1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-iommu.h> 17 #include <linux/dma-map-ops.h> 18 #include <linux/gfp.h> 19 #include <linux/huge_mm.h> 20 #include <linux/iommu.h> 21 #include <linux/iova.h> 22 #include <linux/irq.h> 23 #include <linux/list_sort.h> 24 #include <linux/memremap.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pci.h> 28 #include <linux/scatterlist.h> 29 #include <linux/spinlock.h> 30 #include <linux/swiotlb.h> 31 #include <linux/vmalloc.h> 32 33 struct iommu_dma_msi_page { 34 struct list_head list; 35 dma_addr_t iova; 36 phys_addr_t phys; 37 }; 38 39 enum iommu_dma_cookie_type { 40 IOMMU_DMA_IOVA_COOKIE, 41 IOMMU_DMA_MSI_COOKIE, 42 }; 43 44 struct iommu_dma_cookie { 45 enum iommu_dma_cookie_type type; 46 union { 47 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 48 struct { 49 struct iova_domain iovad; 50 51 struct iova_fq __percpu *fq; /* Flush queue */ 52 /* Number of TLB flushes that have been started */ 53 atomic64_t fq_flush_start_cnt; 54 /* Number of TLB flushes that have been finished */ 55 atomic64_t fq_flush_finish_cnt; 56 /* Timer to regularily empty the flush queues */ 57 struct timer_list fq_timer; 58 /* 1 when timer is active, 0 when not */ 59 atomic_t fq_timer_on; 60 }; 61 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 62 dma_addr_t msi_iova; 63 }; 64 struct list_head msi_page_list; 65 66 /* Domain for flush queue callback; NULL if flush queue not in use */ 67 struct iommu_domain *fq_domain; 68 struct mutex mutex; 69 }; 70 71 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 72 bool iommu_dma_forcedac __read_mostly; 73 74 static int __init iommu_dma_forcedac_setup(char *str) 75 { 76 int ret = kstrtobool(str, &iommu_dma_forcedac); 77 78 if (!ret && iommu_dma_forcedac) 79 pr_info("Forcing DAC for PCI devices\n"); 80 return ret; 81 } 82 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 83 84 /* Number of entries per flush queue */ 85 #define IOVA_FQ_SIZE 256 86 87 /* Timeout (in ms) after which entries are flushed from the queue */ 88 #define IOVA_FQ_TIMEOUT 10 89 90 /* Flush queue entry for deferred flushing */ 91 struct iova_fq_entry { 92 unsigned long iova_pfn; 93 unsigned long pages; 94 struct list_head freelist; 95 u64 counter; /* Flush counter when this entry was added */ 96 }; 97 98 /* Per-CPU flush queue structure */ 99 struct iova_fq { 100 struct iova_fq_entry entries[IOVA_FQ_SIZE]; 101 unsigned int head, tail; 102 spinlock_t lock; 103 }; 104 105 #define fq_ring_for_each(i, fq) \ 106 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 107 108 static inline bool fq_full(struct iova_fq *fq) 109 { 110 assert_spin_locked(&fq->lock); 111 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 112 } 113 114 static inline unsigned int fq_ring_add(struct iova_fq *fq) 115 { 116 unsigned int idx = fq->tail; 117 118 assert_spin_locked(&fq->lock); 119 120 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 121 122 return idx; 123 } 124 125 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 126 { 127 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 128 unsigned int idx; 129 130 assert_spin_locked(&fq->lock); 131 132 fq_ring_for_each(idx, fq) { 133 134 if (fq->entries[idx].counter >= counter) 135 break; 136 137 put_pages_list(&fq->entries[idx].freelist); 138 free_iova_fast(&cookie->iovad, 139 fq->entries[idx].iova_pfn, 140 fq->entries[idx].pages); 141 142 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 143 } 144 } 145 146 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 147 { 148 atomic64_inc(&cookie->fq_flush_start_cnt); 149 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 150 atomic64_inc(&cookie->fq_flush_finish_cnt); 151 } 152 153 static void fq_flush_timeout(struct timer_list *t) 154 { 155 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 156 int cpu; 157 158 atomic_set(&cookie->fq_timer_on, 0); 159 fq_flush_iotlb(cookie); 160 161 for_each_possible_cpu(cpu) { 162 unsigned long flags; 163 struct iova_fq *fq; 164 165 fq = per_cpu_ptr(cookie->fq, cpu); 166 spin_lock_irqsave(&fq->lock, flags); 167 fq_ring_free(cookie, fq); 168 spin_unlock_irqrestore(&fq->lock, flags); 169 } 170 } 171 172 static void queue_iova(struct iommu_dma_cookie *cookie, 173 unsigned long pfn, unsigned long pages, 174 struct list_head *freelist) 175 { 176 struct iova_fq *fq; 177 unsigned long flags; 178 unsigned int idx; 179 180 /* 181 * Order against the IOMMU driver's pagetable update from unmapping 182 * @pte, to guarantee that fq_flush_iotlb() observes that if called 183 * from a different CPU before we release the lock below. Full barrier 184 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 185 * written fq state here. 186 */ 187 smp_mb(); 188 189 fq = raw_cpu_ptr(cookie->fq); 190 spin_lock_irqsave(&fq->lock, flags); 191 192 /* 193 * First remove all entries from the flush queue that have already been 194 * flushed out on another CPU. This makes the fq_full() check below less 195 * likely to be true. 196 */ 197 fq_ring_free(cookie, fq); 198 199 if (fq_full(fq)) { 200 fq_flush_iotlb(cookie); 201 fq_ring_free(cookie, fq); 202 } 203 204 idx = fq_ring_add(fq); 205 206 fq->entries[idx].iova_pfn = pfn; 207 fq->entries[idx].pages = pages; 208 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 209 list_splice(freelist, &fq->entries[idx].freelist); 210 211 spin_unlock_irqrestore(&fq->lock, flags); 212 213 /* Avoid false sharing as much as possible. */ 214 if (!atomic_read(&cookie->fq_timer_on) && 215 !atomic_xchg(&cookie->fq_timer_on, 1)) 216 mod_timer(&cookie->fq_timer, 217 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 218 } 219 220 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 221 { 222 int cpu, idx; 223 224 if (!cookie->fq) 225 return; 226 227 del_timer_sync(&cookie->fq_timer); 228 /* The IOVAs will be torn down separately, so just free our queued pages */ 229 for_each_possible_cpu(cpu) { 230 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu); 231 232 fq_ring_for_each(idx, fq) 233 put_pages_list(&fq->entries[idx].freelist); 234 } 235 236 free_percpu(cookie->fq); 237 } 238 239 /* sysfs updates are serialised by the mutex of the group owning @domain */ 240 int