1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iommu-dma.h> 21 #include <linux/iova.h> 22 #include <linux/irq.h> 23 #include <linux/list_sort.h> 24 #include <linux/memremap.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/msi.h> 28 #include <linux/of_iommu.h> 29 #include <linux/pci.h> 30 #include <linux/pci-p2pdma.h> 31 #include <linux/scatterlist.h> 32 #include <linux/spinlock.h> 33 #include <linux/swiotlb.h> 34 #include <linux/vmalloc.h> 35 #include <trace/events/swiotlb.h> 36 37 #include "dma-iommu.h" 38 #include "iommu-pages.h" 39 40 struct iommu_dma_msi_page { 41 struct list_head list; 42 dma_addr_t iova; 43 phys_addr_t phys; 44 }; 45 46 enum iommu_dma_queue_type { 47 IOMMU_DMA_OPTS_PER_CPU_QUEUE, 48 IOMMU_DMA_OPTS_SINGLE_QUEUE, 49 }; 50 51 struct iommu_dma_options { 52 enum iommu_dma_queue_type qt; 53 size_t fq_size; 54 unsigned int fq_timeout; 55 }; 56 57 struct iommu_dma_cookie { 58 struct iova_domain iovad; 59 struct list_head msi_page_list; 60 /* Flush queue */ 61 union { 62 struct iova_fq *single_fq; 63 struct iova_fq __percpu *percpu_fq; 64 }; 65 /* Number of TLB flushes that have been started */ 66 atomic64_t fq_flush_start_cnt; 67 /* Number of TLB flushes that have been finished */ 68 atomic64_t fq_flush_finish_cnt; 69 /* Timer to regularily empty the flush queues */ 70 struct timer_list fq_timer; 71 /* 1 when timer is active, 0 when not */ 72 atomic_t fq_timer_on; 73 /* Domain for flush queue callback; NULL if flush queue not in use */ 74 struct iommu_domain *fq_domain; 75 /* Options for dma-iommu use */ 76 struct iommu_dma_options options; 77 }; 78 79 struct iommu_dma_msi_cookie { 80 dma_addr_t msi_iova; 81 struct list_head msi_page_list; 82 }; 83 84 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 85 bool iommu_dma_forcedac __read_mostly; 86 87 static int __init iommu_dma_forcedac_setup(char *str) 88 { 89 int ret = kstrtobool(str, &iommu_dma_forcedac); 90 91 if (!ret && iommu_dma_forcedac) 92 pr_info("Forcing DAC for PCI devices\n"); 93 return ret; 94 } 95 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 96 97 /* Number of entries per flush queue */ 98 #define IOVA_DEFAULT_FQ_SIZE 256 99 #define IOVA_SINGLE_FQ_SIZE 32768 100 101 /* Timeout (in ms) after which entries are flushed from the queue */ 102 #define IOVA_DEFAULT_FQ_TIMEOUT 10 103 #define IOVA_SINGLE_FQ_TIMEOUT 1000 104 105 /* Flush queue entry for deferred flushing */ 106 struct iova_fq_entry { 107 unsigned long iova_pfn; 108 unsigned long pages; 109 struct iommu_pages_list freelist; 110 u64 counter; /* Flush counter when this entry was added */ 111 }; 112 113 /* Per-CPU flush queue structure */ 114 struct iova_fq { 115 spinlock_t lock; 116 unsigned int head, tail; 117 unsigned int mod_mask; 118 struct iova_fq_entry entries[]; 119 }; 120 121 #define fq_ring_for_each(i, fq) \ 122 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask) 123 124 static inline bool fq_full(struct iova_fq *fq) 125 { 126 assert_spin_locked(&fq->lock); 127 return (((fq->tail + 1) & fq->mod_mask) == fq->head); 128 } 129 130 static inline unsigned int fq_ring_add(struct iova_fq *fq) 131 { 132 unsigned int idx = fq->tail; 133 134 assert_spin_locked(&fq->lock); 135 136 fq->tail = (idx + 1) & fq->mod_mask; 137 138 return idx; 139 } 140 141 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 142 { 143 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 144 unsigned int idx; 145 146 assert_spin_locked(&fq->lock); 147 148 fq_ring_for_each(idx, fq) { 149 150 if (fq->entries[idx].counter >= counter) 151 break; 152 153 iommu_put_pages_list(&fq->entries[idx].freelist); 154 free_iova_fast(&cookie->iovad, 155 fq->entries[idx].iova_pfn, 156 fq->entries[idx].pages); 157 158 fq->entries[idx].freelist = 159 IOMMU_PAGES_LIST_INIT(fq->entries[idx].freelist); 160 fq->head = (fq->head + 1) & fq->mod_mask; 161 } 162 } 163 164 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 165 { 166 unsigned long flags; 167 168 spin_lock_irqsave(&fq->lock, flags); 169 fq_ring_free_locked(cookie, fq); 170 spin_unlock_irqrestore(&fq->lock, flags); 171 } 172 173 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 174 { 175 atomic64_inc(&cookie->fq_flush_start_cnt); 176 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 177 atomic64_inc(&cookie->fq_flush_finish_cnt); 178 } 179 180 static void fq_flush_timeout(struct timer_list *t) 181 { 182 struct iommu_dma_cookie *cookie = timer_container_of(cookie, t, 183 fq_timer); 184 int cpu; 185 186 atomic_set(&cookie->fq_timer_on, 0); 187 fq_flush_iotlb(cookie); 188 189 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) { 190 fq_ring_free(cookie, cookie->single_fq); 191 } else { 192 for_each_possible_cpu(cpu) 193 fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu)); 194 } 195 } 196 197 static void queue_iova(struct iommu_dma_cookie *cookie, 198 unsigned long pfn, unsigned long pages, 199 struct iommu_pages_list *freelist) 200 { 201 struct iova_fq *fq; 202 unsigned long flags; 203 unsigned int idx; 204 205 /* 206 * Order against the IOMMU driver's pagetable update from unmapping 207 * @pte, to guarantee that fq_flush_iotlb() observes that if called 208 * from a different CPU before we release the lock below. Full barrier 209 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 210 * written fq state here. 211 */ 212 smp_mb(); 213 214 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 215 fq = cookie->single_fq; 216 else 217 fq = raw_cpu_ptr(cookie->percpu_fq); 218 219 spin_lock_irqsave(&fq->lock, flags); 220 221 /* 222 * First remove all entries from the flush queue that have already been 223 * flushed out on another CPU. This makes the fq_full() check below less 224 * likely to be true. 225 */ 226 fq_ring_free_locked(cookie, fq); 227 228 if (fq_full(fq)) { 229 fq_flush_iotlb(cookie); 230 fq_ring_free_locked(cookie, fq); 231 } 232 233 idx = fq_ring_add(fq); 234 235 fq->entries[idx].iova_pfn = pfn; 236 fq->entries[idx].pages = pages; 237 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 238 iommu_pages_list_splice(freelist, &fq->entries[idx].freelist); 239 240 spin_unlock_irqrestore(&fq->lock, flags); 241 242 /* Avoid false sharing as much as possible. */ 243 if (!atomic_read(&cookie->fq_timer_on) && 244 !atomic_xchg(&cookie->fq_timer_on, 1)) 245 mod_timer(&cookie->fq_timer, 246 jiffies + msecs_to_jiffies(cookie->options.fq_timeout)); 247 } 248 249 static void iommu_dma_free_fq_single(struct iova_fq *fq) 250 { 251 int idx; 252 253 fq_ring_for_each(idx, fq) 254 iommu_put_pages_list(&fq->entries[idx].freelist); 255 vfree(fq); 256 } 257 258 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq) 259 { 260 int cpu, idx; 261 262 /* The IOVAs will be torn down separately, so just free our queued pages */ 263 for_each_possible_cpu(cpu) { 264 struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu); 265 266 fq_ring_for_each(idx, fq) 267 iommu_put_pages_list(&fq->entries[idx].freelist); 268 } 269 270 free_percpu(percpu_fq); 271 } 272 273 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 274 { 275 if (!cookie->fq_domain) 276 return; 277 278 timer_delete_sync(&cookie->fq_timer); 279 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 280 iommu_dma_free_fq_single(cookie->single_fq); 281 else 282 iommu_dma_free_fq_percpu(cookie->percpu_fq); 283 } 284 285 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size) 286 { 287 int i; 288 289 fq->head = 0; 290 fq->tail = 0; 291 fq->mod_mask = fq_size - 1; 292 293 spin_lock_init(&fq->lock); 294 295 for (i = 0; i < fq_size; i++) 296 fq->entries[i].freelist = 297 IOMMU_PAGES_LIST_INIT(fq->entries[i].freelist); 298 } 299 300 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie) 301 { 302 size_t fq_size = cookie->options.fq_size; 303 struct iova_fq *queue; 304 305 queue = vmalloc(struct_size(queue, entries, fq_size)); 306 if (!queue) 307 return -ENOMEM; 308 iommu_dma_init_one_fq(queue, fq_size); 309 cookie->single_fq = queue; 310 311 return 0; 312 } 313 314 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie) 315 { 316 size_t fq_size = cookie->options.fq_size; 317 struct iova_fq __percpu *queue; 318 int cpu; 319 320 queue = __alloc_percpu(struct_size(queue, entries, fq_size), 321 __alignof__(*queue)); 322 if (!queue) 323 return -ENOMEM; 324 325 for_each_possible_cpu(cpu) 326 iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size); 327 