1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iommu-dma.h> 21 #include <linux/iova.h> 22 #include <linux/irq.h> 23 #include <linux/list_sort.h> 24 #include <linux/memremap.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/msi.h> 28 #include <linux/of_iommu.h> 29 #include <linux/pci.h> 30 #include <linux/pci-p2pdma.h> 31 #include <linux/scatterlist.h> 32 #include <linux/spinlock.h> 33 #include <linux/swiotlb.h> 34 #include <linux/vmalloc.h> 35 #include <trace/events/swiotlb.h> 36 37 #include "dma-iommu.h" 38 #include "iommu-pages.h" 39 40 struct iommu_dma_msi_page { 41 struct list_head list; 42 dma_addr_t iova; 43 phys_addr_t phys; 44 }; 45 46 enum iommu_dma_queue_type { 47 IOMMU_DMA_OPTS_PER_CPU_QUEUE, 48 IOMMU_DMA_OPTS_SINGLE_QUEUE, 49 }; 50 51 struct iommu_dma_options { 52 enum iommu_dma_queue_type qt; 53 size_t fq_size; 54 unsigned int fq_timeout; 55 }; 56 57 struct iommu_dma_cookie { 58 struct iova_domain iovad; 59 struct list_head msi_page_list; 60 /* Flush queue */ 61 union { 62 struct iova_fq *single_fq; 63 struct iova_fq __percpu *percpu_fq; 64 }; 65 /* Number of TLB flushes that have been started */ 66 atomic64_t fq_flush_start_cnt; 67 /* Number of TLB flushes that have been finished */ 68 atomic64_t fq_flush_finish_cnt; 69 /* Timer to regularily empty the flush queues */ 70 struct timer_list fq_timer; 71 /* 1 when timer is active, 0 when not */ 72 atomic_t fq_timer_on; 73 /* Domain for flush queue callback; NULL if flush queue not in use */ 74 struct iommu_domain *fq_domain; 75 /* Options for dma-iommu use */ 76 struct iommu_dma_options options; 77 }; 78 79 struct iommu_dma_msi_cookie { 80 dma_addr_t msi_iova; 81 struct list_head msi_page_list; 82 }; 83 84 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 85 bool iommu_dma_forcedac __read_mostly; 86 87 static int __init iommu_dma_forcedac_setup(char *str) 88 { 89 int ret = kstrtobool(str, &iommu_dma_forcedac); 90 91 if (!ret && iommu_dma_forcedac) 92 pr_info("Forcing DAC for PCI devices\n"); 93 return ret; 94 } 95 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 96 97 /* Number of entries per flush queue */ 98 #define IOVA_DEFAULT_FQ_SIZE 256 99 #define IOVA_SINGLE_FQ_SIZE 32768 100 101 /* Timeout (in ms) after which entries are flushed from the queue */ 102 #define IOVA_DEFAULT_FQ_TIMEOUT 10 103 #define IOVA_SINGLE_FQ_TIMEOUT 1000 104 105 /* Flush queue entry for deferred flushing */ 106 struct iova_fq_entry { 107 unsigned long iova_pfn; 108 unsigned long pages; 109 struct iommu_pages_list freelist; 110 u64 counter; /* Flush counter when this entry was added */ 111 }; 112 113 /* Per-CPU flush queue structure */ 114 struct iova_fq { 115 spinlock_t lock; 116 unsigned int head, tail; 117 unsigned int mod_mask; 118 struct iova_fq_entry entries[]; 119 }; 120 121 #define fq_ring_for_each(i, fq) \ 122 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask) 123 124 static inline bool fq_full(struct iova_fq *fq) 125 { 126 assert_spin_locked(&fq->lock); 127 return (((fq->tail + 1) & fq->mod_mask) == fq->head); 128 } 129 130 static inline unsigned int fq_ring_add(struct iova_fq *fq) 131 { 132 unsigned int idx = fq->tail; 133 134 assert_spin_locked(&fq->lock); 135 136 fq->tail = (idx + 1) & fq->mod_mask; 137 138 return idx; 139 } 140 141 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 142 { 143 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 144 unsigned int idx; 145 146 assert_spin_locked(&fq->lock); 147 148 fq_ring_for_each(idx, fq) { 149 150 if (fq->entries[idx].counter >= counter) 151 break; 152 153 iommu_put_pages_list(&fq->entries[idx].freelist); 154 free_iova_fast(&cookie->iovad, 155 fq->entries[idx].iova_pfn, 156 fq->entries[idx].pages); 157 158 fq->entries[idx].freelist = 159 IOMMU_PAGES_LIST_INIT(fq->entries[idx].freelist); 160 fq->head = (fq->head + 1) & fq->mod_mask; 161 } 162 } 163 164 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 165 { 166 unsigned long flags; 167 168 spin_lock_irqsave(&fq->lock, flags); 