xref: /linux/drivers/iommu/dma-iommu.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-iommu.h>
17 #include <linux/dma-map-ops.h>
18 #include <linux/gfp.h>
19 #include <linux/huge_mm.h>
20 #include <linux/iommu.h>
21 #include <linux/iova.h>
22 #include <linux/irq.h>
23 #include <linux/list_sort.h>
24 #include <linux/memremap.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/scatterlist.h>
29 #include <linux/spinlock.h>
30 #include <linux/swiotlb.h>
31 #include <linux/vmalloc.h>
32 
33 struct iommu_dma_msi_page {
34 	struct list_head	list;
35 	dma_addr_t		iova;
36 	phys_addr_t		phys;
37 };
38 
39 enum iommu_dma_cookie_type {
40 	IOMMU_DMA_IOVA_COOKIE,
41 	IOMMU_DMA_MSI_COOKIE,
42 };
43 
44 struct iommu_dma_cookie {
45 	enum iommu_dma_cookie_type	type;
46 	union {
47 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
48 		struct {
49 			struct iova_domain	iovad;
50 
51 			struct iova_fq __percpu *fq;	/* Flush queue */
52 			/* Number of TLB flushes that have been started */
53 			atomic64_t		fq_flush_start_cnt;
54 			/* Number of TLB flushes that have been finished */
55 			atomic64_t		fq_flush_finish_cnt;
56 			/* Timer to regularily empty the flush queues */
57 			struct timer_list	fq_timer;
58 			/* 1 when timer is active, 0 when not */
59 			atomic_t		fq_timer_on;
60 		};
61 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
62 		dma_addr_t		msi_iova;
63 	};
64 	struct list_head		msi_page_list;
65 
66 	/* Domain for flush queue callback; NULL if flush queue not in use */
67 	struct iommu_domain		*fq_domain;
68 	struct mutex			mutex;
69 };
70 
71 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
72 bool iommu_dma_forcedac __read_mostly;
73 
74 static int __init iommu_dma_forcedac_setup(char *str)
75 {
76 	int ret = kstrtobool(str, &iommu_dma_forcedac);
77 
78 	if (!ret && iommu_dma_forcedac)
79 		pr_info("Forcing DAC for PCI devices\n");
80 	return ret;
81 }
82 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
83 
84 /* Number of entries per flush queue */
85 #define IOVA_FQ_SIZE	256
86 
87 /* Timeout (in ms) after which entries are flushed from the queue */
88 #define IOVA_FQ_TIMEOUT	10
89 
90 /* Flush queue entry for deferred flushing */
91 struct iova_fq_entry {
92 	unsigned long iova_pfn;
93 	unsigned long pages;
94 	struct list_head freelist;
95 	u64 counter; /* Flush counter when this entry was added */
96 };
97 
98 /* Per-CPU flush queue structure */
99 struct iova_fq {
100 	struct iova_fq_entry entries[IOVA_FQ_SIZE];
101 	unsigned int head, tail;
102 	spinlock_t lock;
103 };
104 
105 #define fq_ring_for_each(i, fq) \
106 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
107 
108 static inline bool fq_full(struct iova_fq *fq)
109 {
110 	assert_spin_locked(&fq->lock);
111 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
112 }
113 
114 static inline unsigned int fq_ring_add(struct iova_fq *fq)
115 {
116 	unsigned int idx = fq->tail;
117 
118 	assert_spin_locked(&fq->lock);
119 
120 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
121 
122 	return idx;
123 }
124 
125 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
126 {
127 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
128 	unsigned int idx;
129 
130 	assert_spin_locked(&fq->lock);
131 
132 	fq_ring_for_each(idx, fq) {
133 
134 		if (fq->entries[idx].counter >= counter)
135 			break;
136 
137 		put_pages_list(&fq->entries[idx].freelist);
138 		free_iova_fast(&cookie->iovad,
139 			       fq->entries[idx].iova_pfn,
140 			       fq->entries[idx].pages);
141 
142 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
143 	}
144 }
145 
146 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
147 {
148 	atomic64_inc(&cookie->fq_flush_start_cnt);
149 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
150 	atomic64_inc(&cookie->fq_flush_finish_cnt);
151 }
152 
153 static void fq_flush_timeout(struct timer_list *t)
154 {
155 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
156 	int cpu;
157 
158 	atomic_set(&cookie->fq_timer_on, 0);
159 	fq_flush_iotlb(cookie);
160 
161 	for_each_possible_cpu(cpu) {
162 		unsigned long flags;
163 		struct iova_fq *fq;
164 
165 		fq = per_cpu_ptr(cookie->fq, cpu);
166 		spin_lock_irqsave(&fq->lock, flags);
167 		fq_ring_free(cookie, fq);
168 		spin_unlock_irqrestore(&fq->lock, flags);
169 	}
170 }
171 
172 static void queue_iova(struct iommu_dma_cookie *cookie,
173 		unsigned long pfn, unsigned long pages,
174 		struct list_head *freelist)
175 {
176 	struct iova_fq *fq;
177 	unsigned long flags;
178 	unsigned int idx;
179 
180 	/*
181 	 * Order against the IOMMU driver's pagetable update from unmapping
182 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
183 	 * from a different CPU before we release the lock below. Full barrier
184 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
185 	 * written fq state here.
186 	 */
187 	smp_mb();
188 
189 	fq = raw_cpu_ptr(cookie->fq);
190 	spin_lock_irqsave(&fq->lock, flags);
191 
192 	/*
193 	 * First remove all entries from the flush queue that have already been
194 	 * flushed out on another CPU. This makes the fq_full() check below less
195 	 * likely to be true.
