xref: /linux/drivers/iommu/dma-iommu.c (revision 1f20a5769446a1acae67ac9e63d07a594829a789)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/of_iommu.h>
27 #include <linux/pci.h>
28 #include <linux/scatterlist.h>
29 #include <linux/spinlock.h>
30 #include <linux/swiotlb.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/swiotlb.h>
33 
34 #include "dma-iommu.h"
35 
36 struct iommu_dma_msi_page {
37 	struct list_head	list;
38 	dma_addr_t		iova;
39 	phys_addr_t		phys;
40 };
41 
42 enum iommu_dma_cookie_type {
43 	IOMMU_DMA_IOVA_COOKIE,
44 	IOMMU_DMA_MSI_COOKIE,
45 };
46 
47 enum iommu_dma_queue_type {
48 	IOMMU_DMA_OPTS_PER_CPU_QUEUE,
49 	IOMMU_DMA_OPTS_SINGLE_QUEUE,
50 };
51 
52 struct iommu_dma_options {
53 	enum iommu_dma_queue_type qt;
54 	size_t		fq_size;
55 	unsigned int	fq_timeout;
56 };
57 
58 struct iommu_dma_cookie {
59 	enum iommu_dma_cookie_type	type;
60 	union {
61 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
62 		struct {
63 			struct iova_domain	iovad;
64 			/* Flush queue */
65 			union {
66 				struct iova_fq	*single_fq;
67 				struct iova_fq	__percpu *percpu_fq;
68 			};
69 			/* Number of TLB flushes that have been started */
70 			atomic64_t		fq_flush_start_cnt;
71 			/* Number of TLB flushes that have been finished */
72 			atomic64_t		fq_flush_finish_cnt;
73 			/* Timer to regularily empty the flush queues */
74 			struct timer_list	fq_timer;
75 			/* 1 when timer is active, 0 when not */
76 			atomic_t		fq_timer_on;
77 		};
78 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
79 		dma_addr_t		msi_iova;
80 	};
81 	struct list_head		msi_page_list;
82 
83 	/* Domain for flush queue callback; NULL if flush queue not in use */
84 	struct iommu_domain		*fq_domain;
85 	/* Options for dma-iommu use */
86 	struct iommu_dma_options	options;
87 	struct mutex			mutex;
88 };
89 
90 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
91 bool iommu_dma_forcedac __read_mostly;
92 
93 static int __init iommu_dma_forcedac_setup(char *str)
94 {
95 	int ret = kstrtobool(str, &iommu_dma_forcedac);
96 
97 	if (!ret && iommu_dma_forcedac)
98 		pr_info("Forcing DAC for PCI devices\n");
99 	return ret;
100 }
101 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
102 
103 /* Number of entries per flush queue */
104 #define IOVA_DEFAULT_FQ_SIZE	256
105 #define IOVA_SINGLE_FQ_SIZE	32768
106 
107 /* Timeout (in ms) after which entries are flushed from the queue */
108 #define IOVA_DEFAULT_FQ_TIMEOUT	10
109 #define IOVA_SINGLE_FQ_TIMEOUT	1000
110 
111 /* Flush queue entry for deferred flushing */
112 struct iova_fq_entry {
113 	unsigned long iova_pfn;
114 	unsigned long pages;
115 	struct list_head freelist;
116 	u64 counter; /* Flush counter when this entry was added */
117 };
118 
119 /* Per-CPU flush queue structure */
120 struct iova_fq {
121 	spinlock_t lock;
122 	unsigned int head, tail;
123 	unsigned int mod_mask;
124 	struct iova_fq_entry entries[];
125 };
126 
127 #define fq_ring_for_each(i, fq) \
128 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask)
129 
130 static inline bool fq_full(struct iova_fq *fq)
131 {
132 	assert_spin_locked(&fq->lock);
133 	return (((fq->tail + 1) & fq->mod_mask) == fq->head);
134 }
135 
136 static inline unsigned int fq_ring_add(struct iova_fq *fq)
137 {
138 	unsigned int idx = fq->tail;
139 
140 	assert_spin_locked(&fq->lock);
141 
142 	fq->tail = (idx + 1) & fq->mod_mask;
143 
144 	return idx;
145 }
146 
147 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
148 {
149 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
150 	unsigned int idx;
151 
152 	assert_spin_locked(&fq->lock);
153 
154 	fq_ring_for_each(idx, fq) {
155 
156 		if (fq->entries[idx].counter >= counter)
157 			break;
158 
159 		put_pages_list(&fq->entries[idx].freelist);
160 		free_iova_fast(&cookie->iovad,
161 			       fq->entries[idx].iova_pfn,
162 			       fq->entries[idx].pages);
163 
164 		fq->head = (fq->head + 1) & fq->mod_mask;
165 	}
166 }
167 
168 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
169 {
170 	unsigned long flags;
171 
172 	spin_lock_irqsave(&fq->lock, flags);
173 	fq_ring_free_locked(cookie, fq);
174 	spin_unlock_irqrestore(&fq->lock, flags);
175 }
176 
177 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
178 {
179 	atomic64_inc(&cookie->fq_flush_start_cnt);
180 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
181 	atomic64_inc(&cookie->fq_flush_finish_cnt);
182 }
183 
184 static void fq_flush_timeout(struct timer_list *t)
185 {
186 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
187 	int cpu;
188 
189 	atomic_set(&cookie->fq_timer_on, 0);
190 	fq_flush_iotlb(cookie);
191 
192 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) {
193 		fq_ring_free(cookie, cookie->single_fq);
194 	} else {
195 		for_each_possible_cpu(cpu)
196 			fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu));
197 	}
198 }
199 
200 static void queue_iova(struct iommu_dma_cookie *cookie,
201 		unsigned long pfn, unsigned long pages,
202 		struct list_head *freelist)
203 {
204 	struct iova_fq *fq;
205 	unsigned long flags;
206 	unsigned int idx;
207 
208 	/*
209 	 * Order against the IOMMU driver's pagetable update from unmapping
210 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
211 	 * from a different CPU before we release the lock below. Full barrier
212 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
213 	 * written fq state here.
214 	 */
215 	smp_mb();
216 
217 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
218 		fq = cookie->single_fq;
219 	else
220 		fq = raw_cpu_ptr(cookie->percpu_fq);
221 
222 	spin_lock_irqsave(&fq->lock, flags);
223 
224 	/*
225 	 * First remove all entries from the flush queue that have already been
226 	 * flushed out on another CPU. This makes the fq_full() check below less
227 	 * likely to be true.