169 fq_ring_free_locked(cookie, fq); 170 spin_unlock_irqrestore(&fq->lock, flags); 171 } 172 173 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 174 { 175 atomic64_inc(&cookie->fq_flush_start_cnt); 176 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 177 atomic64_inc(&cookie->fq_flush_finish_cnt); 178 } 179 180 static void fq_flush_timeout(struct timer_list *t) 181 { 182 struct iommu_dma_cookie *cookie = timer_container_of(cookie, t, 183 fq_timer); 184 int cpu; 185 186 atomic_set(&cookie->fq_timer_on, 0); 187 fq_flush_iotlb(cookie); 188 189 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) { 190 fq_ring_free(cookie, cookie->single_fq); 191 } else { 192 for_each_possible_cpu(cpu) 193 fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu)); 194 } 195 } 196 197 static void queue_iova(struct iommu_dma_cookie *cookie, 198 unsigned long pfn, unsigned long pages, 199 struct iommu_pages_list *freelist) 200 { 201 struct iova_fq *fq; 202 unsigned long flags; 203 unsigned int idx; 204 205 /* 206 * Order against the IOMMU driver's pagetable update from unmapping 207 * @pte, to guarantee that fq_flush_iotlb() observes that if called 208 * from a different CPU before we release the lock below. Full barrier 209 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 210 * written fq state here. 211 */ 212 smp_mb(); 213 214 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 215 fq = cookie->single_fq; 216 else 217 fq = raw_cpu_ptr(cookie->percpu_fq); 218 219 spin_lock_irqsave(&fq->lock, flags); 220 221 /* 222 * First remove all entries from the flush queue that have already been 223 * flushed out on another CPU. This makes the fq_full() check below less 224 * likely to be true. 225 */ 226 fq_ring_free_locked(cookie, fq); 227 228 if (fq_full(fq)) { 229 fq_flush_iotlb(cookie); 230 fq_ring_free_locked(cookie, fq); 231 } 232 233 idx = fq_ring_add(fq); 234 235 fq->entries[idx].iova_pfn = pfn; 236 fq->entries[idx].pages = pages; 237 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 238 iommu_pages_list_splice(freelist, &fq->entries[idx].freelist); 239 240 spin_unlock_irqrestore(&fq->lock, flags); 241 242 /* Avoid false sharing as much as possible. */ 243 if (!atomic_read(&cookie->fq_timer_on) && 244 !atomic_xchg(&cookie->fq_timer_on, 1)) 245 mod_timer(&cookie->fq_timer, 246 jiffies + msecs_to_jiffies(cookie->options.fq_timeout)); 247 } 248 249 static void iommu_dma_free_fq_single(struct iova_fq *fq) 250 { 251 int idx; 252 253 fq_ring_for_each(idx, fq) 254 iommu_put_pages_list(&fq->entries[idx].freelist); 255 vfree(fq); 256 } 257 258 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq) 259 { 260 int cpu, idx; 261 262 /* The IOVAs will be torn down separately, so just free our queued pages */ 263 for_each_possible_cpu(cpu) { 264 struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu); 265 266 fq_ring_for_each(idx, fq) 267 iommu_put_pages_list(&fq->entries[idx].freelist); 268 } 269 270 free_percpu(percpu_fq); 271 } 272 273 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 274 { 275 if (!cookie->fq_domain) 276 return; 277 278 timer_delete_sync(&cookie->fq_timer); 279 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 280 iommu_dma_free_fq_single(cookie->single_fq); 281 else 282 iommu_dma_free_fq_percpu(cookie->percpu_fq); 283 } 284 285 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size) 286 { 287 int i; 288 289 fq->head = 0; 290 fq->tail = 0; 291 fq->mod_mask = fq_size - 1; 292 293 spin_lock_init(&fq->lock); 294 295 for (i = 0; i < fq_size; i++) 296 fq->entries[i].freelist = 297 IOMMU_PAGES_LIST_INIT(fq->entries[i].freelist); 298 } 299 300 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie) 301 { 302 size_t fq_size = cookie->options.fq_size; 303 struct iova_fq *queue; 304 305 queue = vmalloc(struct_size(queue, entries, fq_size)); 306 if (!queue) 307 return -ENOMEM; 308 iommu_dma_init_one_fq(queue, fq_size); 309 cookie->single_fq = queue; 310 311 return 0; 312 } 313 314 