196 	 */
197 	fq_ring_free(cookie, fq);
198 
199 	if (fq_full(fq)) {
200 		fq_flush_iotlb(cookie);
201 		fq_ring_free(cookie, fq);
202 	}
203 
204 	idx = fq_ring_add(fq);
205 
206 	fq->entries[idx].iova_pfn = pfn;
207 	fq->entries[idx].pages    = pages;
208 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
209 	list_splice(freelist, &fq->entries[idx].freelist);
210 
211 	spin_unlock_irqrestore(&fq->lock, flags);
212 
213 	/* Avoid false sharing as much as possible. */
214 	if (!atomic_read(&cookie->fq_timer_on) &&
215 	    !atomic_xchg(&cookie->fq_timer_on, 1))
216 		mod_timer(&cookie->fq_timer,
217 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
218 }
219 
220 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
221 {
222 	int cpu, idx;
223 
224 	if (!cookie->fq)
225 		return;
226 
227 	del_timer_sync(&cookie->fq_timer);
228 	/* The IOVAs will be torn down separately, so just free our queued pages */
229 	for_each_possible_cpu(cpu) {
230 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
231 
232 		fq_ring_for_each(idx, fq)
233 			put_pages_list(&fq->entries[idx].freelist);
234 	}
235 
236 	free_percpu(cookie->fq);
237 }
238 
239 /* sysfs updates are serialised by the mutex of the group owning @domain */
240 int iommu_dma_init_fq(struct iommu_domain *domain)
241 {
242 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
243 	struct iova_fq __percpu *queue;
244 	int i, cpu;
245 
246 	if (cookie->fq_domain)
247 		return 0;
248 
249 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
250 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
251 
252 	queue = alloc_percpu(struct iova_fq);
253 	if (!queue) {
254 		pr_warn("iova flush queue initialization failed\n");
255 		return -ENOMEM;
256 	}
257 
258 	for_each_possible_cpu(cpu) {
259 		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
260 
261 		fq->head = 0;
262 		fq->tail = 0;
263 
264 		spin_lock_init(&fq->lock);
265 
266 		for (i = 0; i < IOVA_FQ_SIZE; i++)
267 			INIT_LIST_HEAD(&fq->entries[i].freelist);
268 	}
269 
270 	cookie->fq = queue;
271 
272 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
273 	atomic_set(&cookie->fq_timer_on, 0);
274 	/*
275 	 * Prevent incomplete fq state being observable. Pairs with path from
276 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
277 	 */
278 	smp_wmb();
279 	WRITE_ONCE(cookie->fq_domain, domain);
280 	return 0;
281 }
282 
283 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
284 {
285 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
286 		return cookie->iovad.granule;
287 	return PAGE_SIZE;
288 }
289 
290 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
291 {
292 	struct iommu_dma_cookie *cookie;
293 
294 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
295 	if (cookie) {
296 		INIT_LIST_HEAD(&cookie->msi_page_list);
297 		cookie->type = type;
298 	}
299 	return cookie;
300 }
301 
302 /**
303  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
304  * @domain: IOMMU domain to prepare for DMA-API usage
305  */
306 int iommu_get_dma_cookie(struct iommu_domain *domain)
307 {
308 	if (domain->iova_cookie)
309 		return -EEXIST;
310 
311 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
312 	if (!domain->iova_cookie)
313 		return -ENOMEM;
314 
315 	mutex_init(&domain->iova_cookie->mutex);
316 	return 0;
317 }
318 
319 /**
320  * iommu_get_msi_cookie - Acquire just MSI remapping resources
321  * @domain: IOMMU domain to prepare
322  * @base: Start address of IOVA region for MSI mappings
323  *
324  * Users who manage their own IOVA allocation and do not want DMA API support,
325  * but would still like to take advantage of automatic MSI remapping, can use
326  * this to initialise their own domain appropriately. Users should reserve a
327  * contiguous IOVA region, starting at @base, large enough to accommodate the
328  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
329  * used by the devices attached to @domain.
330  */
331 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
332 {
333 	struct iommu_dma_cookie *cookie;
334 
335 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
336 		return -EINVAL;
337 
338 	if (domain->iova_cookie)
339 		return -EEXIST;
340 
341 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
342 	if (!cookie)
343 		return -ENOMEM;
344 
345 	cookie->msi_iova = base;
346 	domain->iova_cookie = cookie;
347 	return 0;
348 }
349 EXPORT_SYMBOL(iommu_get_msi_cookie);
350 
351 /**
352  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
353  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
354  *          iommu_get_msi_cookie()
355  */
356 void iommu_put_dma_cookie(struct iommu_domain *domain)
357 {
358 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
359 	struct iommu_dma_msi_page *msi, *tmp;
360 
361 	if (!cookie)
362 		return;
363 
364 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
365 		iommu_dma_free_fq(cookie);
366 		put_iova_domain(&cookie->iovad);
367 	}
368 
369 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
370 		list_del(&msi->list);
371 		kfree(msi);
372 	}
373 	kfree(cookie);
374 	domain->iova_cookie = NULL;
375 }
376 
377 /**
378  * iommu_dma_get_resv_regions - Reserved region driver helper
379  * @dev: Device from iommu_get_resv_regions()
380  * @list: Reserved region list from iommu_get_resv_regions()
381  *
382  * IOMMU drivers can use this to implement their .get_resv_regions callback
383  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
384  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
385  * reservation.