228 	 */
229 	fq_ring_free_locked(cookie, fq);
230 
231 	if (fq_full(fq)) {
232 		fq_flush_iotlb(cookie);
233 		fq_ring_free_locked(cookie, fq);
234 	}
235 
236 	idx = fq_ring_add(fq);
237 
238 	fq->entries[idx].iova_pfn = pfn;
239 	fq->entries[idx].pages    = pages;
240 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
241 	list_splice(freelist, &fq->entries[idx].freelist);
242 
243 	spin_unlock_irqrestore(&fq->lock, flags);
244 
245 	/* Avoid false sharing as much as possible. */
246 	if (!atomic_read(&cookie->fq_timer_on) &&
247 	    !atomic_xchg(&cookie->fq_timer_on, 1))
248 		mod_timer(&cookie->fq_timer,
249 			  jiffies + msecs_to_jiffies(cookie->options.fq_timeout));
250 }
251 
252 static void iommu_dma_free_fq_single(struct iova_fq *fq)
253 {
254 	int idx;
255 
256 	fq_ring_for_each(idx, fq)
257 		put_pages_list(&fq->entries[idx].freelist);
258 	vfree(fq);
259 }
260 
261 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq)
262 {
263 	int cpu, idx;
264 
265 	/* The IOVAs will be torn down separately, so just free our queued pages */
266 	for_each_possible_cpu(cpu) {
267 		struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu);
268 
269 		fq_ring_for_each(idx, fq)
270 			put_pages_list(&fq->entries[idx].freelist);
271 	}
272 
273 	free_percpu(percpu_fq);
274 }
275 
276 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
277 {
278 	if (!cookie->fq_domain)
279 		return;
280 
281 	del_timer_sync(&cookie->fq_timer);
282 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
283 		iommu_dma_free_fq_single(cookie->single_fq);
284 	else
285 		iommu_dma_free_fq_percpu(cookie->percpu_fq);
286 }
287 
288 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size)
289 {
290 	int i;
291 
292 	fq->head = 0;
293 	fq->tail = 0;
294 	fq->mod_mask = fq_size - 1;
295 
296 	spin_lock_init(&fq->lock);
297 
298 	for (i = 0; i < fq_size; i++)
299 		INIT_LIST_HEAD(&fq->entries[i].freelist);
300 }
301 
302 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie)
303 {
304 	size_t fq_size = cookie->options.fq_size;
305 	struct iova_fq *queue;
306 
307 	queue = vmalloc(struct_size(queue, entries, fq_size));
308 	if (!queue)
309 		return -ENOMEM;
310 	iommu_dma_init_one_fq(queue, fq_size);
311 	cookie->single_fq = queue;
312 
313 	return 0;
314 }
315 
316 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie)
317 {
318 	size_t fq_size = cookie->options.fq_size;
319 	struct iova_fq __percpu *queue;
320 	int cpu;
321 
322 	queue = __alloc_percpu(struct_size(queue, entries, fq_size),
323 			       __alignof__(*queue));
324 	if (!queue)
325 		return -ENOMEM;
326 
327 	for_each_possible_cpu(cpu)
328 		iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size);
329 	cookie->percpu_fq = queue;
330 	return 0;
331 }
332 
333 /* sysfs updates are serialised by the mutex of the group owning @domain */
334 int iommu_dma_init_fq(struct iommu_domain *domain)
335 {
336 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
337 	int rc;
338 
339 	if (cookie->fq_domain)
340 		return 0;
341 
342 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
343 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
344 
345 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
346 		rc = iommu_dma_init_fq_single(cookie);
347 	else
348 		rc = iommu_dma_init_fq_percpu(cookie);
349 
350 	if (rc) {
351 		pr_warn("iova flush queue initialization failed\n");
352 		return -ENOMEM;
353 	}
354 
355 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
356 	atomic_set(&cookie->fq_timer_on, 0);
357 	/*
358 	 * Prevent incomplete fq state being observable. Pairs with path from
359 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
360 	 */
361 	smp_wmb();
362 	WRITE_ONCE(cookie->fq_domain, domain);
363 	return 0;
364 }
365 
366 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
367 {
368 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
369 		return cookie->iovad.granule;
370 	return PAGE_SIZE;
371 }
372 
373 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
374 {
375 	struct iommu_dma_cookie *cookie;
376 
377 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
378 	if (cookie) {
379 		INIT_LIST_HEAD(&cookie->msi_page_list);
380 		cookie->type = type;
381 	}
382 	return cookie;
383 }
384 
385 /**
386  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
387  * @domain: IOMMU domain to prepare for DMA-API usage
388  */
389 int iommu_get_dma_cookie(struct iommu_domain *domain)
390 {
391 	if (domain->iova_cookie)
392 		return -EEXIST;
393 
394 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
395 	if (!domain->iova_cookie)
396 		return -ENOMEM;
397 
398 	mutex_init(&domain->iova_cookie->mutex);
399 	return 0;
400 }
401 
402 /**
403  * iommu_get_msi_cookie - Acquire just MSI remapping resources
404  * @domain: IOMMU domain to prepare
405  * @base: Start address of IOVA region for MSI mappings
406  *
407  * Users who manage their own IOVA allocation and do not want DMA API support,
408  * but would still like to take advantage of automatic MSI remapping, can use
409  * this to initialise their own domain appropriately. Users should reserve a
410  * contiguous IOVA region, starting at @base, large enough to accommodate the
411  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
412  * used by the devices attached to @domain.
413  */
414 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
415 {
416 	struct iommu_dma_cookie *cookie;
417 
418 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
419 		return -EINVAL;
420 
421 	if (domain->iova_cookie)
422 		return -EEXIST;
423 
424 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
425 	if (!cookie)
426 		return -ENOMEM;
427 
428 	cookie->msi_iova = base;
429 	domain->iova_cookie = cookie;
430 	return 0;
431 }
432 EXPORT_SYMBOL(iommu_get_msi_cookie);
433 
434 /**
435  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
436  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
437  *          iommu_get_msi_cookie()
438  */
439 void iommu_put_dma_cookie(struct iommu_domain *domain)
440 {
441 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
442 	struct iommu_dma_msi_page *msi, *tmp;
443 
444 	if (!cookie)
445 		return;
446 
447 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
448 		iommu_dma_free_fq(cookie);
449 		put_iova_domain(&cookie->iovad);
450 	}
451 
452 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
453 		list_del(&msi->list);
454 		kfree(msi);
455 	}
456 	kfree(cookie);
457 	domain->iova_cookie = NULL;
458 }
459 
460 /**
461  * iommu_dma_get_resv_regions - Reserved region driver helper
462  * @dev: Device from iommu_get_resv_regions()
463  * @list: Reserved region list from iommu_get_resv_regions()
464  *
465  * IOMMU drivers can use this to implement their .get_resv_regions callback
466  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
467  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
468  * reservation.