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie) 315 { 316 size_t fq_size = cookie->options.fq_size; 317 struct iova_fq __percpu *queue; 318 int cpu; 319 320 queue = __alloc_percpu(struct_size(queue, entries, fq_size), 321 __alignof__(*queue)); 322 if (!queue) 323 return -ENOMEM; 324 325 for_each_possible_cpu(cpu) 326 iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size); 327 cookie->percpu_fq = queue; 328 return 0; 329 } 330 331 /* sysfs updates are serialised by the mutex of the group owning @domain */ 332 int iommu_dma_init_fq(struct iommu_domain *domain) 333 { 334 struct iommu_dma_cookie *cookie = domain->iova_cookie; 335 int rc; 336 337 if (cookie->fq_domain) 338 return 0; 339 340 atomic64_set(&cookie->fq_flush_start_cnt, 0); 341 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 342 343 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) 344 rc = iommu_dma_init_fq_single(cookie); 345 else 346 rc = iommu_dma_init_fq_percpu(cookie); 347 348 if (rc) { 349 pr_warn("iova flush queue initialization failed\n"); 350 return -ENOMEM; 351 } 352 353 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 354 atomic_set(&cookie->fq_timer_on, 0); 355 /* 356 * Prevent incomplete fq state being observable. Pairs with path from 357 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 358 */ 359 smp_wmb(); 360 WRITE_ONCE(cookie->fq_domain, domain); 361 return 0; 362 } 363 364 /** 365 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 366 * @domain: IOMMU domain to prepare for DMA-API usage 367 */ 368 int iommu_get_dma_cookie(struct iommu_domain *domain) 369 { 370 struct iommu_dma_cookie *cookie; 371 372 if (domain->cookie_type != IOMMU_COOKIE_NONE) 373 return -EEXIST; 374 375 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 376 if (!cookie) 377 return -ENOMEM; 378 379 INIT_LIST_HEAD(&cookie->msi_page_list); 380 domain->cookie_type = IOMMU_COOKIE_DMA_IOVA; 381 domain->iova_cookie = cookie; 382 return 0; 383 } 384 385 /** 386 * iommu_get_msi_cookie - Acquire just MSI remapping resources 387 * @domain: IOMMU domain to prepare 388 * @base: Start address of IOVA region for MSI mappings 389 * 390 * Users who manage their own IOVA allocation and do not want DMA API support, 391 * but would still like to take advantage of automatic MSI remapping, can use 392 * this to initialise their own domain appropriately. Users should reserve a 393 * contiguous IOVA region, starting at @base, large enough to accommodate the 394 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 395 * used by the devices attached to @domain. 396 */ 397 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 398 { 399 struct iommu_dma_msi_cookie *cookie; 400 401 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 402 return -EINVAL; 403 404 if (domain->cookie_type != IOMMU_COOKIE_NONE) 405 return -EEXIST; 406 407 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 408 if (!cookie) 409 return -ENOMEM; 410 411 cookie->msi_iova = base; 412 INIT_LIST_HEAD(&cookie->msi_page_list); 413 domain->cookie_type = IOMMU_COOKIE_DMA_MSI; 414 domain->msi_cookie = cookie; 415 return 0; 416 } 417 EXPORT_SYMBOL(iommu_get_msi_cookie); 418 419 /** 420 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 421 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 422 */ 423 void iommu_put_dma_cookie(struct iommu_domain *domain) 424 { 425 struct iommu_dma_cookie *cookie = domain->iova_cookie; 426 struct iommu_dma_msi_page *msi, *tmp; 427 428 if (cookie->iovad.granule) { 429 iommu_dma_free_fq(cookie); 430 put_iova_domain(&cookie->iovad); 431 } 432 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) 433 kfree(msi); 434 kfree(cookie); 435 } 436 437 /** 438 * iommu_put_msi_cookie - Release a domain's MSI mapping resources 439 * @domain: IOMMU domain previously prepared by iommu_get_msi_cookie() 440 */ 441 void iommu_put_msi_cookie(struct iommu_domain *domain) 442 { 443 struct iommu_dma_msi_cookie *cookie = domain->msi_cookie; 444 struct iommu_dma_msi_page *msi, *tmp; 445 446 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) 447 kfree(msi); 448 kfree(cookie); 449 } 450 451 /** 452 * iommu_dma_get_resv_regions - Reserved region driver helper 453 * @dev: Device from iommu_get_resv_regions() 454 * @list: Reserved region list from iommu_get_resv_regions() 455 * 456 * IOMMU drivers can use this to implement their .get_resv_regions callback 457 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 458 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 459 * reservation. 