386  */
387 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
388 {
389 
390 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
391 		iort_iommu_get_resv_regions(dev, list);
392 
393 }
394 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
395 
396 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
397 		phys_addr_t start, phys_addr_t end)
398 {
399 	struct iova_domain *iovad = &cookie->iovad;
400 	struct iommu_dma_msi_page *msi_page;
401 	int i, num_pages;
402 
403 	start -= iova_offset(iovad, start);
404 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
405 
406 	for (i = 0; i < num_pages; i++) {
407 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
408 		if (!msi_page)
409 			return -ENOMEM;
410 
411 		msi_page->phys = start;
412 		msi_page->iova = start;
413 		INIT_LIST_HEAD(&msi_page->list);
414 		list_add(&msi_page->list, &cookie->msi_page_list);
415 		start += iovad->granule;
416 	}
417 
418 	return 0;
419 }
420 
421 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
422 		const struct list_head *b)
423 {
424 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
425 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
426 
427 	return res_a->res->start > res_b->res->start;
428 }
429 
430 static int iova_reserve_pci_windows(struct pci_dev *dev,
431 		struct iova_domain *iovad)
432 {
433 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
434 	struct resource_entry *window;
435 	unsigned long lo, hi;
436 	phys_addr_t start = 0, end;
437 
438 	resource_list_for_each_entry(window, &bridge->windows) {
439 		if (resource_type(window->res) != IORESOURCE_MEM)
440 			continue;
441 
442 		lo = iova_pfn(iovad, window->res->start - window->offset);
443 		hi = iova_pfn(iovad, window->res->end - window->offset);
444 		reserve_iova(iovad, lo, hi);
445 	}
446 
447 	/* Get reserved DMA windows from host bridge */
448 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
449 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
450 		end = window->res->start - window->offset;
451 resv_iova:
452 		if (end > start) {
453 			lo = iova_pfn(iovad, start);
454 			hi = iova_pfn(iovad, end);
455 			reserve_iova(iovad, lo, hi);
456 		} else if (end < start) {
457 			/* DMA ranges should be non-overlapping */
458 			dev_err(&dev->dev,
459 				"Failed to reserve IOVA [%pa-%pa]\n",
460 				&start, &end);
461 			return -EINVAL;
462 		}
463 
464 		start = window->res->end - window->offset + 1;
465 		/* If window is last entry */
466 		if (window->node.next == &bridge->dma_ranges &&
467 		    end != ~(phys_addr_t)0) {
468 			end = ~(phys_addr_t)0;
469 			goto resv_iova;
470 		}
471 	}
472 
473 	return 0;
474 }
475 
476 static int iova_reserve_iommu_regions(struct device *dev,
477 		struct iommu_domain *domain)
478 {
479 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
480 	struct iova_domain *iovad = &cookie->iovad;
481 	struct iommu_resv_region *region;
482 	LIST_HEAD(resv_regions);
483 	int ret = 0;
484 
485 	if (dev_is_pci(dev)) {
486 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
487 		if (ret)
488 			return ret;
489 	}
490 
491 	iommu_get_resv_regions(dev, &resv_regions);
492 	list_for_each_entry(region, &resv_regions, list) {
493 		unsigned long lo, hi;
494 
495 		/* We ARE the software that manages these! */
496 		if (region->type == IOMMU_RESV_SW_MSI)
497 			continue;
498 
499 		lo = iova_pfn(iovad, region->start);
500 		hi = iova_pfn(iovad, region->start + region->length - 1);
501 		reserve_iova(iovad, lo, hi);
502 
503 		if (region->type == IOMMU_RESV_MSI)
504 			ret = cookie_init_hw_msi_region(cookie, region->start,
505 					region->start + region->length);
506 		if (ret)
507 			break;
508 	}
509 	iommu_put_resv_regions(dev, &resv_regions);
510 
511 	return ret;
512 }
513 
514 static bool dev_is_untrusted(struct device *dev)
515 {
516 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
517 }
518 
519 static bool dev_use_swiotlb(struct device *dev)
520 {
521 	return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
522 }
523 
524 /**
525  * iommu_dma_init_domain - Initialise a DMA mapping domain
526  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
527  * @base: IOVA at which the mappable address space starts
528  * @limit: Last address of the IOVA space
529  * @dev: Device the domain is being initialised for
530  *
531  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
532  * avoid rounding surprises. If necessary, we reserve the page at address 0
533  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
534  * any change which could make prior IOVAs invalid will fail.
535  */
536 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
537 				 dma_addr_t limit, struct device *dev)
538 {
539 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
540 	unsigned long order, base_pfn;
541 	struct iova_domain *iovad;
542 	int ret;
543 
544 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
545 		return -EINVAL;
546 
547 	iovad = &cookie->iovad;
548 
549 	/* Use the smallest supported page size for IOVA granularity */
550 	order = __ffs(domain->pgsize_bitmap);
551 	base_pfn = max_t(unsigned long, 1, base >> order);
552 
553 	/* Check the domain allows at least some access to the device... */
554 	if (domain->geometry.force_aperture) {
555 		if (base > domain->geometry.aperture_end ||
556 		    limit < domain->geometry.aperture_start) {
557 			pr_warn("specified DMA range outside IOMMU capability\n");
558 			return -EFAULT;
559 		}
560 		/* ...then finally give it a kicking to make sure it fits */
561 		base_pfn = max_t(unsigned long, base_pfn,
562 				domain->geometry.aperture_start >> order);
563 	}
564 
565 	/* start_pfn is always nonzero for an already-initialised domain */
566 	mutex_lock(&cookie->mutex);
567 	if (iovad->start_pfn) {
568 		if (1UL << order != iovad->granule ||
569 		    base_pfn != iovad->start_pfn) {
570 			pr_warn("Incompatible range for DMA domain\n");
571 			ret = -EFAULT;
572 			goto done_unlock;
573 		}
574 
575 		ret = 0;
576 		goto done_unlock;
577 	}
578 
579 	init_iova_domain(iovad, 1UL << order, base_pfn);
580 	ret = iova_domain_init_rcaches(iovad);
581 	if (ret)
582 		goto done_unlock;
583 
584 	/* If the FQ fails we can simply fall back to strict mode */
585 	if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
586 		domain->type = IOMMU_DOMAIN_DMA;
587 
588 	ret = iova_reserve_iommu_regions(dev, domain);
589 
590 done_unlock:
591 	mutex_unlock(&cookie->mutex);
592 	return ret;
593 }
594 
595 /**
596  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
597  *                    page flags.
598  * @dir: Direction of DMA transfer
599  * @coherent: Is the DMA master cache-coherent?
