xref: /linux/drivers/iommu/dma-iommu.c (revision 6c363eafc4d637ac4bd83d4a7dd06dd3cfbe7c5f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
28 
29 struct iommu_dma_msi_page {
30 	struct list_head	list;
31 	dma_addr_t		iova;
32 	phys_addr_t		phys;
33 };
34 
35 enum iommu_dma_cookie_type {
36 	IOMMU_DMA_IOVA_COOKIE,
37 	IOMMU_DMA_MSI_COOKIE,
38 };
39 
40 struct iommu_dma_cookie {
41 	enum iommu_dma_cookie_type	type;
42 	union {
43 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 		struct iova_domain	iovad;
45 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 		dma_addr_t		msi_iova;
47 	};
48 	struct list_head		msi_page_list;
49 
50 	/* Domain for flush queue callback; NULL if flush queue not in use */
51 	struct iommu_domain		*fq_domain;
52 };
53 
54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
55 
56 void iommu_dma_free_cpu_cached_iovas(unsigned int cpu,
57 		struct iommu_domain *domain)
58 {
59 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
60 	struct iova_domain *iovad = &cookie->iovad;
61 
62 	free_cpu_cached_iovas(cpu, iovad);
63 }
64 
65 static void iommu_dma_entry_dtor(unsigned long data)
66 {
67 	struct page *freelist = (struct page *)data;
68 
69 	while (freelist) {
70 		unsigned long p = (unsigned long)page_address(freelist);
71 
72 		freelist = freelist->freelist;
73 		free_page(p);
74 	}
75 }
76 
77 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
78 {
79 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
80 		return cookie->iovad.granule;
81 	return PAGE_SIZE;
82 }
83 
84 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
85 {
86 	struct iommu_dma_cookie *cookie;
87 
88 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
89 	if (cookie) {
90 		INIT_LIST_HEAD(&cookie->msi_page_list);
91 		cookie->type = type;
92 	}
93 	return cookie;
94 }
95 
96 /**
97  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
98  * @domain: IOMMU domain to prepare for DMA-API usage
99  *
100  * IOMMU drivers should normally call this from their domain_alloc
101  * callback when domain->type == IOMMU_DOMAIN_DMA.
102  */
103 int iommu_get_dma_cookie(struct iommu_domain *domain)
104 {
105 	if (domain->iova_cookie)
106 		return -EEXIST;
107 
108 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
109 	if (!domain->iova_cookie)
110 		return -ENOMEM;
111 
112 	return 0;
113 }
114 EXPORT_SYMBOL(iommu_get_dma_cookie);
115 
116 /**
117  * iommu_get_msi_cookie - Acquire just MSI remapping resources
118  * @domain: IOMMU domain to prepare
119  * @base: Start address of IOVA region for MSI mappings
120  *
121  * Users who manage their own IOVA allocation and do not want DMA API support,
122  * but would still like to take advantage of automatic MSI remapping, can use
123  * this to initialise their own domain appropriately. Users should reserve a
124  * contiguous IOVA region, starting at @base, large enough to accommodate the
125  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
126  * used by the devices attached to @domain.
127  */
128 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
129 {
130 	struct iommu_dma_cookie *cookie;
131 
132 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
133 		return -EINVAL;
134 
135 	if (domain->iova_cookie)
136 		return -EEXIST;
137 
138 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
139 	if (!cookie)
140 		return -ENOMEM;
141 
142 	cookie->msi_iova = base;
143 	domain->iova_cookie = cookie;
144 	return 0;
145 }
146 EXPORT_SYMBOL(iommu_get_msi_cookie);
147 
148 /**
149  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
150  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
151  *          iommu_get_msi_cookie()
152  *
153  * IOMMU drivers should normally call this from their domain_free callback.
154  */
155 void iommu_put_dma_cookie(struct iommu_domain *domain)
156 {
157 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
158 	struct iommu_dma_msi_page *msi, *tmp;
159 
160 	if (!cookie)
161 		return;
162 
163 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
164 		put_iova_domain(&cookie->iovad);
165 
166 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
167 		list_del(&msi->list);
168 		kfree(msi);
169 	}
170 	kfree(cookie);
171 	domain->iova_cookie = NULL;
172 }
173 EXPORT_SYMBOL(iommu_put_dma_cookie);
174 
175 /**
176  * iommu_dma_get_resv_regions - Reserved region driver helper
177  * @dev: Device from iommu_get_resv_regions()
178  * @list: Reserved region list from iommu_get_resv_regions()
179  *
180  * IOMMU drivers can use this to implement their .get_resv_regions callback
181  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
182  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
183  * reservation.
