xref: /linux/drivers/iommu/dma-iommu.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-contiguous.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/dma-noncoherent.h>
16 #include <linux/gfp.h>
17 #include <linux/huge_mm.h>
18 #include <linux/iommu.h>
19 #include <linux/iova.h>
20 #include <linux/irq.h>
21 #include <linux/mm.h>
22 #include <linux/pci.h>
23 #include <linux/scatterlist.h>
24 #include <linux/vmalloc.h>
25 
26 struct iommu_dma_msi_page {
27 	struct list_head	list;
28 	dma_addr_t		iova;
29 	phys_addr_t		phys;
30 };
31 
32 enum iommu_dma_cookie_type {
33 	IOMMU_DMA_IOVA_COOKIE,
34 	IOMMU_DMA_MSI_COOKIE,
35 };
36 
37 struct iommu_dma_cookie {
38 	enum iommu_dma_cookie_type	type;
39 	union {
40 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
41 		struct iova_domain	iovad;
42 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
43 		dma_addr_t		msi_iova;
44 	};
45 	struct list_head		msi_page_list;
46 	spinlock_t			msi_lock;
47 
48 	/* Domain for flush queue callback; NULL if flush queue not in use */
49 	struct iommu_domain		*fq_domain;
50 };
51 
52 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
53 {
54 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
55 		return cookie->iovad.granule;
56 	return PAGE_SIZE;
57 }
58 
59 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
60 {
61 	struct iommu_dma_cookie *cookie;
62 
63 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
64 	if (cookie) {
65 		spin_lock_init(&cookie->msi_lock);
66 		INIT_LIST_HEAD(&cookie->msi_page_list);
67 		cookie->type = type;
68 	}
69 	return cookie;
70 }
71 
72 /**
73  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
74  * @domain: IOMMU domain to prepare for DMA-API usage
75  *
76  * IOMMU drivers should normally call this from their domain_alloc
77  * callback when domain->type == IOMMU_DOMAIN_DMA.
78  */
79 int iommu_get_dma_cookie(struct iommu_domain *domain)
80 {
81 	if (domain->iova_cookie)
82 		return -EEXIST;
83 
84 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
85 	if (!domain->iova_cookie)
86 		return -ENOMEM;
87 
88 	return 0;
89 }
90 EXPORT_SYMBOL(iommu_get_dma_cookie);
91 
92 /**
93  * iommu_get_msi_cookie - Acquire just MSI remapping resources
94  * @domain: IOMMU domain to prepare
95  * @base: Start address of IOVA region for MSI mappings
96  *
97  * Users who manage their own IOVA allocation and do not want DMA API support,
98  * but would still like to take advantage of automatic MSI remapping, can use
99  * this to initialise their own domain appropriately. Users should reserve a
100  * contiguous IOVA region, starting at @base, large enough to accommodate the
101  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
102  * used by the devices attached to @domain.
103  */
104 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
105 {
106 	struct iommu_dma_cookie *cookie;
107 
108 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
109 		return -EINVAL;
110 
111 	if (domain->iova_cookie)
112 		return -EEXIST;
113 
114 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
115 	if (!cookie)
116 		return -ENOMEM;
117 
118 	cookie->msi_iova = base;
119 	domain->iova_cookie = cookie;
120 	return 0;
121 }
122 EXPORT_SYMBOL(iommu_get_msi_cookie);
123 
124 /**
125  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
126  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
127  *          iommu_get_msi_cookie()
128  *
129  * IOMMU drivers should normally call this from their domain_free callback.
130  */
131 void iommu_put_dma_cookie(struct iommu_domain *domain)
132 {
133 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
134 	struct iommu_dma_msi_page *msi, *tmp;
135 
136 	if (!cookie)
137 		return;
138 
139 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
140 		put_iova_domain(&cookie->iovad);
141 
142 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
143 		list_del(&msi->list);
144 		kfree(msi);
145 	}
146 	kfree(cookie);
147 	domain->iova_cookie = NULL;
148 }
149 EXPORT_SYMBOL(iommu_put_dma_cookie);
150 
151 /**
152  * iommu_dma_get_resv_regions - Reserved region driver helper
153  * @dev: Device from iommu_get_resv_regions()
154  * @list: Reserved region list from iommu_get_resv_regions()
155  *
156  * IOMMU drivers can use this to implement their .get_resv_regions callback
157  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
158  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
159  * reservation.