469  */
470 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
471 {
472 
473 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
474 		iort_iommu_get_resv_regions(dev, list);
475 
476 	if (dev->of_node)
477 		of_iommu_get_resv_regions(dev, list);
478 }
479 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
480 
481 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
482 		phys_addr_t start, phys_addr_t end)
483 {
484 	struct iova_domain *iovad = &cookie->iovad;
485 	struct iommu_dma_msi_page *msi_page;
486 	int i, num_pages;
487 
488 	start -= iova_offset(iovad, start);
489 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
490 
491 	for (i = 0; i < num_pages; i++) {
492 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
493 		if (!msi_page)
494 			return -ENOMEM;
495 
496 		msi_page->phys = start;
497 		msi_page->iova = start;
498 		INIT_LIST_HEAD(&msi_page->list);
499 		list_add(&msi_page->list, &cookie->msi_page_list);
500 		start += iovad->granule;
501 	}
502 
503 	return 0;
504 }
505 
506 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
507 		const struct list_head *b)
508 {
509 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
510 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
511 
512 	return res_a->res->start > res_b->res->start;
513 }
514 
515 static int iova_reserve_pci_windows(struct pci_dev *dev,
516 		struct iova_domain *iovad)
517 {
518 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
519 	struct resource_entry *window;
520 	unsigned long lo, hi;
521 	phys_addr_t start = 0, end;
522 
523 	resource_list_for_each_entry(window, &bridge->windows) {
524 		if (resource_type(window->res) != IORESOURCE_MEM)
525 			continue;
526 
527 		lo = iova_pfn(iovad, window->res->start - window->offset);
528 		hi = iova_pfn(iovad, window->res->end - window->offset);
529 		reserve_iova(iovad, lo, hi);
530 	}
531 
532 	/* Get reserved DMA windows from host bridge */
533 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
534 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
535 		end = window->res->start - window->offset;
536 resv_iova:
537 		if (end > start) {
538 			lo = iova_pfn(iovad, start);
539 			hi = iova_pfn(iovad, end);
540 			reserve_iova(iovad, lo, hi);
541 		} else if (end < start) {
542 			/* DMA ranges should be non-overlapping */
543 			dev_err(&dev->dev,
544 				"Failed to reserve IOVA [%pa-%pa]\n",
545 				&start, &end);
546 			return -EINVAL;
547 		}
548 
549 		start = window->res->end - window->offset + 1;
550 		/* If window is last entry */
551 		if (window->node.next == &bridge->dma_ranges &&
552 		    end != ~(phys_addr_t)0) {
553 			end = ~(phys_addr_t)0;
554 			goto resv_iova;
555 		}
556 	}
557 
558 	return 0;
559 }
560 
561 static int iova_reserve_iommu_regions(struct device *dev,
562 		struct iommu_domain *domain)
563 {
564 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
565 	struct iova_domain *iovad = &cookie->iovad;
566 	struct iommu_resv_region *region;
567 	LIST_HEAD(resv_regions);
568 	int ret = 0;
569 
570 	if (dev_is_pci(dev)) {
571 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
572 		if (ret)
573 			return ret;
574 	}
575 
576 	iommu_get_resv_regions(dev, &resv_regions);
577 	list_for_each_entry(region, &resv_regions, list) {
578 		unsigned long lo, hi;
579 
580 		/* We ARE the software that manages these! */
581 		if (region->type == IOMMU_RESV_SW_MSI)
582 			continue;
583 
584 		lo = iova_pfn(iovad, region->start);
585 		hi = iova_pfn(iovad, region->start + region->length - 1);
586 		reserve_iova(iovad, lo, hi);
587 
588 		if (region->type == IOMMU_RESV_MSI)
589 			ret = cookie_init_hw_msi_region(cookie, region->start,
590 					region->start + region->length);
591 		if (ret)
592 			break;
593 	}
594 	iommu_put_resv_regions(dev, &resv_regions);
595 
596 	return ret;
597 }
598 
599 static bool dev_is_untrusted(struct device *dev)
600 {
601 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
602 }
603 
604 static bool dev_use_swiotlb(struct device *dev, size_t size,
605 			    enum dma_data_direction dir)
606 {
607 	return IS_ENABLED(CONFIG_SWIOTLB) &&
608 		(dev_is_untrusted(dev) ||
609 		 dma_kmalloc_needs_bounce(dev, size, dir));
610 }
611 
612 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
613 			       int nents, enum dma_data_direction dir)
614 {
615 	struct scatterlist *s;
616 	int i;
617 
618 	if (!IS_ENABLED(CONFIG_SWIOTLB))
619 		return false;
620 
621 	if (dev_is_untrusted(dev))
622 		return true;
623 
624 	/*
625 	 * If kmalloc() buffers are not DMA-safe for this device and
626 	 * direction, check the individual lengths in the sg list. If any
627 	 * element is deemed unsafe, use the swiotlb for bouncing.
628 	 */
629 	if (!dma_kmalloc_safe(dev, dir)) {
630 		for_each_sg(sg, s, nents, i)
631 			if (!dma_kmalloc_size_aligned(s->length))
632 				return true;
633 	}
634 
635 	return false;
636 }
637 
638 /**
639  * iommu_dma_init_options - Initialize dma-iommu options
640  * @options: The options to be initialized
641  * @dev: Device the options are set for
642  *
643  * This allows tuning dma-iommu specific to device properties
644  */
645 static void iommu_dma_init_options(struct iommu_dma_options *options,
646 				   struct device *dev)
647 {
648 	/* Shadowing IOTLB flushes do better with a single large queue */
649 	if (dev->iommu->shadow_on_flush) {
650 		options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE;
651 		options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT;
652 		options->fq_size = IOVA_SINGLE_FQ_SIZE;
653 	} else {
654 		options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE;
655 		options->fq_size = IOVA_DEFAULT_FQ_SIZE;
656 		options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT;
657 	}
658 }
659 
660 /**
661  * iommu_dma_init_domain - Initialise a DMA mapping domain
662  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
663  * @base: IOVA at which the mappable address space starts
664  * @limit: Last address of the IOVA space
665  * @dev: Device the domain is being initialised for
666  *
667  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
668  * avoid rounding surprises. If necessary, we reserve the page at address 0
669  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
670  * any change which could make prior IOVAs invalid will fail.
671  */
672 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
673 				 dma_addr_t limit, struct device *dev)
674 {
675 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
676 	unsigned long order, base_pfn;
677 	struct iova_domain *iovad;
678 	int ret;
679 
680 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
681 		return -EINVAL;
682 
683 	iovad = &cookie->iovad;
684 
685 	/* Use the smallest supported page size for IOVA granularity */
686 	order = __ffs(domain->pgsize_bitmap);
687 	base_pfn = max_t(unsigned long, 1, base >> order);
688 
689 	/* Check the domain allows at least some access to the device... */
690 	if (domain->geometry.force_aperture) {
691 		if (base > domain->geometry.aperture_end ||
692 		    limit < domain->geometry.aperture_start) {
693 			pr_warn("specified DMA range outside IOMMU capability\n");
694 			return -EFAULT;
695 		}
696 		/* ...then finally give it a kicking to make sure it fits */
697 		base_pfn = max_t(unsigned long, base_pfn,
698 				domain->geometry.aperture_start >> order);
699 	}
700 
701 	/* start_pfn is always nonzero for an already-initialised domain */
702 	mutex_lock(&cookie->mutex);
703 	if (iovad->start_pfn) {
704 		if (1UL << order != iovad->granule ||
705 		    base_pfn != iovad->start_pfn) {
706 			pr_warn("Incompatible range for DMA domain\n");
707 			ret = -EFAULT;
708 			goto done_unlock;
709 		}
710 
711 		ret = 0;
712 		goto done_unlock;
713 	}
714 
715 	init_iova_domain(iovad, 1UL << order, base_pfn);
716 	ret = iova_domain_init_rcaches(iovad);
717 	if (ret)
718 		goto done_unlock;
719 
720 	iommu_dma_init_options(&cookie->options, dev);
721 
722 	/* If the FQ fails we can simply fall back to strict mode */
723 	if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
724 	    (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
725 		domain->type = IOMMU_DOMAIN_DMA;
726 
727 	ret = iova_reserve_iommu_regions(dev, domain);
728 
729 done_unlock:
730 	mutex_unlock(&cookie->mutex);
731 	return ret;
732 }
733 
734 /**
735  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
736  *                    page flags.