iommu_dma_init_fq(struct iommu_domain *domain) 241 { 242 struct iommu_dma_cookie *cookie = domain->iova_cookie; 243 struct iova_fq __percpu *queue; 244 int i, cpu; 245 246 if (cookie->fq_domain) 247 return 0; 248 249 atomic64_set(&cookie->fq_flush_start_cnt, 0); 250 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 251 252 queue = alloc_percpu(struct iova_fq); 253 if (!queue) { 254 pr_warn("iova flush queue initialization failed\n"); 255 return -ENOMEM; 256 } 257 258 for_each_possible_cpu(cpu) { 259 struct iova_fq *fq = per_cpu_ptr(queue, cpu); 260 261 fq->head = 0; 262 fq->tail = 0; 263 264 spin_lock_init(&fq->lock); 265 266 for (i = 0; i < IOVA_FQ_SIZE; i++) 267 INIT_LIST_HEAD(&fq->entries[i].freelist); 268 } 269 270 cookie->fq = queue; 271 272 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 273 atomic_set(&cookie->fq_timer_on, 0); 274 /* 275 * Prevent incomplete fq state being observable. Pairs with path from 276 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 277 */ 278 smp_wmb(); 279 WRITE_ONCE(cookie->fq_domain, domain); 280 return 0; 281 } 282 283 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 284 { 285 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 286 return cookie->iovad.granule; 287 return PAGE_SIZE; 288 } 289 290 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 291 { 292 struct iommu_dma_cookie *cookie; 293 294 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 295 if (cookie) { 296 INIT_LIST_HEAD(&cookie->msi_page_list); 297 cookie->type = type; 298 } 299 return cookie; 300 } 301 302 /** 303 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 304 * @domain: IOMMU domain to prepare for DMA-API usage 305 */ 306 int iommu_get_dma_cookie(struct iommu_domain *domain) 307 { 308 if (domain->iova_cookie) 309 return -EEXIST; 310 311 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 312 if (!domain->iova_cookie) 313 return -ENOMEM; 314 315 mutex_init(&domain->iova_cookie->mutex); 316 return 0; 317 } 318 319 /** 320 * iommu_get_msi_cookie - Acquire just MSI remapping resources 321 * @domain: IOMMU domain to prepare 322 * @base: Start address of IOVA region for MSI mappings 323 * 324 * Users who manage their own IOVA allocation and do not want DMA API support, 325 * but would still like to take advantage of automatic MSI remapping, can use 326 * this to initialise their own domain appropriately. Users should reserve a 327 * contiguous IOVA region, starting at @base, large enough to accommodate the 328 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 329 * used by the devices attached to @domain. 330 */ 331 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 332 { 333 struct iommu_dma_cookie *cookie; 334 335 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 336 return -EINVAL; 337 338 if (domain->iova_cookie) 339 return -EEXIST; 340 341 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 342 if (!cookie) 343 return -ENOMEM; 344 345 cookie->msi_iova = base; 346 domain->iova_cookie = cookie; 347 return 0; 348 } 349 EXPORT_SYMBOL(iommu_get_msi_cookie); 350 351 /** 352 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 353 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 354 * iommu_get_msi_cookie() 355 */ 356 void iommu_put_dma_cookie(struct iommu_domain *domain) 357 { 358 struct iommu_dma_cookie *cookie = domain->iova_cookie; 359 struct iommu_dma_msi_page *msi, *tmp; 360 361 if (!cookie) 362 return; 363 364 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { 365 iommu_dma_free_fq(cookie); 366 put_iova_domain(&cookie->iovad); 367 } 368 369 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 370 list_del(&msi->list); 371 kfree(msi); 372 } 373 kfree(cookie); 374 domain->iova_cookie = NULL; 375 } 376 377 /** 378 * iommu_dma_get_resv_regions - Reserved region driver helper 379 * @dev: Device from iommu_get_resv_regions() 380 * @list: Reserved region list from iommu_get_resv_regions() 381 * 382 * IOMMU drivers can use this to implement their .get_resv_regions callback 383 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 384 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 385 * reservation. 386 */ 387 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 388 { 389 390 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 391 iort_iommu_get_resv_regions(dev, list); 392 393 } 394 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 395 396 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 397 phys_addr_t start, phys_addr_t end) 398 { 399 struct iova_domain *iovad = &cookie->iovad; 400 struct iommu_dma_msi_page *msi_page; 401 int i, num_pages; 402 403 start -= iova_offset(iovad, start); 404 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 405 406 for (i = 0; i < num_pages; i++) { 407 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 408 if (!msi_page) 409 return -ENOMEM; 410 411 msi_page->phys = start; 412 msi_page->iova = start; 413 INIT_LIST_HEAD(&msi_page->list); 414 list_add(&msi_page->list, &cookie->msi_page_list); 415 start += iovad->granule; 416 } 417 418 return 0; 419 } 420 421 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 422 const struct list_head *b) 423 { 424 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 425 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 426 427 return res_a->res->start > res_b->res->start; 428 } 429 430 static int iova_reserve_pci_windows(struct pci_dev *dev, 431 struct iova_domain *iovad) 432 { 433 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 434 struct resource_entry *window; 435 unsigned long lo, hi; 436 phys_addr_t start = 0, end; 437 438 resource_list_for_each_entry(window, &bridge->windows) { 439 if (resource_type(window->res) != IORESOURCE_MEM) 440 continue; 441 442 lo = iova_pfn(iovad, window->res->start - window->offset); 443 hi = iova_pfn(iovad, window->res->end - window->offset); 444 reserve_iova(iovad, lo, hi); 445 } 446 447 /* Get reserved DMA windows from host bridge */ 448 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 449 resource_list_for_each_entry(window, &bridge->dma_ranges) { 450 end = window->res->start - window->offset; 451 resv_iova: 452 if (end > start) { 453 lo = iova_pfn(iovad, start); 