460 */ 461 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 462 { 463 464 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 465 iort_iommu_get_resv_regions(dev, list); 466 467 if (dev->of_node) 468 of_iommu_get_resv_regions(dev, list); 469 } 470 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 471 472 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 473 phys_addr_t start, phys_addr_t end) 474 { 475 struct iova_domain *iovad = &cookie->iovad; 476 struct iommu_dma_msi_page *msi_page; 477 int i, num_pages; 478 479 start -= iova_offset(iovad, start); 480 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 481 482 for (i = 0; i < num_pages; i++) { 483 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 484 if (!msi_page) 485 return -ENOMEM; 486 487 msi_page->phys = start; 488 msi_page->iova = start; 489 INIT_LIST_HEAD(&msi_page->list); 490 list_add(&msi_page->list, &cookie->msi_page_list); 491 start += iovad->granule; 492 } 493 494 return 0; 495 } 496 497 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 498 const struct list_head *b) 499 { 500 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 501 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 502 503 return res_a->res->start > res_b->res->start; 504 } 505 506 static int iova_reserve_pci_windows(struct pci_dev *dev, 507 struct iova_domain *iovad) 508 { 509 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 510 struct resource_entry *window; 511 unsigned long lo, hi; 512 phys_addr_t start = 0, end; 513 514 resource_list_for_each_entry(window, &bridge->windows) { 515 if (resource_type(window->res) != IORESOURCE_MEM) 516 continue; 517 518 lo = iova_pfn(iovad, window->res->start - window->offset); 519 hi = iova_pfn(iovad, window->res->end - window->offset); 520 reserve_iova(iovad, lo, hi); 521 } 522 523 /* Get reserved DMA windows from host bridge */ 524 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 525 resource_list_for_each_entry(window, &bridge->dma_ranges) { 526 end = window->res->start - window->offset; 527 resv_iova: 528 if (end > start) { 529 lo = iova_pfn(iovad, start); 530 hi = iova_pfn(iovad, end); 531 reserve_iova(iovad, lo, hi); 532 } else if (end < start) { 533 /* DMA ranges should be non-overlapping */ 534 dev_err(&dev->dev, 535 "Failed to reserve IOVA [%pa-%pa]\n", 536 &start, &end); 537 return -EINVAL; 538 } 539 540 start = window->res->end - window->offset + 1; 541 /* If window is last entry */ 542 if (window->node.next == &bridge->dma_ranges && 543 end != ~(phys_addr_t)0) { 544 end = ~(phys_addr_t)0; 545 goto resv_iova; 546 } 547 } 548 549 return 0; 550 } 551 552 static int iova_reserve_iommu_regions(struct device *dev, 553 struct iommu_domain *domain) 554 { 555 struct iommu_dma_cookie *cookie = domain->iova_cookie; 556 struct iova_domain *iovad = &cookie->iovad; 557 struct iommu_resv_region *region; 558 LIST_HEAD(resv_regions); 559 int ret = 0; 560 561 if (dev_is_pci(dev)) { 562 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 563 if (ret) 564 return ret; 565 } 566 567 iommu_get_resv_regions(dev, &resv_regions); 568 list_for_each_entry(region, &resv_regions, list) { 569 unsigned long lo, hi; 570 571 /* We ARE the software that manages these! */ 572 if (region->type == IOMMU_RESV_SW_MSI) 573 continue; 574 575 lo = iova_pfn(iovad, region->start); 576 hi = iova_pfn(iovad, region->start + region->length - 1); 577 reserve_iova(iovad, lo, hi); 578 579 if (region->type == IOMMU_RESV_MSI) 