184  */
185 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
186 {
187 
188 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
189 		iort_iommu_msi_get_resv_regions(dev, list);
190 
191 }
192 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
193 
194 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
195 		phys_addr_t start, phys_addr_t end)
196 {
197 	struct iova_domain *iovad = &cookie->iovad;
198 	struct iommu_dma_msi_page *msi_page;
199 	int i, num_pages;
200 
201 	start -= iova_offset(iovad, start);
202 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
203 
204 	for (i = 0; i < num_pages; i++) {
205 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
206 		if (!msi_page)
207 			return -ENOMEM;
208 
209 		msi_page->phys = start;
210 		msi_page->iova = start;
211 		INIT_LIST_HEAD(&msi_page->list);
212 		list_add(&msi_page->list, &cookie->msi_page_list);
213 		start += iovad->granule;
214 	}
215 
216 	return 0;
217 }
218 
219 static int iova_reserve_pci_windows(struct pci_dev *dev,
220 		struct iova_domain *iovad)
221 {
222 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
223 	struct resource_entry *window;
224 	unsigned long lo, hi;
225 	phys_addr_t start = 0, end;
226 
227 	resource_list_for_each_entry(window, &bridge->windows) {
228 		if (resource_type(window->res) != IORESOURCE_MEM)
229 			continue;
230 
231 		lo = iova_pfn(iovad, window->res->start - window->offset);
232 		hi = iova_pfn(iovad, window->res->end - window->offset);
233 		reserve_iova(iovad, lo, hi);
234 	}
235 
236 	/* Get reserved DMA windows from host bridge */
237 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
238 		end = window->res->start - window->offset;
239 resv_iova:
240 		if (end > start) {
241 			lo = iova_pfn(iovad, start);
242 			hi = iova_pfn(iovad, end);
243 			reserve_iova(iovad, lo, hi);
244 		} else {
245 			/* dma_ranges list should be sorted */
246 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
247 			return -EINVAL;
248 		}
249 
250 		start = window->res->end - window->offset + 1;
251 		/* If window is last entry */
252 		if (window->node.next == &bridge->dma_ranges &&
253 		    end != ~(phys_addr_t)0) {
254 			end = ~(phys_addr_t)0;
255 			goto resv_iova;
256 		}
257 	}
258 
259 	return 0;
260 }
261 
262 static int iova_reserve_iommu_regions(struct device *dev,
263 		struct iommu_domain *domain)
264 {
265 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
266 	struct iova_domain *iovad = &cookie->iovad;
267 	struct iommu_resv_region *region;
268 	LIST_HEAD(resv_regions);
269 	int ret = 0;
270 
271 	if (dev_is_pci(dev)) {
272 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
273 		if (ret)
274 			return ret;
275 	}
276 
277 	iommu_get_resv_regions(dev, &resv_regions);
278 	list_for_each_entry(region, &resv_regions, list) {
279 		unsigned long lo, hi;
280 
281 		/* We ARE the software that manages these! */
282 		if (region->type == IOMMU_RESV_SW_MSI)
283 			continue;
284 
285 		lo = iova_pfn(iovad, region->start);
286 		hi = iova_pfn(iovad, region->start + region->length - 1);
287 		reserve_iova(iovad, lo, hi);
288 
289 		if (region->type == IOMMU_RESV_MSI)
290 			ret = cookie_init_hw_msi_region(cookie, region->start,
291 					region->start + region->length);
292 		if (ret)
293 			break;
294 	}
295 	iommu_put_resv_regions(dev, &resv_regions);
296 
297 	return ret;
298 }
299 
300 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
301 {
302 	struct iommu_dma_cookie *cookie;
303 	struct iommu_domain *domain;
304 
305 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
306 	domain = cookie->fq_domain;
307 	/*
308 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
309 	 * implies that ops->flush_iotlb_all must be non-NULL.
310 	 */
311 	domain->ops->flush_iotlb_all(domain);
312 }
313 
314 static bool dev_is_untrusted(struct device *dev)
315 {
316 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
317 }
318 
319 /**
320  * iommu_dma_init_domain - Initialise a DMA mapping domain
321  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
322  * @base: IOVA at which the mappable address space starts
323  * @size: Size of IOVA space
324  * @dev: Device the domain is being initialised for
325  *
326  * @base and @size should be exact multiples of IOMMU page granularity to
327  * avoid rounding surprises. If necessary, we reserve the page at address 0
328  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
329  * any change which could make prior IOVAs invalid will fail.
330  */
331 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
332 		u64 size, struct device *dev)
333 {
334 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
335 	unsigned long order, base_pfn;
336 	struct iova_domain *iovad;
337 	int attr;
338 
339 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
340 		return -EINVAL;
341 
342 	iovad = &cookie->iovad;
343 
344 	/* Use the smallest supported page size for IOVA granularity */
345 	order = __ffs(domain->pgsize_bitmap);
346 	base_pfn = max_t(unsigned long, 1, base >> order);
347 
348 	/* Check the domain allows at least some access to the device... */
349 	if (domain->geometry.force_aperture) {
350 		if (base > domain->geometry.aperture_end ||
351 		    base + size <= domain->geometry.aperture_start) {
352 			pr_warn("specified DMA range outside IOMMU capability\n");
353 			return -EFAULT;
354 		}
355 		/* ...then finally give it a kicking to make sure it fits */
356 		base_pfn = max_t(unsigned long, base_pfn,
357 				domain->geometry.aperture_start >> order);
358 	}
359 
360 	/* start_pfn is always nonzero for an already-initialised domain */
361 	if (iovad->start_pfn) {
362 		if (1UL << order != iovad->granule ||
363 		    base_pfn != iovad->start_pfn) {
364 			pr_warn("Incompatible range for DMA domain\n");
365 			return -EFAULT;
366 		}
367 
368 		return 0;
369 	}
370 
371 	init_iova_domain(iovad, 1UL << order, base_pfn);
372 
373 	if (!cookie->fq_domain && (!dev || !dev_is_untrusted(dev)) &&
374 	    !iommu_domain_get_attr(domain, DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) &&
375 	    attr) {
376 		if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
377 					  iommu_dma_entry_dtor))
378 			pr_warn("iova flush queue initialization failed\n");
379 		else
380 			cookie->fq_domain = domain;
381 	}
382 
383 	if (!dev)
384 		return 0;
385 
386 	return iova_reserve_iommu_regions(dev, domain);
387 }
388 
389 /**
390  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
391  *                    page flags.