600  * @attrs: DMA attributes for the mapping
601  *
602  * Return: corresponding IOMMU API page protection flags
603  */
604 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
605 		     unsigned long attrs)
606 {
607 	int prot = coherent ? IOMMU_CACHE : 0;
608 
609 	if (attrs & DMA_ATTR_PRIVILEGED)
610 		prot |= IOMMU_PRIV;
611 
612 	switch (dir) {
613 	case DMA_BIDIRECTIONAL:
614 		return prot | IOMMU_READ | IOMMU_WRITE;
615 	case DMA_TO_DEVICE:
616 		return prot | IOMMU_READ;
617 	case DMA_FROM_DEVICE:
618 		return prot | IOMMU_WRITE;
619 	default:
620 		return 0;
621 	}
622 }
623 
624 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
625 		size_t size, u64 dma_limit, struct device *dev)
626 {
627 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
628 	struct iova_domain *iovad = &cookie->iovad;
629 	unsigned long shift, iova_len, iova = 0;
630 
631 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
632 		cookie->msi_iova += size;
633 		return cookie->msi_iova - size;
634 	}
635 
636 	shift = iova_shift(iovad);
637 	iova_len = size >> shift;
638 
639 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
640 
641 	if (domain->geometry.force_aperture)
642 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
643 
644 	/* Try to get PCI devices a SAC address */
645 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
646 		iova = alloc_iova_fast(iovad, iova_len,
647 				       DMA_BIT_MASK(32) >> shift, false);
648 
649 	if (!iova)
650 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
651 				       true);
652 
653 	return (dma_addr_t)iova << shift;
654 }
655 
656 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
657 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
658 {
659 	struct iova_domain *iovad = &cookie->iovad;
660 
661 	/* The MSI case is only ever cleaning up its most recent allocation */
662 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
663 		cookie->msi_iova -= size;
664 	else if (gather && gather->queued)
665 		queue_iova(cookie, iova_pfn(iovad, iova),
666 				size >> iova_shift(iovad),
667 				&gather->freelist);
668 	else
669 		free_iova_fast(iovad, iova_pfn(iovad, iova),
670 				size >> iova_shift(iovad));
671 }
672 
673 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
674 		size_t size)
675 {
676 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
677 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
678 	struct iova_domain *iovad = &cookie->iovad;
679 	size_t iova_off = iova_offset(iovad, dma_addr);
680 	struct iommu_iotlb_gather iotlb_gather;
681 	size_t unmapped;
682 
683 	dma_addr -= iova_off;
684 	size = iova_align(iovad, size + iova_off);
685 	iommu_iotlb_gather_init(&iotlb_gather);
686 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
687 
688 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
689 	WARN_ON(unmapped != size);
690 
691 	if (!iotlb_gather.queued)
692 		iommu_iotlb_sync(domain, &iotlb_gather);
693 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
694 }
695 
696 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
697 		size_t size, int prot, u64 dma_mask)
698 {
699 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
700 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
701 	struct iova_domain *iovad = &cookie->iovad;
702 	size_t iova_off = iova_offset(iovad, phys);
703 	dma_addr_t iova;
704 
705 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
706 	    iommu_deferred_attach(dev, domain))
707 		return DMA_MAPPING_ERROR;
708 
709 	size = iova_align(iovad, size + iova_off);
710 
711 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
712 	if (!iova)
713 		return DMA_MAPPING_ERROR;
714 
715 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
716 		iommu_dma_free_iova(cookie, iova, size, NULL);
717 		return DMA_MAPPING_ERROR;
718 	}
719 	return iova + iova_off;
720 }
721 
722 static void __iommu_dma_free_pages(struct page **pages, int count)
723 {
724 	while (count--)
725 		__free_page(pages[count]);
726 	kvfree(pages);
727 }
728 
729 static struct page **__iommu_dma_alloc_pages(struct device *dev,
730 		unsigned int count, unsigned long order_mask, gfp_t gfp)
731 {
732 	struct page **pages;
733 	unsigned int i = 0, nid = dev_to_node(dev);
734 
735 	order_mask &= (2U << MAX_ORDER) - 1;
736 	if (!order_mask)
737 		return NULL;
738 
739 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
740 	if (!pages)
741 		return NULL;
742 
743 	/* IOMMU can map any pages, so himem can also be used here */
744 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
745 
746 	/* It makes no sense to muck about with huge pages */
747 	gfp &= ~__GFP_COMP;
748 
749 	while (count) {
750 		struct page *page = NULL;
751 		unsigned int order_size;
752 
753 		/*
754 		 * Higher-order allocations are a convenience rather
755 		 * than a necessity, hence using __GFP_NORETRY until
756 		 * falling back to minimum-order allocations.
757 		 */
758 		for (order_mask &= (2U << __fls(count)) - 1;
759 		     order_mask; order_mask &= ~order_size) {
760 			unsigned int order = __fls(order_mask);
761 			gfp_t alloc_flags = gfp;
762 
763 			order_size = 1U << order;
764 			if (order_mask > order_size)
765 				alloc_flags |= __GFP_NORETRY;
766 			page = alloc_pages_node(nid, alloc_flags, order);
767 			if (!page)
768 				continue;
769 			if (order)
770 				split_page(page, order);
771 			break;
772 		}
773 		if (!page) {
774 			__iommu_dma_free_pages(pages, i);
775 			return NULL;
776 		}
777 		count -= order_size;
778 		while (order_size--)
779 			pages[i++] = page++;
780 	}
781 	return pages;
782 }
783 
784 /*
785  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
786  * but an IOMMU which supports smaller pages might not map the whole thing.
787  */
788 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
789 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
790 		unsigned long attrs)
791 {
792 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
793 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
794 	struct iova_domain *iovad = &cookie->iovad;
795 	bool coherent = dev_is_dma_coherent(dev);
796 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
797 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
798 	struct page **pages;
799 	dma_addr_t iova;
800 	ssize_t ret;
801 
802 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
803 	    iommu_deferred_attach(dev, domain))
804 		return NULL;
805 
806 	min_size = alloc_sizes & -alloc_sizes;
807 	if (min_size < PAGE_SIZE) {
808 		min_size = PAGE_SIZE;
809 		alloc_sizes |= PAGE_SIZE;
810 	} else {
811 		size = ALIGN(size, min_size);
812 	}
813 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
814 		alloc_sizes = min_size;
815 
816 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
817 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
818 					gfp);
819 	if (!pages)
820 		return NULL;
821 
822 	size = iova_align(iovad, size);
823 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
824 	if (!iova)
825 		goto out_free_pages;
826 
827 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
828 		goto out_free_iova;
829 
830 	if (!(ioprot & IOMMU_CACHE)) {
831 		struct scatterlist *sg;
832 		int i;
833 
834 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
835 			arch_dma_prep_coherent(sg_page(sg), sg->length);
836 	}
837 
838 	ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot);
839 	if (ret < 0 || ret < size)
840 		goto out_free_sg;
841 
842 	sgt->sgl->dma_address = iova;
843 	sgt->sgl->dma_length = size;
844 	return pages;
845 
846 out_free_sg:
847 	sg_free_table(sgt);
848 out_free_iova:
849 	iommu_dma_free_iova(cookie, iova, size, NULL);
850 out_free_pages:
851 	__iommu_dma_free_pages(pages, count);
852 	return NULL;
853 }
854 
855 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
856 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
857 		unsigned long attrs)
858 {
859 	struct page **pages;
860 	struct sg_table sgt;
861 	void *vaddr;
862 
863 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
864 						attrs);
865 	if (!pages)
866 		return NULL;
867 	*dma_handle = sgt.sgl->dma_address;
868 	sg_free_table(&sgt);
869 	vaddr = dma_common_pages_remap(pages, size, prot,
870 			__builtin_return_address(0));
871 	if (!vaddr)
872 		goto out_unmap;
873 	return vaddr;
874 
875 out_unmap:
876 	__iommu_dma_unmap(dev, *dma_handle, size);
877 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
878 	return NULL;
879 }
880 
881 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
882 		size_t size, enum dma_data_direction dir, gfp_t gfp,
883 		unsigned long attrs)
884 {
885 	struct dma_sgt_handle *sh;
886 
887 	sh = kmalloc(sizeof(*sh), gfp);
888 	if (!sh)
889 		return NULL;
890 
891 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
892 						    PAGE_KERNEL, attrs);
893 	if (!sh->pages) {
894 		kfree(sh);
895 		return NULL;
896 	}
897 	return &sh->sgt;
898 }
899 
900 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
901 		struct sg_table *sgt, enum dma_data_direction dir)
902 {
903 	struct dma_sgt_handle *sh = sgt_handle(sgt);
904 
905 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
906 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
907 	sg_free_table(&sh->sgt);
908 	kfree(sh);
909 }
910 
911 static void iommu_dma_sync_single_for_cpu(struct device *dev,
912 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
913 {
914 	phys_addr_t phys;
915 
916 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
917 		return;
918 
919 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
920 	if (!dev_is_dma_coherent(dev))
921 		arch_sync_dma_for_cpu(phys, size, dir);
922 
923 	if (is_swiotlb_buffer(dev, phys))
924 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
925 }
926 
927 static void iommu_dma_sync_single_for_device(struct device *dev,
928 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
929 {
930 	phys_addr_t phys;
931 
932 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
933 		return;
934 
935 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
936 	if (is_swiotlb_buffer(dev, phys))
937 		swiotlb_sync_single_for_device(dev, phys, size, dir);
938 
939 	if (!dev_is_dma_coherent(dev))
940 		arch_sync_dma_for_device(phys, size, dir);
941 }
942 
943 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
944 		struct scatterlist *sgl, int nelems,
945 		enum dma_data_direction dir)
946 {
947 	struct scatterlist *sg;
948 	int i;
949 
950 	if (dev_use_swiotlb(dev))
951 		for_each_sg(sgl, sg, nelems, i)
952 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
953 						      sg->length, dir);
954 	else if (!dev_is_dma_coherent(dev))
955 		for_each_sg(sgl, sg, nelems, i)
956 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
957 }
958 
959 static void iommu_dma_sync_sg_for_device(struct device *dev,
960 		struct scatterlist *sgl, int nelems,
961 		enum dma_data_direction dir)
962 {
963 	struct scatterlist *sg;
964 	int i;
965 
966 	if (dev_use_swiotlb(dev))
967 		for_each_sg(sgl, sg, nelems, i)
968 			iommu_dma_sync_single_for_device(dev,
969 							 sg_dma_address(sg),
970 							 sg->length, dir);
971 	else if (!dev_is_dma_coherent(dev))
972 		for_each_sg(sgl, sg, nelems, i)
973 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
974 }
975 
976 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
977 		unsigned long offset, size_t size, enum dma_data_direction dir,
978 		unsigned long attrs)
979 {
980 	phys_addr_t phys = page_to_phys(page) + offset;
981 	bool coherent = dev_is_dma_coherent(dev);
982 	int prot = dma_info_to_prot(dir, coherent, attrs);
983 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
984 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
985 	struct iova_domain *iovad = &cookie->iovad;
986 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
987 
988 	/*
989 	 * If both the physical buffer start address and size are
990 	 * page aligned, we don't need to use a bounce page.
991 	 */
992 	if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
993 		void *padding_start;
994 		size_t padding_size, aligned_size;
995 
996 		if (!is_swiotlb_active(dev)) {
997 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
998 			return DMA_MAPPING_ERROR;
999 		}
1000 
1001 		aligned_size = iova_align(iovad, size);
1002 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1003 					      iova_mask(iovad), dir, attrs);
1004 
1005 		if (phys == DMA_MAPPING_ERROR)
1006 			return DMA_MAPPING_ERROR;
1007 
1008 		/* Cleanup the padding area. */
1009 		padding_start = phys_to_virt(phys);
1010 		padding_size = aligned_size;
1011 
1012 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1013 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1014 			padding_start += size;
1015 			padding_size -= size;
1016 		}
1017 
1018 		memset(padding_start, 0, padding_size);
1019 	}
1020 
1021 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1022 		arch_sync_dma_for_device(phys, size, dir);
1023 
1024 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1025 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1026 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1027 	return iova;
1028 }
1029 
1030 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1031 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1032 {
1033 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1034 	phys_addr_t phys;
1035 
1036 	phys = iommu_iova_to_phys(domain, dma_handle);
1037 	if (WARN_ON(!phys))
1038 		return;
1039 
1040 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1041 		arch_sync_dma_for_cpu(phys, size, dir);
1042 
1043 	__iommu_dma_unmap(dev, dma_handle, size);
1044 
1045 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1046 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1047 }
1048 
1049 /*
1050  * Prepare a successfully-mapped scatterlist to give back to the caller.
1051  *
1052  * At this point the segments are already laid out by iommu_dma_map_sg() to
1053  * avoid individually crossing any boundaries, so we merely need to check a
1054  * segment's start address to avoid concatenating across one.
1055  */
1056 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1057 		dma_addr_t dma_addr)
1058 {
1059 	struct scatterlist *s, *cur = sg;
1060 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1061 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1062 	int i, count = 0;
1063 
1064 	for_each_sg(sg, s, nents, i) {
1065 		/* Restore this segment's original unaligned fields first */
1066 		dma_addr_t s_dma_addr = sg_dma_address(s);
1067 		unsigned int s_iova_off = sg_dma_address(s);
1068 		unsigned int s_length = sg_dma_len(s);
1069 		unsigned int s_iova_len = s->length;
1070 
1071 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1072 		sg_dma_len(s) = 0;
1073 
1074 		if (sg_is_dma_bus_address(s)) {
1075 			if (i > 0)
1076 				cur = sg_next(cur);
1077 
1078 			sg_dma_unmark_bus_address(s);
1079 			sg_dma_address(cur) = s_dma_addr;
1080 			sg_dma_len(cur) = s_length;
1081 			sg_dma_mark_bus_address(cur);
1082 			count++;
1083 			cur_len = 0;
1084 			continue;
1085 		}
1086 
1087 		s->offset += s_iova_off;
1088 		s->length = s_length;
1089 
1090 		/*
1091 		 * Now fill in the real DMA data. If...