454 hi = iova_pfn(iovad, end); 455 reserve_iova(iovad, lo, hi); 456 } else if (end < start) { 457 /* DMA ranges should be non-overlapping */ 458 dev_err(&dev->dev, 459 "Failed to reserve IOVA [%pa-%pa]\n", 460 &start, &end); 461 return -EINVAL; 462 } 463 464 start = window->res->end - window->offset + 1; 465 /* If window is last entry */ 466 if (window->node.next == &bridge->dma_ranges && 467 end != ~(phys_addr_t)0) { 468 end = ~(phys_addr_t)0; 469 goto resv_iova; 470 } 471 } 472 473 return 0; 474 } 475 476 static int iova_reserve_iommu_regions(struct device *dev, 477 struct iommu_domain *domain) 478 { 479 struct iommu_dma_cookie *cookie = domain->iova_cookie; 480 struct iova_domain *iovad = &cookie->iovad; 481 struct iommu_resv_region *region; 482 LIST_HEAD(resv_regions); 483 int ret = 0; 484 485 if (dev_is_pci(dev)) { 486 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 487 if (ret) 488 return ret; 489 } 490 491 iommu_get_resv_regions(dev, &resv_regions); 492 list_for_each_entry(region, &resv_regions, list) { 493 unsigned long lo, hi; 494 495 /* We ARE the software that manages these! */ 496 if (region->type == IOMMU_RESV_SW_MSI) 497 continue; 498 499 lo = iova_pfn(iovad, region->start); 500 hi = iova_pfn(iovad, region->start + region->length - 1); 501 reserve_iova(iovad, lo, hi); 502 503 if (region->type == IOMMU_RESV_MSI) 504 ret = cookie_init_hw_msi_region(cookie, region->start, 505 region->start + region->length); 506 if (ret) 507 break; 508 } 509 iommu_put_resv_regions(dev, &resv_regions); 510 511 return ret; 512 } 513 514 static bool dev_is_untrusted(struct device *dev) 515 { 516 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 517 } 518 519 static bool dev_use_swiotlb(struct device *dev) 520 { 521 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev); 522 } 523 524 /** 525 * iommu_dma_init_domain - Initialise a DMA mapping domain 526 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 527 * @base: IOVA at which the mappable address space starts 528 * @limit: Last address of the IOVA space 529 * @dev: Device the domain is being initialised for 530 * 531 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to 532 * avoid rounding surprises. If necessary, we reserve the page at address 0 533 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 534 * any change which could make prior IOVAs invalid will fail. 535 */ 536 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 537 dma_addr_t limit, struct device *dev) 538 { 539 struct iommu_dma_cookie *cookie = domain->iova_cookie; 540 unsigned long order, base_pfn; 541 struct iova_domain *iovad; 542 int ret; 543 544 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 545 return -EINVAL; 546 547 iovad = &cookie->iovad; 548 549 /* Use the smallest supported page size for IOVA granularity */ 550 order = __ffs(domain->pgsize_bitmap); 551 base_pfn = max_t(unsigned long, 1, base >> order); 552 553 /* Check the domain allows at least some access to the device... */ 554 if (domain->geometry.force_aperture) { 555 if (base > domain->geometry.aperture_end || 556 limit < domain->geometry.aperture_start) { 557 pr_warn("specified DMA range outside IOMMU capability\n"); 558 return -EFAULT; 559 } 560 /* ...then finally give it a kicking to make sure it fits */ 561 base_pfn = max_t(unsigned long, base_pfn, 562 domain->geometry.aperture_start >> order); 563 } 564 565 /* start_pfn is always nonzero for an already-initialised domain */ 566 mutex_lock(&cookie->mutex); 567 if (iovad->start_pfn) { 568 if (1UL << order != iovad->granule || 569 base_pfn != iovad->start_pfn) { 570 pr_warn("Incompatible range for DMA domain\n"); 571 ret = -EFAULT; 572 goto done_unlock; 573 } 574 575 ret = 0; 576 goto done_unlock; 577 } 578 579 init_iova_domain(iovad, 1UL << order, base_pfn); 580 ret = iova_domain_init_rcaches(iovad); 581 if (ret) 582 goto done_unlock; 583 584 /* If the FQ fails we can simply fall back to strict mode */ 585 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain)) 586 domain->type = IOMMU_DOMAIN_DMA; 587 588 ret = iova_reserve_iommu_regions(dev, domain); 589 590 done_unlock: 591 mutex_unlock(&cookie->mutex); 592 return ret; 593 } 594 595 /** 596 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 597 * page flags. 598 * @dir: Direction of DMA transfer 599 * @coherent: Is the DMA master cache-coherent? 600 * @attrs: DMA attributes for the mapping 601 * 602 * Return: corresponding IOMMU API page protection flags 603 */ 604 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 605 unsigned long attrs) 606 { 607 int prot = coherent ? IOMMU_CACHE : 0; 608 609 if (attrs & DMA_ATTR_PRIVILEGED) 610 prot |= IOMMU_PRIV; 611 612 switch (dir) { 613 case DMA_BIDIRECTIONAL: 614 return prot | IOMMU_READ | IOMMU_WRITE; 615 case DMA_TO_DEVICE: 616 return prot | IOMMU_READ; 617 case DMA_FROM_DEVICE: 618 return prot | IOMMU_WRITE; 619 default: 620 return 0; 621 } 622 } 623 624 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 625 size_t size, u64 dma_limit, struct device *dev) 626 { 627 struct iommu_dma_cookie *cookie = domain->iova_cookie; 628 struct iova_domain *iovad = &cookie->iovad; 629 unsigned long shift, iova_len, iova = 0; 630 631 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 632 cookie->msi_iova += size; 633 return cookie->msi_iova - size; 634 } 635 636 shift = iova_shift(iovad); 637 iova_len = size >> shift; 638 639 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 640 641 if (domain->geometry.force_aperture) 642 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 643 644 /* Try to get PCI devices a SAC address */ 645 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) 646 iova = alloc_iova_fast(iovad, iova_len, 647 DMA_BIT_MASK(32) >> shift, false); 648 649 if (!iova) 650 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 651 true); 652 653 return (dma_addr_t)iova << shift; 654 } 655 656 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 657 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) 658 { 659 struct iova_domain *iovad = &cookie->iovad; 660 661 /* The MSI case is only ever cleaning up its most recent allocation */ 662 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 