cookie->percpu_fq = queue; 328 return 0; 329 } 330 331 /* sysfs updates are serialised by the mutex of the group owning @domain */ 332 int iommu_dma_init_fq(struct iommu_domain *domain) 333 { 334 struct iommu_dma_cookie *cookie = domain->iova_cookie; 335 int rc; 336 337 if (cookie->fq_domain) 338 return 0; 339 340 atomic64_set(&cookie->fq_flush_start_cnt, 0); 341 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 342 343 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 344 rc = iommu_dma_init_fq_single(cookie); 345 else 346 rc = iommu_dma_init_fq_percpu(cookie); 347 348 if (rc) { 349 pr_warn("iova flush queue initialization failed\n"); 350 return -ENOMEM; 351 } 352 353 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 354 atomic_set(&cookie->fq_timer_on, 0); 355 /* 356 * Prevent incomplete fq state being observable. Pairs with path from 357 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 358 */ 359 smp_wmb(); 360 WRITE_ONCE(cookie->fq_domain, domain); 361 return 0; 362 } 363 364 /** 365 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 366 * @domain: IOMMU domain to prepare for DMA-API usage 367 */ 368 int iommu_get_dma_cookie(struct iommu_domain *domain) 369 { 370 struct iommu_dma_cookie *cookie; 371 372 if (domain->cookie_type != IOMMU_COOKIE_NONE) 373 return -EEXIST; 374 375 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 376 if (!cookie) 377 return -ENOMEM; 378 379 INIT_LIST_HEAD(&cookie->msi_page_list); 380 domain->cookie_type = IOMMU_COOKIE_DMA_IOVA; 381 domain->iova_cookie = cookie; 382 return 0; 383 } 384 385 /** 386 * iommu_get_msi_cookie - Acquire just MSI remapping resources 387 * @domain: IOMMU domain to prepare 388 * @base: Start address of IOVA region for MSI mappings 389 * 390 * Users who manage their own IOVA allocation and do not want DMA API support, 391 * but would still like to take advantage of automatic MSI remapping, can use 392 * this to initialise their own domain appropriately. Users should reserve a 393 * contiguous IOVA region, starting at @base, large enough to accommodate the 394 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 395 * used by the devices attached to @domain. 396 */ 397 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 398 { 399 struct iommu_dma_msi_cookie *cookie; 400 401 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 402 return -EINVAL; 403 404 if (domain->cookie_type != IOMMU_COOKIE_NONE) 405 return -EEXIST; 406 407 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 408 if (!cookie) 409 return -ENOMEM; 410 411 cookie->msi_iova = base; 412 INIT_LIST_HEAD(&cookie->msi_page_list); 413 domain->cookie_type = IOMMU_COOKIE_DMA_MSI; 414 domain->msi_cookie = cookie; 415 return 0; 416 } 417 EXPORT_SYMBOL(iommu_get_msi_cookie); 418 419 /** 420 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 421 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 422 */ 423 void iommu_put_dma_cookie(struct iommu_domain *domain) 424 { 425 struct iommu_dma_cookie *cookie = domain->iova_cookie; 426 struct iommu_dma_msi_page *msi, *tmp; 427 428 if (cookie->iovad.granule) { 429 iommu_dma_free_fq(cookie); 430 put_iova_domain(&cookie->iovad); 431 } 432 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) 433 kfree(msi); 434 kfree(cookie); 435 } 436 437 /** 438 * iommu_put_msi_cookie - Release a domain's MSI mapping resources 439 * @domain: IOMMU domain previously prepared by iommu_get_msi_cookie() 440 */ 441 void iommu_put_msi_cookie(struct iommu_domain *domain) 442 { 443 struct iommu_dma_msi_cookie *cookie = domain->msi_cookie; 444 struct iommu_dma_msi_page *msi, *tmp; 445 446 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) 447 kfree(msi); 448 kfree(cookie); 449 } 450 451 /** 452 * iommu_dma_get_resv_regions - Reserved region driver helper 453 * @dev: Device from iommu_get_resv_regions() 454 * @list: Reserved region list from iommu_get_resv_regions() 455 * 456 * IOMMU drivers can use this to implement their .get_resv_regions callback 457 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 458 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 459 * reservation. 460 */ 461 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 462 { 463 464 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 465 iort_iommu_get_resv_regions(dev, list); 466 467 if (dev->of_node) 468 of_iommu_get_resv_regions(dev, list); 469 } 470 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 471 472 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 473 phys_addr_t start, phys_addr_t end) 474 { 475 struct iova_domain *iovad = &cookie->iovad; 476 struct iommu_dma_msi_page *msi_page; 477 int i, num_pages; 478 479 start -= iova_offset(iovad, start); 480 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 481 482 for (i = 0; i < num_pages; i++) { 483 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 484 if (!msi_page) 485 return -ENOMEM; 486 487 msi_page->phys = start; 488 msi_page->iova = start; 489 INIT_LIST_HEAD(&msi_page->list); 490 list_add(&msi_page->list, &cookie->msi_page_list); 491 start += iovad->granule; 492 } 493 494 return 0; 495 } 496 497 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 498 const struct list_head *b) 499 { 500 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 501 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 502 503 return res_a->res->start > res_b->res->start; 504 } 505 506 static int iova_reserve_pci_windows(struct pci_dev *dev, 507 struct iova_domain *iovad) 508 { 509 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 510 struct resource_entry *window; 511 unsigned long lo, hi; 512 phys_addr_t start = 0, end; 513 514 resource_list_for_each_entry(window, &bridge->windows) { 515 if (resource_type(window->res) != IORESOURCE_MEM) 516 continue; 517 518 lo = iova_pfn(iovad, window->res->start - window->offset); 519 hi = iova_pfn(iovad, window->res->end - window->offset); 520 reserve_iova(iovad, lo, hi); 521 } 522 523 /* Get reserved DMA windows from host bridge */ 524 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 525 resource_list_for_each_entry(window, &bridge->dma_ranges) { 526 end = window->res->start - window->offset; 527 resv_iova: 528 if (end > start) { 529 lo = iova_pfn(iovad, start); 530 hi = iova_pfn(iovad, end); 531 reserve_iova(iovad, lo, hi); 532 } else if (end < start) { 533 /* DMA ranges should be non-overlapping */ 534 dev_err(&dev->dev, 535 "Failed to reserve IOVA [%pa-%pa]\n", 536 &start, &end); 537 return -EINVAL; 538 } 539 540 start = window->res->end - window->offset + 1; 541 /* If window is last entry */ 542 if (window->node.next == &bridge->dma_ranges && 543 end != ~(phys_addr_t)0) { 544 end = ~(phys_addr_t)0; 545 goto resv_iova; 546 } 547 } 548 549 return 0; 550 } 551 552 static int iova_reserve_iommu_regions(struct device *dev, 553 struct iommu_domain *domain) 554 { 555 struct iommu_dma_cookie *cookie = domain->iova_cookie; 556 struct iova_domain *iovad = &cookie->iovad; 557 struct iommu_resv_region *region; 558 LIST_HEAD(resv_regions); 559 int ret = 0; 560 561 if (dev_is_pci(dev)) { 562 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 563 if (ret) 564 return ret; 565 } 566 567 iommu_get_resv_regions(dev, &resv_regions); 568 list_for_each_entry(region, &resv_regions, list) { 569 unsigned long lo, hi; 570 571 /* We ARE the software that manages these! */ 572 if (region->type == IOMMU_RESV_SW_MSI) 573 continue; 574 575 lo = iova_pfn(iovad, region->start); 576 hi = iova_pfn(iovad, region->start + region->length - 1); 577 reserve_iova(iovad, lo, hi); 578 579 if (region->type == IOMMU_RESV_MSI) 580 ret = cookie_init_hw_msi_region(cookie, region->start, 581 region->start + region->length); 582 if (ret) 583 break; 584 } 585 iommu_put_resv_regions(dev, &resv_regions); 586 587 return ret; 588 } 589 590 static bool dev_is_untrusted(struct device *dev) 591 { 592 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 593 } 594 595 static bool dev_use_swiotlb(struct device *dev, size_t size, 596 enum dma_data_direction dir) 597 { 598 return IS_ENABLED(CONFIG_SWIOTLB) && 599 (dev_is_untrusted(dev) || 600 dma_kmalloc_needs_bounce(dev, size, dir)); 601 } 602 603 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg, 604 int nents, enum dma_data_direction dir) 605 { 606 struct scatterlist *s; 607 int i; 608 609 if (!IS_ENABLED(CONFIG_SWIOTLB)) 610 return false; 611 612 if (dev_is_untrusted(dev)) 613 return true; 614 615 /* 616 * If kmalloc() buffers are not DMA-safe for this device and 617 * direction, check the individual lengths in the sg list. If any 618 * element is deemed unsafe, use the swiotlb for bouncing. 