1092 		 * - there is a valid output segment to append to
1093 		 * - and this segment starts on an IOVA page boundary
1094 		 * - but doesn't fall at a segment boundary
1095 		 * - and wouldn't make the resulting output segment too long
1096 		 */
1097 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1098 		    (max_len - cur_len >= s_length)) {
1099 			/* ...then concatenate it with the previous one */
1100 			cur_len += s_length;
1101 		} else {
1102 			/* Otherwise start the next output segment */
1103 			if (i > 0)
1104 				cur = sg_next(cur);
1105 			cur_len = s_length;
1106 			count++;
1107 
1108 			sg_dma_address(cur) = dma_addr + s_iova_off;
1109 		}
1110 
1111 		sg_dma_len(cur) = cur_len;
1112 		dma_addr += s_iova_len;
1113 
1114 		if (s_length + s_iova_off < s_iova_len)
1115 			cur_len = 0;
1116 	}
1117 	return count;
1118 }
1119 
1120 /*
1121  * If mapping failed, then just restore the original list,
1122  * but making sure the DMA fields are invalidated.
1123  */
1124 static void __invalidate_sg(struct scatterlist *sg, int nents)
1125 {
1126 	struct scatterlist *s;
1127 	int i;
1128 
1129 	for_each_sg(sg, s, nents, i) {
1130 		if (sg_is_dma_bus_address(s)) {
1131 			sg_dma_unmark_bus_address(s);
1132 		} else {
1133 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1134 				s->offset += sg_dma_address(s);
1135 			if (sg_dma_len(s))
1136 				s->length = sg_dma_len(s);
1137 		}
1138 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1139 		sg_dma_len(s) = 0;
1140 	}
1141 }
1142 
1143 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1144 		int nents, enum dma_data_direction dir, unsigned long attrs)
1145 {
1146 	struct scatterlist *s;
1147 	int i;
1148 
1149 	for_each_sg(sg, s, nents, i)
1150 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1151 				sg_dma_len(s), dir, attrs);
1152 }
1153 
1154 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1155 		int nents, enum dma_data_direction dir, unsigned long attrs)
1156 {
1157 	struct scatterlist *s;
1158 	int i;
1159 
1160 	for_each_sg(sg, s, nents, i) {
1161 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1162 				s->offset, s->length, dir, attrs);
1163 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1164 			goto out_unmap;
1165 		sg_dma_len(s) = s->length;
1166 	}
1167 
1168 	return nents;
1169 
1170 out_unmap:
1171 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1172 	return -EIO;
1173 }
1174 
1175 /*
1176  * The DMA API client is passing in a scatterlist which could describe
1177  * any old buffer layout, but the IOMMU API requires everything to be
1178  * aligned to IOMMU pages. Hence the need for this complicated bit of
1179  * impedance-matching, to be able to hand off a suitably-aligned list,
1180  * but still preserve the original offsets and sizes for the caller.
1181  */
1182 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1183 		int nents, enum dma_data_direction dir, unsigned long attrs)
1184 {
1185 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1186 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1187 	struct iova_domain *iovad = &cookie->iovad;
1188 	struct scatterlist *s, *prev = NULL;
1189 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1190 	struct pci_p2pdma_map_state p2pdma_state = {};
1191 	enum pci_p2pdma_map_type map;
1192 	dma_addr_t iova;
1193 	size_t iova_len = 0;
1194 	unsigned long mask = dma_get_seg_boundary(dev);
1195 	ssize_t ret;
1196 	int i;
1197 
1198 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1199 		ret = iommu_deferred_attach(dev, domain);
1200 		if (ret)
1201 			goto out;
1202 	}
1203 
1204 	if (dev_use_swiotlb(dev))
1205 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1206 
1207 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1208 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1209 
1210 	/*
1211 	 * Work out how much IOVA space we need, and align the segments to
1212 	 * IOVA granules for the IOMMU driver to handle. With some clever
1213 	 * trickery we can modify the list in-place, but reversibly, by
1214 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1215 	 */
1216 	for_each_sg(sg, s, nents, i) {
1217 		size_t s_iova_off = iova_offset(iovad, s->offset);
1218 		size_t s_length = s->length;
1219 		size_t pad_len = (mask - iova_len + 1) & mask;
1220 
1221 		if (is_pci_p2pdma_page(sg_page(s))) {
1222 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1223 			switch (map) {
1224 			case PCI_P2PDMA_MAP_BUS_ADDR:
1225 				/*
1226 				 * iommu_map_sg() will skip this segment as
1227 				 * it is marked as a bus address,
1228 				 * __finalise_sg() will copy the dma address
1229 				 * into the output segment.
1230 				 */
1231 				continue;
1232 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1233 				/*
1234 				 * Mapping through host bridge should be
1235 				 * mapped with regular IOVAs, thus we
1236 				 * do nothing here and continue below.
1237 				 */
1238 				break;
1239 			default:
1240 				ret = -EREMOTEIO;
1241 				goto out_restore_sg;
1242 			}
1243 		}
1244 
1245 		sg_dma_address(s) = s_iova_off;
1246 		sg_dma_len(s) = s_length;
1247 		s->offset -= s_iova_off;
1248 		s_length = iova_align(iovad, s_length + s_iova_off);
1249 		s->length = s_length;
1250 
1251 		/*
1252 		 * Due to the alignment of our single IOVA allocation, we can
1253 		 * depend on these assumptions about the segment boundary mask:
1254 		 * - If mask size >= IOVA size, then the IOVA range cannot
1255 		 *   possibly fall across a boundary, so we don't care.
1256 		 * - If mask size < IOVA size, then the IOVA range must start
1257 		 *   exactly on a boundary, therefore we can lay things out
1258 		 *   based purely on segment lengths without needing to know
1259 		 *   the actual addresses beforehand.
