1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iommu-dma.h> 21 #include <linux/iova.h> 22 #include <linux/irq.h> 23 #include <linux/list_sort.h> 24 #include <linux/memremap.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/msi.h> 28 #include <linux/of_iommu.h> 29 #include <linux/pci.h> 30 #include <linux/pci-p2pdma.h> 31 #include <linux/scatterlist.h> 32 #include <linux/spinlock.h> 33 #include <linux/swiotlb.h> 34 #include <linux/vmalloc.h> 35 #include <trace/events/swiotlb.h> 36 37 #include "dma-iommu.h" 38 #include "iommu-pages.h" 39 40 struct iommu_dma_msi_page { 41 struct list_head list; 42 dma_addr_t iova; 43 phys_addr_t phys; 44 }; 45 46 enum iommu_dma_queue_type { 47 IOMMU_DMA_OPTS_PER_CPU_QUEUE, 48 IOMMU_DMA_OPTS_SINGLE_QUEUE, 49 }; 50 51 struct iommu_dma_options { 52 enum iommu_dma_queue_type qt; 53 size_t fq_size; 54 unsigned int fq_timeout; 55 }; 56 57 struct iommu_dma_cookie { 58 struct iova_domain iovad; 59 struct list_head msi_page_list; 60 /* Flush queue */ 61 union { 62 struct iova_fq *single_fq; 63 struct iova_fq __percpu *percpu_fq; 64 }; 65 /* Number of TLB flushes that have been started */ 66 atomic64_t fq_flush_start_cnt; 67 /* Number of TLB flushes that have been finished */ 68 atomic64_t fq_flush_finish_cnt; 69 /* Timer to regularily empty the flush queues */ 70 struct timer_list fq_timer; 71 /* 1 when timer is active, 0 when not */ 72 atomic_t fq_timer_on; 73 /* Domain for flush queue callback; NULL if flush queue not in use */ 74 struct iommu_domain *fq_domain; 75 /* Options for dma-iommu use */ 76 struct iommu_dma_options options; 77 }; 78 79 struct iommu_dma_msi_cookie { 80 dma_addr_t msi_iova; 81 struct list_head msi_page_list; 82 }; 83 84 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 85 bool iommu_dma_forcedac __read_mostly; 86 87 static int __init iommu_dma_forcedac_setup(char *str) 88 { 89 int ret = kstrtobool(str, &iommu_dma_forcedac); 90 91 if (!ret && iommu_dma_forcedac) 92 pr_info("Forcing DAC for PCI devices\n"); 93 return ret; 94 } 95 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 96 97 /* Number of entries per flush queue */ 98 #define IOVA_DEFAULT_FQ_SIZE 256 99 #define IOVA_SINGLE_FQ_SIZE 32768 100 101 /* Timeout (in ms) after which entries are flushed from the queue */ 102 #define IOVA_DEFAULT_FQ_TIMEOUT 10 103 #define IOVA_SINGLE_FQ_TIMEOUT 1000 104 105 /* Flush queue entry for deferred flushing */ 106 struct iova_fq_entry { 107 unsigned long iova_pfn; 108 unsigned long pages; 109 struct list_head freelist; 110 u64 counter; /* Flush counter when this entry was added */ 111 }; 112 113 /* Per-CPU flush queue structure */ 114 struct iova_fq { 115 spinlock_t lock; 116 unsigned int head, tail; 117 unsigned int mod_mask; 118 struct iova_fq_entry entries[]; 119 }; 120 121 #define fq_ring_for_each(i, fq) \ 122 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask) 123 124 static inline bool fq_full(struct iova_fq *fq) 125 { 126 assert_spin_locked(&fq->lock); 127 return (((fq->tail + 1) & fq->mod_mask) == fq->head); 128 } 129 130 static inline unsigned int fq_ring_add(struct iova_fq *fq) 131 { 132 unsigned int idx = fq->tail; 133 134 assert_spin_locked(&fq->lock); 135 136 fq->tail = (idx + 1) & fq->mod_mask; 137 138 return idx; 139 } 140 141 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 142 { 143 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 144 unsigned int idx; 145 146 assert_spin_locked(&fq->lock); 147 148 fq_ring_for_each(idx, fq) { 149 150 if (fq->entries[idx].counter >= counter) 151 break; 152 153 iommu_put_pages_list(&fq->entries[idx].freelist); 154 free_iova_fast(&cookie->iovad, 155 fq->entries[idx].iova_pfn, 156 fq->entries[idx].pages); 157 158 fq->head = (fq->head + 1) & fq->mod_mask; 159 } 160 } 161 162 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 163 { 164 unsigned long flags; 165 166 spin_lock_irqsave(&fq->lock, flags); 167 fq_ring_free_locked(cookie, fq); 168 spin_unlock_irqrestore(&fq->lock, flags); 169 } 170 171 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 172 { 173 atomic64_inc(&cookie->fq_flush_start_cnt); 174 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 175 atomic64_inc(&cookie->fq_flush_finish_cnt); 176 } 177 178 static void fq_flush_timeout(struct timer_list *t) 179 { 180 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 181 int cpu; 182 183 atomic_set(&cookie->fq_timer_on, 0); 184 fq_flush_iotlb(cookie); 185 186 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) { 187 fq_ring_free(cookie, cookie->single_fq); 188 } else { 189 for_each_possible_cpu(cpu) 190 fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu)); 191 } 192 } 193 194 static void queue_iova(struct iommu_dma_cookie *cookie, 195 unsigned long pfn, unsigned long pages, 196 struct list_head *freelist) 197 { 198 struct iova_fq *fq; 199 unsigned long flags; 200 unsigned int idx; 201 202 /* 203 * Order against the IOMMU driver's pagetable update from unmapping 204 * @pte, to guarantee that fq_flush_iotlb() observes that if called 205 * from a different CPU before we release the lock below. Full barrier 206 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 207 * written fq state here. 208 */ 209 smp_mb(); 210 211 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 212 fq = cookie->single_fq; 213 else 214 fq = raw_cpu_ptr(cookie->percpu_fq); 215 216 spin_lock_irqsave(&fq->lock, flags); 217 218 /* 219 * First remove all entries from the flush queue that have already been 220 * flushed out on another CPU. This makes the fq_full() check below less 221 * likely to be true. 222 */ 223 fq_ring_free_locked(cookie, fq); 224 225 if (fq_full(fq)) { 226 fq_flush_iotlb(cookie); 227 fq_ring_free_locked(cookie, fq); 228 } 229 230 idx = fq_ring_add(fq); 231 232 fq->entries[idx].iova_pfn = pfn; 233 fq->entries[idx].pages = pages; 234 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 235 list_splice(freelist, &fq->entries[idx].freelist); 236 237 spin_unlock_irqrestore(&fq->lock, flags); 238 239 /* Avoid false sharing as much as possible. */ 240 if (!atomic_read(&cookie->fq_timer_on) && 241 !atomic_xchg(&cookie->fq_timer_on, 1)) 242 mod_timer(&cookie->fq_timer, 243 jiffies + msecs_to_jiffies(cookie->options.fq_timeout)); 244 } 245 246 static void iommu_dma_free_fq_single(struct iova_fq *fq) 247 { 248 int idx; 249 250 fq_ring_for_each(idx, fq) 251 iommu_put_pages_list(&fq->entries[idx].freelist); 252 vfree(fq); 253 } 254 255 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq) 256 { 257 int cpu, idx; 258 259 /* The IOVAs will be torn down separately, so just free our queued pages */ 260 for_each_possible_cpu(cpu) { 261 struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu); 262 263 fq_ring_for_each(idx, fq) 264 iommu_put_pages_list(&fq->entries[idx].freelist); 265 } 266 267 free_percpu(percpu_fq); 268 } 269 270 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 271 { 272 if (!cookie->fq_domain) 273 return; 274 275 timer_delete_sync(&cookie->fq_timer); 276 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 277 iommu_dma_free_fq_single(cookie->single_fq); 278 else 279 iommu_dma_free_fq_percpu(cookie->percpu_fq); 280 } 281 282 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size) 283 { 284 int i; 285 286 fq->head = 0; 287 fq->tail = 0; 288 fq->mod_mask = fq_size - 1; 289 290 spin_lock_init(&fq->lock); 291 292 for (i = 0; i < fq_size; i++) 293 INIT_LIST_HEAD(&fq->entries[i].freelist); 294 } 295 296 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie) 297 { 298 size_t fq_size = cookie->options.fq_size; 299 struct iova_fq *queue; 300 301 queue = vmalloc(struct_size(queue, entries, fq_size)); 302 if (!queue) 303 return -ENOMEM; 304 iommu_dma_init_one_fq(queue, fq_size); 305 cookie->single_fq = queue; 306 307 return 0; 308 } 309 310 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie) 311 { 312 size_t fq_size = cookie->options.fq_size; 313 struct iova_fq __percpu *queue; 314 int cpu; 315 316 queue = __alloc_percpu(struct_size(queue, entries, fq_size), 317 __alignof__(*queue)); 318 if (!queue) 319 return -ENOMEM; 320 321 for_each_possible_cpu(cpu) 322 iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size); 323 cookie->percpu_fq = queue; 324 return 0; 325 } 326 327 /* sysfs updates are serialised by the mutex of the group owning @domain */ 328 int iommu_dma_init_fq(struct iommu_domain *domain) 329 { 330 struct iommu_dma_cookie *cookie = domain->iova_cookie; 331 int rc; 332 333 if (cookie->fq_domain) 334 return 0; 335 336 atomic64_set(&cookie->fq_flush_start_cnt, 0); 337 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 338 339 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 340 rc = iommu_dma_init_fq_single(cookie); 341 else 342 rc = iommu_dma_init_fq_percpu(cookie); 343 344 if (rc) { 345 pr_warn("iova flush queue initialization failed\n"); 346 return -ENOMEM; 347 } 348 349 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 350 atomic_set(&cookie->fq_timer_on, 0); 351 /* 352 * Prevent incomplete fq state being observable. Pairs with path from 353 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 354 */ 355 smp_wmb(); 356 WRITE_ONCE(cookie->fq_domain, domain); 357 return 0; 358 } 359 360 /** 361 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 362 * @domain: IOMMU domain to prepare for DMA-API usage 363 */ 364 int iommu_get_dma_cookie(struct iommu_domain *domain) 365 { 366 struct iommu_dma_cookie *cookie; 367 368 if (domain->cookie_type != IOMMU_COOKIE_NONE) 369 return -EEXIST; 370 371 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 372 if (!cookie) 373 return -ENOMEM; 374 375 INIT_LIST_HEAD(&cookie->msi_page_list); 376 domain->cookie_type = IOMMU_COOKIE_DMA_IOVA; 377 domain->iova_cookie = cookie; 378 return 0; 379 } 380 381 /** 382 * iommu_get_msi_cookie - Acquire just MSI remapping resources 383 * @domain: IOMMU domain to prepare 384 * @base: Start address of IOVA region for MSI mappings 385 * 386 * Users who manage their own IOVA allocation and do not want DMA API support, 387 * but would still like to take advantage of automatic MSI remapping, can use 388 * this to initialise their own domain appropriately. Users should reserve a 389 * contiguous IOVA region, starting at @base, large enough to accommodate the 390 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 391 * used by the devices attached to @domain. 392 */ 393 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 394 { 395 struct iommu_dma_msi_cookie *cookie; 396 397 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 398 return -EINVAL; 399 400 if (domain->cookie_type != IOMMU_COOKIE_NONE) 401 return -EEXIST; 402 403 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 404 if (!cookie) 405 return -ENOMEM; 406 407 cookie->msi_iova = base; 408 INIT_LIST_HEAD(&cookie->msi_page_list); 409 domain->cookie_type = IOMMU_COOKIE_DMA_MSI; 410 domain->msi_cookie = cookie; 411 return 0; 412 } 413 EXPORT_SYMBOL(iommu_get_msi_cookie); 414 415 /** 416 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 417 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 418 */ 419 void iommu_put_dma_cookie(struct iommu_domain *domain) 420 { 421 struct iommu_dma_cookie *cookie = domain->iova_cookie; 422 struct iommu_dma_msi_page *msi, *tmp; 423 424 if (cookie->iovad.granule) { 425 iommu_dma_free_fq(cookie); 426 put_iova_domain(&cookie->iovad); 427 } 428 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) 429 kfree(msi); 430 kfree(cookie); 431 } 432 433 /** 434 * iommu_put_msi_cookie - Release a domain's MSI mapping resources 435 * @domain: IOMMU domain previously prepared by iommu_get_msi_cookie() 436 */ 437 void iommu_put_msi_cookie(struct iommu_domain *domain) 438 { 439 struct iommu_dma_msi_cookie *cookie = domain->msi_cookie; 440 struct iommu_dma_msi_page *msi, *tmp; 441 442 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) 443 kfree(msi); 444 kfree(cookie); 445 } 446 447 /** 448 * iommu_dma_get_resv_regions - Reserved region driver helper 449 * @dev: Device from iommu_get_resv_regions() 450 * @list: Reserved region list from iommu_get_resv_regions() 451 * 452 * IOMMU drivers can use this to implement their .get_resv_regions callback 453 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 454 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 455 * reservation. 456 */ 457 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 458 { 459 460 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 461 iort_iommu_get_resv_regions(dev, list); 462 463 if (dev->of_node) 464 of_iommu_get_resv_regions(dev, list); 465 } 466 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 467 468 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 469 phys_addr_t start, phys_addr_t end) 470 { 471 struct iova_domain *iovad = &cookie->iovad; 472 struct iommu_dma_msi_page *msi_page; 473 int i, num_pages; 474 475 start -= iova_offset(iovad, start); 476 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 477 478 for (i = 0; i < num_pages; i++) { 479 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 480 if (!msi_page) 481 return -ENOMEM; 482 483 msi_page->phys = start; 484 msi_page->iova = start; 485 INIT_LIST_HEAD(&msi_page->list); 486 list_add(&msi_page->list, &cookie->msi_page_list); 487 start += iovad->granule; 488 } 489 490 return 0; 491 } 492 493 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 494 const struct list_head *b) 495 { 496 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 497 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 498 499 return res_a->res->start > res_b->res->start; 500 } 501 502 static int iova_reserve_pci_windows(struct pci_dev *dev, 503 struct iova_domain *iovad) 504 { 505 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 506 struct resource_entry *window; 507 unsigned long lo, hi; 508 phys_addr_t start = 0, end; 509 510 resource_list_for_each_entry(window, &bridge->windows) { 511 if (resource_type(window->res) != IORESOURCE_MEM) 512 continue; 513 514 lo = iova_pfn(iovad, window->res->start - window->offset); 515 hi = iova_pfn(iovad, window->res->end - window->offset); 516 reserve_iova(iovad, lo, hi); 517 } 518 519 /* Get reserved DMA windows from host bridge */ 520 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 521 resource_list_for_each_entry(window, &bridge->dma_ranges) { 522 end = window->res->start - window->offset; 523 resv_iova: 524 if (end > start) { 525 lo = iova_pfn(iovad, start); 526 hi = iova_pfn(iovad, end); 527 reserve_iova(iovad, lo, hi); 528 } else if (end < start) { 529 /* DMA ranges should be non-overlapping */ 530 dev_err(&dev->dev, 531 "Failed to reserve IOVA [%pa-%pa]\n", 532 &start, &end); 533 return -EINVAL; 534 } 535 536 start = window->res->end - window->offset + 1; 537 /* If window is last entry */ 538 if (window->node.next == &bridge->dma_ranges && 539 end != ~(phys_addr_t)0) { 540 end = ~(phys_addr_t)0; 541 goto resv_iova; 542 } 543 } 544 545 return 0; 546 } 547 548 static int iova_reserve_iommu_regions(struct device *dev, 549 struct iommu_domain *domain) 550 { 551 struct iommu_dma_cookie *cookie = domain->iova_cookie; 552 struct iova_domain *iovad = &cookie->iovad; 553 struct iommu_resv_region *region; 554 LIST_HEAD(resv_regions); 555 int ret = 0; 556 557 if (dev_is_pci(dev)) { 558 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 559 if (ret) 560 return ret; 561 } 562 563 iommu_get_resv_regions(dev, &resv_regions); 564 list_for_each_entry(region, &resv_regions, list) { 565 unsigned long lo, hi; 566 567 /* We ARE the software that manages these! */ 568 if (region->type == IOMMU_RESV_SW_MSI) 569 continue; 570 571 lo = iova_pfn(iovad, region->start); 572 hi = iova_pfn(iovad, region->start + region->length - 1); 573 reserve_iova(iovad, lo, hi); 574 575 if (region->type == IOMMU_RESV_MSI) 576 ret = cookie_init_hw_msi_region(cookie, region->start, 577 region->start + region->length); 578 if (ret) 579 break; 580 } 581 iommu_put_resv_regions(dev, &resv_regions); 582 583 return ret; 584 } 585 586 static bool dev_is_untrusted(struct device *dev) 587 { 588 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 589 } 590 591 static bool dev_use_swiotlb(struct device *dev, size_t size, 592 enum dma_data_direction dir) 593 { 594 return IS_ENABLED(CONFIG_SWIOTLB) && 595 (dev_is_untrusted(dev) || 596 dma_kmalloc_needs_bounce(dev, size, dir)); 597 } 598 599 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg, 600 int nents, enum dma_data_direction dir) 601 { 602 struct scatterlist *s; 603 int i; 604 605 if (!IS_ENABLED(CONFIG_SWIOTLB)) 606 return false; 607 608 if (dev_is_untrusted(dev)) 609 return true; 610 611 /* 612 * If kmalloc() buffers are not DMA-safe for this device and 613 * direction, check the individual lengths in the sg list. If any 614 * element is deemed unsafe, use the swiotlb for bouncing. 