619 */ 620 if (!dma_kmalloc_safe(dev, dir)) { 621 for_each_sg(sg, s, nents, i) 622 if (!dma_kmalloc_size_aligned(s->length)) 623 return true; 624 } 625 626 return false; 627 } 628 629 /** 630 * iommu_dma_init_options - Initialize dma-iommu options 631 * @options: The options to be initialized 632 * @dev: Device the options are set for 633 * 634 * This allows tuning dma-iommu specific to device properties 635 */ 636 static void iommu_dma_init_options(struct iommu_dma_options *options, 637 struct device *dev) 638 { 639 /* Shadowing IOTLB flushes do better with a single large queue */ 640 if (dev->iommu->shadow_on_flush) { 641 options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE; 642 options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT; 643 options->fq_size = IOVA_SINGLE_FQ_SIZE; 644 } else { 645 options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE; 646 options->fq_size = IOVA_DEFAULT_FQ_SIZE; 647 options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT; 648 } 649 } 650 651 /** 652 * iommu_dma_init_domain - Initialise a DMA mapping domain 653 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 654 * @dev: Device the domain is being initialised for 655 * 656 * If the geometry and dma_range_map include address 0, we reserve that page 657 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 658 * any change which could make prior IOVAs invalid will fail. 659 */ 660 static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev) 661 { 662 struct iommu_dma_cookie *cookie = domain->iova_cookie; 663 const struct bus_dma_region *map = dev->dma_range_map; 664 unsigned long order, base_pfn; 665 struct iova_domain *iovad; 666 int ret; 667 668 if (!cookie || domain->cookie_type != IOMMU_COOKIE_DMA_IOVA) 669 return -EINVAL; 670 671 iovad = &cookie->iovad; 672 673 /* Use the smallest supported page size for IOVA granularity */ 674 order = __ffs(domain->pgsize_bitmap); 675 base_pfn = 1; 676 677 /* Check the domain allows at least some access to the device... */ 678 if (map) { 679 if (dma_range_map_min(map) > domain->geometry.aperture_end || 680 dma_range_map_max(map) < domain->geometry.aperture_start) { 681 pr_warn("specified DMA range outside IOMMU capability\n"); 682 return -EFAULT; 683 } 684 } 685 /* ...then finally give it a kicking to make sure it fits */ 686 base_pfn = max_t(unsigned long, base_pfn, 687 domain->geometry.aperture_start >> order); 688 689 /* start_pfn is always nonzero for an already-initialised domain */ 690 if (iovad->start_pfn) { 691 if (1UL << order != iovad->granule || 692 base_pfn != iovad->start_pfn) { 693 pr_warn("Incompatible range for DMA domain\n"); 694 return -EFAULT; 695 } 696 697 return 0; 698 } 699 700 init_iova_domain(iovad, 1UL << order, base_pfn); 701 ret = iova_domain_init_rcaches(iovad); 702 if (ret) 703 return ret; 704 705 iommu_dma_init_options(&cookie->options, dev); 706 707 /* If the FQ fails we can simply fall back to strict mode */ 708 if (domain->type == IOMMU_DOMAIN_DMA_FQ && 709 (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain))) 710 domain->type = IOMMU_DOMAIN_DMA; 711 712 return iova_reserve_iommu_regions(dev, domain); 713 } 714 715 /** 716 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 717 * page flags. 718 * @dir: Direction of DMA transfer 719 * @coherent: Is the DMA master cache-coherent? 720 * @attrs: DMA attributes for the mapping 721 * 722 * Return: corresponding IOMMU API page protection flags 723 */ 724 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 725 unsigned long attrs) 726 { 727 int prot; 728 729 if (attrs & DMA_ATTR_MMIO) 730 prot = IOMMU_MMIO; 731 else 732 prot = coherent ? IOMMU_CACHE : 0; 733 734 if (attrs & DMA_ATTR_PRIVILEGED) 735 prot |= IOMMU_PRIV; 736 737 switch (dir) { 738 case DMA_BIDIRECTIONAL: 739 return prot | IOMMU_READ | IOMMU_WRITE; 740 case DMA_TO_DEVICE: 741 return prot | IOMMU_READ; 742 case DMA_FROM_DEVICE: 743 return prot | IOMMU_WRITE; 744 default: 745 return 0; 746 } 747 } 748 749 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 750 size_t size, u64 dma_limit, struct device *dev) 751 { 752 struct iommu_dma_cookie *cookie = domain->iova_cookie; 753 struct iova_domain *iovad = &cookie->iovad; 754 unsigned long shift, iova_len, iova; 755 756 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) { 757 domain->msi_cookie->msi_iova += size; 758 return domain->msi_cookie->msi_iova - size; 759 } 760 761 shift = iova_shift(iovad); 762 iova_len = size >> shift; 763 764 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 765 766 if (domain->geometry.force_aperture) 767 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 768 769 /* 770 * Try to use all the 32-bit PCI addresses first. The original SAC vs. 771 * DAC reasoning loses relevance with PCIe, but enough hardware and 772 * firmware bugs are still lurking out there that it's safest not to 773 * venture into the 64-bit space until necessary. 774 * 775 * If your device goes wrong after seeing the notice then likely either 776 * its driver is not setting DMA masks accurately, the hardware has 777 * some inherent bug in handling >32-bit addresses, or not all the 778 * expected address bits are wired up between the device and the IOMMU. 779 */ 780 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) { 781 iova = alloc_iova_fast(iovad, iova_len, 782 DMA_BIT_MASK(32) >> shift, false); 783 if (iova) 784 goto done; 785 786 dev->iommu->pci_32bit_workaround = false; 787 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit)); 788 } 789 790 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true); 791 done: 792 return (dma_addr_t)iova << shift; 793 } 794 795 static void iommu_dma_free_iova(struct iommu_domain *domain, dma_addr_t iova, 796 size_t size, struct iommu_iotlb_gather *gather) 797 { 798 struct iova_domain *iovad = &domain->iova_cookie->iovad; 799 800 /* The MSI case is only ever cleaning up its most recent allocation */ 801 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) 802 domain->msi_cookie->msi_iova -= size; 803 else if (gather && gather->queued) 804 queue_iova(domain->iova_cookie, iova_pfn(iovad, iova), 805 size >> iova_shift(iovad), 806 &gather->freelist); 807 else 808 free_iova_fast(iovad, iova_pfn(iovad, iova), 809 size >> iova_shift(iovad)); 810 } 811 812 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 813 size_t size) 814 { 815 struct iommu_domain *domain = iommu_get_dma_domain(dev); 816 struct iommu_dma_cookie *cookie = domain->iova_cookie; 817 struct iova_domain *iovad = &cookie->iovad; 818 size_t iova_off = iova_offset(iovad, dma_addr); 819 struct iommu_iotlb_gather iotlb_gather; 820 size_t unmapped; 821 822 dma_addr -= iova_off; 823 size = iova_align(iovad, size + iova_off); 824 iommu_iotlb_gather_init(&iotlb_gather); 825 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 826 827 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 828 WARN_ON(unmapped != size); 829 830 if (!iotlb_gather.queued) 831 iommu_iotlb_sync(domain, &iotlb_gather); 832 iommu_dma_free_iova(domain, dma_addr, size, &iotlb_gather); 833 } 834 835 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 836 size_t size, int prot, u64 dma_mask) 837 { 838 struct iommu_domain *domain = iommu_get_dma_domain(dev); 839 struct iommu_dma_cookie *cookie = domain->iova_cookie; 840 struct iova_domain *iovad = &cookie->iovad; 841 size_t iova_off = iova_offset(iovad, phys); 842 dma_addr_t iova; 843 844 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 845 iommu_deferred_attach(dev, domain)) 846 return DMA_MAPPING_ERROR; 847 848 /* If anyone ever wants this we'd need support in the IOVA allocator */ 849 if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad), 850 "Unsupported alignment constraint\n")) 851 return DMA_MAPPING_ERROR; 852 853 size = iova_align(iovad, size + iova_off); 854 855 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 856 if (!iova) 857 return DMA_MAPPING_ERROR; 858 859 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { 860 iommu_dma_free_iova(domain, iova, size, NULL); 861 return DMA_MAPPING_ERROR; 862 } 863 return iova + iova_off; 864 } 865 866 static void __iommu_dma_free_pages(struct page **pages, int count) 867 { 868 while (count--) 869 __free_page(pages[count]); 870 kvfree(pages); 871 } 872 873 static struct page **__iommu_dma_alloc_pages(struct device *dev, 874 unsigned int count, unsigned long order_mask, gfp_t gfp) 875 { 876 struct page **pages; 877 unsigned int i = 0, nid = dev_to_node(dev); 878 879 order_mask &= GENMASK(MAX_PAGE_ORDER, 0); 880 if (!order_mask) 881 return NULL; 882 883 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 884 if (!pages) 885 return NULL; 886 887 /* IOMMU can map any pages, so himem can also be used here */ 888 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 889 890 while (count) { 891 struct page *page = NULL; 892 unsigned int order_size; 893 894 /* 895 * Higher-order allocations are a convenience rather 896 * than a necessity, hence using __GFP_NORETRY until 897 * falling back to minimum-order allocations. 