1260 		 * - The mask must be a power of 2, so pad_len == 0 if
1261 		 *   iova_len == 0, thus we cannot dereference prev the first
1262 		 *   time through here (i.e. before it has a meaningful value).
1263 		 */
1264 		if (pad_len && pad_len < s_length - 1) {
1265 			prev->length += pad_len;
1266 			iova_len += pad_len;
1267 		}
1268 
1269 		iova_len += s_length;
1270 		prev = s;
1271 	}
1272 
1273 	if (!iova_len)
1274 		return __finalise_sg(dev, sg, nents, 0);
1275 
1276 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1277 	if (!iova) {
1278 		ret = -ENOMEM;
1279 		goto out_restore_sg;
1280 	}
1281 
1282 	/*
1283 	 * We'll leave any physical concatenation to the IOMMU driver's
1284 	 * implementation - it knows better than we do.
1285 	 */
1286 	ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1287 	if (ret < 0 || ret < iova_len)
1288 		goto out_free_iova;
1289 
1290 	return __finalise_sg(dev, sg, nents, iova);
1291 
1292 out_free_iova:
1293 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1294 out_restore_sg:
1295 	__invalidate_sg(sg, nents);
1296 out:
1297 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1298 		return -EINVAL;
1299 	return ret;
1300 }
1301 
1302 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1303 		int nents, enum dma_data_direction dir, unsigned long attrs)
1304 {
1305 	dma_addr_t end = 0, start;
1306 	struct scatterlist *tmp;
1307 	int i;
1308 
1309 	if (dev_use_swiotlb(dev)) {
1310 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1311 		return;
1312 	}
1313 
1314 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1315 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1316 
1317 	/*
1318 	 * The scatterlist segments are mapped into a single
1319 	 * contiguous IOVA allocation, the start and end points
1320 	 * just have to be determined.
1321 	 */
1322 	for_each_sg(sg, tmp, nents, i) {
1323 		if (sg_is_dma_bus_address(tmp)) {
1324 			sg_dma_unmark_bus_address(tmp);
1325 			continue;
1326 		}
1327 
1328 		if (sg_dma_len(tmp) == 0)
1329 			break;
1330 
1331 		start = sg_dma_address(tmp);
1332 		break;
1333 	}
1334 
1335 	nents -= i;
1336 	for_each_sg(tmp, tmp, nents, i) {
1337 		if (sg_is_dma_bus_address(tmp)) {
1338 			sg_dma_unmark_bus_address(tmp);
1339 			continue;
1340 		}
1341 
1342 		if (sg_dma_len(tmp) == 0)
1343 			break;
1344 
1345 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1346 	}
1347 
1348 	if (end)
1349 		__iommu_dma_unmap(dev, start, end - start);
1350 }
1351 
1352 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1353 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1354 {
1355 	return __iommu_dma_map(dev, phys, size,
1356 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1357 			dma_get_mask(dev));
1358 }
1359 
1360 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1361 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1362 {
1363 	__iommu_dma_unmap(dev, handle, size);
1364 }
1365 
1366 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1367 {
1368 	size_t alloc_size = PAGE_ALIGN(size);
1369 	int count = alloc_size >> PAGE_SHIFT;
1370 	struct page *page = NULL, **pages = NULL;
1371 
1372 	/* Non-coherent atomic allocation? Easy */
1373 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1374 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1375 		return;
1376 
1377 	if (is_vmalloc_addr(cpu_addr)) {
1378 		/*
1379 		 * If it the address is remapped, then it's either non-coherent
1380 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1381 		 */
1382 		pages = dma_common_find_pages(cpu_addr);
1383 		if (!pages)
1384 			page = vmalloc_to_page(cpu_addr);
1385 		dma_common_free_remap(cpu_addr, alloc_size);
1386 	} else {
1387 		/* Lowmem means a coherent atomic or CMA allocation */
1388 		page = virt_to_page(cpu_addr);
1389 	}
1390 
1391 	if (pages)
1392 		__iommu_dma_free_pages(pages, count);
1393 	if (page)
1394 		dma_free_contiguous(dev, page, alloc_size);
1395 }
1396 
1397 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1398 		dma_addr_t handle, unsigned long attrs)
1399 {
1400 	__iommu_dma_unmap(dev, handle, size);
1401 	__iommu_dma_free(dev, size, cpu_addr);
1402 }
1403 
1404 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1405 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1406 {
1407 	bool coherent = dev_is_dma_coherent(dev);
1408 	size_t alloc_size = PAGE_ALIGN(size);
1409 	int node = dev_to_node(dev);
1410 	struct page *page = NULL;
1411 	void *cpu_addr;
1412 
1413 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1414 	if (!page)
1415 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1416 	if (!page)
1417 		return NULL;
1418 
1419 	if (!coherent || PageHighMem(page)) {
1420 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1421 
1422 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1423 				prot, __builtin_return_address(0));
1424 		if (!cpu_addr)
1425 			goto out_free_pages;
1426 
1427 		if (!coherent)
1428 			arch_dma_prep_coherent(page, size);
1429 	} else {
1430 		cpu_addr = page_address(page);
1431 	}
1432 
1433 	*pagep = page;
1434 	memset(cpu_addr, 0, alloc_size);
1435 	return cpu_addr;
1436 out_free_pages:
1437 	dma_free_contiguous(dev, page, alloc_size);
1438 	return NULL;
1439 }
1440 
1441 static void *iommu_dma_alloc(struct device *dev, size_t size,
1442 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1443 {
1444 	bool coherent = dev_is_dma_coherent(dev);
1445 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1446 	struct page *page = NULL;
1447 	void *cpu_addr;
1448 
1449 	gfp |= __GFP_ZERO;
1450 
1451 	if (gfpflags_allow_blocking(gfp) &&
1452 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1453 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1454 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1455 	}
1456 
1457 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1458 	    !gfpflags_allow_blocking(gfp) && !coherent)
1459 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1460 					       gfp, NULL);
1461 	else
1462 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1463 	if (!cpu_addr)
1464 		return NULL;
1465 
1466 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1467 			dev->coherent_dma_mask);
1468 	if (*handle == DMA_MAPPING_ERROR) {
1469 		__iommu_dma_free(dev, size, cpu_addr);
1470 		return NULL;
1471 	}
1472 
1473 	return cpu_addr;
1474 }
1475 
1476 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1477 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1478 		unsigned long attrs)
1479 {
1480 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1481 	unsigned long pfn, off = vma->vm_pgoff;