160  */
161 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
162 {
163 
164 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
165 		iort_iommu_msi_get_resv_regions(dev, list);
166 
167 }
168 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
169 
170 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
171 		phys_addr_t start, phys_addr_t end)
172 {
173 	struct iova_domain *iovad = &cookie->iovad;
174 	struct iommu_dma_msi_page *msi_page;
175 	int i, num_pages;
176 
177 	start -= iova_offset(iovad, start);
178 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
179 
180 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
181 	if (!msi_page)
182 		return -ENOMEM;
183 
184 	for (i = 0; i < num_pages; i++) {
185 		msi_page[i].phys = start;
186 		msi_page[i].iova = start;
187 		INIT_LIST_HEAD(&msi_page[i].list);
188 		list_add(&msi_page[i].list, &cookie->msi_page_list);
189 		start += iovad->granule;
190 	}
191 
192 	return 0;
193 }
194 
195 static int iova_reserve_pci_windows(struct pci_dev *dev,
196 		struct iova_domain *iovad)
197 {
198 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
199 	struct resource_entry *window;
200 	unsigned long lo, hi;
201 	phys_addr_t start = 0, end;
202 
203 	resource_list_for_each_entry(window, &bridge->windows) {
204 		if (resource_type(window->res) != IORESOURCE_MEM)
205 			continue;
206 
207 		lo = iova_pfn(iovad, window->res->start - window->offset);
208 		hi = iova_pfn(iovad, window->res->end - window->offset);
209 		reserve_iova(iovad, lo, hi);
210 	}
211 
212 	/* Get reserved DMA windows from host bridge */
213 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
214 		end = window->res->start - window->offset;
215 resv_iova:
216 		if (end > start) {
217 			lo = iova_pfn(iovad, start);
218 			hi = iova_pfn(iovad, end);
219 			reserve_iova(iovad, lo, hi);
220 		} else {
221 			/* dma_ranges list should be sorted */
222 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
223 			return -EINVAL;
224 		}
225 
226 		start = window->res->end - window->offset + 1;
227 		/* If window is last entry */
228 		if (window->node.next == &bridge->dma_ranges &&
229 		    end != ~(phys_addr_t)0) {
230 			end = ~(phys_addr_t)0;
231 			goto resv_iova;
232 		}
233 	}
234 
235 	return 0;
236 }
237 
238 static int iova_reserve_iommu_regions(struct device *dev,
239 		struct iommu_domain *domain)
240 {
241 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
242 	struct iova_domain *iovad = &cookie->iovad;
243 	struct iommu_resv_region *region;
244 	LIST_HEAD(resv_regions);
245 	int ret = 0;
246 
247 	if (dev_is_pci(dev)) {
248 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
249 		if (ret)
250 			return ret;
251 	}
252 
253 	iommu_get_resv_regions(dev, &resv_regions);
254 	list_for_each_entry(region, &resv_regions, list) {
255 		unsigned long lo, hi;
256 
257 		/* We ARE the software that manages these! */
258 		if (region->type == IOMMU_RESV_SW_MSI)
259 			continue;
260 
261 		lo = iova_pfn(iovad, region->start);
262 		hi = iova_pfn(iovad, region->start + region->length - 1);
263 		reserve_iova(iovad, lo, hi);
264 
265 		if (region->type == IOMMU_RESV_MSI)
266 			ret = cookie_init_hw_msi_region(cookie, region->start,
267 					region->start + region->length);
268 		if (ret)
269 			break;
270 	}
271 	iommu_put_resv_regions(dev, &resv_regions);
272 
273 	return ret;
274 }
275 
276 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
277 {
278 	struct iommu_dma_cookie *cookie;
279 	struct iommu_domain *domain;
280 
281 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
282 	domain = cookie->fq_domain;
283 	/*
284 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
285 	 * implies that ops->flush_iotlb_all must be non-NULL.
286 	 */
287 	domain->ops->flush_iotlb_all(domain);
288 }
289 
290 /**
291  * iommu_dma_init_domain - Initialise a DMA mapping domain
292  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
293  * @base: IOVA at which the mappable address space starts
294  * @size: Size of IOVA space
295  * @dev: Device the domain is being initialised for
296  *
297  * @base and @size should be exact multiples of IOMMU page granularity to
298  * avoid rounding surprises. If necessary, we reserve the page at address 0
299  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
300  * any change which could make prior IOVAs invalid will fail.