392  * @dir: Direction of DMA transfer
393  * @coherent: Is the DMA master cache-coherent?
394  * @attrs: DMA attributes for the mapping
395  *
396  * Return: corresponding IOMMU API page protection flags
397  */
398 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
399 		     unsigned long attrs)
400 {
401 	int prot = coherent ? IOMMU_CACHE : 0;
402 
403 	if (attrs & DMA_ATTR_PRIVILEGED)
404 		prot |= IOMMU_PRIV;
405 
406 	switch (dir) {
407 	case DMA_BIDIRECTIONAL:
408 		return prot | IOMMU_READ | IOMMU_WRITE;
409 	case DMA_TO_DEVICE:
410 		return prot | IOMMU_READ;
411 	case DMA_FROM_DEVICE:
412 		return prot | IOMMU_WRITE;
413 	default:
414 		return 0;
415 	}
416 }
417 
418 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
419 		size_t size, u64 dma_limit, struct device *dev)
420 {
421 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
422 	struct iova_domain *iovad = &cookie->iovad;
423 	unsigned long shift, iova_len, iova = 0;
424 
425 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
426 		cookie->msi_iova += size;
427 		return cookie->msi_iova - size;
428 	}
429 
430 	shift = iova_shift(iovad);
431 	iova_len = size >> shift;
432 	/*
433 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
434 	 * will come back to bite us badly, so we have to waste a bit of space
435 	 * rounding up anything cacheable to make sure that can't happen. The
436 	 * order of the unadjusted size will still match upon freeing.
437 	 */
438 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
439 		iova_len = roundup_pow_of_two(iova_len);
440 
441 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
442 
443 	if (domain->geometry.force_aperture)
444 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
445 
446 	/* Try to get PCI devices a SAC address */
447 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
448 		iova = alloc_iova_fast(iovad, iova_len,
449 				       DMA_BIT_MASK(32) >> shift, false);
450 
451 	if (!iova)
452 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
453 				       true);
454 
455 	return (dma_addr_t)iova << shift;
456 }
457 
458 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
459 		dma_addr_t iova, size_t size, struct page *freelist)
460 {
461 	struct iova_domain *iovad = &cookie->iovad;
462 
463 	/* The MSI case is only ever cleaning up its most recent allocation */
464 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
465 		cookie->msi_iova -= size;
466 	else if (cookie->fq_domain)	/* non-strict mode */
467 		queue_iova(iovad, iova_pfn(iovad, iova),
468 				size >> iova_shift(iovad),
469 				(unsigned long)freelist);
470 	else
471 		free_iova_fast(iovad, iova_pfn(iovad, iova),
472 				size >> iova_shift(iovad));
473 }
474 
475 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
476 		size_t size)
477 {
478 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
479 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
480 	struct iova_domain *iovad = &cookie->iovad;
481 	size_t iova_off = iova_offset(iovad, dma_addr);
482 	struct iommu_iotlb_gather iotlb_gather;
483 	size_t unmapped;
484 
485 	dma_addr -= iova_off;
486 	size = iova_align(iovad, size + iova_off);
487 	iommu_iotlb_gather_init(&iotlb_gather);
488 
489 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
490 	WARN_ON(unmapped != size);
491 
492 	if (!cookie->fq_domain)
493 		iommu_iotlb_sync(domain, &iotlb_gather);
494 	iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist);
495 }
496 
497 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
498 		size_t size, enum dma_data_direction dir,
499 		unsigned long attrs)
500 {
501 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
502 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
503 	struct iova_domain *iovad = &cookie->iovad;
504 	phys_addr_t phys;
505 
506 	phys = iommu_iova_to_phys(domain, dma_addr);
507 	if (WARN_ON(!phys))
508 		return;
509 
510 	__iommu_dma_unmap(dev, dma_addr, size);
511 
512 	if (unlikely(is_swiotlb_buffer(phys)))
513 		swiotlb_tbl_unmap_single(dev, phys, size,
514 				iova_align(iovad, size), dir, attrs);
515 }
516 
517 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
518 		size_t size, int prot, u64 dma_mask)
519 {
520 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
521 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
522 	struct iova_domain *iovad = &cookie->iovad;
523 	size_t iova_off = iova_offset(iovad, phys);
524 	dma_addr_t iova;
525 
526 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
527 	    iommu_deferred_attach(dev, domain))
528 		return DMA_MAPPING_ERROR;
529 
530 	size = iova_align(iovad, size + iova_off);
531 
532 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
533 	if (!iova)
534 		return DMA_MAPPING_ERROR;
535 
536 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
537 		iommu_dma_free_iova(cookie, iova, size, NULL);
538 		return DMA_MAPPING_ERROR;
539 	}
540 	return iova + iova_off;
541 }
542 
543 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
544 		size_t org_size, dma_addr_t dma_mask, bool coherent,
545 		enum dma_data_direction dir, unsigned long attrs)
546 {
547 	int prot = dma_info_to_prot(dir, coherent, attrs);
548 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
549 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
550 	struct iova_domain *iovad = &cookie->iovad;
551 	size_t aligned_size = org_size;
552 	void *padding_start;
553 	size_t padding_size;
554 	dma_addr_t iova;
555 
556 	/*
557 	 * If both the physical buffer start address and size are
558 	 * page aligned, we don't need to use a bounce page.