615 */ 616 if (!dma_kmalloc_safe(dev, dir)) { 617 for_each_sg(sg, s, nents, i) 618 if (!dma_kmalloc_size_aligned(s->length)) 619 return true; 620 } 621 622 return false; 623 } 624 625 /** 626 * iommu_dma_init_options - Initialize dma-iommu options 627 * @options: The options to be initialized 628 * @dev: Device the options are set for 629 * 630 * This allows tuning dma-iommu specific to device properties 631 */ 632 static void iommu_dma_init_options(struct iommu_dma_options *options, 633 struct device *dev) 634 { 635 /* Shadowing IOTLB flushes do better with a single large queue */ 636 if (dev->iommu->shadow_on_flush) { 637 options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE; 638 options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT; 639 options->fq_size = IOVA_SINGLE_FQ_SIZE; 640 } else { 641 options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE; 642 options->fq_size = IOVA_DEFAULT_FQ_SIZE; 643 options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT; 644 } 645 } 646 647 /** 648 * iommu_dma_init_domain - Initialise a DMA mapping domain 649 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 650 * @dev: Device the domain is being initialised for 651 * 652 * If the geometry and dma_range_map include address 0, we reserve that page 653 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 654 * any change which could make prior IOVAs invalid will fail. 655 */ 656 static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev) 657 { 658 struct iommu_dma_cookie *cookie = domain->iova_cookie; 659 const struct bus_dma_region *map = dev->dma_range_map; 660 unsigned long order, base_pfn; 661 struct iova_domain *iovad; 662 int ret; 663 664 if (!cookie || domain->cookie_type != IOMMU_COOKIE_DMA_IOVA) 665 return -EINVAL; 666 667 iovad = &cookie->iovad; 668 669 /* Use the smallest supported page size for IOVA granularity */ 670 order = __ffs(domain->pgsize_bitmap); 671 base_pfn = 1; 672 673 /* Check the domain allows at least some access to the device... */ 674 if (map) { 675 if (dma_range_map_min(map) > domain->geometry.aperture_end || 676 dma_range_map_max(map) < domain->geometry.aperture_start) { 677 pr_warn("specified DMA range outside IOMMU capability\n"); 678 return -EFAULT; 679 } 680 } 681 /* ...then finally give it a kicking to make sure it fits */ 682 base_pfn = max_t(unsigned long, base_pfn, 683 domain->geometry.aperture_start >> order); 684 685 /* start_pfn is always nonzero for an already-initialised domain */ 686 if (iovad->start_pfn) { 687 if (1UL << order != iovad->granule || 688 base_pfn != iovad->start_pfn) { 689 pr_warn("Incompatible range for DMA domain\n"); 690 return -EFAULT; 691 } 692 693 return 0; 694 } 695 696 init_iova_domain(iovad, 1UL << order, base_pfn); 697 ret = iova_domain_init_rcaches(iovad); 698 if (ret) 699 return ret; 700 701 iommu_dma_init_options(&cookie->options, dev); 702 703 /* If the FQ fails we can simply fall back to strict mode */ 704 if (domain->type == IOMMU_DOMAIN_DMA_FQ && 705 (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain))) 706 domain->type = IOMMU_DOMAIN_DMA; 707 708 return iova_reserve_iommu_regions(dev, domain); 709 } 710 711 /** 712 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 713 * page flags. 714 * @dir: Direction of DMA transfer 715 * @coherent: Is the DMA master cache-coherent? 716 * @attrs: DMA attributes for the mapping 717 * 718 * Return: corresponding IOMMU API page protection flags 719 */ 720 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 721 unsigned long attrs) 722 { 723 int prot = coherent ? IOMMU_CACHE : 0; 724 725 if (attrs & DMA_ATTR_PRIVILEGED) 726 prot |= IOMMU_PRIV; 727 728 switch (dir) { 729 case DMA_BIDIRECTIONAL: 730 return prot | IOMMU_READ | IOMMU_WRITE; 731 case DMA_TO_DEVICE: 732 return prot | IOMMU_READ; 733 case DMA_FROM_DEVICE: 734 return prot | IOMMU_WRITE; 735 default: 736 return 0; 737 } 738 } 739 740 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 741 size_t size, u64 dma_limit, struct device *dev) 742 { 743 struct iommu_dma_cookie *cookie = domain->iova_cookie; 744 struct iova_domain *iovad = &cookie->iovad; 745 unsigned long shift, iova_len, iova; 746 747 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) { 748 domain->msi_cookie->msi_iova += size; 749 return domain->msi_cookie->msi_iova - size; 750 } 751 752 shift = iova_shift(iovad); 753 iova_len = size >> shift; 754 755 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 756 757 if (domain->geometry.force_aperture) 758 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 759 760 /* 761 * Try to use all the 32-bit PCI addresses first. The original SAC vs. 762 * DAC reasoning loses relevance with PCIe, but enough hardware and 763 * firmware bugs are still lurking out there that it's safest not to 764 * venture into the 64-bit space until necessary. 765 * 766 * If your device goes wrong after seeing the notice then likely either 767 * its driver is not setting DMA masks accurately, the hardware has 768 * some inherent bug in handling >32-bit addresses, or not all the 769 * expected address bits are wired up between the device and the IOMMU. 770 */ 771 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) { 772 iova = alloc_iova_fast(iovad, iova_len, 773 DMA_BIT_MASK(32) >> shift, false); 774 if (iova) 775 goto done; 776 777 dev->iommu->pci_32bit_workaround = false; 778 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit)); 779 } 780 781 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true); 782 done: 783 return (dma_addr_t)iova << shift; 784 } 785 786 static void iommu_dma_free_iova(struct iommu_domain *domain, dma_addr_t iova, 787 size_t size, struct iommu_iotlb_gather *gather) 788 { 789 struct iova_domain *iovad = &domain->iova_cookie->iovad; 790 791 /* The MSI case is only ever cleaning up its most recent allocation */ 792 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) 793 domain->msi_cookie->msi_iova -= size; 794 else if (gather && gather->queued) 795 queue_iova(domain->iova_cookie, iova_pfn(iovad, iova), 796 size >> iova_shift(iovad), 797 &gather->freelist); 798 else 799 free_iova_fast(iovad, iova_pfn(iovad, iova), 800 size >> iova_shift(iovad)); 801 } 802 803 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 804 size_t size) 805 { 806 struct iommu_domain *domain = iommu_get_dma_domain(dev); 807 struct iommu_dma_cookie *cookie = domain->iova_cookie; 808 struct iova_domain *iovad = &cookie->iovad; 809 size_t iova_off = iova_offset(iovad, dma_addr); 810 struct iommu_iotlb_gather iotlb_gather; 811 size_t unmapped; 812 813 dma_addr -= iova_off; 814 size = iova_align(iovad, size + iova_off); 815 iommu_iotlb_gather_init(&iotlb_gather); 816 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 817 818 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 819 WARN_ON(unmapped != size); 820 821 if (!iotlb_gather.queued) 822 iommu_iotlb_sync(domain, &iotlb_gather); 823 iommu_dma_free_iova(domain, dma_addr, size, &iotlb_gather); 824 } 825 826 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 827 size_t size, int prot, u64 dma_mask) 828 { 829 struct iommu_domain *domain = iommu_get_dma_domain(dev); 830 struct iommu_dma_cookie *cookie = domain->iova_cookie; 831 struct iova_domain *iovad = &cookie->iovad; 832 size_t iova_off = iova_offset(iovad, phys); 833 dma_addr_t iova; 834 835 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 836 iommu_deferred_attach(dev, domain)) 837 return DMA_MAPPING_ERROR; 838 839 /* If anyone ever wants this we'd need support in the IOVA allocator */ 840 if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad), 841 "Unsupported alignment constraint\n")) 842 return DMA_MAPPING_ERROR; 843 844 size = iova_align(iovad, size + iova_off); 845 846 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 847 if (!iova) 848 return DMA_MAPPING_ERROR; 849 850 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { 851 iommu_dma_free_iova(domain, iova, size, NULL); 852 return DMA_MAPPING_ERROR; 853 } 854 return iova + iova_off; 855 } 856 857 static void __iommu_dma_free_pages(struct page **pages, int count) 858 { 859 while (count--) 860 __free_page(pages[count]); 861 kvfree(pages); 862 } 863 864 static struct page **__iommu_dma_alloc_pages(struct device *dev, 865 unsigned int count, unsigned long order_mask, gfp_t gfp) 866 { 867 struct page **pages; 868 unsigned int i = 0, nid = dev_to_node(dev); 869 870 order_mask &= GENMASK(MAX_PAGE_ORDER, 0); 871 if (!order_mask) 872 return NULL; 873 874 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 875 if (!pages) 876 return NULL; 877 878 /* IOMMU can map any pages, so himem can also be used here */ 879 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 880 881 while (count) { 882 struct page *page = NULL; 883 unsigned int order_size; 884 885 /* 886 * Higher-order allocations are a convenience rather 887 * than a necessity, hence using __GFP_NORETRY until 888 * falling back to minimum-order allocations. 