663 cookie->msi_iova -= size; 664 else if (gather && gather->queued) 665 queue_iova(cookie, iova_pfn(iovad, iova), 666 size >> iova_shift(iovad), 667 &gather->freelist); 668 else 669 free_iova_fast(iovad, iova_pfn(iovad, iova), 670 size >> iova_shift(iovad)); 671 } 672 673 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 674 size_t size) 675 { 676 struct iommu_domain *domain = iommu_get_dma_domain(dev); 677 struct iommu_dma_cookie *cookie = domain->iova_cookie; 678 struct iova_domain *iovad = &cookie->iovad; 679 size_t iova_off = iova_offset(iovad, dma_addr); 680 struct iommu_iotlb_gather iotlb_gather; 681 size_t unmapped; 682 683 dma_addr -= iova_off; 684 size = iova_align(iovad, size + iova_off); 685 iommu_iotlb_gather_init(&iotlb_gather); 686 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 687 688 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 689 WARN_ON(unmapped != size); 690 691 if (!iotlb_gather.queued) 692 iommu_iotlb_sync(domain, &iotlb_gather); 693 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); 694 } 695 696 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 697 size_t size, int prot, u64 dma_mask) 698 { 699 struct iommu_domain *domain = iommu_get_dma_domain(dev); 700 struct iommu_dma_cookie *cookie = domain->iova_cookie; 701 struct iova_domain *iovad = &cookie->iovad; 702 size_t iova_off = iova_offset(iovad, phys); 703 dma_addr_t iova; 704 705 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 706 iommu_deferred_attach(dev, domain)) 707 return DMA_MAPPING_ERROR; 708 709 size = iova_align(iovad, size + iova_off); 710 711 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 712 if (!iova) 713 return DMA_MAPPING_ERROR; 714 715 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { 716 iommu_dma_free_iova(cookie, iova, size, NULL); 717 return DMA_MAPPING_ERROR; 718 } 719 return iova + iova_off; 720 } 721 722 static void __iommu_dma_free_pages(struct page **pages, int count) 723 { 724 while (count--) 725 __free_page(pages[count]); 726 kvfree(pages); 727 } 728 729 static struct page **__iommu_dma_alloc_pages(struct device *dev, 730 unsigned int count, unsigned long order_mask, gfp_t gfp) 731 { 732 struct page **pages; 733 unsigned int i = 0, nid = dev_to_node(dev); 734 735 order_mask &= (2U << MAX_ORDER) - 1; 736 if (!order_mask) 737 return NULL; 738 739 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 740 if (!pages) 741 return NULL; 742 743 /* IOMMU can map any pages, so himem can also be used here */ 744 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 745 746 /* It makes no sense to muck about with huge pages */ 747 gfp &= ~__GFP_COMP; 748 749 while (count) { 750 struct page *page = NULL; 751 unsigned int order_size; 752 753 /* 754 * Higher-order allocations are a convenience rather 755 * than a necessity, hence using __GFP_NORETRY until 756 * falling back to minimum-order allocations. 757 */ 758 for (order_mask &= (2U << __fls(count)) - 1; 759 order_mask; order_mask &= ~order_size) { 760 unsigned int order = __fls(order_mask); 761 gfp_t alloc_flags = gfp; 762 763 order_size = 1U << order; 764 if (order_mask > order_size) 765 alloc_flags |= __GFP_NORETRY; 766 page = alloc_pages_node(nid, alloc_flags, order); 767 if (!page) 768 continue; 769 if (order) 770 split_page(page, order); 771 break; 772 } 773 if (!page) { 774 __iommu_dma_free_pages(pages, i); 775 return NULL; 776 } 777 count -= order_size; 778 while (order_size--) 779 pages[i++] = page++; 780 } 781 return pages; 782 } 783 784 /* 785 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 786 * but an IOMMU which supports smaller pages might not map the whole thing. 787 */ 788 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 789 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, 790 unsigned long attrs) 791 { 792 struct iommu_domain *domain = iommu_get_dma_domain(dev); 793 struct iommu_dma_cookie *cookie = domain->iova_cookie; 794 struct iova_domain *iovad = &cookie->iovad; 795 bool coherent = dev_is_dma_coherent(dev); 796 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 797 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 798 struct page **pages; 799 dma_addr_t iova; 800 ssize_t ret; 801 802 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 803 iommu_deferred_attach(dev, domain)) 804 return NULL; 805 806 min_size = alloc_sizes & -alloc_sizes; 807 if (min_size < PAGE_SIZE) { 808 min_size = PAGE_SIZE; 809 alloc_sizes |= PAGE_SIZE; 810 } else { 811 size = ALIGN(size, min_size); 812 } 813 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 814 alloc_sizes = min_size; 815 816 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 817 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 818 gfp); 819 if (!pages) 820 return NULL; 821 822 size = iova_align(iovad, size); 823 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 824 if (!iova) 825 goto out_free_pages; 826 827 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL)) 828 goto out_free_iova; 829 830 if (!(ioprot & IOMMU_CACHE)) { 831 struct scatterlist *sg; 832 int i; 833 834 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 835 arch_dma_prep_coherent(sg_page(sg), sg->length); 836 } 837 838 ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot); 839 if (ret < 0 || ret < size) 840 goto out_free_sg; 841 842 sgt->sgl->dma_address = iova; 843 sgt->sgl->dma_length = size; 844 return pages; 845 846 out_free_sg: 847 sg_free_table(sgt); 848 out_free_iova: 849 iommu_dma_free_iova(cookie, iova, size, NULL); 850 out_free_pages: 851 __iommu_dma_free_pages(pages, count); 852 return NULL; 853 } 854 855 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 856 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 857 unsigned long attrs) 858 { 859 struct page **pages; 860 struct sg_table sgt; 861 void *vaddr; 862 863 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, 864 attrs); 865 if (!pages) 866 return NULL; 867 *dma_handle = sgt.sgl->dma_address; 868 sg_free_table(&sgt); 869 vaddr = dma_common_pages_remap(pages, size, prot, 870 __builtin_return_address(0)); 871 if (!vaddr) 872 goto out_unmap; 873 return vaddr; 874 875 out_unmap: 876 __iommu_dma_unmap(dev, *dma_handle, size); 