301  */
302 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
303 		u64 size, struct device *dev)
304 {
305 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
306 	struct iova_domain *iovad = &cookie->iovad;
307 	unsigned long order, base_pfn;
308 	int attr;
309 
310 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
311 		return -EINVAL;
312 
313 	/* Use the smallest supported page size for IOVA granularity */
314 	order = __ffs(domain->pgsize_bitmap);
315 	base_pfn = max_t(unsigned long, 1, base >> order);
316 
317 	/* Check the domain allows at least some access to the device... */
318 	if (domain->geometry.force_aperture) {
319 		if (base > domain->geometry.aperture_end ||
320 		    base + size <= domain->geometry.aperture_start) {
321 			pr_warn("specified DMA range outside IOMMU capability\n");
322 			return -EFAULT;
323 		}
324 		/* ...then finally give it a kicking to make sure it fits */
325 		base_pfn = max_t(unsigned long, base_pfn,
326 				domain->geometry.aperture_start >> order);
327 	}
328 
329 	/* start_pfn is always nonzero for an already-initialised domain */
330 	if (iovad->start_pfn) {
331 		if (1UL << order != iovad->granule ||
332 		    base_pfn != iovad->start_pfn) {
333 			pr_warn("Incompatible range for DMA domain\n");
334 			return -EFAULT;
335 		}
336 
337 		return 0;
338 	}
339 
340 	init_iova_domain(iovad, 1UL << order, base_pfn);
341 
342 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
343 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
344 		cookie->fq_domain = domain;
345 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
346 	}
347 
348 	if (!dev)
349 		return 0;
350 
351 	return iova_reserve_iommu_regions(dev, domain);
352 }
353 
354 /**
355  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
356  *                    page flags.
357  * @dir: Direction of DMA transfer
358  * @coherent: Is the DMA master cache-coherent?
359  * @attrs: DMA attributes for the mapping
360  *
361  * Return: corresponding IOMMU API page protection flags
362  */
363 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
364 		     unsigned long attrs)
365 {
366 	int prot = coherent ? IOMMU_CACHE : 0;
367 
368 	if (attrs & DMA_ATTR_PRIVILEGED)
369 		prot |= IOMMU_PRIV;
370 
371 	switch (dir) {
372 	case DMA_BIDIRECTIONAL:
373 		return prot | IOMMU_READ | IOMMU_WRITE;
374 	case DMA_TO_DEVICE:
375 		return prot | IOMMU_READ;
376 	case DMA_FROM_DEVICE:
377 		return prot | IOMMU_WRITE;
378 	default:
379 		return 0;
380 	}
381 }
382 
383 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
384 		size_t size, dma_addr_t dma_limit, struct device *dev)
385 {
386 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
387 	struct iova_domain *iovad = &cookie->iovad;
388 	unsigned long shift, iova_len, iova = 0;
389 
390 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
391 		cookie->msi_iova += size;
392 		return cookie->msi_iova - size;
393 	}
394 
395 	shift = iova_shift(iovad);
396 	iova_len = size >> shift;
397 	/*
398 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
399 	 * will come back to bite us badly, so we have to waste a bit of space
400 	 * rounding up anything cacheable to make sure that can't happen. The
401 	 * order of the unadjusted size will still match upon freeing.
402 	 */
403 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
404 		iova_len = roundup_pow_of_two(iova_len);
405 
406 	if (dev->bus_dma_mask)
407 		dma_limit &= dev->bus_dma_mask;
408 
409 	if (domain->geometry.force_aperture)
410 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
411 
412 	/* Try to get PCI devices a SAC address */
413 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
414 		iova = alloc_iova_fast(iovad, iova_len,
415 				       DMA_BIT_MASK(32) >> shift, false);
416 
417 	if (!iova)
418 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
419 				       true);
420 
421 	return (dma_addr_t)iova << shift;
422 }
423 
424 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
425 		dma_addr_t iova, size_t size)
426 {
427 	struct iova_domain *iovad = &cookie->iovad;
428 
429 	/* The MSI case is only ever cleaning up its most recent allocation */
430 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
431 		cookie->msi_iova -= size;
432 	else if (cookie->fq_domain)	/* non-strict mode */
433 		queue_iova(iovad, iova_pfn(iovad, iova),
434 				size >> iova_shift(iovad), 0);
435 	else
436 		free_iova_fast(iovad, iova_pfn(iovad, iova),
437 				size >> iova_shift(iovad));
438 }
439 
440 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
441 		size_t size)
442 {
443 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
444 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
445 	struct iova_domain *iovad = &cookie->iovad;
446 	size_t iova_off = iova_offset(iovad, dma_addr);
447 
448 	dma_addr -= iova_off;
449 	size = iova_align(iovad, size + iova_off);
450 
451 	WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
452 	if (!cookie->fq_domain)
453 		iommu_tlb_sync(domain);
454 	iommu_dma_free_iova(cookie, dma_addr, size);
455 }
456 
457 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
458 		size_t size, int prot)
459 {
460 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
461 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
462 	size_t iova_off = 0;
463 	dma_addr_t iova;
464 
465 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
466 		iova_off = iova_offset(&cookie->iovad, phys);