889 */ 890 for (order_mask &= GENMASK(__fls(count), 0); 891 order_mask; order_mask &= ~order_size) { 892 unsigned int order = __fls(order_mask); 893 gfp_t alloc_flags = gfp; 894 895 order_size = 1U << order; 896 if (order_mask > order_size) 897 alloc_flags |= __GFP_NORETRY; 898 page = alloc_pages_node(nid, alloc_flags, order); 899 if (!page) 900 continue; 901 if (order) 902 split_page(page, order); 903 break; 904 } 905 if (!page) { 906 __iommu_dma_free_pages(pages, i); 907 return NULL; 908 } 909 count -= order_size; 910 while (order_size--) 911 pages[i++] = page++; 912 } 913 return pages; 914 } 915 916 /* 917 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 918 * but an IOMMU which supports smaller pages might not map the whole thing. 919 */ 920 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 921 size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs) 922 { 923 struct iommu_domain *domain = iommu_get_dma_domain(dev); 924 struct iommu_dma_cookie *cookie = domain->iova_cookie; 925 struct iova_domain *iovad = &cookie->iovad; 926 bool coherent = dev_is_dma_coherent(dev); 927 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 928 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 929 struct page **pages; 930 dma_addr_t iova; 931 ssize_t ret; 932 933 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 934 iommu_deferred_attach(dev, domain)) 935 return NULL; 936 937 min_size = alloc_sizes & -alloc_sizes; 938 if (min_size < PAGE_SIZE) { 939 min_size = PAGE_SIZE; 940 alloc_sizes |= PAGE_SIZE; 941 } else { 942 size = ALIGN(size, min_size); 943 } 944 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 945 alloc_sizes = min_size; 946 947 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 948 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 949 gfp); 950 if (!pages) 951 return NULL; 952 953 size = iova_align(iovad, size); 954 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 955 if (!iova) 956 goto out_free_pages; 957 958 /* 959 * Remove the zone/policy flags from the GFP - these are applied to the 960 * __iommu_dma_alloc_pages() but are not used for the supporting 961 * internal allocations that follow. 962 */ 963 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); 964 965 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) 966 goto out_free_iova; 967 968 if (!(ioprot & IOMMU_CACHE)) { 969 struct scatterlist *sg; 970 int i; 971 972 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 973 arch_dma_prep_coherent(sg_page(sg), sg->length); 974 } 975 976 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, 977 gfp); 978 if (ret < 0 || ret < size) 979 goto out_free_sg; 980 981 sgt->sgl->dma_address = iova; 982 sgt->sgl->dma_length = size; 983 return pages; 984 985 out_free_sg: 986 sg_free_table(sgt); 987 out_free_iova: 988 iommu_dma_free_iova(domain, iova, size, NULL); 989 out_free_pages: 990 __iommu_dma_free_pages(pages, count); 991 return NULL; 992 } 993 994 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 995 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 996 { 997 struct page **pages; 998 struct sg_table sgt; 999 void *vaddr; 1000 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1001 1002 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs); 1003 if (!pages) 1004 return NULL; 1005 *dma_handle = sgt.sgl->dma_address; 1006 sg_free_table(&sgt); 1007 vaddr = dma_common_pages_remap(pages, size, prot, 1008 __builtin_return_address(0)); 1009 if (!vaddr) 1010 goto out_unmap; 1011 return vaddr; 1012 1013 out_unmap: 1014 __iommu_dma_unmap(dev, *dma_handle, size); 1015 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1016 return NULL; 1017 } 1018 1019 /* 1020 * This is the actual return value from the iommu_dma_alloc_noncontiguous. 1021 * 1022 * The users of the DMA API should only care about the sg_table, but to make 1023 * the DMA-API internal vmaping and freeing easier we stash away the page 1024 * array as well (except for the fallback case). This can go away any time, 1025 * e.g. when a vmap-variant that takes a scatterlist comes along. 1026 */ 1027 struct dma_sgt_handle { 1028 struct sg_table sgt; 1029 struct page **pages; 1030 }; 1031 #define sgt_handle(sgt) \ 1032 container_of((sgt), struct dma_sgt_handle, sgt) 1033 1034 struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size, 1035 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 1036 { 1037 struct dma_sgt_handle *sh; 1038 1039 sh = kmalloc(sizeof(*sh), gfp); 1040 if (!sh) 1041 return NULL; 1042 1043 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs); 1044 if (!sh->pages) { 1045 kfree(sh); 1046 return NULL; 1047 } 1048 return &sh->sgt; 1049 } 1050 1051 void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 1052 struct sg_table *sgt, enum dma_data_direction dir) 1053 { 1054 struct dma_sgt_handle *sh = sgt_handle(sgt); 1055 1056 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 1057 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1058 sg_free_table(&sh->sgt); 1059 kfree(sh); 1060 } 1061 1062 void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size, 1063 struct sg_table *sgt) 1064 { 1065 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1066 1067 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 1068 } 1069 1070 int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 1071 size_t size, struct sg_table *sgt) 1072 { 1073 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1074 1075 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 1076 return -ENXIO; 1077 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 1078 } 1079 1080 void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, 1081 size_t size, enum dma_data_direction dir) 1082 { 1083 phys_addr_t phys; 1084 1085 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1086 return; 1087 1088 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1089 if (!dev_is_dma_coherent(dev)) 1090 arch_sync_dma_for_cpu(phys, size, dir); 1091 1092 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 1093 } 1094 1095 void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, 1096 size_t size, enum dma_data_direction dir) 1097 { 1098 phys_addr_t phys; 1099 1100 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1101 return; 1102 1103 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1104 swiotlb_sync_single_for_device(dev, phys, size, dir); 1105 1106 if (!dev_is_dma_coherent(dev)) 1107 arch_sync_dma_for_device(phys, size, dir); 1108 } 1109 1110 void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 1111 int nelems, enum dma_data_direction dir) 1112 { 1113 struct scatterlist *sg; 1114 int i; 1115 1116 if (sg_dma_is_swiotlb(sgl)) 1117 for_each_sg(sgl, sg, nelems, i) 1118 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 1119 sg->length, dir); 1120 else if (!dev_is_dma_coherent(dev)) 1121 for_each_sg(sgl, sg, nelems, i) 1122 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 1123 } 1124 1125 void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 1126 int nelems, enum dma_data_direction dir) 1127 { 1128 struct scatterlist *sg; 1129 int i; 1130 1131 if (sg_dma_is_swiotlb(sgl)) 1132 for_each_sg(sgl, sg, nelems, i) 1133 iommu_dma_sync_single_for_device(dev, 1134 sg_dma_address(sg), 1135 sg->length, dir); 1136 else if (!dev_is_dma_coherent(dev)) 1137 for_each_sg(sgl, sg, nelems, i) 1138 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 1139 } 1140 1141 static phys_addr_t iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys, 1142 size_t size, enum dma_data_direction dir, unsigned long attrs) 1143 { 1144 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1145 struct iova_domain *iovad = &domain->iova_cookie->iovad; 1146 1147 if (!is_swiotlb_active(dev)) { 1148 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 1149 return (phys_addr_t)DMA_MAPPING_ERROR; 1150 } 1151 1152 trace_swiotlb_bounced(dev, phys, size); 1153 1154 phys = swiotlb_tbl_map_single(dev, phys, size, iova_mask(iovad), dir, 1155 attrs); 1156 1157 /* 1158 * Untrusted devices should not see padding areas with random leftover 1159 * kernel data, so zero the pre- and post-padding. 