737  * @dir: Direction of DMA transfer
738  * @coherent: Is the DMA master cache-coherent?
739  * @attrs: DMA attributes for the mapping
740  *
741  * Return: corresponding IOMMU API page protection flags
742  */
743 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
744 		     unsigned long attrs)
745 {
746 	int prot = coherent ? IOMMU_CACHE : 0;
747 
748 	if (attrs & DMA_ATTR_PRIVILEGED)
749 		prot |= IOMMU_PRIV;
750 
751 	switch (dir) {
752 	case DMA_BIDIRECTIONAL:
753 		return prot | IOMMU_READ | IOMMU_WRITE;
754 	case DMA_TO_DEVICE:
755 		return prot | IOMMU_READ;
756 	case DMA_FROM_DEVICE:
757 		return prot | IOMMU_WRITE;
758 	default:
759 		return 0;
760 	}
761 }
762 
763 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
764 		size_t size, u64 dma_limit, struct device *dev)
765 {
766 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
767 	struct iova_domain *iovad = &cookie->iovad;
768 	unsigned long shift, iova_len, iova;
769 
770 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
771 		cookie->msi_iova += size;
772 		return cookie->msi_iova - size;
773 	}
774 
775 	shift = iova_shift(iovad);
776 	iova_len = size >> shift;
777 
778 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
779 
780 	if (domain->geometry.force_aperture)
781 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
782 
783 	/*
784 	 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
785 	 * DAC reasoning loses relevance with PCIe, but enough hardware and
786 	 * firmware bugs are still lurking out there that it's safest not to
787 	 * venture into the 64-bit space until necessary.
788 	 *
789 	 * If your device goes wrong after seeing the notice then likely either
790 	 * its driver is not setting DMA masks accurately, the hardware has
791 	 * some inherent bug in handling >32-bit addresses, or not all the
792 	 * expected address bits are wired up between the device and the IOMMU.
793 	 */
794 	if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
795 		iova = alloc_iova_fast(iovad, iova_len,
796 				       DMA_BIT_MASK(32) >> shift, false);
797 		if (iova)
798 			goto done;
799 
800 		dev->iommu->pci_32bit_workaround = false;
801 		dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
802 	}
803 
804 	iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
805 done:
806 	return (dma_addr_t)iova << shift;
807 }
808 
809 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
810 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
811 {
812 	struct iova_domain *iovad = &cookie->iovad;
813 
814 	/* The MSI case is only ever cleaning up its most recent allocation */
815 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
816 		cookie->msi_iova -= size;
817 	else if (gather && gather->queued)
818 		queue_iova(cookie, iova_pfn(iovad, iova),
819 				size >> iova_shift(iovad),
820 				&gather->freelist);
821 	else
822 		free_iova_fast(iovad, iova_pfn(iovad, iova),
823 				size >> iova_shift(iovad));
824 }
825 
826 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
827 		size_t size)
828 {
829 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
830 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
831 	struct iova_domain *iovad = &cookie->iovad;
832 	size_t iova_off = iova_offset(iovad, dma_addr);
833 	struct iommu_iotlb_gather iotlb_gather;
834 	size_t unmapped;
835 
836 	dma_addr -= iova_off;
837 	size = iova_align(iovad, size + iova_off);
838 	iommu_iotlb_gather_init(&iotlb_gather);
839 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
840 
841 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
842 	WARN_ON(unmapped != size);
843 
844 	if (!iotlb_gather.queued)
845 		iommu_iotlb_sync(domain, &iotlb_gather);
846 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
847 }
848 
849 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
850 		size_t size, int prot, u64 dma_mask)
851 {
852 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
853 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
854 	struct iova_domain *iovad = &cookie->iovad;
855 	size_t iova_off = iova_offset(iovad, phys);
856 	dma_addr_t iova;
857 
858 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
859 	    iommu_deferred_attach(dev, domain))
860 		return DMA_MAPPING_ERROR;
861 
862 	/* If anyone ever wants this we'd need support in the IOVA allocator */
863 	if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad),
864 	    "Unsupported alignment constraint\n"))
865 		return DMA_MAPPING_ERROR;
866 
867 	size = iova_align(iovad, size + iova_off);
868 
869 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
870 	if (!iova)
871 		return DMA_MAPPING_ERROR;
872 
873 	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
874 		iommu_dma_free_iova(cookie, iova, size, NULL);
875 		return DMA_MAPPING_ERROR;
876 	}
877 	return iova + iova_off;
878 }
879 
880 static void __iommu_dma_free_pages(struct page **pages, int count)
881 {
882 	while (count--)
883 		__free_page(pages[count]);
884 	kvfree(pages);
885 }
886 
887 static struct page **__iommu_dma_alloc_pages(struct device *dev,
888 		unsigned int count, unsigned long order_mask, gfp_t gfp)
889 {
890 	struct page **pages;
891 	unsigned int i = 0, nid = dev_to_node(dev);
892 
893 	order_mask &= GENMASK(MAX_PAGE_ORDER, 0);
894 	if (!order_mask)
895 		return NULL;
896 
897 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
898 	if (!pages)
899 		return NULL;
900 
901 	/* IOMMU can map any pages, so himem can also be used here */
902 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
903 
904 	while (count) {
905 		struct page *page = NULL;
906 		unsigned int order_size;
907 
908 		/*
909 		 * Higher-order allocations are a convenience rather
910 		 * than a necessity, hence using __GFP_NORETRY until
911 		 * falling back to minimum-order allocations.
912 		 */
913 		for (order_mask &= GENMASK(__fls(count), 0);
914 		     order_mask; order_mask &= ~order_size) {
915 			unsigned int order = __fls(order_mask);
916 			gfp_t alloc_flags = gfp;
917 
918 			order_size = 1U << order;
919 			if (order_mask > order_size)
920 				alloc_flags |= __GFP_NORETRY;
921 			page = alloc_pages_node(nid, alloc_flags, order);
922 			if (!page)
923 				continue;
924 			if (order)
925 				split_page(page, order);
926 			break;
927 		}
928 		if (!page) {
929 			__iommu_dma_free_pages(pages, i);
930 			return NULL;
931 		}
932 		count -= order_size;
933 		while (order_size--)
934 			pages[i++] = page++;
935 	}
936 	return pages;
937 }
938 
939 /*
940  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
941  * but an IOMMU which supports smaller pages might not map the whole thing.