467 		size = iova_align(&cookie->iovad, size + iova_off);
468 	}
469 
470 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
471 	if (!iova)
472 		return DMA_MAPPING_ERROR;
473 
474 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
475 		iommu_dma_free_iova(cookie, iova, size);
476 		return DMA_MAPPING_ERROR;
477 	}
478 	return iova + iova_off;
479 }
480 
481 static void __iommu_dma_free_pages(struct page **pages, int count)
482 {
483 	while (count--)
484 		__free_page(pages[count]);
485 	kvfree(pages);
486 }
487 
488 static struct page **__iommu_dma_alloc_pages(struct device *dev,
489 		unsigned int count, unsigned long order_mask, gfp_t gfp)
490 {
491 	struct page **pages;
492 	unsigned int i = 0, nid = dev_to_node(dev);
493 
494 	order_mask &= (2U << MAX_ORDER) - 1;
495 	if (!order_mask)
496 		return NULL;
497 
498 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
499 	if (!pages)
500 		return NULL;
501 
502 	/* IOMMU can map any pages, so himem can also be used here */
503 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
504 
505 	while (count) {
506 		struct page *page = NULL;
507 		unsigned int order_size;
508 
509 		/*
510 		 * Higher-order allocations are a convenience rather
511 		 * than a necessity, hence using __GFP_NORETRY until
512 		 * falling back to minimum-order allocations.
513 		 */
514 		for (order_mask &= (2U << __fls(count)) - 1;
515 		     order_mask; order_mask &= ~order_size) {
516 			unsigned int order = __fls(order_mask);
517 			gfp_t alloc_flags = gfp;
518 
519 			order_size = 1U << order;
520 			if (order_mask > order_size)
521 				alloc_flags |= __GFP_NORETRY;
522 			page = alloc_pages_node(nid, alloc_flags, order);
523 			if (!page)
524 				continue;
525 			if (!order)
526 				break;
527 			if (!PageCompound(page)) {
528 				split_page(page, order);
529 				break;
530 			} else if (!split_huge_page(page)) {
531 				break;
532 			}
533 			__free_pages(page, order);
534 		}
535 		if (!page) {
536 			__iommu_dma_free_pages(pages, i);
537 			return NULL;
538 		}
539 		count -= order_size;
540 		while (order_size--)
541 			pages[i++] = page++;
542 	}
543 	return pages;
544 }
545 
546 static struct page **__iommu_dma_get_pages(void *cpu_addr)
547 {
548 	struct vm_struct *area = find_vm_area(cpu_addr);
549 
550 	if (!area || !area->pages)
551 		return NULL;
552 	return area->pages;
553 }
554 
555 /**
556  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
557  * @dev: Device to allocate memory for. Must be a real device
558  *	 attached to an iommu_dma_domain
559  * @size: Size of buffer in bytes
560  * @dma_handle: Out argument for allocated DMA handle
561  * @gfp: Allocation flags
562  * @attrs: DMA attributes for this allocation
563  *
564  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
565  * but an IOMMU which supports smaller pages might not map the whole thing.
566  *
567  * Return: Mapped virtual address, or NULL on failure.
568  */
569 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
570 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
571 {
572 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
573 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
574 	struct iova_domain *iovad = &cookie->iovad;
575 	bool coherent = dev_is_dma_coherent(dev);
576 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
577 	pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
578 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
579 	struct page **pages;
580 	struct sg_table sgt;
581 	dma_addr_t iova;
582 	void *vaddr;
583 
584 	*dma_handle = DMA_MAPPING_ERROR;
585 
586 	min_size = alloc_sizes & -alloc_sizes;
587 	if (min_size < PAGE_SIZE) {
588 		min_size = PAGE_SIZE;
589 		alloc_sizes |= PAGE_SIZE;
590 	} else {
591 		size = ALIGN(size, min_size);
592 	}
593 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
594 		alloc_sizes = min_size;
595 
596 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
597 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
598 					gfp);
599 	if (!pages)
600 		return NULL;
601 
602 	size = iova_align(iovad, size);
603 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
604 	if (!iova)
605 		goto out_free_pages;
606 
607 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
608 		goto out_free_iova;
609 
610 	if (!(ioprot & IOMMU_CACHE)) {
611 		struct scatterlist *sg;
612 		int i;
613 
614 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
615 			arch_dma_prep_coherent(sg_page(sg), sg->length);
616 	}
617 
618 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
619 			< size)
620 		goto out_free_sg;
621 
622 	vaddr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
623 			__builtin_return_address(0));
624 	if (!vaddr)
625 		goto out_unmap;
626 
627 	*dma_handle = iova;
628 	sg_free_table(&sgt);
629 	return vaddr;
630 
631 out_unmap:
632 	__iommu_dma_unmap(dev, iova, size);
633 out_free_sg:
634 	sg_free_table(&sgt);
635 out_free_iova:
636 	iommu_dma_free_iova(cookie, iova, size);
637 out_free_pages:
638 	__iommu_dma_free_pages(pages, count);
639 	return NULL;
640 }
641 
642 /**
643  * __iommu_dma_mmap - Map a buffer into provided user VMA
644  * @pages: Array representing buffer from __iommu_dma_alloc()
645  * @size: Size of buffer in bytes
646  * @vma: VMA describing requested userspace mapping
647  *
648  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
649  * for verifying the correct size and protection of @vma beforehand.