1160 * swiotlb_tbl_map_single() has initialized the bounce buffer proper to 1161 * the contents of the original memory buffer. 1162 */ 1163 if (phys != (phys_addr_t)DMA_MAPPING_ERROR && dev_is_untrusted(dev)) { 1164 size_t start, virt = (size_t)phys_to_virt(phys); 1165 1166 /* Pre-padding */ 1167 start = iova_align_down(iovad, virt); 1168 memset((void *)start, 0, virt - start); 1169 1170 /* Post-padding */ 1171 start = virt + size; 1172 memset((void *)start, 0, iova_align(iovad, start) - start); 1173 } 1174 1175 return phys; 1176 } 1177 1178 /* 1179 * Checks if a physical buffer has unaligned boundaries with respect to 1180 * the IOMMU granule. Returns non-zero if either the start or end 1181 * address is not aligned to the granule boundary. 1182 */ 1183 static inline size_t iova_unaligned(struct iova_domain *iovad, phys_addr_t phys, 1184 size_t size) 1185 { 1186 return iova_offset(iovad, phys | size); 1187 } 1188 1189 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 1190 unsigned long offset, size_t size, enum dma_data_direction dir, 1191 unsigned long attrs) 1192 { 1193 phys_addr_t phys = page_to_phys(page) + offset; 1194 bool coherent = dev_is_dma_coherent(dev); 1195 int prot = dma_info_to_prot(dir, coherent, attrs); 1196 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1197 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1198 struct iova_domain *iovad = &cookie->iovad; 1199 dma_addr_t iova, dma_mask = dma_get_mask(dev); 1200 1201 /* 1202 * If both the physical buffer start address and size are page aligned, 1203 * we don't need to use a bounce page. 1204 */ 1205 if (dev_use_swiotlb(dev, size, dir) && 1206 iova_unaligned(iovad, phys, size)) { 1207 phys = iommu_dma_map_swiotlb(dev, phys, size, dir, attrs); 1208 if (phys == (phys_addr_t)DMA_MAPPING_ERROR) 1209 return DMA_MAPPING_ERROR; 1210 } 1211 1212 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1213 arch_sync_dma_for_device(phys, size, dir); 1214 1215 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1216 if (iova == DMA_MAPPING_ERROR) 1217 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1218 return iova; 1219 } 1220 1221 void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1222 size_t size, enum dma_data_direction dir, unsigned long attrs) 1223 { 1224 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1225 phys_addr_t phys; 1226 1227 phys = iommu_iova_to_phys(domain, dma_handle); 1228 if (WARN_ON(!phys)) 1229 return; 1230 1231 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1232 arch_sync_dma_for_cpu(phys, size, dir); 1233 1234 __iommu_dma_unmap(dev, dma_handle, size); 1235 1236 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1237 } 1238 1239 /* 1240 * Prepare a successfully-mapped scatterlist to give back to the caller. 1241 * 1242 * At this point the segments are already laid out by iommu_dma_map_sg() to 1243 * avoid individually crossing any boundaries, so we merely need to check a 1244 * segment's start address to avoid concatenating across one. 1245 */ 1246 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1247 dma_addr_t dma_addr) 1248 { 1249 struct scatterlist *s, *cur = sg; 1250 unsigned long seg_mask = dma_get_seg_boundary(dev); 1251 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1252 int i, count = 0; 1253 1254 for_each_sg(sg, s, nents, i) { 1255 /* Restore this segment's original unaligned fields first */ 1256 dma_addr_t s_dma_addr = sg_dma_address(s); 1257 unsigned int s_iova_off = sg_dma_address(s); 1258 unsigned int s_length = sg_dma_len(s); 1259 unsigned int s_iova_len = s->length; 1260 1261 sg_dma_address(s) = DMA_MAPPING_ERROR; 1262 sg_dma_len(s) = 0; 1263 1264 if (sg_dma_is_bus_address(s)) { 1265 if (i > 0) 1266 cur = sg_next(cur); 1267 1268 sg_dma_unmark_bus_address(s); 1269 sg_dma_address(cur) = s_dma_addr; 1270 sg_dma_len(cur) = s_length; 1271 sg_dma_mark_bus_address(cur); 1272 count++; 1273 cur_len = 0; 1274 continue; 1275 } 1276 1277 s->offset += s_iova_off; 1278 s->length = s_length; 1279 1280 /* 1281 * Now fill in the real DMA data. If... 1282 * - there is a valid output segment to append to 1283 * - and this segment starts on an IOVA page boundary 1284 * - but doesn't fall at a segment boundary 1285 * - and wouldn't make the resulting output segment too long 1286 */ 1287 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1288 (max_len - cur_len >= s_length)) { 1289 /* ...then concatenate it with the previous one */ 1290 cur_len += s_length; 1291 } else { 1292 /* Otherwise start the next output segment */ 1293 if (i > 0) 1294 cur = sg_next(cur); 1295 cur_len = s_length; 1296 count++; 1297 1298 sg_dma_address(cur) = dma_addr + s_iova_off; 1299 } 1300 1301 sg_dma_len(cur) = cur_len; 1302 dma_addr += s_iova_len; 1303 1304 if (s_length + s_iova_off < s_iova_len) 1305 cur_len = 0; 1306 } 1307 return count; 1308 } 1309 1310 /* 1311 * If mapping failed, then just restore the original list, 1312 * but making sure the DMA fields are invalidated. 1313 */ 1314 static void __invalidate_sg(struct scatterlist *sg, int nents) 1315 { 1316 struct scatterlist *s; 1317 int i; 1318 1319 for_each_sg(sg, s, nents, i) { 1320 if (sg_dma_is_bus_address(s)) { 1321 sg_dma_unmark_bus_address(s); 1322 } else { 1323 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1324 s->offset += sg_dma_address(s); 1325 if (sg_dma_len(s)) 1326 s->length = sg_dma_len(s); 1327 } 1328 sg_dma_address(s) = DMA_MAPPING_ERROR; 1329 sg_dma_len(s) = 0; 1330 } 1331 } 1332 1333 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1334 int nents, enum dma_data_direction dir, unsigned long attrs) 1335 { 1336 struct scatterlist *s; 1337 int i; 1338 1339 for_each_sg(sg, s, nents, i) 1340 iommu_dma_unmap_page(dev, sg_dma_address(s), 1341 sg_dma_len(s), dir, attrs); 1342 } 1343 1344 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1345 int nents, enum dma_data_direction dir, unsigned long attrs) 1346 { 1347 struct scatterlist *s; 1348 int i; 1349 1350 sg_dma_mark_swiotlb(sg); 1351 1352 for_each_sg(sg, s, nents, i) { 1353 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1354 s->offset, s->length, dir, attrs); 1355 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1356 goto out_unmap; 1357 sg_dma_len(s) = s->length; 1358 } 1359 1360 return nents; 1361 1362 out_unmap: 1363 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1364 return -EIO; 1365 } 1366 1367 /* 1368 * The DMA API client is passing in a scatterlist which could describe 1369 * any old buffer layout, but the IOMMU API requires everything to be 1370 * aligned to IOMMU pages. Hence the need for this complicated bit of 1371 * impedance-matching, to be able to hand off a suitably-aligned list, 1372 * but still preserve the original offsets and sizes for the caller. 1373 */ 1374 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1375 enum dma_data_direction dir, unsigned long attrs) 1376 { 1377 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1378 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1379 struct iova_domain *iovad = &cookie->iovad; 1380 struct scatterlist *s, *prev = NULL; 1381 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1382 struct pci_p2pdma_map_state p2pdma_state = {}; 1383 dma_addr_t iova; 1384 size_t iova_len = 0; 1385 unsigned long mask = dma_get_seg_boundary(dev); 1386 ssize_t ret; 1387 int i; 1388 1389 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1390 ret = iommu_deferred_attach(dev, domain); 1391 if (ret) 1392 goto out; 1393 } 1394 1395 if (dev_use_sg_swiotlb(dev, sg, nents, dir)) 1396 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1397 1398 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1399 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1400 1401 /* 1402 * Work out how much IOVA space we need, and align the segments to 1403 * IOVA granules for the IOMMU driver to handle. With some clever 1404 * trickery we can modify the list in-place, but reversibly, by 1405 * stashing the unaligned parts in the as-yet-unused DMA fields. 