877 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 878 return NULL; 879 } 880 881 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, 882 size_t size, enum dma_data_direction dir, gfp_t gfp, 883 unsigned long attrs) 884 { 885 struct dma_sgt_handle *sh; 886 887 sh = kmalloc(sizeof(*sh), gfp); 888 if (!sh) 889 return NULL; 890 891 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, 892 PAGE_KERNEL, attrs); 893 if (!sh->pages) { 894 kfree(sh); 895 return NULL; 896 } 897 return &sh->sgt; 898 } 899 900 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 901 struct sg_table *sgt, enum dma_data_direction dir) 902 { 903 struct dma_sgt_handle *sh = sgt_handle(sgt); 904 905 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 906 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 907 sg_free_table(&sh->sgt); 908 kfree(sh); 909 } 910 911 static void iommu_dma_sync_single_for_cpu(struct device *dev, 912 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 913 { 914 phys_addr_t phys; 915 916 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 917 return; 918 919 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 920 if (!dev_is_dma_coherent(dev)) 921 arch_sync_dma_for_cpu(phys, size, dir); 922 923 if (is_swiotlb_buffer(dev, phys)) 924 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 925 } 926 927 static void iommu_dma_sync_single_for_device(struct device *dev, 928 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 929 { 930 phys_addr_t phys; 931 932 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 933 return; 934 935 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 936 if (is_swiotlb_buffer(dev, phys)) 937 swiotlb_sync_single_for_device(dev, phys, size, dir); 938 939 if (!dev_is_dma_coherent(dev)) 940 arch_sync_dma_for_device(phys, size, dir); 941 } 942 943 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 944 struct scatterlist *sgl, int nelems, 945 enum dma_data_direction dir) 946 { 947 struct scatterlist *sg; 948 int i; 949 950 if (dev_use_swiotlb(dev)) 951 for_each_sg(sgl, sg, nelems, i) 952 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 953 sg->length, dir); 954 else if (!dev_is_dma_coherent(dev)) 955 for_each_sg(sgl, sg, nelems, i) 956 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 957 } 958 959 static void iommu_dma_sync_sg_for_device(struct device *dev, 960 struct scatterlist *sgl, int nelems, 961 enum dma_data_direction dir) 962 { 963 struct scatterlist *sg; 964 int i; 965 966 if (dev_use_swiotlb(dev)) 967 for_each_sg(sgl, sg, nelems, i) 968 iommu_dma_sync_single_for_device(dev, 969 sg_dma_address(sg), 970 sg->length, dir); 971 else if (!dev_is_dma_coherent(dev)) 972 for_each_sg(sgl, sg, nelems, i) 973 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 974 } 975 976 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 977 unsigned long offset, size_t size, enum dma_data_direction dir, 978 unsigned long attrs) 979 { 980 phys_addr_t phys = page_to_phys(page) + offset; 981 bool coherent = dev_is_dma_coherent(dev); 982 int prot = dma_info_to_prot(dir, coherent, attrs); 983 struct iommu_domain *domain = iommu_get_dma_domain(dev); 984 struct iommu_dma_cookie *cookie = domain->iova_cookie; 985 struct iova_domain *iovad = &cookie->iovad; 986 dma_addr_t iova, dma_mask = dma_get_mask(dev); 987 988 /* 989 * If both the physical buffer start address and size are 990 * page aligned, we don't need to use a bounce page. 991 */ 992 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) { 993 void *padding_start; 994 size_t padding_size, aligned_size; 995 996 if (!is_swiotlb_active(dev)) { 997 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 998 return DMA_MAPPING_ERROR; 999 } 1000 1001 aligned_size = iova_align(iovad, size); 1002 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, 1003 iova_mask(iovad), dir, attrs); 1004 1005 if (phys == DMA_MAPPING_ERROR) 1006 return DMA_MAPPING_ERROR; 1007 1008 /* Cleanup the padding area. */ 1009 padding_start = phys_to_virt(phys); 1010 padding_size = aligned_size; 1011 1012 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 1013 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { 1014 padding_start += size; 1015 padding_size -= size; 1016 } 1017 1018 memset(padding_start, 0, padding_size); 1019 } 1020 1021 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1022 arch_sync_dma_for_device(phys, size, dir); 1023 1024 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1025 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) 1026 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1027 return iova; 1028 } 1029 1030 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1031 size_t size, enum dma_data_direction dir, unsigned long attrs) 1032 { 1033 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1034 phys_addr_t phys; 1035 1036 phys = iommu_iova_to_phys(domain, dma_handle); 1037 if (WARN_ON(!phys)) 1038 return; 1039 1040 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1041 arch_sync_dma_for_cpu(phys, size, dir); 1042 1043 __iommu_dma_unmap(dev, dma_handle, size); 1044 1045 if (unlikely(is_swiotlb_buffer(dev, phys))) 1046 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1047 } 1048 1049 /* 1050 * Prepare a successfully-mapped scatterlist to give back to the caller. 