /* 1277 * The IOMMU core code allocates the default DMA domain, which the underlying 1278 * IOMMU driver needs to support via the dma-iommu layer. 1279 */ 1280 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size) 1281 { 1282 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1283 1284 if (!domain) 1285 goto out_err; 1286 1287 /* 1288 * The IOMMU core code allocates the default DMA domain, which the 1289 * underlying IOMMU driver needs to support via the dma-iommu layer. 1290 */ 1291 if (domain->type == IOMMU_DOMAIN_DMA) { 1292 if (iommu_dma_init_domain(domain, dma_base, size, dev)) 1293 goto out_err; 1294 dev->dma_ops = &iommu_dma_ops; 1295 } 1296 1297 return; 1298 out_err: 1299 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1300 dev_name(dev)); 1301 } 1302 1303 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1304 phys_addr_t msi_addr, struct iommu_domain *domain) 1305 { 1306 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1307 struct iommu_dma_msi_page *msi_page; 1308 dma_addr_t iova; 1309 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1310 size_t size = cookie_msi_granule(cookie); 1311 1312 msi_addr &= ~(phys_addr_t)(size - 1); 1313 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1314 if (msi_page->phys == msi_addr) 1315 return msi_page; 1316 1317 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1318 if (!msi_page) 1319 return NULL; 1320 1321 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1322 if (!iova) 1323 goto out_free_page; 1324 1325 if (iommu_map(domain, iova, msi_addr, size, prot)) 1326 goto out_free_iova; 1327 1328 INIT_LIST_HEAD(&msi_page->list); 1329 msi_page->phys = msi_addr; 1330 msi_page->iova = iova; 1331 list_add(&msi_page->list, &cookie->msi_page_list); 1332 return msi_page; 1333 1334 out_free_iova: 1335 iommu_dma_free_iova(cookie, iova, size, NULL); 1336 out_free_page: 1337 kfree(msi_page); 1338 return NULL; 1339 } 1340 1341 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1342 { 1343 struct device *dev = msi_desc_to_dev(desc); 1344 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1345 struct iommu_dma_msi_page *msi_page; 1346 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1347 1348 if (!domain || !domain->iova_cookie) { 1349 desc->iommu_cookie = NULL; 1350 return 0; 1351 } 1352 1353 /* 1354 * In fact the whole prepare operation should already be serialised by 1355 * irq_domain_mutex further up the callchain, but that's pretty subtle 1356 * on its own, so consider this locking as failsafe documentation... 1357 */ 1358 mutex_lock(&msi_prepare_lock); 1359 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1360 mutex_unlock(&msi_prepare_lock); 1361 1362 msi_desc_set_iommu_cookie(desc, msi_page); 1363 1364 if (!msi_page) 1365 return -ENOMEM; 1366 return 0; 1367 } 1368 1369 void iommu_dma_compose_msi_msg(struct msi_desc *desc, 1370 struct msi_msg *msg) 1371 { 1372 struct device *dev = msi_desc_to_dev(desc); 1373 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1374 const struct iommu_dma_msi_page *msi_page; 1375 1376 msi_page = msi_desc_get_iommu_cookie(desc); 1377 1378 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1379 return; 1380 1381 msg->address_hi = upper_32_bits(msi_page->iova); 1382 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1383 msg->address_lo += lower_32_bits(msi_page->iova); 1384 } 1385 1386 static int iommu_dma_init(void) 1387 { 1388 if (is_kdump_kernel()) 1389 static_branch_enable(&iommu_deferred_attach_enabled); 1390 1391 return iova_cache_get(); 1392 } 1393 arch_initcall(iommu_dma_init); 1394