650  */
651 static int __iommu_dma_mmap(struct page **pages, size_t size,
652 		struct vm_area_struct *vma)
653 {
654 	return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
655 }
656 
657 static void iommu_dma_sync_single_for_cpu(struct device *dev,
658 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
659 {
660 	phys_addr_t phys;
661 
662 	if (dev_is_dma_coherent(dev))
663 		return;
664 
665 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
666 	arch_sync_dma_for_cpu(dev, phys, size, dir);
667 }
668 
669 static void iommu_dma_sync_single_for_device(struct device *dev,
670 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
671 {
672 	phys_addr_t phys;
673 
674 	if (dev_is_dma_coherent(dev))
675 		return;
676 
677 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
678 	arch_sync_dma_for_device(dev, phys, size, dir);
679 }
680 
681 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
682 		struct scatterlist *sgl, int nelems,
683 		enum dma_data_direction dir)
684 {
685 	struct scatterlist *sg;
686 	int i;
687 
688 	if (dev_is_dma_coherent(dev))
689 		return;
690 
691 	for_each_sg(sgl, sg, nelems, i)
692 		arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
693 }
694 
695 static void iommu_dma_sync_sg_for_device(struct device *dev,
696 		struct scatterlist *sgl, int nelems,
697 		enum dma_data_direction dir)
698 {
699 	struct scatterlist *sg;
700 	int i;
701 
702 	if (dev_is_dma_coherent(dev))
703 		return;
704 
705 	for_each_sg(sgl, sg, nelems, i)
706 		arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
707 }
708 
709 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
710 		unsigned long offset, size_t size, enum dma_data_direction dir,
711 		unsigned long attrs)
712 {
713 	phys_addr_t phys = page_to_phys(page) + offset;
714 	bool coherent = dev_is_dma_coherent(dev);
715 	int prot = dma_info_to_prot(dir, coherent, attrs);
716 	dma_addr_t dma_handle;
717 
718 	dma_handle =__iommu_dma_map(dev, phys, size, prot);
719 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
720 	    dma_handle != DMA_MAPPING_ERROR)
721 		arch_sync_dma_for_device(dev, phys, size, dir);
722 	return dma_handle;
723 }
724 
725 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
726 		size_t size, enum dma_data_direction dir, unsigned long attrs)
727 {
728 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
729 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
730 	__iommu_dma_unmap(dev, dma_handle, size);
731 }
732 
733 /*
734  * Prepare a successfully-mapped scatterlist to give back to the caller.
735  *
736  * At this point the segments are already laid out by iommu_dma_map_sg() to
737  * avoid individually crossing any boundaries, so we merely need to check a
738  * segment's start address to avoid concatenating across one.
739  */
740 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
741 		dma_addr_t dma_addr)
742 {
743 	struct scatterlist *s, *cur = sg;
744 	unsigned long seg_mask = dma_get_seg_boundary(dev);
745 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
746 	int i, count = 0;
747 
748 	for_each_sg(sg, s, nents, i) {
749 		/* Restore this segment's original unaligned fields first */
750 		unsigned int s_iova_off = sg_dma_address(s);
751 		unsigned int s_length = sg_dma_len(s);
752 		unsigned int s_iova_len = s->length;
753 
754 		s->offset += s_iova_off;
755 		s->length = s_length;
756 		sg_dma_address(s) = DMA_MAPPING_ERROR;
757 		sg_dma_len(s) = 0;
758 
759 		/*
760 		 * Now fill in the real DMA data. If...