898 */ 899 for (order_mask &= GENMASK(__fls(count), 0); 900 order_mask; order_mask &= ~order_size) { 901 unsigned int order = __fls(order_mask); 902 gfp_t alloc_flags = gfp; 903 904 order_size = 1U << order; 905 if (order_mask > order_size) 906 alloc_flags |= __GFP_NORETRY; 907 page = alloc_pages_node(nid, alloc_flags, order); 908 if (!page) 909 continue; 910 if (order) 911 split_page(page, order); 912 break; 913 } 914 if (!page) { 915 __iommu_dma_free_pages(pages, i); 916 return NULL; 917 } 918 count -= order_size; 919 while (order_size--) 920 pages[i++] = page++; 921 } 922 return pages; 923 } 924 925 /* 926 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 927 * but an IOMMU which supports smaller pages might not map the whole thing. 928 */ 929 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 930 size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs) 931 { 932 struct iommu_domain *domain = iommu_get_dma_domain(dev); 933 struct iommu_dma_cookie *cookie = domain->iova_cookie; 934 struct iova_domain *iovad = &cookie->iovad; 935 bool coherent = dev_is_dma_coherent(dev); 936 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 937 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 938 struct page **pages; 939 dma_addr_t iova; 940 ssize_t ret; 941 942 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 943 iommu_deferred_attach(dev, domain)) 944 return NULL; 945 946 min_size = alloc_sizes & -alloc_sizes; 947 if (min_size < PAGE_SIZE) { 948 min_size = PAGE_SIZE; 949 alloc_sizes |= PAGE_SIZE; 950 } else { 951 size = ALIGN(size, min_size); 952 } 953 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 954 alloc_sizes = min_size; 955 956 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 957 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 958 gfp); 959 if (!pages) 960 return NULL; 961 962 size = iova_align(iovad, size); 963 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 964 if (!iova) 965 goto out_free_pages; 966 967 /* 968 * Remove the zone/policy flags from the GFP - these are applied to the 969 * __iommu_dma_alloc_pages() but are not used for the supporting 970 * internal allocations that follow. 971 */ 972 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); 973 974 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) 975 goto out_free_iova; 976 977 if (!(ioprot & IOMMU_CACHE)) { 978 struct scatterlist *sg; 979 int i; 980 981 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 982 arch_dma_prep_coherent(sg_page(sg), sg->length); 983 } 984 985 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, 986 gfp); 987 if (ret < 0 || ret < size) 988 goto out_free_sg; 989 990 sgt->sgl->dma_address = iova; 991 sgt->sgl->dma_length = size; 992 return pages; 993 994 out_free_sg: 995 sg_free_table(sgt); 996 out_free_iova: 997 iommu_dma_free_iova(domain, iova, size, NULL); 998 out_free_pages: 999 __iommu_dma_free_pages(pages, count); 1000 return NULL; 1001 } 1002 1003 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 1004 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 1005 { 1006 struct page **pages; 1007 struct sg_table sgt; 1008 void *vaddr; 1009 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1010 1011 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs); 1012 if (!pages) 1013 return NULL; 1014 *dma_handle = sgt.sgl->dma_address; 1015 sg_free_table(&sgt); 1016 vaddr = dma_common_pages_remap(pages, size, prot, 1017 __builtin_return_address(0)); 1018 if (!vaddr) 1019 goto out_unmap; 1020 return vaddr; 1021 1022 out_unmap: 1023 __iommu_dma_unmap(dev, *dma_handle, size); 1024 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1025 return NULL; 1026 } 1027 1028 /* 1029 * This is the actual return value from the iommu_dma_alloc_noncontiguous. 1030 * 1031 * The users of the DMA API should only care about the sg_table, but to make 1032 * the DMA-API internal vmaping and freeing easier we stash away the page 1033 * array as well (except for the fallback case). This can go away any time, 1034 * e.g. when a vmap-variant that takes a scatterlist comes along. 1035 */ 1036 struct dma_sgt_handle { 1037 struct sg_table sgt; 1038 struct page **pages; 1039 }; 1040 #define sgt_handle(sgt) \ 1041 container_of((sgt), struct dma_sgt_handle, sgt) 1042 1043 struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size, 1044 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 1045 { 1046 struct dma_sgt_handle *sh; 1047 1048 sh = kmalloc(sizeof(*sh), gfp); 1049 if (!sh) 1050 return NULL; 1051 1052 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs); 1053 if (!sh->pages) { 1054 kfree(sh); 1055 return NULL; 1056 } 1057 return &sh->sgt; 1058 } 1059 1060 void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 1061 struct sg_table *sgt, enum dma_data_direction dir) 1062 { 1063 struct dma_sgt_handle *sh = sgt_handle(sgt); 1064 1065 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 1066 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1067 sg_free_table(&sh->sgt); 1068 kfree(sh); 1069 } 1070 1071 void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size, 1072 struct sg_table *sgt) 1073 { 1074 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1075 1076 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 1077 } 1078 1079 int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 1080 size_t size, struct sg_table *sgt) 1081 { 1082 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1083 1084 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 1085 return -ENXIO; 1086 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 1087 } 1088 1089 void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, 1090 size_t size, enum dma_data_direction dir) 1091 { 1092 phys_addr_t phys; 1093 1094 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1095 return; 1096 1097 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1098 if (!dev_is_dma_coherent(dev)) 1099 arch_sync_dma_for_cpu(phys, size, dir); 1100 1101 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 1102 } 1103 1104 void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, 1105 size_t size, enum dma_data_direction dir) 1106 { 1107 phys_addr_t phys; 1108 1109 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1110 return; 1111 1112 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1113 swiotlb_sync_single_for_device(dev, phys, size, dir); 1114 1115 if (!dev_is_dma_coherent(dev)) 1116 arch_sync_dma_for_device(phys, size, dir); 1117 } 1118 1119 void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 1120 int nelems, enum dma_data_direction dir) 1121 { 1122 struct scatterlist *sg; 1123 int i; 1124 1125 if (sg_dma_is_swiotlb(sgl)) 1126 for_each_sg(sgl, sg, nelems, i) 1127 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 1128 sg->length, dir); 1129 else if (!dev_is_dma_coherent(dev)) 1130 for_each_sg(sgl, sg, nelems, i) 1131 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 1132 } 1133 1134 void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 1135 int nelems, enum dma_data_direction dir) 1136 { 1137 struct scatterlist *sg; 1138 int i; 1139 1140 if (sg_dma_is_swiotlb(sgl)) 1141 for_each_sg(sgl, sg, nelems, i) 1142 iommu_dma_sync_single_for_device(dev, 1143 sg_dma_address(sg), 1144 sg->length, dir); 1145 else if (!dev_is_dma_coherent(dev)) 1146 for_each_sg(sgl, sg, nelems, i) 1147 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 1148 } 1149 1150 static phys_addr_t iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys, 1151 size_t size, enum dma_data_direction dir, unsigned long attrs) 1152 { 1153 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1154 struct iova_domain *iovad = &domain->iova_cookie->iovad; 1155 1156 if (!is_swiotlb_active(dev)) { 1157 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 1158 return (phys_addr_t)DMA_MAPPING_ERROR; 1159 } 1160 1161 trace_swiotlb_bounced(dev, phys, size); 1162 1163 phys = swiotlb_tbl_map_single(dev, phys, size, iova_mask(iovad), dir, 1164 attrs); 1165 1166 /* 1167 * Untrusted devices should not see padding areas with random leftover 1168 * kernel data, so zero the pre- and post-padding. 