559 	 */
560 	if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
561 	    iova_offset(iovad, phys | org_size)) {
562 		aligned_size = iova_align(iovad, org_size);
563 		phys = swiotlb_tbl_map_single(dev, phys, org_size,
564 					      aligned_size, dir, attrs);
565 
566 		if (phys == DMA_MAPPING_ERROR)
567 			return DMA_MAPPING_ERROR;
568 
569 		/* Cleanup the padding area. */
570 		padding_start = phys_to_virt(phys);
571 		padding_size = aligned_size;
572 
573 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
574 		    (dir == DMA_TO_DEVICE ||
575 		     dir == DMA_BIDIRECTIONAL)) {
576 			padding_start += org_size;
577 			padding_size -= org_size;
578 		}
579 
580 		memset(padding_start, 0, padding_size);
581 	}
582 
583 	iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
584 	if ((iova == DMA_MAPPING_ERROR) && is_swiotlb_buffer(phys))
585 		swiotlb_tbl_unmap_single(dev, phys, org_size,
586 				aligned_size, dir, attrs);
587 
588 	return iova;
589 }
590 
591 static void __iommu_dma_free_pages(struct page **pages, int count)
592 {
593 	while (count--)
594 		__free_page(pages[count]);
595 	kvfree(pages);
596 }
597 
598 static struct page **__iommu_dma_alloc_pages(struct device *dev,
599 		unsigned int count, unsigned long order_mask, gfp_t gfp)
600 {
601 	struct page **pages;
602 	unsigned int i = 0, nid = dev_to_node(dev);
603 
604 	order_mask &= (2U << MAX_ORDER) - 1;
605 	if (!order_mask)
606 		return NULL;
607 
608 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
609 	if (!pages)
610 		return NULL;
611 
612 	/* IOMMU can map any pages, so himem can also be used here */
613 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
614 
615 	/* It makes no sense to muck about with huge pages */
616 	gfp &= ~__GFP_COMP;
617 
618 	while (count) {
619 		struct page *page = NULL;
620 		unsigned int order_size;
621 
622 		/*
623 		 * Higher-order allocations are a convenience rather
624 		 * than a necessity, hence using __GFP_NORETRY until
625 		 * falling back to minimum-order allocations.
626 		 */
627 		for (order_mask &= (2U << __fls(count)) - 1;
628 		     order_mask; order_mask &= ~order_size) {
629 			unsigned int order = __fls(order_mask);
630 			gfp_t alloc_flags = gfp;
631 
632 			order_size = 1U << order;
633 			if (order_mask > order_size)
634 				alloc_flags |= __GFP_NORETRY;
635 			page = alloc_pages_node(nid, alloc_flags, order);
636 			if (!page)
637 				continue;
638 			if (order)
639 				split_page(page, order);
640 			break;
641 		}
642 		if (!page) {
643 			__iommu_dma_free_pages(pages, i);
644 			return NULL;
645 		}
646 		count -= order_size;
647 		while (order_size--)
648 			pages[i++] = page++;
649 	}
650 	return pages;
651 }
652 
653 /**
654  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
655  * @dev: Device to allocate memory for. Must be a real device
656  *	 attached to an iommu_dma_domain
657  * @size: Size of buffer in bytes
658  * @dma_handle: Out argument for allocated DMA handle
659  * @gfp: Allocation flags
660  * @prot: pgprot_t to use for the remapped mapping
661  * @attrs: DMA attributes for this allocation
662  *
663  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
664  * but an IOMMU which supports smaller pages might not map the whole thing.
665  *
666  * Return: Mapped virtual address, or NULL on failure.