1051 * 1052 * At this point the segments are already laid out by iommu_dma_map_sg() to 1053 * avoid individually crossing any boundaries, so we merely need to check a 1054 * segment's start address to avoid concatenating across one. 1055 */ 1056 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1057 dma_addr_t dma_addr) 1058 { 1059 struct scatterlist *s, *cur = sg; 1060 unsigned long seg_mask = dma_get_seg_boundary(dev); 1061 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1062 int i, count = 0; 1063 1064 for_each_sg(sg, s, nents, i) { 1065 /* Restore this segment's original unaligned fields first */ 1066 dma_addr_t s_dma_addr = sg_dma_address(s); 1067 unsigned int s_iova_off = sg_dma_address(s); 1068 unsigned int s_length = sg_dma_len(s); 1069 unsigned int s_iova_len = s->length; 1070 1071 sg_dma_address(s) = DMA_MAPPING_ERROR; 1072 sg_dma_len(s) = 0; 1073 1074 if (sg_is_dma_bus_address(s)) { 1075 if (i > 0) 1076 cur = sg_next(cur); 1077 1078 sg_dma_unmark_bus_address(s); 1079 sg_dma_address(cur) = s_dma_addr; 1080 sg_dma_len(cur) = s_length; 1081 sg_dma_mark_bus_address(cur); 1082 count++; 1083 cur_len = 0; 1084 continue; 1085 } 1086 1087 s->offset += s_iova_off; 1088 s->length = s_length; 1089 1090 /* 1091 * Now fill in the real DMA data. If... 1092 * - there is a valid output segment to append to 1093 * - and this segment starts on an IOVA page boundary 1094 * - but doesn't fall at a segment boundary 1095 * - and wouldn't make the resulting output segment too long 1096 */ 1097 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1098 (max_len - cur_len >= s_length)) { 1099 /* ...then concatenate it with the previous one */ 1100 cur_len += s_length; 1101 } else { 1102 /* Otherwise start the next output segment */ 1103 if (i > 0) 1104 cur = sg_next(cur); 1105 cur_len = s_length; 1106 count++; 1107 1108 sg_dma_address(cur) = dma_addr + s_iova_off; 1109 } 1110 1111 sg_dma_len(cur) = cur_len; 1112 dma_addr += s_iova_len; 1113 1114 if (s_length + s_iova_off < s_iova_len) 1115 cur_len = 0; 1116 } 1117 return count; 1118 } 1119 1120 /* 1121 * If mapping failed, then just restore the original list, 1122 * but making sure the DMA fields are invalidated. 1123 */ 1124 static void __invalidate_sg(struct scatterlist *sg, int nents) 1125 { 1126 struct scatterlist *s; 1127 int i; 1128 1129 for_each_sg(sg, s, nents, i) { 1130 if (sg_is_dma_bus_address(s)) { 1131 sg_dma_unmark_bus_address(s); 1132 } else { 1133 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1134 s->offset += sg_dma_address(s); 1135 if (sg_dma_len(s)) 1136 s->length = sg_dma_len(s); 1137 } 1138 sg_dma_address(s) = DMA_MAPPING_ERROR; 1139 sg_dma_len(s) = 0; 1140 } 1141 } 1142 1143 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1144 int nents, enum dma_data_direction dir, unsigned long attrs) 1145 { 1146 struct scatterlist *s; 1147 int i; 1148 1149 for_each_sg(sg, s, nents, i) 1150 iommu_dma_unmap_page(dev, sg_dma_address(s), 1151 sg_dma_len(s), dir, attrs); 1152 } 1153 1154 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1155 int nents, enum dma_data_direction dir, unsigned long attrs) 1156 { 1157 struct scatterlist *s; 1158 int i; 1159 1160 for_each_sg(sg, s, nents, i) { 1161 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1162 s->offset, s->length, dir, attrs); 1163 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1164 goto out_unmap; 1165 sg_dma_len(s) = s->length; 1166 } 1167 1168 return nents; 1169 1170 out_unmap: 1171 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1172 return -EIO; 1173 } 1174 1175 /* 1176 * The DMA API client is passing in a scatterlist which could describe 1177 * any old buffer layout, but the IOMMU API requires everything to be 1178 * aligned to IOMMU pages. Hence the need for this complicated bit of 1179 * impedance-matching, to be able to hand off a suitably-aligned list, 1180 * but still preserve the original offsets and sizes for the caller. 1181 */ 1182 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 1183 int nents, enum dma_data_direction dir, unsigned long attrs) 1184 { 1185 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1186 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1187 struct iova_domain *iovad = &cookie->iovad; 1188 struct scatterlist *s, *prev = NULL; 1189 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1190 struct pci_p2pdma_map_state p2pdma_state = {}; 1191 enum pci_p2pdma_map_type map; 1192 dma_addr_t iova; 1193 size_t iova_len = 0; 1194 unsigned long mask = dma_get_seg_boundary(dev); 1195 ssize_t ret; 1196 int i; 1197 1198 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1199 ret = iommu_deferred_attach(dev, domain); 1200 if (ret) 1201 goto out; 1202 } 1203 1204 if (dev_use_swiotlb(dev)) 1205 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1206 1207 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1208 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1209 1210 /* 1211 * Work out how much IOVA space we need, and align the segments to 1212 * IOVA granules for the IOMMU driver to handle. With some clever 1213 * trickery we can modify the list in-place, but reversibly, by 1214 * stashing the unaligned parts in the as-yet-unused DMA fields. 1215 */ 1216 for_each_sg(sg, s, nents, i) { 1217 size_t s_iova_off = iova_offset(iovad, s->offset); 1218 size_t s_length = s->length; 1219 size_t pad_len = (mask - iova_len + 1) & mask; 1220 1221 if (is_pci_p2pdma_page(sg_page(s))) { 1222 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); 1223 switch (map) { 1224 case PCI_P2PDMA_MAP_BUS_ADDR: 1225 /* 1226 * iommu_map_sg() will skip this segment as 1227 * it is marked as a bus address, 1228 * __finalise_sg() will copy the dma address 1229 * into the output segment. 1230 */ 1231 continue; 1232 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1233 /* 1234 * Mapping through host bridge should be 1235 * mapped with regular IOVAs, thus we 1236 * do nothing here and continue below. 1237 */ 1238 break; 1239 default: 1240 ret = -EREMOTEIO; 1241 goto out_restore_sg; 1242 } 1243 } 1244 1245 sg_dma_address(s) = s_iova_off; 1246 sg_dma_len(s) = s_length; 1247 s->offset -= s_iova_off; 1248 s_length = iova_align(iovad, s_length + s_iova_off); 1249 s->length = s_length; 1250 1251 /* 1252 * Due to the alignment of our single IOVA allocation, we can 1253 * depend on these assumptions about the segment boundary mask: 1254 * - If mask size >= IOVA size, then the IOVA range cannot 1255 * possibly fall across a boundary, so we don't care. 1256 * - If mask size < IOVA size, then the IOVA range must start 1257 * exactly on a boundary, therefore we can lay things out 1258 * based purely on segment lengths without needing to know 1259 * the actual addresses beforehand. 1260 * - The mask must be a power of 2, so pad_len == 0 if 1261 * iova_len == 0, thus we cannot dereference prev the first 1262 * time through here (i.e. before it has a meaningful value). 