1169 * swiotlb_tbl_map_single() has initialized the bounce buffer proper to 1170 * the contents of the original memory buffer. 1171 */ 1172 if (phys != (phys_addr_t)DMA_MAPPING_ERROR && dev_is_untrusted(dev)) { 1173 size_t start, virt = (size_t)phys_to_virt(phys); 1174 1175 /* Pre-padding */ 1176 start = iova_align_down(iovad, virt); 1177 memset((void *)start, 0, virt - start); 1178 1179 /* Post-padding */ 1180 start = virt + size; 1181 memset((void *)start, 0, iova_align(iovad, start) - start); 1182 } 1183 1184 return phys; 1185 } 1186 1187 /* 1188 * Checks if a physical buffer has unaligned boundaries with respect to 1189 * the IOMMU granule. Returns non-zero if either the start or end 1190 * address is not aligned to the granule boundary. 1191 */ 1192 static inline size_t iova_unaligned(struct iova_domain *iovad, phys_addr_t phys, 1193 size_t size) 1194 { 1195 return iova_offset(iovad, phys | size); 1196 } 1197 1198 dma_addr_t iommu_dma_map_phys(struct device *dev, phys_addr_t phys, size_t size, 1199 enum dma_data_direction dir, unsigned long attrs) 1200 { 1201 bool coherent = dev_is_dma_coherent(dev); 1202 int prot = dma_info_to_prot(dir, coherent, attrs); 1203 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1204 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1205 struct iova_domain *iovad = &cookie->iovad; 1206 dma_addr_t iova, dma_mask = dma_get_mask(dev); 1207 1208 /* 1209 * If both the physical buffer start address and size are page aligned, 1210 * we don't need to use a bounce page. 1211 */ 1212 if (dev_use_swiotlb(dev, size, dir) && 1213 iova_unaligned(iovad, phys, size)) { 1214 if (attrs & DMA_ATTR_MMIO) 1215 return DMA_MAPPING_ERROR; 1216 1217 phys = iommu_dma_map_swiotlb(dev, phys, size, dir, attrs); 1218 if (phys == (phys_addr_t)DMA_MAPPING_ERROR) 1219 return DMA_MAPPING_ERROR; 1220 } 1221 1222 if (!coherent && !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO))) 1223 arch_sync_dma_for_device(phys, size, dir); 1224 1225 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1226 if (iova == DMA_MAPPING_ERROR && !(attrs & DMA_ATTR_MMIO)) 1227 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1228 return iova; 1229 } 1230 1231 void iommu_dma_unmap_phys(struct device *dev, dma_addr_t dma_handle, 1232 size_t size, enum dma_data_direction dir, unsigned long attrs) 1233 { 1234 phys_addr_t phys; 1235 1236 if (attrs & DMA_ATTR_MMIO) { 1237 __iommu_dma_unmap(dev, dma_handle, size); 1238 return; 1239 } 1240 1241 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1242 if (WARN_ON(!phys)) 1243 return; 1244 1245 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1246 arch_sync_dma_for_cpu(phys, size, dir); 1247 1248 __iommu_dma_unmap(dev, dma_handle, size); 1249 1250 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1251 } 1252 1253 /* 1254 * Prepare a successfully-mapped scatterlist to give back to the caller. 1255 * 1256 * At this point the segments are already laid out by iommu_dma_map_sg() to 1257 * avoid individually crossing any boundaries, so we merely need to check a 1258 * segment's start address to avoid concatenating across one. 1259 */ 1260 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1261 dma_addr_t dma_addr) 1262 { 1263 struct scatterlist *s, *cur = sg; 1264 unsigned long seg_mask = dma_get_seg_boundary(dev); 1265 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1266 int i, count = 0; 1267 1268 for_each_sg(sg, s, nents, i) { 1269 /* Restore this segment's original unaligned fields first */ 1270 dma_addr_t s_dma_addr = sg_dma_address(s); 1271 unsigned int s_iova_off = sg_dma_address(s); 1272 unsigned int s_length = sg_dma_len(s); 1273 unsigned int s_iova_len = s->length; 1274 1275 sg_dma_address(s) = DMA_MAPPING_ERROR; 1276 sg_dma_len(s) = 0; 1277 1278 if (sg_dma_is_bus_address(s)) { 1279 if (i > 0) 1280 cur = sg_next(cur); 1281 1282 sg_dma_unmark_bus_address(s); 1283 sg_dma_address(cur) = s_dma_addr; 1284 sg_dma_len(cur) = s_length; 1285 sg_dma_mark_bus_address(cur); 1286 count++; 1287 cur_len = 0; 1288 continue; 1289 } 1290 1291 s->offset += s_iova_off; 1292 s->length = s_length; 1293 1294 /* 1295 * Now fill in the real DMA data. If... 1296 * - there is a valid output segment to append to 1297 * - and this segment starts on an IOVA page boundary 1298 * - but doesn't fall at a segment boundary 1299 * - and wouldn't make the resulting output segment too long 1300 */ 1301 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1302 (max_len - cur_len >= s_length)) { 1303 /* ...then concatenate it with the previous one */ 1304 cur_len += s_length; 1305 } else { 1306 /* Otherwise start the next output segment */ 1307 if (i > 0) 1308 cur = sg_next(cur); 1309 cur_len = s_length; 1310 count++; 1311 1312 sg_dma_address(cur) = dma_addr + s_iova_off; 1313 } 1314 1315 sg_dma_len(cur) = cur_len; 1316 dma_addr += s_iova_len; 1317 1318 if (s_length + s_iova_off < s_iova_len) 1319 cur_len = 0; 1320 } 1321 return count; 1322 } 1323 1324 /* 1325 * If mapping failed, then just restore the original list, 1326 * but making sure the DMA fields are invalidated. 1327 */ 1328 static void __invalidate_sg(struct scatterlist *sg, int nents) 1329 { 1330 struct scatterlist *s; 1331 int i; 1332 1333 for_each_sg(sg, s, nents, i) { 1334 if (sg_dma_is_bus_address(s)) { 1335 sg_dma_unmark_bus_address(s); 1336 } else { 1337 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1338 s->offset += sg_dma_address(s); 1339 if (sg_dma_len(s)) 1340 s->length = sg_dma_len(s); 1341 } 1342 sg_dma_address(s) = DMA_MAPPING_ERROR; 1343 sg_dma_len(s) = 0; 1344 } 1345 } 1346 1347 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1348 int nents, enum dma_data_direction dir, unsigned long attrs) 1349 { 1350 struct scatterlist *s; 1351 int i; 1352 1353 for_each_sg(sg, s, nents, i) 1354 iommu_dma_unmap_phys(dev, sg_dma_address(s), 1355 sg_dma_len(s), dir, attrs); 1356 } 1357 1358 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1359 int nents, enum dma_data_direction dir, unsigned long attrs) 1360 { 1361 struct scatterlist *s; 1362 int i; 1363 1364 sg_dma_mark_swiotlb(sg); 1365 1366 for_each_sg(sg, s, nents, i) { 1367 sg_dma_address(s) = iommu_dma_map_phys(dev, sg_phys(s), 1368 s->length, dir, attrs); 1369 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1370 goto out_unmap; 1371 sg_dma_len(s) = s->length; 1372 } 1373 1374 return nents; 1375 1376 out_unmap: 1377 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1378 return -EIO; 1379 } 1380 1381 /* 1382 * The DMA API client is passing in a scatterlist which could describe 1383 * any old buffer layout, but the IOMMU API requires everything to be 1384 * aligned to IOMMU pages. Hence the need for this complicated bit of 1385 * impedance-matching, to be able to hand off a suitably-aligned list, 1386 * but still preserve the original offsets and sizes for the caller. 1387 */ 1388 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1389 enum dma_data_direction dir, unsigned long attrs) 1390 { 1391 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1392 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1393 struct iova_domain *iovad = &cookie->iovad; 1394 struct scatterlist *s, *prev = NULL; 1395 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1396 struct pci_p2pdma_map_state p2pdma_state = {}; 1397 dma_addr_t iova; 1398 size_t iova_len = 0; 1399 unsigned long mask = dma_get_seg_boundary(dev); 1400 ssize_t ret; 1401 int i; 1402 1403 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1404 ret = iommu_deferred_attach(dev, domain); 1405 if (ret) 1406 goto out; 1407 } 1408 1409 if (dev_use_sg_swiotlb(dev, sg, nents, dir)) 1410 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1411 1412 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1413 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1414 1415 /* 1416 * Work out how much IOVA space we need, and align the segments to 1417 * IOVA granules for the IOMMU driver to handle. With some clever 1418 * trickery we can modify the list in-place, but reversibly, by 1419 * stashing the unaligned parts in the as-yet-unused DMA fields. 