667  */
668 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
669 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
670 		unsigned long attrs)
671 {
672 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
673 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
674 	struct iova_domain *iovad = &cookie->iovad;
675 	bool coherent = dev_is_dma_coherent(dev);
676 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
677 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
678 	struct page **pages;
679 	struct sg_table sgt;
680 	dma_addr_t iova;
681 	void *vaddr;
682 
683 	*dma_handle = DMA_MAPPING_ERROR;
684 
685 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
686 	    iommu_deferred_attach(dev, domain))
687 		return NULL;
688 
689 	min_size = alloc_sizes & -alloc_sizes;
690 	if (min_size < PAGE_SIZE) {
691 		min_size = PAGE_SIZE;
692 		alloc_sizes |= PAGE_SIZE;
693 	} else {
694 		size = ALIGN(size, min_size);
695 	}
696 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
697 		alloc_sizes = min_size;
698 
699 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
700 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
701 					gfp);
702 	if (!pages)
703 		return NULL;
704 
705 	size = iova_align(iovad, size);
706 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
707 	if (!iova)
708 		goto out_free_pages;
709 
710 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
711 		goto out_free_iova;
712 
713 	if (!(ioprot & IOMMU_CACHE)) {
714 		struct scatterlist *sg;
715 		int i;
716 
717 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
718 			arch_dma_prep_coherent(sg_page(sg), sg->length);
719 	}
720 
721 	if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
722 			< size)
723 		goto out_free_sg;
724 
725 	vaddr = dma_common_pages_remap(pages, size, prot,
726 			__builtin_return_address(0));
727 	if (!vaddr)
728 		goto out_unmap;
729 
730 	*dma_handle = iova;
731 	sg_free_table(&sgt);
732 	return vaddr;
733 
734 out_unmap:
735 	__iommu_dma_unmap(dev, iova, size);
736 out_free_sg:
737 	sg_free_table(&sgt);
738 out_free_iova:
739 	iommu_dma_free_iova(cookie, iova, size, NULL);
740 out_free_pages:
741 	__iommu_dma_free_pages(pages, count);
742 	return NULL;
743 }
744 
745 static void iommu_dma_sync_single_for_cpu(struct device *dev,
746 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
747 {
748 	phys_addr_t phys;
749 
750 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
751 		return;
752 
753 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
754 	if (!dev_is_dma_coherent(dev))
755 		arch_sync_dma_for_cpu(phys, size, dir);
756 
757 	if (is_swiotlb_buffer(phys))
758 		swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_CPU);
759 }
760 
761 static void iommu_dma_sync_single_for_device(struct device *dev,
762 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
763 {
764 	phys_addr_t phys;
765 
766 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
767 		return;
768 
769 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
770 	if (is_swiotlb_buffer(phys))
771 		swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_DEVICE);
772 
773 	if (!dev_is_dma_coherent(dev))
774 		arch_sync_dma_for_device(phys, size, dir);
775 }
776 
777 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
778 		struct scatterlist *sgl, int nelems,
779 		enum dma_data_direction dir)
780 {
781 	struct scatterlist *sg;
782 	int i;
783 
784 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
785 		return;
786 
787 	for_each_sg(sgl, sg, nelems, i) {
788 		if (!dev_is_dma_coherent(dev))
789 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
790 
791 		if (is_swiotlb_buffer(sg_phys(sg)))
792 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
793 						dir, SYNC_FOR_CPU);
794 	}
795 }
796 
797 static void iommu_dma_sync_sg_for_device(struct device *dev,
798 		struct scatterlist *sgl, int nelems,
799 		enum dma_data_direction dir)
800 {
801 	struct scatterlist *sg;
802 	int i;
803 
804 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
805 		return;
806 
807 	for_each_sg(sgl, sg, nelems, i) {
808 		if (is_swiotlb_buffer(sg_phys(sg)))
809 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
810 						dir, SYNC_FOR_DEVICE);
811 
812 		if (!dev_is_dma_coherent(dev))
813 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
814 	}
815 }
816 
817 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
818 		unsigned long offset, size_t size, enum dma_data_direction dir,
819 		unsigned long attrs)
820 {
821 	phys_addr_t phys = page_to_phys(page) + offset;
822 	bool coherent = dev_is_dma_coherent(dev);
823 	dma_addr_t dma_handle;
824 
825 	dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
826 			coherent, dir, attrs);
827 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
828 	    dma_handle != DMA_MAPPING_ERROR)
829 		arch_sync_dma_for_device(phys, size, dir);
830 	return dma_handle;
831 }
832 
833 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
834 		size_t size, enum dma_data_direction dir, unsigned long attrs)
835 {
836 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
837 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
838 	__iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
839 }
840 
841 /*
842  * Prepare a successfully-mapped scatterlist to give back to the caller.
843  *
844  * At this point the segments are already laid out by iommu_dma_map_sg() to
845  * avoid individually crossing any boundaries, so we merely need to check a
846  * segment's start address to avoid concatenating across one.
847  */
848 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
849 		dma_addr_t dma_addr)
850 {
851 	struct scatterlist *s, *cur = sg;
852 	unsigned long seg_mask = dma_get_seg_boundary(dev);
853 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
854 	int i, count = 0;
855 
856 	for_each_sg(sg, s, nents, i) {
857 		/* Restore this segment's original unaligned fields first */
858 		unsigned int s_iova_off = sg_dma_address(s);
859 		unsigned int s_length = sg_dma_len(s);
860 		unsigned int s_iova_len = s->length;
861 
862 		s->offset += s_iova_off;
863 		s->length = s_length;
864 		sg_dma_address(s) = DMA_MAPPING_ERROR;
865 		sg_dma_len(s) = 0;
866 
867 		/*
868 		 * Now fill in the real DMA data. If...