580 ret = cookie_init_hw_msi_region(cookie, region->start, 581 region->start + region->length); 582 if (ret) 583 break; 584 } 585 iommu_put_resv_regions(dev, &resv_regions); 586 587 return ret; 588 } 589 590 static bool dev_is_untrusted(struct device *dev) 591 { 592 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 593 } 594 595 static bool dev_use_swiotlb(struct device *dev, size_t size, 596 enum dma_data_direction dir) 597 { 598 return IS_ENABLED(CONFIG_SWIOTLB) && 599 (dev_is_untrusted(dev) || 600 dma_kmalloc_needs_bounce(dev, size, dir)); 601 } 602 603 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg, 604 int nents, enum dma_data_direction dir) 605 { 606 struct scatterlist *s; 607 int i; 608 609 if (!IS_ENABLED(CONFIG_SWIOTLB)) 610 return false; 611 612 if (dev_is_untrusted(dev)) 613 return true; 614 615 /* 616 * If kmalloc() buffers are not DMA-safe for this device and 617 * direction, check the individual lengths in the sg list. If any 618 * element is deemed unsafe, use the swiotlb for bouncing. 619 */ 620 if (!dma_kmalloc_safe(dev, dir)) { 621 for_each_sg(sg, s, nents, i) 622 if (!dma_kmalloc_size_aligned(s->length)) 623 return true; 624 } 625 626 return false; 627 } 628 629 /** 630 * iommu_dma_init_options - Initialize dma-iommu options 631 * @options: The options to be initialized 632 * @dev: Device the options are set for 633 * 634 * This allows tuning dma-iommu specific to device properties 635 */ 636 static void iommu_dma_init_options(struct iommu_dma_options *options, 637 struct device *dev) 638 { 639 /* Shadowing IOTLB flushes do better with a single large queue */ 640 if (dev->iommu->shadow_on_flush) { 641 options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE; 642 options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT; 643 options->fq_size = IOVA_SINGLE_FQ_SIZE; 644 } else { 645 options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE; 646 options->fq_size = IOVA_DEFAULT_FQ_SIZE; 647 options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT; 648 } 649 } 650 651 /** 652 * iommu_dma_init_domain - Initialise a DMA mapping domain 653 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 654 * @dev: Device the domain is being initialised for 655 * 656 * If the geometry and dma_range_map include address 0, we reserve that page 657 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 658 * any change which could make prior IOVAs invalid will fail. 659 */ 660 static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev) 661 { 662 struct iommu_dma_cookie *cookie = domain->iova_cookie; 663 const struct bus_dma_region *map = dev->dma_range_map; 664 unsigned long order, base_pfn; 665 struct iova_domain *iovad; 666 int ret; 667 668 if (!cookie || domain->cookie_type != IOMMU_COOKIE_DMA_IOVA) 669 return -EINVAL; 670 671 iovad = &cookie->iovad; 672 673 /* Use the smallest supported page size for IOVA granularity */ 674 order = __ffs(domain->pgsize_bitmap); 675 base_pfn = 1; 676 677 /* Check the domain allows at least some access to the device... */ 678 if (map) { 679 if (dma_range_map_min(map) > domain->geometry.aperture_end || 680 dma_range_map_max(map) < domain->geometry.aperture_start) { 681 pr_warn("specified DMA range outside IOMMU capability\n"); 682 return -EFAULT; 683 } 684 } 685 /* ...then finally give it a kicking to make sure it fits */ 686 base_pfn = max_t(unsigned long, base_pfn, 687 domain->geometry.aperture_start >> order); 688 689 /* start_pfn is always nonzero for an already-initialised domain */ 690 if (iovad->start_pfn) { 691 if (1UL << order != iovad->granule || 692 base_pfn != iovad->start_pfn) { 693 pr_warn("Incompatible range for DMA domain\n"); 694 return -EFAULT; 695 } 696 697 return 0; 698 } 699 700 init_iova_domain(iovad, 1UL << order, base_pfn); 701 ret = iova_domain_init_rcaches(iovad); 702 if (ret) 703 return ret; 704 705 iommu_dma_init_options(&cookie->options, dev); 706 707 /* If the FQ fails we can simply fall back to strict mode */ 708 if (domain->type == IOMMU_DOMAIN_DMA_FQ && 709 (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain))) 710 domain->type = IOMMU_DOMAIN_DMA; 711 712 return iova_reserve_iommu_regions(dev, domain); 713 } 714 715 /** 716 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 717 * page flags. 