942  */
943 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
944 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
945 		unsigned long attrs)
946 {
947 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
948 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
949 	struct iova_domain *iovad = &cookie->iovad;
950 	bool coherent = dev_is_dma_coherent(dev);
951 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
952 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
953 	struct page **pages;
954 	dma_addr_t iova;
955 	ssize_t ret;
956 
957 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
958 	    iommu_deferred_attach(dev, domain))
959 		return NULL;
960 
961 	min_size = alloc_sizes & -alloc_sizes;
962 	if (min_size < PAGE_SIZE) {
963 		min_size = PAGE_SIZE;
964 		alloc_sizes |= PAGE_SIZE;
965 	} else {
966 		size = ALIGN(size, min_size);
967 	}
968 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
969 		alloc_sizes = min_size;
970 
971 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
972 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
973 					gfp);
974 	if (!pages)
975 		return NULL;
976 
977 	size = iova_align(iovad, size);
978 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
979 	if (!iova)
980 		goto out_free_pages;
981 
982 	/*
983 	 * Remove the zone/policy flags from the GFP - these are applied to the
984 	 * __iommu_dma_alloc_pages() but are not used for the supporting
985 	 * internal allocations that follow.
986 	 */
987 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
988 
989 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
990 		goto out_free_iova;
991 
992 	if (!(ioprot & IOMMU_CACHE)) {
993 		struct scatterlist *sg;
994 		int i;
995 
996 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
997 			arch_dma_prep_coherent(sg_page(sg), sg->length);
998 	}
999 
1000 	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
1001 			   gfp);
1002 	if (ret < 0 || ret < size)
1003 		goto out_free_sg;
1004 
1005 	sgt->sgl->dma_address = iova;
1006 	sgt->sgl->dma_length = size;
1007 	return pages;
1008 
1009 out_free_sg:
1010 	sg_free_table(sgt);
1011 out_free_iova:
1012 	iommu_dma_free_iova(cookie, iova, size, NULL);
1013 out_free_pages:
1014 	__iommu_dma_free_pages(pages, count);
1015 	return NULL;
1016 }
1017 
1018 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
1019 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
1020 		unsigned long attrs)
1021 {
1022 	struct page **pages;
1023 	struct sg_table sgt;
1024 	void *vaddr;
1025 
1026 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
1027 						attrs);
1028 	if (!pages)
1029 		return NULL;
1030 	*dma_handle = sgt.sgl->dma_address;
1031 	sg_free_table(&sgt);
1032 	vaddr = dma_common_pages_remap(pages, size, prot,
1033 			__builtin_return_address(0));
1034 	if (!vaddr)
1035 		goto out_unmap;
1036 	return vaddr;
1037 
1038 out_unmap:
1039 	__iommu_dma_unmap(dev, *dma_handle, size);
1040 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1041 	return NULL;
1042 }
1043 
1044 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
1045 		size_t size, enum dma_data_direction dir, gfp_t gfp,
1046 		unsigned long attrs)
1047 {
1048 	struct dma_sgt_handle *sh;
1049 
1050 	sh = kmalloc(sizeof(*sh), gfp);
1051 	if (!sh)
1052 		return NULL;
1053 
1054 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
1055 						    PAGE_KERNEL, attrs);
1056 	if (!sh->pages) {
1057 		kfree(sh);
1058 		return NULL;
1059 	}
1060 	return &sh->sgt;
1061 }
1062 
1063 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
1064 		struct sg_table *sgt, enum dma_data_direction dir)
1065 {
1066 	struct dma_sgt_handle *sh = sgt_handle(sgt);
1067 
1068 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
1069 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1070 	sg_free_table(&sh->sgt);
1071 	kfree(sh);
1072 }
1073 
1074 static void iommu_dma_sync_single_for_cpu(struct device *dev,
1075 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
1076 {
1077 	phys_addr_t phys;
1078 
1079 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1080 		return;
1081 
1082 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1083 	if (!dev_is_dma_coherent(dev))
1084 		arch_sync_dma_for_cpu(phys, size, dir);
1085 
1086 	if (is_swiotlb_buffer(dev, phys))
1087 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
1088 }
1089 
1090 static void iommu_dma_sync_single_for_device(struct device *dev,
1091 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
1092 {
1093 	phys_addr_t phys;
1094 
1095 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1096 		return;
1097 
1098 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1099 	if (is_swiotlb_buffer(dev, phys))
1100 		swiotlb_sync_single_for_device(dev, phys, size, dir);
1101 
1102 	if (!dev_is_dma_coherent(dev))
1103 		arch_sync_dma_for_device(phys, size, dir);
1104 }
1105 
1106 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
1107 		struct scatterlist *sgl, int nelems,
1108 		enum dma_data_direction dir)
1109 {
1110 	struct scatterlist *sg;
1111 	int i;
1112 
1113 	if (sg_dma_is_swiotlb(sgl))
1114 		for_each_sg(sgl, sg, nelems, i)
1115 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1116 						      sg->length, dir);
1117 	else if (!dev_is_dma_coherent(dev))
1118 		for_each_sg(sgl, sg, nelems, i)
1119 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
1120 }
1121 
1122 static void iommu_dma_sync_sg_for_device(struct device *dev,
1123 		struct scatterlist *sgl, int nelems,
1124 		enum dma_data_direction dir)
1125 {
1126 	struct scatterlist *sg;
1127 	int i;
1128 
1129 	if (sg_dma_is_swiotlb(sgl))
1130 		for_each_sg(sgl, sg, nelems, i)
1131 			iommu_dma_sync_single_for_device(dev,
1132 							 sg_dma_address(sg),
1133 							 sg->length, dir);
1134 	else if (!dev_is_dma_coherent(dev))
1135 		for_each_sg(sgl, sg, nelems, i)
1136 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1137 }
1138 
1139 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1140 		unsigned long offset, size_t size, enum dma_data_direction dir,
1141 		unsigned long attrs)
1142 {
1143 	phys_addr_t phys = page_to_phys(page) + offset;
1144 	bool coherent = dev_is_dma_coherent(dev);
1145 	int prot = dma_info_to_prot(dir, coherent, attrs);
1146 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1147 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1148 	struct iova_domain *iovad = &cookie->iovad;
1149 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1150 
1151 	/*
1152 	 * If both the physical buffer start address and size are
1153 	 * page aligned, we don't need to use a bounce page.
1154 	 */
1155 	if (dev_use_swiotlb(dev, size, dir) &&
1156 	    iova_offset(iovad, phys | size)) {
1157 		if (!is_swiotlb_active(dev)) {
1158 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1159 			return DMA_MAPPING_ERROR;
1160 		}
1161 
1162 		trace_swiotlb_bounced(dev, phys, size);
1163 
1164 		phys = swiotlb_tbl_map_single(dev, phys, size,
1165 					      iova_mask(iovad), dir, attrs);
1166 
1167 		if (phys == DMA_MAPPING_ERROR)
1168 			return DMA_MAPPING_ERROR;
1169 
1170 		/*
1171 		 * Untrusted devices should not see padding areas with random
1172 		 * leftover kernel data, so zero the pre- and post-padding.
1173 		 * swiotlb_tbl_map_single() has initialized the bounce buffer
1174 		 * proper to the contents of the original memory buffer.