869 		 * - there is a valid output segment to append to
870 		 * - and this segment starts on an IOVA page boundary
871 		 * - but doesn't fall at a segment boundary
872 		 * - and wouldn't make the resulting output segment too long
873 		 */
874 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
875 		    (max_len - cur_len >= s_length)) {
876 			/* ...then concatenate it with the previous one */
877 			cur_len += s_length;
878 		} else {
879 			/* Otherwise start the next output segment */
880 			if (i > 0)
881 				cur = sg_next(cur);
882 			cur_len = s_length;
883 			count++;
884 
885 			sg_dma_address(cur) = dma_addr + s_iova_off;
886 		}
887 
888 		sg_dma_len(cur) = cur_len;
889 		dma_addr += s_iova_len;
890 
891 		if (s_length + s_iova_off < s_iova_len)
892 			cur_len = 0;
893 	}
894 	return count;
895 }
896 
897 /*
898  * If mapping failed, then just restore the original list,
899  * but making sure the DMA fields are invalidated.
900  */
901 static void __invalidate_sg(struct scatterlist *sg, int nents)
902 {
903 	struct scatterlist *s;
904 	int i;
905 
906 	for_each_sg(sg, s, nents, i) {
907 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
908 			s->offset += sg_dma_address(s);
909 		if (sg_dma_len(s))
910 			s->length = sg_dma_len(s);
911 		sg_dma_address(s) = DMA_MAPPING_ERROR;
912 		sg_dma_len(s) = 0;
913 	}
914 }
915 
916 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
917 		int nents, enum dma_data_direction dir, unsigned long attrs)
918 {
919 	struct scatterlist *s;
920 	int i;
921 
922 	for_each_sg(sg, s, nents, i)
923 		__iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
924 				sg_dma_len(s), dir, attrs);
925 }
926 
927 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
928 		int nents, enum dma_data_direction dir, unsigned long attrs)
929 {
930 	struct scatterlist *s;
931 	int i;
932 
933 	for_each_sg(sg, s, nents, i) {
934 		sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
935 				s->length, dma_get_mask(dev),
936 				dev_is_dma_coherent(dev), dir, attrs);
937 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
938 			goto out_unmap;
939 		sg_dma_len(s) = s->length;
940 	}
941 
942 	return nents;
943 
944 out_unmap:
945 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
946 	return 0;
947 }
948 
949 /*
950  * The DMA API client is passing in a scatterlist which could describe
951  * any old buffer layout, but the IOMMU API requires everything to be
952  * aligned to IOMMU pages. Hence the need for this complicated bit of
953  * impedance-matching, to be able to hand off a suitably-aligned list,
954  * but still preserve the original offsets and sizes for the caller.
955  */
956 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
957 		int nents, enum dma_data_direction dir, unsigned long attrs)
958 {
959 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
960 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
961 	struct iova_domain *iovad = &cookie->iovad;
962 	struct scatterlist *s, *prev = NULL;
963 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
964 	dma_addr_t iova;
965 	size_t iova_len = 0;
966 	unsigned long mask = dma_get_seg_boundary(dev);
967 	int i;
968 
969 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
970 	    iommu_deferred_attach(dev, domain))
971 		return 0;
972 
973 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
974 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
975 
976 	if (dev_is_untrusted(dev))
977 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
978 
979 	/*
980 	 * Work out how much IOVA space we need, and align the segments to
981 	 * IOVA granules for the IOMMU driver to handle. With some clever
982 	 * trickery we can modify the list in-place, but reversibly, by
983 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
984 	 */
985 	for_each_sg(sg, s, nents, i) {
986 		size_t s_iova_off = iova_offset(iovad, s->offset);
987 		size_t s_length = s->length;
988 		size_t pad_len = (mask - iova_len + 1) & mask;
989 
990 		sg_dma_address(s) = s_iova_off;
991 		sg_dma_len(s) = s_length;
992 		s->offset -= s_iova_off;
993 		s_length = iova_align(iovad, s_length + s_iova_off);
994 		s->length = s_length;
995 
996 		/*
997 		 * Due to the alignment of our single IOVA allocation, we can
998 		 * depend on these assumptions about the segment boundary mask:
999 		 * - If mask size >= IOVA size, then the IOVA range cannot
1000 		 *   possibly fall across a boundary, so we don't care.
1001 		 * - If mask size < IOVA size, then the IOVA range must start
1002 		 *   exactly on a boundary, therefore we can lay things out
1003 		 *   based purely on segment lengths without needing to know
1004 		 *   the actual addresses beforehand.
1005 		 * - The mask must be a power of 2, so pad_len == 0 if
1006 		 *   iova_len == 0, thus we cannot dereference prev the first
1007 		 *   time through here (i.e. before it has a meaningful value).
1008 		 */
1009 		if (pad_len && pad_len < s_length - 1) {
1010 			prev->length += pad_len;
1011 			iova_len += pad_len;
1012 		}
1013 
1014 		iova_len += s_length;
1015 		prev = s;
1016 	}
1017 
1018 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1019 	if (!iova)
1020 		goto out_restore_sg;
1021 
1022 	/*
1023 	 * We'll leave any physical concatenation to the IOMMU driver's
1024 	 * implementation - it knows better than we do.