1482 	int ret;
1483 
1484 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1485 
1486 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1487 		return ret;
1488 
1489 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1490 		return -ENXIO;
1491 
1492 	if (is_vmalloc_addr(cpu_addr)) {
1493 		struct page **pages = dma_common_find_pages(cpu_addr);
1494 
1495 		if (pages)
1496 			return vm_map_pages(vma, pages, nr_pages);
1497 		pfn = vmalloc_to_pfn(cpu_addr);
1498 	} else {
1499 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1500 	}
1501 
1502 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1503 			       vma->vm_end - vma->vm_start,
1504 			       vma->vm_page_prot);
1505 }
1506 
1507 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1508 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1509 		unsigned long attrs)
1510 {
1511 	struct page *page;
1512 	int ret;
1513 
1514 	if (is_vmalloc_addr(cpu_addr)) {
1515 		struct page **pages = dma_common_find_pages(cpu_addr);
1516 
1517 		if (pages) {
1518 			return sg_alloc_table_from_pages(sgt, pages,
1519 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1520 					0, size, GFP_KERNEL);
1521 		}
1522 
1523 		page = vmalloc_to_page(cpu_addr);
1524 	} else {
1525 		page = virt_to_page(cpu_addr);
1526 	}
1527 
1528 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1529 	if (!ret)
1530 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1531 	return ret;
1532 }
1533 
1534 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1535 {
1536 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1537 
1538 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1539 }
1540 
1541 static size_t iommu_dma_opt_mapping_size(void)
1542 {
1543 	return iova_rcache_range();
1544 }
1545 
1546 static const struct dma_map_ops iommu_dma_ops = {
1547 	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED,
1548 	.alloc			= iommu_dma_alloc,
1549 	.free			= iommu_dma_free,
1550 	.alloc_pages		= dma_common_alloc_pages,
1551 	.free_pages		= dma_common_free_pages,
1552 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1553 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1554 	.mmap			= iommu_dma_mmap,
1555 	.get_sgtable		= iommu_dma_get_sgtable,
1556 	.map_page		= iommu_dma_map_page,
1557 	.unmap_page		= iommu_dma_unmap_page,
1558 	.map_sg			= iommu_dma_map_sg,
1559 	.unmap_sg		= iommu_dma_unmap_sg,
1560 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1561 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1562 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1563 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1564 	.map_resource		= iommu_dma_map_resource,
1565 	.unmap_resource		= iommu_dma_unmap_resource,
1566 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1567 	.opt_mapping_size	= iommu_dma_opt_mapping_size,
1568 };
1569 
1570 /*
1571  * The IOMMU core code allocates the default DMA domain, which the underlying
1572  * IOMMU driver needs to support via the dma-iommu layer.
1573  */
1574 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1575 {
1576 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1577 
1578 	if (!domain)
1579 		goto out_err;
1580 
1581 	/*
1582 	 * The IOMMU core code allocates the default DMA domain, which the
1583 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1584 	 */
1585 	if (iommu_is_dma_domain(domain)) {
1586 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1587 			goto out_err;
1588 		dev->dma_ops = &iommu_dma_ops;
1589 	}
1590 
1591 	return;
1592 out_err:
1593 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1594 		 dev_name(dev));
1595 }
1596 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1597 
1598 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1599 		phys_addr_t msi_addr, struct iommu_domain *domain)
1600 {
1601 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1602 	struct iommu_dma_msi_page *msi_page;
1603 	dma_addr_t iova;
1604 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1605 	size_t size = cookie_msi_granule(cookie);
1606 
1607 	msi_addr &= ~(phys_addr_t)(size - 1);
1608 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1609 		if (msi_page->phys == msi_addr)
1610 			return msi_page;
1611 
1612 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1613 	if (!msi_page)
1614 		return NULL;
1615 
1616 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1617 	if (!iova)
1618 		goto out_free_page;
1619 
1620 	if (iommu_map(domain, iova, msi_addr, size, prot))
1621 		goto out_free_iova;
1622 
1623 	INIT_LIST_HEAD(&msi_page->list);
1624 	msi_page->phys = msi_addr;
1625 	msi_page->iova = iova;
1626 	list_add(&msi_page->list, &cookie->msi_page_list);
1627 	return msi_page;
1628 
1629 out_free_iova:
1630 	iommu_dma_free_iova(cookie, iova, size, NULL);
1631 out_free_page:
1632 	kfree(msi_page);
1633 	return NULL;
1634 }
1635 
1636 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1637 {
1638 	struct device *dev = msi_desc_to_dev(desc);
1639 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1640 	struct iommu_dma_msi_page *msi_page;
1641 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1642 
1643 	if (!domain || !domain->iova_cookie) {
1644 		desc->iommu_cookie = NULL;
1645 		return 0;
1646 	}
1647 
1648 	/*
1649 	 * In fact the whole prepare operation should already be serialised by
1650 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1651 	 * on its own, so consider this locking as failsafe documentation...
1652 	 */
1653 	mutex_lock(&msi_prepare_lock);
1654 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1655 	mutex_unlock(&msi_prepare_lock);
1656 
1657 	msi_desc_set_iommu_cookie(desc, msi_page);
1658 
1659 	if (!msi_page)
1660 		return -ENOMEM;
1661 	return 0;
1662 }
1663 
1664 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1665 			       struct msi_msg *msg)
1666 {
1667 	struct device *dev = msi_desc_to_dev(desc);
1668 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1669 	const struct iommu_dma_msi_page *msi_page;
1670 
1671 	msi_page = msi_desc_get_iommu_cookie(desc);
1672 
1673 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1674 		return;
1675 
1676 	msg->address_hi = upper_32_bits(msi_page->iova);
1677 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1678 	msg->address_lo += lower_32_bits(msi_page->iova);
1679 }
1680 
1681 static int iommu_dma_init(void)
1682 {
1683 	if (is_kdump_kernel())
1684 		static_branch_enable(&iommu_deferred_attach_enabled);
1685 
1686 	return iova_cache_get();
1687 }
1688 arch_initcall(iommu_dma_init);
1689