1175 		 */
1176 		if (dev_is_untrusted(dev)) {
1177 			size_t start, virt = (size_t)phys_to_virt(phys);
1178 
1179 			/* Pre-padding */
1180 			start = iova_align_down(iovad, virt);
1181 			memset((void *)start, 0, virt - start);
1182 
1183 			/* Post-padding */
1184 			start = virt + size;
1185 			memset((void *)start, 0,
1186 			       iova_align(iovad, start) - start);
1187 		}
1188 	}
1189 
1190 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1191 		arch_sync_dma_for_device(phys, size, dir);
1192 
1193 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1194 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1195 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1196 	return iova;
1197 }
1198 
1199 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1200 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1201 {
1202 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1203 	phys_addr_t phys;
1204 
1205 	phys = iommu_iova_to_phys(domain, dma_handle);
1206 	if (WARN_ON(!phys))
1207 		return;
1208 
1209 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1210 		arch_sync_dma_for_cpu(phys, size, dir);
1211 
1212 	__iommu_dma_unmap(dev, dma_handle, size);
1213 
1214 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1215 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1216 }
1217 
1218 /*
1219  * Prepare a successfully-mapped scatterlist to give back to the caller.
1220  *
1221  * At this point the segments are already laid out by iommu_dma_map_sg() to
1222  * avoid individually crossing any boundaries, so we merely need to check a
1223  * segment's start address to avoid concatenating across one.
1224  */
1225 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1226 		dma_addr_t dma_addr)
1227 {
1228 	struct scatterlist *s, *cur = sg;
1229 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1230 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1231 	int i, count = 0;
1232 
1233 	for_each_sg(sg, s, nents, i) {
1234 		/* Restore this segment's original unaligned fields first */
1235 		dma_addr_t s_dma_addr = sg_dma_address(s);
1236 		unsigned int s_iova_off = sg_dma_address(s);
1237 		unsigned int s_length = sg_dma_len(s);
1238 		unsigned int s_iova_len = s->length;
1239 
1240 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1241 		sg_dma_len(s) = 0;
1242 
1243 		if (sg_dma_is_bus_address(s)) {
1244 			if (i > 0)
1245 				cur = sg_next(cur);
1246 
1247 			sg_dma_unmark_bus_address(s);
1248 			sg_dma_address(cur) = s_dma_addr;
1249 			sg_dma_len(cur) = s_length;
1250 			sg_dma_mark_bus_address(cur);
1251 			count++;
1252 			cur_len = 0;
1253 			continue;
1254 		}
1255 
1256 		s->offset += s_iova_off;
1257 		s->length = s_length;
1258 
1259 		/*
1260 		 * Now fill in the real DMA data. If...
1261 		 * - there is a valid output segment to append to
1262 		 * - and this segment starts on an IOVA page boundary
1263 		 * - but doesn't fall at a segment boundary
1264 		 * - and wouldn't make the resulting output segment too long
1265 		 */
1266 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1267 		    (max_len - cur_len >= s_length)) {
1268 			/* ...then concatenate it with the previous one */
1269 			cur_len += s_length;
1270 		} else {
1271 			/* Otherwise start the next output segment */
1272 			if (i > 0)
1273 				cur = sg_next(cur);
1274 			cur_len = s_length;
1275 			count++;
1276 
1277 			sg_dma_address(cur) = dma_addr + s_iova_off;
1278 		}
1279 
1280 		sg_dma_len(cur) = cur_len;
1281 		dma_addr += s_iova_len;
1282 
1283 		if (s_length + s_iova_off < s_iova_len)
1284 			cur_len = 0;
1285 	}
1286 	return count;
1287 }
1288 
1289 /*
1290  * If mapping failed, then just restore the original list,
1291  * but making sure the DMA fields are invalidated.
1292  */
1293 static void __invalidate_sg(struct scatterlist *sg, int nents)
1294 {
1295 	struct scatterlist *s;
1296 	int i;
1297 
1298 	for_each_sg(sg, s, nents, i) {
1299 		if (sg_dma_is_bus_address(s)) {
1300 			sg_dma_unmark_bus_address(s);
1301 		} else {
1302 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1303 				s->offset += sg_dma_address(s);
1304 			if (sg_dma_len(s))
1305 				s->length = sg_dma_len(s);
1306 		}
1307 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1308 		sg_dma_len(s) = 0;
1309 	}
1310 }
1311 
1312 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1313 		int nents, enum dma_data_direction dir, unsigned long attrs)
1314 {
1315 	struct scatterlist *s;
1316 	int i;
1317 
1318 	for_each_sg(sg, s, nents, i)
1319 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1320 				sg_dma_len(s), dir, attrs);
1321 }
1322 
1323 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1324 		int nents, enum dma_data_direction dir, unsigned long attrs)
1325 {
1326 	struct scatterlist *s;
1327 	int i;
1328 
1329 	sg_dma_mark_swiotlb(sg);
1330 
1331 	for_each_sg(sg, s, nents, i) {
1332 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1333 				s->offset, s->length, dir, attrs);
1334 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1335 			goto out_unmap;
1336 		sg_dma_len(s) = s->length;
1337 	}
1338 
1339 	return nents;
1340 
1341 out_unmap:
1342 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1343 	return -EIO;
1344 }
1345 
1346 /*
1347  * The DMA API client is passing in a scatterlist which could describe
1348  * any old buffer layout, but the IOMMU API requires everything to be
1349  * aligned to IOMMU pages. Hence the need for this complicated bit of
1350  * impedance-matching, to be able to hand off a suitably-aligned list,
1351  * but still preserve the original offsets and sizes for the caller.
1352  */
1353 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1354 		int nents, enum dma_data_direction dir, unsigned long attrs)
1355 {
1356 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1357 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1358 	struct iova_domain *iovad = &cookie->iovad;
1359 	struct scatterlist *s, *prev = NULL;
1360 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1361 	struct pci_p2pdma_map_state p2pdma_state = {};
1362 	enum pci_p2pdma_map_type map;
1363 	dma_addr_t iova;
1364 	size_t iova_len = 0;
1365 	unsigned long mask = dma_get_seg_boundary(dev);
1366 	ssize_t ret;
1367 	int i;
1368 
1369 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1370 		ret = iommu_deferred_attach(dev, domain);
1371 		if (ret)
1372 			goto out;
1373 	}
1374 
1375 	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1376 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1377 
1378 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1379 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1380 
1381 	/*
1382 	 * Work out how much IOVA space we need, and align the segments to
1383 	 * IOVA granules for the IOMMU driver to handle. With some clever
1384 	 * trickery we can modify the list in-place, but reversibly, by
1385 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1386 	 */
1387 	for_each_sg(sg, s, nents, i) {
1388 		size_t s_iova_off = iova_offset(iovad, s->offset);
1389 		size_t s_length = s->length;
1390 		size_t pad_len = (mask - iova_len + 1) & mask;
1391 
1392 		if (is_pci_p2pdma_page(sg_page(s))) {
1393 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1394 			switch (map) {
1395 			case PCI_P2PDMA_MAP_BUS_ADDR:
1396 				/*
1397 				 * iommu_map_sg() will skip this segment as
1398 				 * it is marked as a bus address,
1399 				 * __finalise_sg() will copy the dma address
1400 				 * into the output segment.