1025 	 */
1026 	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
1027 		goto out_free_iova;
1028 
1029 	return __finalise_sg(dev, sg, nents, iova);
1030 
1031 out_free_iova:
1032 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1033 out_restore_sg:
1034 	__invalidate_sg(sg, nents);
1035 	return 0;
1036 }
1037 
1038 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1039 		int nents, enum dma_data_direction dir, unsigned long attrs)
1040 {
1041 	dma_addr_t start, end;
1042 	struct scatterlist *tmp;
1043 	int i;
1044 
1045 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1046 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1047 
1048 	if (dev_is_untrusted(dev)) {
1049 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1050 		return;
1051 	}
1052 
1053 	/*
1054 	 * The scatterlist segments are mapped into a single
1055 	 * contiguous IOVA allocation, so this is incredibly easy.
1056 	 */
1057 	start = sg_dma_address(sg);
1058 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1059 		if (sg_dma_len(tmp) == 0)
1060 			break;
1061 		sg = tmp;
1062 	}
1063 	end = sg_dma_address(sg) + sg_dma_len(sg);
1064 	__iommu_dma_unmap(dev, start, end - start);
1065 }
1066 
1067 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1068 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1069 {
1070 	return __iommu_dma_map(dev, phys, size,
1071 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1072 			dma_get_mask(dev));
1073 }
1074 
1075 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1076 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1077 {
1078 	__iommu_dma_unmap(dev, handle, size);
1079 }
1080 
1081 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1082 {
1083 	size_t alloc_size = PAGE_ALIGN(size);
1084 	int count = alloc_size >> PAGE_SHIFT;
1085 	struct page *page = NULL, **pages = NULL;
1086 
1087 	/* Non-coherent atomic allocation? Easy */
1088 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1089 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1090 		return;
1091 
1092 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1093 		/*
1094 		 * If it the address is remapped, then it's either non-coherent
1095 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1096 		 */
1097 		pages = dma_common_find_pages(cpu_addr);
1098 		if (!pages)
1099 			page = vmalloc_to_page(cpu_addr);
1100 		dma_common_free_remap(cpu_addr, alloc_size);
1101 	} else {
1102 		/* Lowmem means a coherent atomic or CMA allocation */
1103 		page = virt_to_page(cpu_addr);
1104 	}
1105 
1106 	if (pages)
1107 		__iommu_dma_free_pages(pages, count);
1108 	if (page)
1109 		dma_free_contiguous(dev, page, alloc_size);
1110 }
1111 
1112 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1113 		dma_addr_t handle, unsigned long attrs)
1114 {
1115 	__iommu_dma_unmap(dev, handle, size);
1116 	__iommu_dma_free(dev, size, cpu_addr);
1117 }
1118 
1119 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1120 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1121 {
1122 	bool coherent = dev_is_dma_coherent(dev);
1123 	size_t alloc_size = PAGE_ALIGN(size);
1124 	int node = dev_to_node(dev);
1125 	struct page *page = NULL;
1126 	void *cpu_addr;
1127 
1128 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1129 	if (!page)
1130 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1131 	if (!page)
1132 		return NULL;
1133 
1134 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1135 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1136 
1137 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1138 				prot, __builtin_return_address(0));
1139 		if (!cpu_addr)
1140 			goto out_free_pages;
1141 
1142 		if (!coherent)
1143 			arch_dma_prep_coherent(page, size);
1144 	} else {
1145 		cpu_addr = page_address(page);
1146 	}
1147 
1148 	*pagep = page;
1149 	memset(cpu_addr, 0, alloc_size);
1150 	return cpu_addr;
1151 out_free_pages:
1152 	dma_free_contiguous(dev, page, alloc_size);
1153 	return NULL;
1154 }
1155 
1156 static void *iommu_dma_alloc(struct device *dev, size_t size,
1157 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1158 {
1159 	bool coherent = dev_is_dma_coherent(dev);
1160 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1161 	struct page *page = NULL;
1162 	void *cpu_addr;
1163 
1164 	gfp |= __GFP_ZERO;
1165 
1166 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1167 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1168 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1169 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1170 	}
1171 
1172 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1173 	    !gfpflags_allow_blocking(gfp) && !coherent)
1174 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1175 					       gfp, NULL);
1176 	else
1177 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1178 	if (!cpu_addr)
1179 		return NULL;
1180 
1181 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1182 			dev->coherent_dma_mask);
1183 	if (*handle == DMA_MAPPING_ERROR) {
1184 		__iommu_dma_free(dev, size, cpu_addr);
1185 		return NULL;
1186 	}
1187 
1188 	return cpu_addr;
1189 }
1190 
1191 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1192 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1193 		unsigned long attrs)
1194 {
1195 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1196 	unsigned long pfn, off = vma->vm_pgoff;
1197 	int ret;
1198 
1199 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1200 
1201 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1202 		return ret;
1203 
1204 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1205 		return -ENXIO;
1206 
1207 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1208 		struct page **pages = dma_common_find_pages(cpu_addr);
1209 
1210 		if (pages)