761 		 * - there is a valid output segment to append to
762 		 * - and this segment starts on an IOVA page boundary
763 		 * - but doesn't fall at a segment boundary
764 		 * - and wouldn't make the resulting output segment too long
765 		 */
766 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
767 		    (cur_len + s_length <= max_len)) {
768 			/* ...then concatenate it with the previous one */
769 			cur_len += s_length;
770 		} else {
771 			/* Otherwise start the next output segment */
772 			if (i > 0)
773 				cur = sg_next(cur);
774 			cur_len = s_length;
775 			count++;
776 
777 			sg_dma_address(cur) = dma_addr + s_iova_off;
778 		}
779 
780 		sg_dma_len(cur) = cur_len;
781 		dma_addr += s_iova_len;
782 
783 		if (s_length + s_iova_off < s_iova_len)
784 			cur_len = 0;
785 	}
786 	return count;
787 }
788 
789 /*
790  * If mapping failed, then just restore the original list,
791  * but making sure the DMA fields are invalidated.
792  */
793 static void __invalidate_sg(struct scatterlist *sg, int nents)
794 {
795 	struct scatterlist *s;
796 	int i;
797 
798 	for_each_sg(sg, s, nents, i) {
799 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
800 			s->offset += sg_dma_address(s);
801 		if (sg_dma_len(s))
802 			s->length = sg_dma_len(s);
803 		sg_dma_address(s) = DMA_MAPPING_ERROR;
804 		sg_dma_len(s) = 0;
805 	}
806 }
807 
808 /*
809  * The DMA API client is passing in a scatterlist which could describe
810  * any old buffer layout, but the IOMMU API requires everything to be
811  * aligned to IOMMU pages. Hence the need for this complicated bit of
812  * impedance-matching, to be able to hand off a suitably-aligned list,
813  * but still preserve the original offsets and sizes for the caller.
814  */
815 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
816 		int nents, enum dma_data_direction dir, unsigned long attrs)
817 {
818 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
819 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
820 	struct iova_domain *iovad = &cookie->iovad;
821 	struct scatterlist *s, *prev = NULL;
822 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
823 	dma_addr_t iova;
824 	size_t iova_len = 0;
825 	unsigned long mask = dma_get_seg_boundary(dev);
826 	int i;
827 
828 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
829 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
830 
831 	/*
832 	 * Work out how much IOVA space we need, and align the segments to
833 	 * IOVA granules for the IOMMU driver to handle. With some clever
834 	 * trickery we can modify the list in-place, but reversibly, by
835 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
836 	 */
837 	for_each_sg(sg, s, nents, i) {
838 		size_t s_iova_off = iova_offset(iovad, s->offset);
839 		size_t s_length = s->length;
840 		size_t pad_len = (mask - iova_len + 1) & mask;
841 
842 		sg_dma_address(s) = s_iova_off;
843 		sg_dma_len(s) = s_length;
844 		s->offset -= s_iova_off;
845 		s_length = iova_align(iovad, s_length + s_iova_off);
846 		s->length = s_length;
847 
848 		/*
849 		 * Due to the alignment of our single IOVA allocation, we can
850 		 * depend on these assumptions about the segment boundary mask:
851 		 * - If mask size >= IOVA size, then the IOVA range cannot
852 		 *   possibly fall across a boundary, so we don't care.
853 		 * - If mask size < IOVA size, then the IOVA range must start
854 		 *   exactly on a boundary, therefore we can lay things out
855 		 *   based purely on segment lengths without needing to know
856 		 *   the actual addresses beforehand.
857 		 * - The mask must be a power of 2, so pad_len == 0 if
858 		 *   iova_len == 0, thus we cannot dereference prev the first
859 		 *   time through here (i.e. before it has a meaningful value).
860 		 */
861 		if (pad_len && pad_len < s_length - 1) {
862 			prev->length += pad_len;
863 			iova_len += pad_len;
864 		}
865 
866 		iova_len += s_length;
867 		prev = s;
868 	}
869 
870 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
871 	if (!iova)
872 		goto out_restore_sg;
873 
874 	/*
875 	 * We'll leave any physical concatenation to the IOMMU driver's
876 	 * implementation - it knows better than we do.
877 	 */
878 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
879 		goto out_free_iova;
880 
881 	return __finalise_sg(dev, sg, nents, iova);
882 
883 out_free_iova:
884 	iommu_dma_free_iova(cookie, iova, iova_len);
885 out_restore_sg:
886 	__invalidate_sg(sg, nents);
887 	return 0;
888 }
889 
890 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
891 		int nents, enum dma_data_direction dir, unsigned long attrs)
892 {
893 	dma_addr_t start, end;
894 	struct scatterlist *tmp;
895 	int i;
896 
897 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
898 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
899 
900 	/*
901 	 * The scatterlist segments are mapped into a single
902 	 * contiguous IOVA allocation, so this is incredibly easy.