1406 */ 1407 for_each_sg(sg, s, nents, i) { 1408 size_t s_iova_off = iova_offset(iovad, s->offset); 1409 size_t s_length = s->length; 1410 size_t pad_len = (mask - iova_len + 1) & mask; 1411 1412 switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(s))) { 1413 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1414 /* 1415 * Mapping through host bridge should be mapped with 1416 * regular IOVAs, thus we do nothing here and continue 1417 * below. 1418 */ 1419 break; 1420 case PCI_P2PDMA_MAP_NONE: 1421 break; 1422 case PCI_P2PDMA_MAP_BUS_ADDR: 1423 /* 1424 * iommu_map_sg() will skip this segment as it is marked 1425 * as a bus address, __finalise_sg() will copy the dma 1426 * address into the output segment. 1427 */ 1428 s->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state, 1429 sg_phys(s)); 1430 sg_dma_len(s) = sg->length; 1431 sg_dma_mark_bus_address(s); 1432 continue; 1433 default: 1434 ret = -EREMOTEIO; 1435 goto out_restore_sg; 1436 } 1437 1438 sg_dma_address(s) = s_iova_off; 1439 sg_dma_len(s) = s_length; 1440 s->offset -= s_iova_off; 1441 s_length = iova_align(iovad, s_length + s_iova_off); 1442 s->length = s_length; 1443 1444 /* 1445 * Due to the alignment of our single IOVA allocation, we can 1446 * depend on these assumptions about the segment boundary mask: 1447 * - If mask size >= IOVA size, then the IOVA range cannot 1448 * possibly fall across a boundary, so we don't care. 1449 * - If mask size < IOVA size, then the IOVA range must start 1450 * exactly on a boundary, therefore we can lay things out 1451 * based purely on segment lengths without needing to know 1452 * the actual addresses beforehand. 1453 * - The mask must be a power of 2, so pad_len == 0 if 1454 * iova_len == 0, thus we cannot dereference prev the first 1455 * time through here (i.e. before it has a meaningful value). 1456 */ 1457 if (pad_len && pad_len < s_length - 1) { 1458 prev->length += pad_len; 1459 iova_len += pad_len; 1460 } 1461 1462 iova_len += s_length; 1463 prev = s; 1464 } 1465 1466 if (!iova_len) 1467 return __finalise_sg(dev, sg, nents, 0); 1468 1469 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1470 if (!iova) { 1471 ret = -ENOMEM; 1472 goto out_restore_sg; 1473 } 1474 1475 /* 1476 * We'll leave any physical concatenation to the IOMMU driver's 1477 * implementation - it knows better than we do. 1478 */ 1479 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 1480 if (ret < 0 || ret < iova_len) 1481 goto out_free_iova; 1482 1483 return __finalise_sg(dev, sg, nents, iova); 1484 1485 out_free_iova: 1486 iommu_dma_free_iova(domain, iova, iova_len, NULL); 1487 out_restore_sg: 1488 __invalidate_sg(sg, nents); 1489 out: 1490 if (ret != -ENOMEM && ret != -EREMOTEIO) 1491 return -EINVAL; 1492 return ret; 1493 } 1494 1495 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1496 enum dma_data_direction dir, unsigned long attrs) 1497 { 1498 dma_addr_t end = 0, start; 1499 struct scatterlist *tmp; 1500 int i; 1501 1502 if (sg_dma_is_swiotlb(sg)) { 1503 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1504 return; 1505 } 1506 1507 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1508 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1509 1510 /* 1511 * The scatterlist segments are mapped into a single 1512 * contiguous IOVA allocation, the start and end points 1513 * just have to be determined. 1514 */ 1515 for_each_sg(sg, tmp, nents, i) { 1516 if (sg_dma_is_bus_address(tmp)) { 1517 sg_dma_unmark_bus_address(tmp); 1518 continue; 1519 } 1520 1521 if (sg_dma_len(tmp) == 0) 1522 break; 1523 1524 start = sg_dma_address(tmp); 1525 break; 1526 } 1527 1528 nents -= i; 1529 for_each_sg(tmp, tmp, nents, i) { 1530 if (sg_dma_is_bus_address(tmp)) { 1531 sg_dma_unmark_bus_address(tmp); 1532 continue; 1533 } 1534 1535 if (sg_dma_len(tmp) == 0) 1536 break; 1537 1538 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1539 } 1540 1541 if (end) 1542 __iommu_dma_unmap(dev, start, end - start); 1543 } 1544 1545 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1546 size_t size, enum dma_data_direction dir, unsigned long attrs) 1547 { 1548 return __iommu_dma_map(dev, phys, size, 1549 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1550 dma_get_mask(dev)); 1551 } 1552 1553 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1554 size_t size, enum dma_data_direction dir, unsigned long attrs) 1555 { 1556 __iommu_dma_unmap(dev, handle, size); 1557 } 1558 1559 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1560 { 1561 size_t alloc_size = PAGE_ALIGN(size); 1562 int count = alloc_size >> PAGE_SHIFT; 1563 struct page *page = NULL, **pages = NULL; 1564 1565 /* Non-coherent atomic allocation? Easy */ 1566 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1567 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1568 return; 1569 1570 if (is_vmalloc_addr(cpu_addr)) { 1571 /* 1572 * If it the address is remapped, then it's either non-coherent 1573 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1574 */ 1575 pages = dma_common_find_pages(cpu_addr); 1576 if (!pages) 1577 page = vmalloc_to_page(cpu_addr); 1578 dma_common_free_remap(cpu_addr, alloc_size); 1579 } else { 1580 /* Lowmem means a coherent atomic or CMA allocation */ 1581 page = virt_to_page(cpu_addr); 1582 } 1583 1584 if (pages) 1585 __iommu_dma_free_pages(pages, count); 1586 if (page) 1587 dma_free_contiguous(dev, page, alloc_size); 1588 } 1589 1590 void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1591 dma_addr_t handle, unsigned long attrs) 1592 { 1593 __iommu_dma_unmap(dev, handle, size); 1594 __iommu_dma_free(dev, size, cpu_addr); 1595 } 1596 1597 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1598 struct page **pagep, gfp_t gfp, unsigned long attrs) 1599 { 1600 bool coherent = dev_is_dma_coherent(dev); 1601 size_t alloc_size = PAGE_ALIGN(size); 1602 int node = dev_to_node(dev); 1603 struct page *page = NULL; 1604 void *cpu_addr; 1605 1606 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1607 if (!page) 1608 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1609 if (!page) 1610 return NULL; 1611 1612 if (!coherent || PageHighMem(page)) { 1613 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1614 1615 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1616 prot, __builtin_return_address(0)); 1617 if (!cpu_addr) 1618 goto out_free_pages; 1619 1620 if (!coherent) 1621 arch_dma_prep_coherent(page, size); 1622 } else { 1623 cpu_addr = page_address(page); 1624 } 1625 1626 *pagep = page; 1627 memset(cpu_addr, 0, alloc_size); 1628 return cpu_addr; 1629 out_free_pages: 1630 dma_free_contiguous(dev, page, alloc_size); 1631 return NULL; 1632 } 1633 1634 void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 1635 gfp_t gfp, unsigned long attrs) 1636 { 1637 bool coherent = dev_is_dma_coherent(dev); 1638 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1639 struct page *page = NULL; 1640 void *cpu_addr; 1641 1642 gfp |= __GFP_ZERO; 1643 1644 if (gfpflags_allow_blocking(gfp) && 1645 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1646 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs); 1647 } 1648 1649 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1650 !gfpflags_allow_blocking(gfp) && !coherent) 1651 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1652 gfp, NULL); 1653 else 1654 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1655 if (!cpu_addr) 1656 return NULL; 1657 1658 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1659 dev->coherent_dma_mask); 1660 if (*handle == DMA_MAPPING_ERROR) { 1661 __iommu_dma_free(dev, size, cpu_addr); 1662 return NULL; 1663 } 1664 1665 return cpu_addr; 1666 } 1667 1668 int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1669 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1670 unsigned long attrs) 1671 { 1672 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1673 unsigned long pfn, off = vma->vm_pgoff; 1674 int ret; 1675 1676 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1677 1678 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1679 return ret; 1680 1681 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1682 return -ENXIO; 1683 1684 if (is_vmalloc_addr(cpu_addr)) { 1685 struct page **pages = dma_common_find_pages(cpu_addr); 1686 1687 if (pages) 1688 return vm_map_pages(vma, pages, nr_pages); 1689 pfn = vmalloc_to_pfn(cpu_addr); 1690 } else { 1691 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1692 } 1693 1694 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1695 vma->vm_end - vma->vm_start, 1696 vma->vm_page_prot); 1697 } 1698 1699 int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1700 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1701 unsigned long attrs) 1702 { 1703 struct page *page; 1704 int ret; 1705 1706 if (is_vmalloc_addr(cpu_addr)) { 1707 struct page **pages = dma_common_find_pages(cpu_addr); 1708 1709 if (pages) { 1710 return sg_alloc_table_from_pages(sgt, pages, 1711 PAGE_ALIGN(size) >> PAGE_SHIFT, 1712 0, size, GFP_KERNEL); 1713 } 1714 1715 page = vmalloc_to_page(cpu_addr); 1716 } else { 1717 page = virt_to_page(cpu_addr); 1718 } 1719 1720 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1721 if (!ret) 1722 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1723 return ret; 1724 } 1725 1726 unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1727 { 1728 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1729 1730 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1731 } 1732 1733 size_t iommu_dma_opt_mapping_size(void) 1734 { 1735 return iova_rcache_range(); 1736 } 1737 1738 size_t iommu_dma_max_mapping_size(struct device *dev) 1739 { 1740 if (dev_is_untrusted(dev)) 1741 return swiotlb_max_mapping_size(dev); 1742 1743 return SIZE_MAX; 1744 } 1745 1746 /** 1747 * dma_iova_try_alloc - Try to allocate an IOVA space 1748 * @dev: Device to allocate the IOVA space for 1749 * @state: IOVA state 1750 * @phys: physical address 1751 * @size: IOVA size 1752 * 1753 * Check if @dev supports the IOVA-based DMA API, and if yes allocate IOVA space 1754 * for the given base address and size. 1755 * 1756 * Note: @phys is only used to calculate the IOVA alignment. Callers that always 1757 * do PAGE_SIZE aligned transfers can safely pass 0 here. 1758 * 1759 * Returns %true if the IOVA-based DMA API can be used and IOVA space has been 1760 * allocated, or %false if the regular DMA API should be used. 1761 */ 1762 bool dma_iova_try_alloc(struct device *dev, struct dma_iova_state *state, 1763 phys_addr_t phys, size_t size) 1764 { 1765 struct iommu_dma_cookie *cookie; 1766 struct iommu_domain *domain; 1767 struct iova_domain *iovad; 1768 size_t iova_off; 1769 dma_addr_t addr; 1770 1771 memset(state, 0, sizeof(*state)); 1772 if (!use_dma_iommu(dev)) 1773 return false; 1774 1775 domain = iommu_get_dma_domain(dev); 1776 cookie = domain->iova_cookie; 1777 iovad = &cookie->iovad; 1778 iova_off = iova_offset(iovad, phys); 1779 1780 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 1781 iommu_deferred_attach(dev, iommu_get_domain_for_dev(dev))) 1782 return false; 1783 1784 if (WARN_ON_ONCE(!size)) 1785 return false; 1786 1787 /* 1788 * DMA_IOVA_USE_SWIOTLB is flag which is set by dma-iommu 1789 * internals, make sure that caller didn't set it and/or 1790 * didn't use this interface to map SIZE_MAX. 1791 */ 1792 if (WARN_ON_ONCE((u64)size & DMA_IOVA_USE_SWIOTLB)) 1793 return false; 1794 1795 addr = iommu_dma_alloc_iova(domain, 1796 iova_align(iovad, size + iova_off), 1797 dma_get_mask(dev), dev); 1798 if (!addr) 1799 return false; 1800 1801 state->addr = addr + iova_off; 1802 state->__size = size; 1803 return true; 1804 } 1805 EXPORT_SYMBOL_GPL(dma_iova_try_alloc); 1806 1807 /** 1808 * dma_iova_free - Free an IOVA space 1809 * @dev: Device to free the IOVA space for 1810 * @state: IOVA state 1811 * 1812 * Undoes a successful dma_try_iova_alloc(). 1813 * 1814 * Note that all dma_iova_link() calls need to be undone first. For callers 1815 * that never call dma_iova_unlink(), dma_iova_destroy() can be used instead 1816 * which unlinks all ranges and frees the IOVA space in a single efficient 1817 * operation. 1818 */ 1819 void dma_iova_free(struct device *dev, struct dma_iova_state *state) 1820 { 1821 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1822 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1823 struct iova_domain *iovad = &cookie->iovad; 1824 size_t iova_start_pad = iova_offset(iovad, state->addr); 1825 size_t size = dma_iova_size(state); 1826 1827 iommu_dma_free_iova(domain, state->addr - iova_start_pad, 1828 iova_align(iovad, size + iova_start_pad), NULL); 1829 } 1830 EXPORT_SYMBOL_GPL(dma_iova_free); 1831 1832 static int __dma_iova_link(struct device *dev, dma_addr_t addr, 1833 phys_addr_t phys, size_t size, enum dma_data_direction dir, 1834 unsigned long attrs) 1835 { 1836 bool coherent = dev_is_dma_coherent(dev); 1837 1838 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1839 arch_sync_dma_for_device(phys, size, dir); 1840 1841 return iommu_map_nosync(iommu_get_dma_domain(dev), addr, phys, size, 1842 dma_info_to_prot(dir, coherent, attrs), GFP_ATOMIC); 1843 } 1844 1845 static int iommu_dma_iova_bounce_and_link(struct device *dev, dma_addr_t addr, 1846 phys_addr_t phys, size_t bounce_len, 1847 enum dma_data_direction dir, unsigned long attrs, 1848 size_t iova_start_pad) 1849 { 1850 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1851 struct iova_domain *iovad = &domain->iova_cookie->iovad; 1852 phys_addr_t bounce_phys; 1853 int error; 1854 1855 bounce_phys = iommu_dma_map_swiotlb(dev, phys, bounce_len, dir, attrs); 1856 if (bounce_phys == DMA_MAPPING_ERROR) 1857 return -ENOMEM; 1858 1859 error = __dma_iova_link(dev, addr - iova_start_pad, 1860 bounce_phys - iova_start_pad, 1861 iova_align(iovad, bounce_len), dir, attrs); 1862 if (error) 1863 swiotlb_tbl_unmap_single(dev, bounce_phys, bounce_len, dir, 1864 attrs); 1865 return error; 1866 } 1867 1868 static int iommu_dma_iova_link_swiotlb(struct device *dev, 1869 struct dma_iova_state *state, phys_addr_t phys, size_t offset, 1870 size_t size, enum dma_data_direction dir, unsigned long attrs) 1871 { 1872 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1873 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1874 struct iova_domain *iovad = &cookie->iovad; 1875 size_t iova_start_pad = iova_offset(iovad, phys); 1876 size_t iova_end_pad = iova_offset(iovad, phys + size); 1877 dma_addr_t addr = state->addr + offset; 1878 size_t mapped = 0; 1879 int error; 1880 1881 if (iova_start_pad) { 1882 size_t bounce_len = min(size, iovad->granule - iova_start_pad); 1883 1884 error = iommu_dma_iova_bounce_and_link(dev, addr, phys, 1885 bounce_len, dir, attrs, iova_start_pad); 1886 if (error) 1887 return error; 1888 state->__size |= DMA_IOVA_USE_SWIOTLB; 1889 1890 mapped += bounce_len; 1891 size -= bounce_len; 1892 if (!size) 1893 return 0; 1894 } 1895 1896 size -= iova_end_pad; 1897 error = __dma_iova_link(dev, addr + mapped, phys + mapped, size, dir, 1898 attrs); 1899 if (error) 1900 goto out_unmap; 1901 mapped += size; 1902 1903 if (iova_end_pad) { 1904 error = iommu_dma_iova_bounce_and_link(dev, addr + mapped, 1905 phys + mapped, iova_end_pad, dir, attrs, 0); 1906 if (error) 1907 goto out_unmap; 1908 state->__size |= DMA_IOVA_USE_SWIOTLB; 1909 } 1910 1911 return 0; 1912 1913 out_unmap: 1914 dma_iova_unlink(dev, state, 0, mapped, dir, attrs); 1915 return error; 1916 } 1917 1918 /** 1919 * dma_iova_link - Link a range of IOVA space 1920 * @dev: DMA device 1921 * @state: IOVA state 1922 * @phys: physical address to link 1923 * @offset: offset into the IOVA state to map into 1924 * @size: size of the buffer 1925 * @dir: DMA direction 1926 * @attrs: attributes of mapping properties 1927 * 1928 * Link a range of IOVA space for the given IOVA state without IOTLB sync. 1929 * This function is used to link multiple physical addresses in contiguous 1930 * IOVA space without performing costly IOTLB sync. 1931 * 1932 * The caller is responsible to call to dma_iova_sync() to sync IOTLB at 1933 * the end of linkage. 