1211 			return vm_map_pages(vma, pages, nr_pages);
1212 		pfn = vmalloc_to_pfn(cpu_addr);
1213 	} else {
1214 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1215 	}
1216 
1217 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1218 			       vma->vm_end - vma->vm_start,
1219 			       vma->vm_page_prot);
1220 }
1221 
1222 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1223 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1224 		unsigned long attrs)
1225 {
1226 	struct page *page;
1227 	int ret;
1228 
1229 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1230 		struct page **pages = dma_common_find_pages(cpu_addr);
1231 
1232 		if (pages) {
1233 			return sg_alloc_table_from_pages(sgt, pages,
1234 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1235 					0, size, GFP_KERNEL);
1236 		}
1237 
1238 		page = vmalloc_to_page(cpu_addr);
1239 	} else {
1240 		page = virt_to_page(cpu_addr);
1241 	}
1242 
1243 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1244 	if (!ret)
1245 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1246 	return ret;
1247 }
1248 
1249 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1250 {
1251 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1252 
1253 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1254 }
1255 
1256 static const struct dma_map_ops iommu_dma_ops = {
1257 	.alloc			= iommu_dma_alloc,
1258 	.free			= iommu_dma_free,
1259 	.alloc_pages		= dma_common_alloc_pages,
1260 	.free_pages		= dma_common_free_pages,
1261 	.mmap			= iommu_dma_mmap,
1262 	.get_sgtable		= iommu_dma_get_sgtable,
1263 	.map_page		= iommu_dma_map_page,
1264 	.unmap_page		= iommu_dma_unmap_page,
1265 	.map_sg			= iommu_dma_map_sg,
1266 	.unmap_sg		= iommu_dma_unmap_sg,
1267 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1268 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1269 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1270 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1271 	.map_resource		= iommu_dma_map_resource,
1272 	.unmap_resource		= iommu_dma_unmap_resource,
1273 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1274 };
1275 
1276 /*
1277  * The IOMMU core code allocates the default DMA domain, which the underlying
1278  * IOMMU driver needs to support via the dma-iommu layer.
1279  */
1280 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1281 {
1282 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1283 
1284 	if (!domain)
1285 		goto out_err;
1286 
1287 	/*
1288 	 * The IOMMU core code allocates the default DMA domain, which the
1289 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1290 	 */
1291 	if (domain->type == IOMMU_DOMAIN_DMA) {
1292 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1293 			goto out_err;
1294 		dev->dma_ops = &iommu_dma_ops;
1295 	}
1296 
1297 	return;
1298 out_err:
1299 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1300 		 dev_name(dev));
1301 }
1302 
1303 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1304 		phys_addr_t msi_addr, struct iommu_domain *domain)
1305 {
1306 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1307 	struct iommu_dma_msi_page *msi_page;
1308 	dma_addr_t iova;
1309 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1310 	size_t size = cookie_msi_granule(cookie);
1311 
1312 	msi_addr &= ~(phys_addr_t)(size - 1);
1313 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1314 		if (msi_page->phys == msi_addr)
1315 			return msi_page;
1316 
1317 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1318 	if (!msi_page)
1319 		return NULL;
1320 
1321 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1322 	if (!iova)
1323 		goto out_free_page;
1324 
1325 	if (iommu_map(domain, iova, msi_addr, size, prot))
1326 		goto out_free_iova;
1327 
1328 	INIT_LIST_HEAD(&msi_page->list);
1329 	msi_page->phys = msi_addr;
1330 	msi_page->iova = iova;
1331 	list_add(&msi_page->list, &cookie->msi_page_list);
1332 	return msi_page;
1333 
1334 out_free_iova:
1335 	iommu_dma_free_iova(cookie, iova, size, NULL);
1336 out_free_page:
1337 	kfree(msi_page);
1338 	return NULL;
1339 }
1340 
1341 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1342 {
1343 	struct device *dev = msi_desc_to_dev(desc);
1344 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1345 	struct iommu_dma_msi_page *msi_page;
1346 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1347 
1348 	if (!domain || !domain->iova_cookie) {
1349 		desc->iommu_cookie = NULL;
1350 		return 0;
1351 	}
1352 
1353 	/*
1354 	 * In fact the whole prepare operation should already be serialised by
1355 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1356 	 * on its own, so consider this locking as failsafe documentation...
1357 	 */
1358 	mutex_lock(&msi_prepare_lock);
1359 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1360 	mutex_unlock(&msi_prepare_lock);
1361 
1362 	msi_desc_set_iommu_cookie(desc, msi_page);
1363 
1364 	if (!msi_page)
1365 		return -ENOMEM;
1366 	return 0;
1367 }
1368 
1369 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1370 			       struct msi_msg *msg)
1371 {
1372 	struct device *dev = msi_desc_to_dev(desc);
1373 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1374 	const struct iommu_dma_msi_page *msi_page;
1375 
1376 	msi_page = msi_desc_get_iommu_cookie(desc);
1377 
1378 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1379 		return;
1380 
1381 	msg->address_hi = upper_32_bits(msi_page->iova);
1382 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1383 	msg->address_lo += lower_32_bits(msi_page->iova);
1384 }
1385 
1386 static int iommu_dma_init(void)
1387 {
1388 	if (is_kdump_kernel())
1389 		static_branch_enable(&iommu_deferred_attach_enabled);
1390 
1391 	return iova_cache_get();
1392 }
1393 arch_initcall(iommu_dma_init);
1394