1401 				 */
1402 				continue;
1403 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1404 				/*
1405 				 * Mapping through host bridge should be
1406 				 * mapped with regular IOVAs, thus we
1407 				 * do nothing here and continue below.
1408 				 */
1409 				break;
1410 			default:
1411 				ret = -EREMOTEIO;
1412 				goto out_restore_sg;
1413 			}
1414 		}
1415 
1416 		sg_dma_address(s) = s_iova_off;
1417 		sg_dma_len(s) = s_length;
1418 		s->offset -= s_iova_off;
1419 		s_length = iova_align(iovad, s_length + s_iova_off);
1420 		s->length = s_length;
1421 
1422 		/*
1423 		 * Due to the alignment of our single IOVA allocation, we can
1424 		 * depend on these assumptions about the segment boundary mask:
1425 		 * - If mask size >= IOVA size, then the IOVA range cannot
1426 		 *   possibly fall across a boundary, so we don't care.
1427 		 * - If mask size < IOVA size, then the IOVA range must start
1428 		 *   exactly on a boundary, therefore we can lay things out
1429 		 *   based purely on segment lengths without needing to know
1430 		 *   the actual addresses beforehand.
1431 		 * - The mask must be a power of 2, so pad_len == 0 if
1432 		 *   iova_len == 0, thus we cannot dereference prev the first
1433 		 *   time through here (i.e. before it has a meaningful value).
1434 		 */
1435 		if (pad_len && pad_len < s_length - 1) {
1436 			prev->length += pad_len;
1437 			iova_len += pad_len;
1438 		}
1439 
1440 		iova_len += s_length;
1441 		prev = s;
1442 	}
1443 
1444 	if (!iova_len)
1445 		return __finalise_sg(dev, sg, nents, 0);
1446 
1447 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1448 	if (!iova) {
1449 		ret = -ENOMEM;
1450 		goto out_restore_sg;
1451 	}
1452 
1453 	/*
1454 	 * We'll leave any physical concatenation to the IOMMU driver's
1455 	 * implementation - it knows better than we do.
1456 	 */
1457 	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1458 	if (ret < 0 || ret < iova_len)
1459 		goto out_free_iova;
1460 
1461 	return __finalise_sg(dev, sg, nents, iova);
1462 
1463 out_free_iova:
1464 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1465 out_restore_sg:
1466 	__invalidate_sg(sg, nents);
1467 out:
1468 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1469 		return -EINVAL;
1470 	return ret;
1471 }
1472 
1473 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1474 		int nents, enum dma_data_direction dir, unsigned long attrs)
1475 {
1476 	dma_addr_t end = 0, start;
1477 	struct scatterlist *tmp;
1478 	int i;
1479 
1480 	if (sg_dma_is_swiotlb(sg)) {
1481 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1482 		return;
1483 	}
1484 
1485 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1486 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1487 
1488 	/*
1489 	 * The scatterlist segments are mapped into a single
1490 	 * contiguous IOVA allocation, the start and end points
1491 	 * just have to be determined.
1492 	 */
1493 	for_each_sg(sg, tmp, nents, i) {
1494 		if (sg_dma_is_bus_address(tmp)) {
1495 			sg_dma_unmark_bus_address(tmp);
1496 			continue;
1497 		}
1498 
1499 		if (sg_dma_len(tmp) == 0)
1500 			break;
1501 
1502 		start = sg_dma_address(tmp);
1503 		break;
1504 	}
1505 
1506 	nents -= i;
1507 	for_each_sg(tmp, tmp, nents, i) {
1508 		if (sg_dma_is_bus_address(tmp)) {
1509 			sg_dma_unmark_bus_address(tmp);
1510 			continue;
1511 		}
1512 
1513 		if (sg_dma_len(tmp) == 0)
1514 			break;
1515 
1516 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1517 	}
1518 
1519 	if (end)
1520 		__iommu_dma_unmap(dev, start, end - start);
1521 }
1522 
1523 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1524 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1525 {
1526 	return __iommu_dma_map(dev, phys, size,
1527 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1528 			dma_get_mask(dev));
1529 }
1530 
1531 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1532 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1533 {
1534 	__iommu_dma_unmap(dev, handle, size);
1535 }
1536 
1537 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1538 {
1539 	size_t alloc_size = PAGE_ALIGN(size);
1540 	int count = alloc_size >> PAGE_SHIFT;
1541 	struct page *page = NULL, **pages = NULL;
1542 
1543 	/* Non-coherent atomic allocation? Easy */
1544 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1545 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1546 		return;
1547 
1548 	if (is_vmalloc_addr(cpu_addr)) {
1549 		/*
1550 		 * If it the address is remapped, then it's either non-coherent
1551 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1552 		 */
1553 		pages = dma_common_find_pages(cpu_addr);
1554 		if (!pages)
1555 			page = vmalloc_to_page(cpu_addr);
1556 		dma_common_free_remap(cpu_addr, alloc_size);
1557 	} else {
1558 		/* Lowmem means a coherent atomic or CMA allocation */
1559 		page = virt_to_page(cpu_addr);
1560 	}
1561 
1562 	if (pages)
1563 		__iommu_dma_free_pages(pages, count);
1564 	if (page)
1565 		dma_free_contiguous(dev, page, alloc_size);
1566 }
1567 
1568 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1569 		dma_addr_t handle, unsigned long attrs)
1570 {
1571 	__iommu_dma_unmap(dev, handle, size);
1572 	__iommu_dma_free(dev, size, cpu_addr);
1573 }
1574 
1575 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1576 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1577 {
1578 	bool coherent = dev_is_dma_coherent(dev);
1579 	size_t alloc_size = PAGE_ALIGN(size);
1580 	int node = dev_to_node(dev);
1581 	struct page *page = NULL;
1582 	void *cpu_addr;
1583 
1584 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1585 	if (!page)
1586 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1587 	if (!page)
1588 		return NULL;
1589 
1590 	if (!coherent || PageHighMem(page)) {
1591 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1592 
1593 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1594 				prot, __builtin_return_address(0));
1595 		if (!cpu_addr)
1596 			goto out_free_pages;
1597 
1598 		if (!coherent)
1599 			arch_dma_prep_coherent(page, size);
1600 	} else {
1601 		cpu_addr = page_address(page);
1602 	}
1603 
1604 	*pagep = page;
1605 	memset(cpu_addr, 0, alloc_size);
1606 	return cpu_addr;
1607 out_free_pages:
1608 	dma_free_contiguous(dev, page, alloc_size);
1609 	return NULL;
1610 }
1611 
1612 static void *iommu_dma_alloc(struct device *dev, size_t size,
1613 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1614 {
1615 	bool coherent = dev_is_dma_coherent(dev);
1616 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1617 	struct page *page = NULL;
1618 	void *cpu_addr;
1619 
1620 	gfp |= __GFP_ZERO;
1621 
1622 	if (gfpflags_allow_blocking(gfp) &&
1623 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1624 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1625 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1626 	}
1627 
1628 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1629 	    !gfpflags_allow_blocking(gfp) && !coherent)
1630 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1631 					       gfp, NULL);
1632 	else
1633 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1634 	if (!cpu_addr)
1635 		return NULL;
1636 
1637 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1638 			dev->coherent_dma_mask);
1639 	if (*handle == DMA_MAPPING_ERROR) {
1640 		__iommu_dma_free(dev, size, cpu_addr);
1641 		return NULL;
1642 	}
1643 
1644 	return cpu_addr;
1645 }
1646 