903 	 */
904 	start = sg_dma_address(sg);
905 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
906 		if (sg_dma_len(tmp) == 0)
907 			break;
908 		sg = tmp;
909 	}
910 	end = sg_dma_address(sg) + sg_dma_len(sg);
911 	__iommu_dma_unmap(dev, start, end - start);
912 }
913 
914 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
915 		size_t size, enum dma_data_direction dir, unsigned long attrs)
916 {
917 	return __iommu_dma_map(dev, phys, size,
918 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
919 }
920 
921 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
922 		size_t size, enum dma_data_direction dir, unsigned long attrs)
923 {
924 	__iommu_dma_unmap(dev, handle, size);
925 }
926 
927 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
928 {
929 	size_t alloc_size = PAGE_ALIGN(size);
930 	int count = alloc_size >> PAGE_SHIFT;
931 	struct page *page = NULL, **pages = NULL;
932 
933 	/* Non-coherent atomic allocation? Easy */
934 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
935 	    dma_free_from_pool(cpu_addr, alloc_size))
936 		return;
937 
938 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
939 		/*
940 		 * If it the address is remapped, then it's either non-coherent
941 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
942 		 */
943 		pages = __iommu_dma_get_pages(cpu_addr);
944 		if (!pages)
945 			page = vmalloc_to_page(cpu_addr);
946 		dma_common_free_remap(cpu_addr, alloc_size, VM_USERMAP);
947 	} else {
948 		/* Lowmem means a coherent atomic or CMA allocation */
949 		page = virt_to_page(cpu_addr);
950 	}
951 
952 	if (pages)
953 		__iommu_dma_free_pages(pages, count);
954 	if (page)
955 		dma_free_contiguous(dev, page, alloc_size);
956 }
957 
958 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
959 		dma_addr_t handle, unsigned long attrs)
960 {
961 	__iommu_dma_unmap(dev, handle, size);
962 	__iommu_dma_free(dev, size, cpu_addr);
963 }
964 
965 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
966 		struct page **pagep, gfp_t gfp, unsigned long attrs)
967 {
968 	bool coherent = dev_is_dma_coherent(dev);
969 	size_t alloc_size = PAGE_ALIGN(size);
970 	struct page *page = NULL;
971 	void *cpu_addr;
972 
973 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
974 	if (!page)
975 		return NULL;
976 
977 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
978 		pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
979 
980 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
981 				VM_USERMAP, prot, __builtin_return_address(0));
982 		if (!cpu_addr)
983 			goto out_free_pages;
984 
985 		if (!coherent)
986 			arch_dma_prep_coherent(page, size);
987 	} else {
988 		cpu_addr = page_address(page);
989 	}
990 
991 	*pagep = page;
992 	memset(cpu_addr, 0, alloc_size);
993 	return cpu_addr;
994 out_free_pages:
995 	dma_free_contiguous(dev, page, alloc_size);
996 	return NULL;
997 }
998 
999 static void *iommu_dma_alloc(struct device *dev, size_t size,
1000 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1001 {
1002 	bool coherent = dev_is_dma_coherent(dev);
1003 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1004 	struct page *page = NULL;
1005 	void *cpu_addr;
1006 
1007 	gfp |= __GFP_ZERO;
1008 
1009 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1010 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1011 		return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1012 
1013 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1014 	    !gfpflags_allow_blocking(gfp) && !coherent)
1015 		cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1016 	else
1017 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1018 	if (!cpu_addr)
1019 		return NULL;
1020 
1021 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot);
1022 	if (*handle == DMA_MAPPING_ERROR) {
1023 		__iommu_dma_free(dev, size, cpu_addr);
1024 		return NULL;
1025 	}
1026 
1027 	return cpu_addr;
1028 }
1029 
1030 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1031 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1032 		unsigned long attrs)
1033 {
1034 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1035 	unsigned long pfn, off = vma->vm_pgoff;
1036 	int ret;
1037 
1038 	vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
1039 
1040 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1041 		return ret;
1042 
1043 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1044 		return -ENXIO;
1045 
1046 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1047 		struct page **pages = __iommu_dma_get_pages(cpu_addr);
1048 
1049 		if (pages)
1050 			return __iommu_dma_mmap(pages, size, vma);
1051 		pfn = vmalloc_to_pfn(cpu_addr);
1052 	} else {
1053 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1054 	}
1055 
1056 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1057 			       vma->vm_end - vma->vm_start,
1058 			       vma->vm_page_prot);
1059 }
1060 
1061 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1062 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1063 		unsigned long attrs)
1064 {
1065 	struct page *page;
1066 	int ret;
1067 
1068 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1069 		struct page **pages = __iommu_dma_get_pages(cpu_addr);
1070 
1071 		if (pages) {
1072 			return sg_alloc_table_from_pages(sgt, pages,
1073 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1074 					0, size, GFP_KERNEL);
1075 		}
1076 
1077 		page = vmalloc_to_page(cpu_addr);
1078 	} else {
1079 		page = virt_to_page(cpu_addr);
1080 	}
1081 
1082 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1083 	if (!ret)
1084 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1085 	return ret;
1086 }
1087 
1088 static const struct dma_map_ops iommu_dma_ops = {
1089 	.alloc			= iommu_dma_alloc,
1090 	.free			= iommu_dma_free,
1091 	.mmap			= iommu_dma_mmap,
1092 	.get_sgtable		= iommu_dma_get_sgtable,
1093 	.map_page		= iommu_dma_map_page,
1094 	.unmap_page		= iommu_dma_unmap_page,
1095 	.map_sg			= iommu_dma_map_sg,
1096 	.unmap_sg		= iommu_dma_unmap_sg,
1097 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1098 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1099 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1100 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1101 	.map_resource		= iommu_dma_map_resource,
1102 	.unmap_resource		= iommu_dma_unmap_resource,
1103 };
1104 
1105 /*
1106  * The IOMMU core code allocates the default DMA domain, which the underlying
1107  * IOMMU driver needs to support via the dma-iommu layer.