1263 */ 1264 if (pad_len && pad_len < s_length - 1) { 1265 prev->length += pad_len; 1266 iova_len += pad_len; 1267 } 1268 1269 iova_len += s_length; 1270 prev = s; 1271 } 1272 1273 if (!iova_len) 1274 return __finalise_sg(dev, sg, nents, 0); 1275 1276 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1277 if (!iova) { 1278 ret = -ENOMEM; 1279 goto out_restore_sg; 1280 } 1281 1282 /* 1283 * We'll leave any physical concatenation to the IOMMU driver's 1284 * implementation - it knows better than we do. 1285 */ 1286 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot); 1287 if (ret < 0 || ret < iova_len) 1288 goto out_free_iova; 1289 1290 return __finalise_sg(dev, sg, nents, iova); 1291 1292 out_free_iova: 1293 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1294 out_restore_sg: 1295 __invalidate_sg(sg, nents); 1296 out: 1297 if (ret != -ENOMEM && ret != -EREMOTEIO) 1298 return -EINVAL; 1299 return ret; 1300 } 1301 1302 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1303 int nents, enum dma_data_direction dir, unsigned long attrs) 1304 { 1305 dma_addr_t end = 0, start; 1306 struct scatterlist *tmp; 1307 int i; 1308 1309 if (dev_use_swiotlb(dev)) { 1310 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1311 return; 1312 } 1313 1314 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1315 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1316 1317 /* 1318 * The scatterlist segments are mapped into a single 1319 * contiguous IOVA allocation, the start and end points 1320 * just have to be determined. 1321 */ 1322 for_each_sg(sg, tmp, nents, i) { 1323 if (sg_is_dma_bus_address(tmp)) { 1324 sg_dma_unmark_bus_address(tmp); 1325 continue; 1326 } 1327 1328 if (sg_dma_len(tmp) == 0) 1329 break; 1330 1331 start = sg_dma_address(tmp); 1332 break; 1333 } 1334 1335 nents -= i; 1336 for_each_sg(tmp, tmp, nents, i) { 1337 if (sg_is_dma_bus_address(tmp)) { 1338 sg_dma_unmark_bus_address(tmp); 1339 continue; 1340 } 1341 1342 if (sg_dma_len(tmp) == 0) 1343 break; 1344 1345 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1346 } 1347 1348 if (end) 1349 __iommu_dma_unmap(dev, start, end - start); 1350 } 1351 1352 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1353 size_t size, enum dma_data_direction dir, unsigned long attrs) 1354 { 1355 return __iommu_dma_map(dev, phys, size, 1356 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1357 dma_get_mask(dev)); 1358 } 1359 1360 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1361 size_t size, enum dma_data_direction dir, unsigned long attrs) 1362 { 1363 __iommu_dma_unmap(dev, handle, size); 1364 } 1365 1366 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1367 { 1368 size_t alloc_size = PAGE_ALIGN(size); 1369 int count = alloc_size >> PAGE_SHIFT; 1370 struct page *page = NULL, **pages = NULL; 1371 1372 /* Non-coherent atomic allocation? Easy */ 1373 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1374 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1375 return; 1376 1377 if (is_vmalloc_addr(cpu_addr)) { 1378 /* 1379 * If it the address is remapped, then it's either non-coherent 1380 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1381 */ 1382 pages = dma_common_find_pages(cpu_addr); 1383 if (!pages) 1384 page = vmalloc_to_page(cpu_addr); 1385 dma_common_free_remap(cpu_addr, alloc_size); 1386 } else { 1387 /* Lowmem means a coherent atomic or CMA allocation */ 1388 page = virt_to_page(cpu_addr); 1389 } 1390 1391 if (pages) 1392 __iommu_dma_free_pages(pages, count); 1393 if (page) 1394 dma_free_contiguous(dev, page, alloc_size); 1395 } 1396 1397 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1398 dma_addr_t handle, unsigned long attrs) 1399 { 1400 __iommu_dma_unmap(dev, handle, size); 1401 __iommu_dma_free(dev, size, cpu_addr); 1402 } 1403 1404 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1405 struct page **pagep, gfp_t gfp, unsigned long attrs) 1406 { 1407 bool coherent = dev_is_dma_coherent(dev); 1408 size_t alloc_size = PAGE_ALIGN(size); 1409 int node = dev_to_node(dev); 1410 struct page *page = NULL; 1411 void *cpu_addr; 1412 1413 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1414 if (!page) 1415 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1416 if (!page) 1417 return NULL; 1418 1419 if (!coherent || PageHighMem(page)) { 1420 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1421 1422 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1423 prot, __builtin_return_address(0)); 1424 if (!cpu_addr) 1425 goto out_free_pages; 1426 1427 if (!coherent) 1428 arch_dma_prep_coherent(page, size); 1429 } else { 1430 cpu_addr = page_address(page); 1431 } 1432 1433 *pagep = page; 1434 memset(cpu_addr, 0, alloc_size); 1435 return cpu_addr; 1436 out_free_pages: 1437 dma_free_contiguous(dev, page, alloc_size); 1438 return NULL; 1439 } 1440 1441 static void *iommu_dma_alloc(struct device *dev, size_t size, 1442 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1443 { 1444 bool coherent = dev_is_dma_coherent(dev); 1445 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1446 struct page *page = NULL; 1447 void *cpu_addr; 1448 1449 gfp |= __GFP_ZERO; 1450 1451 if (gfpflags_allow_blocking(gfp) && 1452 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1453 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1454 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1455 } 1456 1457 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1458 !gfpflags_allow_blocking(gfp) && !coherent) 1459 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1460 gfp, NULL); 1461 else 1462 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1463 if (!cpu_addr) 1464 return NULL; 1465 1466 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1467 dev->coherent_dma_mask); 1468 if (*handle == DMA_MAPPING_ERROR) { 1469 __iommu_dma_free(dev, size, cpu_addr); 1470 return NULL; 1471 } 1472 1473 return cpu_addr; 1474 } 1475 1476 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1477 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1478 unsigned long attrs) 1479 { 1480 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1481 unsigned long pfn, off = vma->vm_pgoff; 1482 int ret; 1483 1484 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1485 1486 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1487 return