1934 */ 1935 int dma_iova_link(struct device *dev, struct dma_iova_state *state, 1936 phys_addr_t phys, size_t offset, size_t size, 1937 enum dma_data_direction dir, unsigned long attrs) 1938 { 1939 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1940 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1941 struct iova_domain *iovad = &cookie->iovad; 1942 size_t iova_start_pad = iova_offset(iovad, phys); 1943 1944 if (WARN_ON_ONCE(iova_start_pad && offset > 0)) 1945 return -EIO; 1946 1947 if (dev_use_swiotlb(dev, size, dir) && 1948 iova_unaligned(iovad, phys, size)) 1949 return iommu_dma_iova_link_swiotlb(dev, state, phys, offset, 1950 size, dir, attrs); 1951 1952 return __dma_iova_link(dev, state->addr + offset - iova_start_pad, 1953 phys - iova_start_pad, 1954 iova_align(iovad, size + iova_start_pad), dir, attrs); 1955 } 1956 EXPORT_SYMBOL_GPL(dma_iova_link); 1957 1958 /** 1959 * dma_iova_sync - Sync IOTLB 1960 * @dev: DMA device 1961 * @state: IOVA state 1962 * @offset: offset into the IOVA state to sync 1963 * @size: size of the buffer 1964 * 1965 * Sync IOTLB for the given IOVA state. This function should be called on 1966 * the IOVA-contiguous range created by one ore more dma_iova_link() calls 1967 * to sync the IOTLB. 1968 */ 1969 int dma_iova_sync(struct device *dev, struct dma_iova_state *state, 1970 size_t offset, size_t size) 1971 { 1972 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1973 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1974 struct iova_domain *iovad = &cookie->iovad; 1975 dma_addr_t addr = state->addr + offset; 1976 size_t iova_start_pad = iova_offset(iovad, addr); 1977 1978 return iommu_sync_map(domain, addr - iova_start_pad, 1979 iova_align(iovad, size + iova_start_pad)); 1980 } 1981 EXPORT_SYMBOL_GPL(dma_iova_sync); 1982 1983 static void iommu_dma_iova_unlink_range_slow(struct device *dev, 1984 dma_addr_t addr, size_t size, enum dma_data_direction dir, 1985 unsigned long attrs) 1986 { 1987 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1988 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1989 struct iova_domain *iovad = &cookie->iovad; 1990 size_t iova_start_pad = iova_offset(iovad, addr); 1991 dma_addr_t end = addr + size; 1992 1993 do { 1994 phys_addr_t phys; 1995 size_t len; 1996 1997 phys = iommu_iova_to_phys(domain, addr); 1998 if (WARN_ON(!phys)) 1999 /* Something very horrible happen here */ 2000 return; 2001 2002 len = min_t(size_t, 2003 end - addr, iovad->granule - iova_start_pad); 2004 2005 if (!dev_is_dma_coherent(dev) && 2006 !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 2007 arch_sync_dma_for_cpu(phys, len, dir); 2008 2009 swiotlb_tbl_unmap_single(dev, phys, len, dir, attrs); 2010 2011 addr += len; 2012 iova_start_pad = 0; 2013 } while (addr < end); 2014 } 2015 2016 static void __iommu_dma_iova_unlink(struct device *dev, 2017 struct dma_iova_state *state, size_t offset, size_t size, 2018 enum dma_data_direction dir, unsigned long attrs, 2019 bool free_iova) 2020 { 2021 struct iommu_domain *domain = iommu_get_dma_domain(dev); 2022 struct iommu_dma_cookie *cookie = domain->iova_cookie; 2023 struct iova_domain *iovad = &cookie->iovad; 2024 dma_addr_t addr = state->addr + offset; 2025 size_t iova_start_pad = iova_offset(iovad, addr); 2026 struct iommu_iotlb_gather iotlb_gather; 2027 size_t unmapped; 2028 2029 if ((state->__size & DMA_IOVA_USE_SWIOTLB) || 2030 (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))) 2031 iommu_dma_iova_unlink_range_slow(dev, addr, size, dir, attrs); 2032 2033 iommu_iotlb_gather_init(&iotlb_gather); 2034 iotlb_gather.queued = free_iova && READ_ONCE(cookie->fq_domain); 2035 2036 size = iova_align(iovad, size + iova_start_pad); 2037 addr -= iova_start_pad; 2038 unmapped = iommu_unmap_fast(domain, addr, size, &iotlb_gather); 2039 WARN_ON(unmapped != size); 2040 2041 if (!iotlb_gather.queued) 2042 iommu_iotlb_sync(domain, &iotlb_gather); 2043 if (free_iova) 2044 iommu_dma_free_iova(domain, addr, size, &iotlb_gather); 2045 } 2046 2047 /** 2048 * dma_iova_unlink - Unlink a range of IOVA space 2049 * @dev: DMA device 2050 * @state: IOVA state 2051 * @offset: offset into the IOVA state to unlink 2052 * @size: size of the buffer 2053 * @dir: DMA direction 2054 * @attrs: attributes of mapping properties 2055 * 2056 * Unlink a range of IOVA space for the given IOVA state. 2057 */ 2058 void dma_iova_unlink(struct device *dev, struct dma_iova_state *state, 2059 size_t offset, size_t size, enum dma_data_direction dir, 2060 unsigned long attrs) 2061 { 2062 __iommu_dma_iova_unlink(dev, state, offset, size, dir, attrs, false); 2063 } 2064 EXPORT_SYMBOL_GPL(dma_iova_unlink); 2065 2066 /** 2067 * dma_iova_destroy - Finish a DMA mapping transaction 2068 * @dev: DMA device 2069 * @state: IOVA state 2070 * @mapped_len: number of bytes to unmap 2071 * @dir: DMA direction 2072 * @attrs: attributes of mapping properties 2073 * 2074 * Unlink the IOVA range up to @mapped_len and free the entire IOVA space. The 2075 * range of IOVA from dma_addr to @mapped_len must all be linked, and be the 2076 * only linked IOVA in state. 2077 */ 2078 void dma_iova_destroy(struct device *dev, struct dma_iova_state *state, 2079 size_t mapped_len, enum dma_data_direction dir, 2080 unsigned long attrs) 2081 { 2082 if (mapped_len) 2083 __iommu_dma_iova_unlink(dev, state, 0, mapped_len, dir, attrs, 2084 true); 2085 else 2086 /* 2087 * We can be here if first call to dma_iova_link() failed and 2088 * there is nothing to unlink, so let's be more clear. 2089 */ 2090 dma_iova_free(dev, state); 2091 } 2092 EXPORT_SYMBOL_GPL(dma_iova_destroy); 2093 2094 void iommu_setup_dma_ops(struct device *dev) 2095 { 2096 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 2097 2098 if (dev_is_pci(dev)) 2099 dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac; 2100 2101 dev->dma_iommu = iommu_is_dma_domain(domain); 2102 if (dev->dma_iommu && iommu_dma_init_domain(domain, dev)) 2103 goto out_err; 2104 2105 return; 2106 out_err: 2107 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 2108 dev_name(dev)); 2109 dev->dma_iommu = false; 2110 } 2111 2112 static bool has_msi_cookie(const struct iommu_domain *domain) 2113 { 2114 return domain && (domain->cookie_type == IOMMU_COOKIE_DMA_IOVA || 2115 domain->cookie_type == IOMMU_COOKIE_DMA_MSI); 2116 } 2117 2118 static size_t cookie_msi_granule(const struct iommu_domain *domain) 2119 { 2120 switch (domain->cookie_type) { 2121 case IOMMU_COOKIE_DMA_IOVA: 2122 return domain->iova_cookie->iovad.granule; 2123 case IOMMU_COOKIE_DMA_MSI: 2124 return PAGE_SIZE; 2125 default: 2126 BUG(); 2127 } 2128 } 2129 2130 static struct list_head *cookie_msi_pages(const struct iommu_domain *domain) 2131 { 2132 switch (domain->cookie_type) { 2133 case IOMMU_COOKIE_DMA_IOVA: 2134 return &domain->iova_cookie->msi_page_list; 2135 case IOMMU_COOKIE_DMA_MSI: 2136 return &domain->msi_cookie->msi_page_list; 2137 default: 2138 BUG(); 2139 } 2140 } 2141 2142 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 2143 phys_addr_t msi_addr, struct iommu_domain *domain) 2144 { 2145 struct list_head *msi_page_list = cookie_msi_pages(domain); 2146 struct iommu_dma_msi_page *msi_page; 2147 dma_addr_t iova; 2148 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 2149 size_t size = cookie_msi_granule(domain); 2150 2151 msi_addr &= ~(phys_addr_t)(size - 1); 2152 list_for_each_entry(msi_page, msi_page_list, list) 2153 if (msi_page->phys == msi_addr) 2154 return msi_page; 2155 2156 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 2157 if (!msi_page) 2158 return NULL; 2159 2160 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 2161 if (!iova) 2162 goto out_free_page; 2163 2164 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) 2165 goto out_free_iova; 2166 2167 INIT_LIST_HEAD(&msi_page->list); 2168 msi_page->phys = msi_addr; 2169 msi_page->iova = iova; 2170 list_add(&msi_page->list, msi_page_list); 2171 return msi_page; 2172 2173 out_free_iova: 2174 iommu_dma_free_iova(domain, iova, size, NULL); 2175 out_free_page: 2176 kfree(msi_page); 2177 return NULL; 2178 } 2179 2180 int iommu_dma_sw_msi(struct iommu_domain *domain, struct msi_desc *desc, 2181 phys_addr_t msi_addr) 2182 { 2183 struct device *dev = msi_desc_to_dev(desc); 2184 const struct iommu_dma_msi_page *msi_page; 2185 2186 if (!has_msi_cookie(domain)) { 2187 msi_desc_set_iommu_msi_iova(desc, 0, 0); 2188 return 0; 2189 } 2190 2191 iommu_group_mutex_assert(dev); 2192 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 2193 if (!msi_page) 2194 return -ENOMEM; 2195 2196 msi_desc_set_iommu_msi_iova(desc, msi_page->iova, 2197 ilog2(cookie_msi_granule(domain))); 2198 return 0; 2199 } 2200 2201 static int iommu_dma_init(void) 2202 { 2203 if (is_kdump_kernel()) 2204 static_branch_enable(&iommu_deferred_attach_enabled); 2205 2206 return iova_cache_get(); 2207 } 2208 arch_initcall(iommu_dma_init); 2209