1647 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1648 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1649 		unsigned long attrs)
1650 {
1651 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1652 	unsigned long pfn, off = vma->vm_pgoff;
1653 	int ret;
1654 
1655 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1656 
1657 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1658 		return ret;
1659 
1660 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1661 		return -ENXIO;
1662 
1663 	if (is_vmalloc_addr(cpu_addr)) {
1664 		struct page **pages = dma_common_find_pages(cpu_addr);
1665 
1666 		if (pages)
1667 			return vm_map_pages(vma, pages, nr_pages);
1668 		pfn = vmalloc_to_pfn(cpu_addr);
1669 	} else {
1670 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1671 	}
1672 
1673 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1674 			       vma->vm_end - vma->vm_start,
1675 			       vma->vm_page_prot);
1676 }
1677 
1678 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1679 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1680 		unsigned long attrs)
1681 {
1682 	struct page *page;
1683 	int ret;
1684 
1685 	if (is_vmalloc_addr(cpu_addr)) {
1686 		struct page **pages = dma_common_find_pages(cpu_addr);
1687 
1688 		if (pages) {
1689 			return sg_alloc_table_from_pages(sgt, pages,
1690 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1691 					0, size, GFP_KERNEL);
1692 		}
1693 
1694 		page = vmalloc_to_page(cpu_addr);
1695 	} else {
1696 		page = virt_to_page(cpu_addr);
1697 	}
1698 
1699 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1700 	if (!ret)
1701 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1702 	return ret;
1703 }
1704 
1705 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1706 {
1707 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1708 
1709 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1710 }
1711 
1712 static size_t iommu_dma_opt_mapping_size(void)
1713 {
1714 	return iova_rcache_range();
1715 }
1716 
1717 static size_t iommu_dma_max_mapping_size(struct device *dev)
1718 {
1719 	if (dev_is_untrusted(dev))
1720 		return swiotlb_max_mapping_size(dev);
1721 
1722 	return SIZE_MAX;
1723 }
1724 
1725 static const struct dma_map_ops iommu_dma_ops = {
1726 	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED |
1727 				  DMA_F_CAN_SKIP_SYNC,
1728 	.alloc			= iommu_dma_alloc,
1729 	.free			= iommu_dma_free,
1730 	.alloc_pages		= dma_common_alloc_pages,
1731 	.free_pages		= dma_common_free_pages,
1732 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1733 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1734 	.mmap			= iommu_dma_mmap,
1735 	.get_sgtable		= iommu_dma_get_sgtable,
1736 	.map_page		= iommu_dma_map_page,
1737 	.unmap_page		= iommu_dma_unmap_page,
1738 	.map_sg			= iommu_dma_map_sg,
1739 	.unmap_sg		= iommu_dma_unmap_sg,
1740 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1741 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1742 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1743 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1744 	.map_resource		= iommu_dma_map_resource,
1745 	.unmap_resource		= iommu_dma_unmap_resource,
1746 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1747 	.opt_mapping_size	= iommu_dma_opt_mapping_size,
1748 	.max_mapping_size       = iommu_dma_max_mapping_size,
1749 };
1750 
1751 /*
1752  * The IOMMU core code allocates the default DMA domain, which the underlying
1753  * IOMMU driver needs to support via the dma-iommu layer.
1754  */
1755 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1756 {
1757 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1758 
1759 	if (!domain)
1760 		goto out_err;
1761 
1762 	/*
1763 	 * The IOMMU core code allocates the default DMA domain, which the
1764 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1765 	 */
1766 	if (iommu_is_dma_domain(domain)) {
1767 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1768 			goto out_err;
1769 		dev->dma_ops = &iommu_dma_ops;
1770 	}
1771 
1772 	return;
1773 out_err:
1774 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1775 		 dev_name(dev));
1776 }
1777 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1778 
1779 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1780 		phys_addr_t msi_addr, struct iommu_domain *domain)
1781 {
1782 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1783 	struct iommu_dma_msi_page *msi_page;
1784 	dma_addr_t iova;
1785 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1786 	size_t size = cookie_msi_granule(cookie);
1787 
1788 	msi_addr &= ~(phys_addr_t)(size - 1);
1789 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1790 		if (msi_page->phys == msi_addr)
1791 			return msi_page;
1792 
1793 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1794 	if (!msi_page)
1795 		return NULL;
1796 
1797 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1798 	if (!iova)
1799 		goto out_free_page;
1800 
1801 	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1802 		goto out_free_iova;
1803 
1804 	INIT_LIST_HEAD(&msi_page->list);
1805 	msi_page->phys = msi_addr;
1806 	msi_page->iova = iova;
1807 	list_add(&msi_page->list, &cookie->msi_page_list);
1808 	return msi_page;
1809 
1810 out_free_iova:
1811 	iommu_dma_free_iova(cookie, iova, size, NULL);
1812 out_free_page:
1813 	kfree(msi_page);
1814 	return NULL;
1815 }
1816 
1817 /**
1818  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1819  * @desc: MSI descriptor, will store the MSI page
1820  * @msi_addr: MSI target address to be mapped
1821  *
1822  * Return: 0 on success or negative error code if the mapping failed.
1823  */
1824 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1825 {
1826 	struct device *dev = msi_desc_to_dev(desc);
1827 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1828 	struct iommu_dma_msi_page *msi_page;
1829 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1830 
1831 	if (!domain || !domain->iova_cookie) {
1832 		desc->iommu_cookie = NULL;
1833 		return 0;
1834 	}
1835 
1836 	/*
1837 	 * In fact the whole prepare operation should already be serialised by
1838 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1839 	 * on its own, so consider this locking as failsafe documentation...
1840 	 */
1841 	mutex_lock(&msi_prepare_lock);
1842 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1843 	mutex_unlock(&msi_prepare_lock);
1844 
1845 	msi_desc_set_iommu_cookie(desc, msi_page);
1846 
1847 	if (!msi_page)
1848 		return -ENOMEM;
1849 	return 0;
1850 }
1851 
1852 /**
1853  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1854  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1855  * @msg: MSI message containing target physical address
1856  */
1857 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1858 {
1859 	struct device *dev = msi_desc_to_dev(desc);
1860 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1861 	const struct iommu_dma_msi_page *msi_page;
1862 
1863 	msi_page = msi_desc_get_iommu_cookie(desc);
1864 
1865 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1866 		return;
1867 
1868 	msg->address_hi = upper_32_bits(msi_page->iova);
1869 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1870 	msg->address_lo += lower_32_bits(msi_page->iova);
1871 }
1872 
1873 static int iommu_dma_init(void)
1874 {
1875 	if (is_kdump_kernel())
1876 		static_branch_enable(&iommu_deferred_attach_enabled);
1877 
1878 	return iova_cache_get();
1879 }
1880 arch_initcall(iommu_dma_init);
1881