ret; 1488 1489 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1490 return -ENXIO; 1491 1492 if (is_vmalloc_addr(cpu_addr)) { 1493 struct page **pages = dma_common_find_pages(cpu_addr); 1494 1495 if (pages) 1496 return vm_map_pages(vma, pages, nr_pages); 1497 pfn = vmalloc_to_pfn(cpu_addr); 1498 } else { 1499 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1500 } 1501 1502 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1503 vma->vm_end - vma->vm_start, 1504 vma->vm_page_prot); 1505 } 1506 1507 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1508 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1509 unsigned long attrs) 1510 { 1511 struct page *page; 1512 int ret; 1513 1514 if (is_vmalloc_addr(cpu_addr)) { 1515 struct page **pages = dma_common_find_pages(cpu_addr); 1516 1517 if (pages) { 1518 return sg_alloc_table_from_pages(sgt, pages, 1519 PAGE_ALIGN(size) >> PAGE_SHIFT, 1520 0, size, GFP_KERNEL); 1521 } 1522 1523 page = vmalloc_to_page(cpu_addr); 1524 } else { 1525 page = virt_to_page(cpu_addr); 1526 } 1527 1528 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1529 if (!ret) 1530 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1531 return ret; 1532 } 1533 1534 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1535 { 1536 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1537 1538 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1539 } 1540 1541 static size_t iommu_dma_opt_mapping_size(void) 1542 { 1543 return iova_rcache_range(); 1544 } 1545 1546 static const struct dma_map_ops iommu_dma_ops = { 1547 .flags = DMA_F_PCI_P2PDMA_SUPPORTED, 1548 .alloc = iommu_dma_alloc, 1549 .free = iommu_dma_free, 1550 .alloc_pages = dma_common_alloc_pages, 1551 .free_pages = dma_common_free_pages, 1552 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, 1553 .free_noncontiguous = iommu_dma_free_noncontiguous, 1554 .mmap = iommu_dma_mmap, 1555 .get_sgtable = iommu_dma_get_sgtable, 1556 .map_page = iommu_dma_map_page, 1557 .unmap_page = iommu_dma_unmap_page, 1558 .map_sg = iommu_dma_map_sg, 1559 .unmap_sg = iommu_dma_unmap_sg, 1560 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1561 .sync_single_for_device = iommu_dma_sync_single_for_device, 1562 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1563 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1564 .map_resource = iommu_dma_map_resource, 1565 .unmap_resource = iommu_dma_unmap_resource, 1566 .get_merge_boundary = iommu_dma_get_merge_boundary, 1567 .opt_mapping_size = iommu_dma_opt_mapping_size, 1568 }; 1569 1570 /* 1571 * The IOMMU core code allocates the default DMA domain, which the underlying 1572 * IOMMU driver needs to support via the dma-iommu layer. 1573 */ 1574 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) 1575 { 1576 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1577 1578 if (!domain) 1579 goto out_err; 1580 1581 /* 1582 * The IOMMU core code allocates the default DMA domain, which the 1583 * underlying IOMMU driver needs to support via the dma-iommu layer. 1584 */ 1585 if (iommu_is_dma_domain(domain)) { 1586 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) 1587 goto out_err; 1588 dev->dma_ops = &iommu_dma_ops; 1589 } 1590 1591 return; 1592 out_err: 1593 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1594 dev_name(dev)); 1595 } 1596 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); 1597 1598 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1599 phys_addr_t msi_addr, struct iommu_domain *domain) 1600 { 1601 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1602 struct iommu_dma_msi_page *msi_page; 1603 dma_addr_t iova; 1604 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1605 size_t size = cookie_msi_granule(cookie); 1606 1607 msi_addr &= ~(phys_addr_t)(size - 1); 1608 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1609 if (msi_page->phys == msi_addr) 1610 return msi_page; 1611 1612 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1613 if (!msi_page) 1614 return NULL; 1615 1616 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1617 if (!iova) 1618 goto out_free_page; 1619 1620 if (iommu_map(domain, iova, msi_addr, size, prot)) 1621 goto out_free_iova; 1622 1623 INIT_LIST_HEAD(&msi_page->list); 1624 msi_page->phys = msi_addr; 1625 msi_page->iova = iova; 1626 list_add(&msi_page->list, &cookie->msi_page_list); 1627 return msi_page; 1628 1629 out_free_iova: 1630 iommu_dma_free_iova(cookie, iova, size, NULL); 1631 out_free_page: 1632 kfree(msi_page); 1633 return NULL; 1634 } 1635 1636 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1637 { 1638 struct device *dev = msi_desc_to_dev(desc); 1639 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1640 struct iommu_dma_msi_page *msi_page; 1641 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1642 1643 if (!domain || !domain->iova_cookie) { 1644 desc->iommu_cookie = NULL; 1645 return 0; 1646 } 1647 1648 /* 1649 * In fact the whole prepare operation should already be serialised by 1650 * irq_domain_mutex further up the callchain, but that's pretty subtle 1651 * on its own, so consider this locking as failsafe documentation... 1652 */ 1653 mutex_lock(&msi_prepare_lock); 1654 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1655 mutex_unlock(&msi_prepare_lock); 1656 1657 msi_desc_set_iommu_cookie(desc, msi_page); 1658 1659 if (!msi_page) 1660 return -ENOMEM; 1661 return 0; 1662 } 1663 1664 void iommu_dma_compose_msi_msg(struct msi_desc *desc, 1665 struct msi_msg *msg) 1666 { 1667 struct device *dev = msi_desc_to_dev(desc); 1668 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1669 const struct iommu_dma_msi_page *msi_page; 1670 1671 msi_page = msi_desc_get_iommu_cookie(desc); 1672 1673 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1674 return; 1675 1676 msg->address_hi = upper_32_bits(msi_page->iova); 1677 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1678 msg->address_lo += lower_32_bits(msi_page->iova); 1679 } 1680 1681 static int iommu_dma_init(void) 1682 { 1683 if (is_kdump_kernel()) 1684 static_branch_enable(&iommu_deferred_attach_enabled); 1685 1686 return iova_cache_get(); 1687 } 1688 arch_initcall(iommu_dma_init); 1689