1108  */
1109 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1110 {
1111 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1112 
1113 	if (!domain)
1114 		goto out_err;
1115 
1116 	/*
1117 	 * The IOMMU core code allocates the default DMA domain, which the
1118 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1119 	 */
1120 	if (domain->type == IOMMU_DOMAIN_DMA) {
1121 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1122 			goto out_err;
1123 		dev->dma_ops = &iommu_dma_ops;
1124 	}
1125 
1126 	return;
1127 out_err:
1128 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1129 		 dev_name(dev));
1130 }
1131 
1132 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1133 		phys_addr_t msi_addr, struct iommu_domain *domain)
1134 {
1135 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1136 	struct iommu_dma_msi_page *msi_page;
1137 	dma_addr_t iova;
1138 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1139 	size_t size = cookie_msi_granule(cookie);
1140 
1141 	msi_addr &= ~(phys_addr_t)(size - 1);
1142 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1143 		if (msi_page->phys == msi_addr)
1144 			return msi_page;
1145 
1146 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
1147 	if (!msi_page)
1148 		return NULL;
1149 
1150 	iova = __iommu_dma_map(dev, msi_addr, size, prot);
1151 	if (iova == DMA_MAPPING_ERROR)
1152 		goto out_free_page;
1153 
1154 	INIT_LIST_HEAD(&msi_page->list);
1155 	msi_page->phys = msi_addr;
1156 	msi_page->iova = iova;
1157 	list_add(&msi_page->list, &cookie->msi_page_list);
1158 	return msi_page;
1159 
1160 out_free_page:
1161 	kfree(msi_page);
1162 	return NULL;
1163 }
1164 
1165 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1166 {
1167 	struct device *dev = msi_desc_to_dev(desc);
1168 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1169 	struct iommu_dma_cookie *cookie;
1170 	struct iommu_dma_msi_page *msi_page;
1171 	unsigned long flags;
1172 
1173 	if (!domain || !domain->iova_cookie) {
1174 		desc->iommu_cookie = NULL;
1175 		return 0;
1176 	}
1177 
1178 	cookie = domain->iova_cookie;
1179 
1180 	/*
1181 	 * We disable IRQs to rule out a possible inversion against
1182 	 * irq_desc_lock if, say, someone tries to retarget the affinity
1183 	 * of an MSI from within an IPI handler.
1184 	 */
1185 	spin_lock_irqsave(&cookie->msi_lock, flags);
1186 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1187 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
1188 
1189 	msi_desc_set_iommu_cookie(desc, msi_page);
1190 
1191 	if (!msi_page)
1192 		return -ENOMEM;
1193 	return 0;
1194 }
1195 
1196 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1197 			       struct msi_msg *msg)
1198 {
1199 	struct device *dev = msi_desc_to_dev(desc);
1200 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1201 	const struct iommu_dma_msi_page *msi_page;
1202 
1203 	msi_page = msi_desc_get_iommu_cookie(desc);
1204 
1205 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1206 		return;
1207 
1208 	msg->address_hi = upper_32_bits(msi_page->iova);
1209 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1210 	msg->address_lo += lower_32_bits(msi_page->iova);
1211 }
1212 
1213 static int iommu_dma_init(void)
1214 {
1215 	return iova_cache_get();
1216 }
1217 arch_initcall(iommu_dma_init);
1218