1420 */ 1421 for_each_sg(sg, s, nents, i) { 1422 size_t s_iova_off = iova_offset(iovad, s->offset); 1423 size_t s_length = s->length; 1424 size_t pad_len = (mask - iova_len + 1) & mask; 1425 1426 switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(s))) { 1427 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1428 /* 1429 * Mapping through host bridge should be mapped with 1430 * regular IOVAs, thus we do nothing here and continue 1431 * below. 1432 */ 1433 break; 1434 case PCI_P2PDMA_MAP_NONE: 1435 break; 1436 case PCI_P2PDMA_MAP_BUS_ADDR: 1437 /* 1438 * iommu_map_sg() will skip this segment as it is marked 1439 * as a bus address, __finalise_sg() will copy the dma 1440 * address into the output segment. 1441 */ 1442 s->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state, 1443 sg_phys(s)); 1444 sg_dma_len(s) = sg->length; 1445 sg_dma_mark_bus_address(s); 1446 continue; 1447 default: 1448 ret = -EREMOTEIO; 1449 goto out_restore_sg; 1450 } 1451 1452 sg_dma_address(s) = s_iova_off; 1453 sg_dma_len(s) = s_length; 1454 s->offset -= s_iova_off; 1455 s_length = iova_align(iovad, s_length + s_iova_off); 1456 s->length = s_length; 1457 1458 /* 1459 * Due to the alignment of our single IOVA allocation, we can 1460 * depend on these assumptions about the segment boundary mask: 1461 * - If mask size >= IOVA size, then the IOVA range cannot 1462 * possibly fall across a boundary, so we don't care. 1463 * - If mask size < IOVA size, then the IOVA range must start 1464 * exactly on a boundary, therefore we can lay things out 1465 * based purely on segment lengths without needing to know 1466 * the actual addresses beforehand. 1467 * - The mask must be a power of 2, so pad_len == 0 if 1468 * iova_len == 0, thus we cannot dereference prev the first 1469 * time through here (i.e. before it has a meaningful value). 1470 */ 1471 if (pad_len && pad_len < s_length - 1) { 1472 prev->length += pad_len; 1473 iova_len += pad_len; 1474 } 1475 1476 iova_len += s_length; 1477 prev = s; 1478 } 1479 1480 if (!iova_len) 1481 return __finalise_sg(dev, sg, nents, 0); 1482 1483 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1484 if (!iova) { 1485 ret = -ENOMEM; 1486 goto out_restore_sg; 1487 } 1488 1489 /* 1490 * We'll leave any physical concatenation to the IOMMU driver's 1491 * implementation - it knows better than we do. 1492 */ 1493 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 1494 if (ret < 0 || ret < iova_len) 1495 goto out_free_iova; 1496 1497 return __finalise_sg(dev, sg, nents, iova); 1498 1499 out_free_iova: 1500 iommu_dma_free_iova(domain, iova, iova_len, NULL); 1501 out_restore_sg: 1502 __invalidate_sg(sg, nents); 1503 out: 1504 if (ret != -ENOMEM && ret != -EREMOTEIO) 1505 return -EINVAL; 1506 return ret; 1507 } 1508 1509 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1510 enum dma_data_direction dir, unsigned long attrs) 1511 { 1512 dma_addr_t end = 0, start; 1513 struct scatterlist *tmp; 1514 int i; 1515 1516 if (sg_dma_is_swiotlb(sg)) { 1517 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1518 return; 1519 } 1520 1521 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1522 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1523 1524 /* 1525 * The scatterlist segments are mapped into a single 1526 * contiguous IOVA allocation, the start and end points 1527 * just have to be determined. 1528 */ 1529 for_each_sg(sg, tmp, nents, i) { 1530 if (sg_dma_is_bus_address(tmp)) { 1531 sg_dma_unmark_bus_address(tmp); 1532 continue; 1533 } 1534 1535 if (sg_dma_len(tmp) == 0) 1536 break; 1537 1538 start = sg_dma_address(tmp); 1539 break; 1540 } 1541 1542 nents -= i; 1543 for_each_sg(tmp, tmp, nents, i) { 1544 if (sg_dma_is_bus_address(tmp)) { 1545 sg_dma_unmark_bus_address(tmp); 1546 continue; 1547 } 1548 1549 if (sg_dma_len(tmp) == 0) 1550 break; 1551 1552 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1553 } 1554 1555 if (end) 1556 __iommu_dma_unmap(dev, start, end - start); 1557 } 1558 1559 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1560 { 1561 size_t alloc_size = PAGE_ALIGN(size); 1562 int count = alloc_size >> PAGE_SHIFT; 1563 struct page *page = NULL, **pages = NULL; 1564 1565 /* Non-coherent atomic allocation? Easy */ 1566 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1567 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1568 return; 1569 1570 if (is_vmalloc_addr(cpu_addr)) { 1571 /* 1572 * If it the address is remapped, then it's either non-coherent 1573 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1574 */ 1575 pages = dma_common_find_pages(cpu_addr); 1576 if (!pages) 1577 page = vmalloc_to_page(cpu_addr); 1578 dma_common_free_remap(cpu_addr, alloc_size); 1579 } else { 1580 /* Lowmem means a coherent atomic or CMA allocation */ 1581 page = virt_to_page(cpu_addr); 1582 } 1583 1584 if (pages) 1585 __iommu_dma_free_pages(pages, count); 1586 if (page) 1587 dma_free_contiguous(dev, page, alloc_size); 1588 } 1589 1590 void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1591 dma_addr_t handle, unsigned long attrs) 1592 { 1593 __iommu_dma_unmap(dev, handle, size); 1594 __iommu_dma_free(dev, size, cpu_addr); 1595 } 1596 1597 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1598 struct page **pagep, gfp_t gfp, unsigned long attrs) 1599 { 1600 bool coherent = dev_is_dma_coherent(dev); 1601 size_t alloc_size = PAGE_ALIGN(size); 1602 int node = dev_to_node(dev); 1603 struct page *page = NULL; 1604 void *cpu_addr; 1605 1606 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1607 if (!page) 1608 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1609 if (!page) 1610 return NULL; 1611 1612 if (!coherent || PageHighMem(page)) { 1613 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1614 1615 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1616 prot, __builtin_return_address(0)); 1617 if (!cpu_addr) 1618 goto out_free_pages; 1619 1620 if (!coherent) 1621 arch_dma_prep_coherent(page, size); 1622 } else { 1623 cpu_addr = page_address(page); 1624 } 1625 1626 *pagep = page; 1627 memset(cpu_addr, 0, alloc_size); 1628 return cpu_addr; 1629 out_free_pages: 1630 dma_free_contiguous(dev, page, alloc_size); 1631 return NULL; 1632 } 1633 1634 void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 1635 gfp_t gfp, unsigned long attrs) 1636 { 1637 bool coherent = dev_is_dma_coherent(dev); 1638 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1639 struct page *page = NULL; 1640 void *cpu_addr; 1641 1642 gfp |= __GFP_ZERO; 1643 1644 if (gfpflags_allow_blocking(gfp) && 1645 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1646 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs); 1647 } 1648 1649 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1650 !gfpflags_allow_blocking(gfp) && !coherent) 1651 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1652 gfp, NULL); 1653 else 1654 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1655 if (!cpu_addr) 1656 return NULL; 1657 1658 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1659 dev->coherent_dma_mask); 1660 if (*handle == DMA_MAPPING_ERROR) { 1661 __iommu_dma_free(dev, size, cpu_addr); 1662 return NULL; 1663 } 1664 1665 return cpu_addr; 1666 } 1667 1668 int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1669 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1670 unsigned long attrs) 1671 { 1672 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1673 unsigned long pfn, off = vma->vm_pgoff; 1674 int ret; 1675 1676 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1677 1678 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1679 return ret; 1680 1681 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1682 return -ENXIO; 1683 1684 if (is_vmalloc_addr(cpu_addr)) { 1685 struct page **pages = dma_common_find_pages(cpu_addr); 1686 1687 if (pages) 1688 return vm_map_pages(vma, pages, nr_pages); 1689 pfn = vmalloc_to_pfn(cpu_addr); 1690 } else { 1691 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1692 } 1693 1694 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1695 vma->vm_end - vma->vm_start, 1696 vma->vm_page_prot); 1697 } 1698 1699 int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1700 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1701 unsigned long attrs) 1702 { 1703 struct page *page; 1704 int ret; 1705 1706 if (is_vmalloc_addr(cpu_addr)) { 1707 struct page **pages = dma_common_find_pages(cpu_addr); 1708 1709 if (pages) { 1710 return sg_alloc_table_from_pages(sgt, pages, 1711 PAGE_ALIGN(size) >> PAGE_SHIFT, 1712 0, size, GFP_KERNEL); 1713 } 1714 1715 page = vmalloc_to_page(cpu_addr); 1716 } else { 1717 page = virt_to_page(cpu_addr); 1718 } 1719 1720 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1721 if (!ret) 1722 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1723 return ret; 1724 } 1725 1726 unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1727 { 1728 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1729 1730 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1731 } 1732 1733 size_t iommu_dma_opt_mapping_size(void) 1734 { 1735 return iova_rcache_range(); 1736 } 1737 1738 size_t iommu_dma_max_mapping_size(struct device *dev) 1739 { 1740 if (dev_is_untrusted(dev)) 1741 return swiotlb_max_mapping_size(dev); 1742 1743 return SIZE_MAX; 1744 } 1745 1746 /** 1747 * dma_iova_try_alloc - Try to allocate an IOVA space 1748 * @dev: Device to allocate the IOVA space for 1749 * @state: IOVA state 1750 * @phys: physical address 1751 * @size: IOVA size 1752 * 1753 * Check if @dev supports the IOVA-based DMA API, and if yes allocate IOVA space 1754 * for the given base address and size. 1755 * 1756 * Note: @phys is only used to calculate the IOVA alignment. Callers that always 1757 * do PAGE_SIZE aligned transfers can safely pass 0 here. 1758 * 1759 * Returns %true if the IOVA-based DMA API can be used and IOVA space has been 1760 * allocated, or %false if the regular DMA API should be used. 1761 */ 1762 bool dma_iova_try_alloc(struct device *dev, struct dma_iova_state *state, 1763 phys_addr_t phys, size_t size) 1764 { 1765 struct iommu_dma_cookie *cookie; 1766 struct iommu_domain *domain; 1767 struct iova_domain *iovad; 1768 size_t iova_off; 1769 dma_addr_t addr; 1770 1771 memset(state, 0, sizeof(*state)); 1772 if (!use_dma_iommu(dev)) 1773 return false; 1774 1775 domain = iommu_get_dma_domain(dev); 1776 cookie = domain->iova_cookie; 1777 iovad = &cookie->iovad; 1778 iova_off = iova_offset(iovad, phys); 1779 1780 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 1781 iommu_deferred_attach(dev, iommu_get_domain_for_dev(dev))) 1782 return false; 1783 1784 if (WARN_ON_ONCE(!size)) 1785 return false; 1786 1787 /* 1788 * DMA_IOVA_USE_SWIOTLB is flag which is set by dma-iommu 1789 * internals, make sure that caller didn't set it and/or 1790 * didn't use this interface to map SIZE_MAX. 1791 */ 1792 if (WARN_ON_ONCE((u64)size & DMA_IOVA_USE_SWIOTLB)) 1793 return false; 1794 1795 addr = iommu_dma_alloc_iova(domain, 1796 iova_align(iovad, size + iova_off), 1797 dma_get_mask(dev), dev); 1798 if (!addr) 1799 return false; 1800 1801 state->addr = addr + iova_off; 1802 state->__size = size; 1803 return true; 1804 } 1805 EXPORT_SYMBOL_GPL(dma_iova_try_alloc); 1806 1807 /** 1808 * dma_iova_free - Free an IOVA space 1809 * @dev: Device to free the IOVA space for 1810 * @state: IOVA state 1811 * 1812 * Undoes a successful dma_try_iova_alloc(). 1813 * 1814 * Note that all dma_iova_link() calls need to be undone first. For callers 1815 * that never call dma_iova_unlink(), dma_iova_destroy() can be used instead 1816 * which unlinks all ranges and frees the IOVA space in a single efficient 1817 * operation. 1818 */ 1819 void dma_iova_free(struct device *dev, struct dma_iova_state *state) 1820 { 1821 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1822 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1823 struct iova_domain *iovad = &cookie->iovad; 1824 size_t iova_start_pad = iova_offset(iovad, state->addr); 1825 size_t size = dma_iova_size(state); 1826 1827 iommu_dma_free_iova(domain, state->addr - iova_start_pad, 1828 iova_align(iovad, size + iova_start_pad), NULL); 1829 } 1830 EXPORT_SYMBOL_GPL(dma_iova_free); 1831 1832 static int __dma_iova_link(struct device *dev, dma_addr_t addr, 1833 phys_addr_t phys, size_t size, enum dma_data_direction dir, 1834 unsigned long attrs) 1835 { 1836 bool coherent = dev_is_dma_coherent(dev); 1837 int prot = dma_info_to_prot(dir, coherent, attrs); 1838 1839 if (!coherent && !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO))) 1840 arch_sync_dma_for_device(phys, size, dir); 1841 1842 return iommu_map_nosync(iommu_get_dma_domain(dev), addr, phys, size, 1843 prot, GFP_ATOMIC); 1844 } 1845 1846 static int iommu_dma_iova_bounce_and_link(struct device *dev, dma_addr_t addr, 1847 phys_addr_t phys, size_t bounce_len, 1848 enum dma_data_direction dir, unsigned long attrs, 1849 size_t iova_start_pad) 1850 { 1851 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1852 struct iova_domain *iovad = &domain->iova_cookie->iovad; 1853 phys_addr_t bounce_phys; 1854 int error; 1855 1856 bounce_phys = iommu_dma_map_swiotlb(dev, phys, bounce_len, dir, attrs); 1857 if (bounce_phys == DMA_MAPPING_ERROR) 1858 return -ENOMEM; 1859 1860 error = __dma_iova_link(dev, addr - iova_start_pad, 1861 bounce_phys - iova_start_pad, 1862 iova_align(iovad, bounce_len), dir, attrs); 1863 if (error) 1864 swiotlb_tbl_unmap_single(dev, bounce_phys, bounce_len, dir, 1865 attrs); 1866 return error; 1867 } 1868 1869 static int iommu_dma_iova_link_swiotlb(struct device *dev, 1870 struct dma_iova_state *state, phys_addr_t phys, size_t offset, 1871 size_t size, enum dma_data_direction dir, unsigned long attrs) 1872 { 1873 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1874 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1875 struct iova_domain *iovad = &cookie->iovad; 1876 size_t iova_start_pad = iova_offset(iovad, phys); 1877 size_t iova_end_pad = iova_offset(iovad, phys + size); 1878 dma_addr_t addr = state->addr + offset; 1879 size_t mapped = 0; 1880 int error; 1881 1882 if (iova_start_pad) { 1883 size_t bounce_len = min(size, iovad->granule - iova_start_pad); 1884 1885 error = iommu_dma_iova_bounce_and_link(dev, addr, phys, 1886 bounce_len, dir, attrs, iova_start_pad); 1887 if (error) 1888 return error; 1889 state->__size |= DMA_IOVA_USE_SWIOTLB; 1890 1891 mapped += bounce_len; 1892 size -= bounce_len; 1893 if (!size) 1894 return 0; 1895 } 1896 1897 size -= iova_end_pad; 1898 error = __dma_iova_link(dev, addr + mapped, phys + mapped, size, dir, 1899 attrs); 1900 if (error) 1901 goto out_unmap; 1902 mapped += size; 1903 1904 if (iova_end_pad) { 1905 error = iommu_dma_iova_bounce_and_link(dev, addr + mapped, 1906 phys + mapped, iova_end_pad, dir, attrs, 0); 1907 if (error) 1908 goto out_unmap; 1909 state->__size |= DMA_IOVA_USE_SWIOTLB; 1910 } 1911 1912 return 0; 1913 1914 out_unmap: 1915 dma_iova_unlink(dev, state, 0, mapped, dir, attrs); 1916 return error; 1917 } 1918 1919 /** 1920 * dma_iova_link - Link a range of IOVA space 1921 * @dev: DMA device 1922 * @state: IOVA state 1923 * @phys: physical address to link 1924 * @offset: offset into the IOVA state to map into 1925 * @size: size of the buffer 1926 * @dir: DMA direction 1927 * @attrs: attributes of mapping properties 1928 * 1929 * Link a range of IOVA space for the given IOVA state without IOTLB sync. 1930 * This function is used to link multiple physical addresses in contiguous 1931 * IOVA space without performing costly IOTLB sync. 1932 * 1933 * The caller is responsible to call to dma_iova_sync() to sync IOTLB at 1934 * the end of linkage. 1935 */ 1936 int dma_iova_link(struct device *dev, struct dma_iova_state *state, 1937 phys_addr_t phys, size_t offset, size_t size, 1938 enum dma_data_direction dir, unsigned long attrs) 1939 { 1940 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1941 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1942 struct iova_domain *iovad = &cookie->iovad; 1943 size_t iova_start_pad = iova_offset(iovad, phys); 1944 1945 if (WARN_ON_ONCE(iova_start_pad && offset > 0)) 1946 return -EIO; 1947 1948 if (dev_use_swiotlb(dev, size, dir) && 1949 iova_unaligned(iovad, phys, size)) { 1950 if (attrs & DMA_ATTR_MMIO) 1951 return -EPERM; 1952 1953 return iommu_dma_iova_link_swiotlb(dev, state, phys, offset, 1954 size, dir, attrs); 1955 } 1956 1957 return __dma_iova_link(dev, state->addr + offset - iova_start_pad, 1958 phys - iova_start_pad, 1959 iova_align(iovad, size + iova_start_pad), dir, attrs); 1960 } 1961 EXPORT_SYMBOL_GPL(dma_iova_link); 1962 1963 /** 1964 * dma_iova_sync - Sync IOTLB 1965 * @dev: DMA device 1966 * @state: IOVA state 1967 * @offset: offset into the IOVA state to sync 1968 * @size: size of the buffer 1969 * 1970 * Sync IOTLB for the given IOVA state. This function should be called on 1971 * the IOVA-contiguous range created by one ore more dma_iova_link() calls 1972 * to sync the IOTLB. 1973 */ 1974 int dma_iova_sync(struct device *dev, struct dma_iova_state *state, 1975 size_t offset, size_t size) 1976 { 1977 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1978 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1979 struct iova_domain *iovad = &cookie->iovad; 1980 dma_addr_t addr = state->addr + offset; 1981 size_t iova_start_pad = iova_offset(iovad, addr); 1982 1983 return iommu_sync_map(domain, addr - iova_start_pad, 1984 iova_align(iovad, size + iova_start_pad)); 1985 } 1986 EXPORT_SYMBOL_GPL(dma_iova_sync); 1987 1988 static void iommu_dma_iova_unlink_range_slow(struct device *dev, 1989 dma_addr_t addr, size_t size, enum dma_data_direction dir, 1990 unsigned long attrs) 1991 { 1992 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1993 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1994 struct iova_domain *iovad = &cookie->iovad; 1995 size_t iova_start_pad = iova_offset(iovad, addr); 1996 dma_addr_t end = addr + size; 1997 1998 do { 1999 phys_addr_t phys; 2000 size_t len; 2001 2002 phys = iommu_iova_to_phys(domain, addr); 2003 if (WARN_ON(!phys)) 2004 /* Something very horrible happen here */ 2005 return; 2006 2007 len = min_t(size_t, 2008 end - addr, iovad->granule - iova_start_pad); 2009 2010 if (!dev_is_dma_coherent(dev) && 2011 !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 2012 arch_sync_dma_for_cpu(phys, len, dir); 2013 2014 swiotlb_tbl_unmap_single(dev, phys, len, dir, attrs); 2015 2016 addr += len; 2017 iova_start_pad = 0; 2018 } while (addr < end); 2019 } 2020 2021 static void __iommu_dma_iova_unlink(struct device *dev, 2022 struct dma_iova_state *state, size_t offset, size_t size, 2023 enum dma_data_direction dir, unsigned long attrs, 2024 bool free_iova) 2025 { 2026 struct iommu_domain *domain = iommu_get_dma_domain(dev); 2027 struct iommu_dma_cookie *cookie = domain->iova_cookie; 2028 struct iova_domain *iovad = &cookie->iovad; 2029 dma_addr_t addr = state->addr + offset; 2030 size_t iova_start_pad = iova_offset(iovad, addr); 2031 struct iommu_iotlb_gather iotlb_gather; 2032 size_t unmapped; 2033 2034 if ((state->__size & DMA_IOVA_USE_SWIOTLB) || 2035 (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))) 2036 iommu_dma_iova_unlink_range_slow(dev, addr, size, dir, attrs); 2037 2038 iommu_iotlb_gather_init(&iotlb_gather); 2039 iotlb_gather.queued = free_iova && READ_ONCE(cookie->fq_domain); 2040 2041 size = iova_align(iovad, size + iova_start_pad); 2042 addr -= iova_start_pad; 2043 unmapped = iommu_unmap_fast(domain, addr, size, &iotlb_gather); 2044 WARN_ON(unmapped != size); 2045 2046 if (!iotlb_gather.queued) 2047 iommu_iotlb_sync(domain, &iotlb_gather); 2048 if (free_iova) 2049 iommu_dma_free_iova(domain, addr, size, &iotlb_gather); 2050 } 2051 2052 /** 2053 * dma_iova_unlink - Unlink a range of IOVA space 2054 * @dev: DMA device 2055 * @state: IOVA state 2056 * @offset: offset into the IOVA state to unlink 2057 * @size: size of the buffer 2058 * @dir: DMA direction 2059 * @attrs: attributes of mapping properties 2060 * 2061 * Unlink a range of IOVA space for the given IOVA state. 2062 */ 2063 void dma_iova_unlink(struct device *dev, struct dma_iova_state *state, 2064 size_t offset, size_t size, enum dma_data_direction dir, 2065 unsigned long attrs) 2066 { 2067 __iommu_dma_iova_unlink(dev, state, offset, size, dir, attrs, false); 2068 } 2069 EXPORT_SYMBOL_GPL(dma_iova_unlink); 2070 2071 /** 2072 * dma_iova_destroy - Finish a DMA mapping transaction 2073 * @dev: DMA device 2074 * @state: IOVA state 2075 * @mapped_len: number of bytes to unmap 2076 * @dir: DMA direction 2077 * @attrs: attributes of mapping properties 2078 * 2079 * Unlink the IOVA range up to @mapped_len and free the entire IOVA space. The 2080 * range of IOVA from dma_addr to @mapped_len must all be linked, and be the 2081 * only linked IOVA in state. 2082 */ 2083 void dma_iova_destroy(struct device *dev, struct dma_iova_state *state, 2084 size_t mapped_len, enum dma_data_direction dir, 2085 unsigned long attrs) 2086 { 2087 if (mapped_len) 2088 __iommu_dma_iova_unlink(dev, state, 0, mapped_len, dir, attrs, 2089 true); 2090 else 2091 /* 2092 * We can be here if first call to dma_iova_link() failed and 2093 * there is nothing to unlink, so let's be more clear. 2094 */ 2095 dma_iova_free(dev, state); 2096 } 2097 EXPORT_SYMBOL_GPL(dma_iova_destroy); 2098 2099 void iommu_setup_dma_ops(struct device *dev) 2100 { 2101 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 2102 2103 if (dev_is_pci(dev)) 2104 dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac; 2105 2106 dev->dma_iommu = iommu_is_dma_domain(domain); 2107 if (dev->dma_iommu && iommu_dma_init_domain(domain, dev)) 2108 goto out_err; 2109 2110 return; 2111 out_err: 2112 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 2113 dev_name(dev)); 2114 dev->dma_iommu = false; 2115 } 2116 2117 static bool has_msi_cookie(const struct iommu_domain *domain) 2118 { 2119 return domain && (domain->cookie_type == IOMMU_COOKIE_DMA_IOVA || 2120 domain->cookie_type == IOMMU_COOKIE_DMA_MSI); 2121 } 2122 2123 static size_t cookie_msi_granule(const struct iommu_domain *domain) 2124 { 2125 switch (domain->cookie_type) { 2126 case IOMMU_COOKIE_DMA_IOVA: 2127 return domain->iova_cookie->iovad.granule; 2128 case IOMMU_COOKIE_DMA_MSI: 2129 return PAGE_SIZE; 2130 default: 2131 BUG(); 2132 } 2133 } 2134 2135 static struct list_head *cookie_msi_pages(const struct iommu_domain *domain) 2136 { 2137 switch (domain->cookie_type) { 2138 case IOMMU_COOKIE_DMA_IOVA: 2139 return &domain->iova_cookie->msi_page_list; 2140 case IOMMU_COOKIE_DMA_MSI: 2141 return &domain->msi_cookie->msi_page_list; 2142 default: 2143 BUG(); 2144 } 2145 } 2146 2147 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 2148 phys_addr_t msi_addr, struct iommu_domain *domain) 2149 { 2150 struct list_head *msi_page_list = cookie_msi_pages(domain); 2151 struct iommu_dma_msi_page *msi_page; 2152 dma_addr_t iova; 2153 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 2154 size_t size = cookie_msi_granule(domain); 2155 2156 msi_addr &= ~(phys_addr_t)(size - 1); 2157 list_for_each_entry(msi_page, msi_page_list, list) 2158 if (msi_page->phys == msi_addr) 2159 return msi_page; 2160 2161 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 2162 if (!msi_page) 2163 return NULL; 2164 2165 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 2166 if (!iova) 2167 goto out_free_page; 2168 2169 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) 2170 goto out_free_iova; 2171 2172 INIT_LIST_HEAD(&msi_page->list); 2173 msi_page->phys = msi_addr; 2174 msi_page->iova = iova; 2175 list_add(&msi_page->list, msi_page_list); 2176 return msi_page; 2177 2178 out_free_iova: 2179 iommu_dma_free_iova(domain, iova, size, NULL); 2180 out_free_page: 2181 kfree(msi_page); 2182 return NULL; 2183 } 2184 2185 int iommu_dma_sw_msi(struct iommu_domain *domain, struct msi_desc *desc, 2186 phys_addr_t msi_addr) 2187 { 2188 struct device *dev = msi_desc_to_dev(desc); 2189 const struct iommu_dma_msi_page *msi_page; 2190 2191 if (!has_msi_cookie(domain)) { 2192 msi_desc_set_iommu_msi_iova(desc, 0, 0); 2193 return 0; 2194 } 2195 2196 iommu_group_mutex_assert(dev); 2197 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 2198 if (!msi_page) 2199 return -ENOMEM; 2200 2201 msi_desc_set_iommu_msi_iova(desc, msi_page->iova, 2202 ilog2(cookie_msi_granule(domain))); 2203 return 0; 2204 } 2205 2206 static int iommu_dma_init(void) 2207 { 2208 if (is_kdump_kernel()) 2209 static_branch_enable(&iommu_deferred_attach_enabled); 2210 2211 return iova_cache_get(); 2212 } 2213 arch_initcall(iommu_dma_init); 2214