718 * @dir: Direction of DMA transfer 719 * @coherent: Is the DMA master cache-coherent? 720 * @attrs: DMA attributes for the mapping 721 * 722 * Return: corresponding IOMMU API page protection flags 723 */ 724 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 725 unsigned long attrs) 726 { 727 int prot = coherent ? IOMMU_CACHE : 0; 728 729 if (attrs & DMA_ATTR_PRIVILEGED) 730 prot |= IOMMU_PRIV; 731 732 switch (dir) { 733 case DMA_BIDIRECTIONAL: 734 return prot | IOMMU_READ | IOMMU_WRITE; 735 case DMA_TO_DEVICE: 736 return prot | IOMMU_READ; 737 case DMA_FROM_DEVICE: 738 return prot | IOMMU_WRITE; 739 default: 740 return 0; 741 } 742 } 743 744 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 745 size_t size, u64 dma_limit, struct device *dev) 746 { 747 struct iommu_dma_cookie *cookie = domain->iova_cookie; 748 struct iova_domain *iovad = &cookie->iovad; 749 unsigned long shift, iova_len, iova; 750 751 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) { 752 domain->msi_cookie->msi_iova += size; 753 return domain->msi_cookie->msi_iova - size; 754 } 755 756 shift = iova_shift(iovad); 757 iova_len = size >> shift; 758 759 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 760 761 if (domain->geometry.force_aperture) 762 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 763 764 /* 765 * Try to use all the 32-bit PCI addresses first. The original SAC vs. 766 * DAC reasoning loses relevance with PCIe, but enough hardware and 767 * firmware bugs are still lurking out there that it's safest not to 768 * venture into the 64-bit space until necessary. 769 * 770 * If your device goes wrong after seeing the notice then likely either 771 * its driver is not setting DMA masks accurately, the hardware has 772 * some inherent bug in handling >32-bit addresses, or not all the 773 * expected address bits are wired up between the device and the IOMMU. 774 */ 775 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) { 776 iova = alloc_iova_fast(iovad, iova_len, 777 DMA_BIT_MASK(32) >> shift, false); 778 if (iova) 779 goto done; 780 781 dev->iommu->pci_32bit_workaround = false; 782 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit)); 783 } 784 785 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true); 786 done: 787 return (dma_addr_t)iova << shift; 788 } 789 790 static void iommu_dma_free_iova(struct iommu_domain *domain, dma_addr_t iova, 791 size_t size, struct iommu_iotlb_gather *gather) 792 { 793 struct iova_domain *iovad = &domain->iova_cookie->iovad; 794 795 /* The MSI case is only ever cleaning up its most recent allocation */ 796 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) 797 domain->msi_cookie->msi_iova -= size; 798 else if (gather && gather->queued) 799 queue_iova(domain->iova_cookie, iova_pfn(iovad, iova), 800 size >> iova_shift(iovad), 801 &gather->freelist); 802 else 803 free_iova_fast(iovad, iova_pfn(iovad, iova), 804 size >> iova_shift(iovad)); 805 } 806 807 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 808 size_t size) 809 { 810 struct iommu_domain *domain = iommu_get_dma_domain(dev); 811 struct iommu_dma_cookie *cookie = domain->iova_cookie; 812 struct iova_domain *iovad = &cookie->iovad; 813 size_t iova_off = iova_offset(iovad, dma_addr); 814 struct iommu_iotlb_gather iotlb_gather; 815 size_t unmapped; 816 817 dma_addr -= iova_off; 818 size = iova_align(iovad, size + iova_off); 819 iommu_iotlb_gather_init(&iotlb_gather); 820 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 821 822 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 823 WARN_ON(unmapped != size); 824 825 if (!iotlb_gather.queued) 826 iommu_iotlb_sync(domain, &iotlb_gather); 827 iommu_dma_free_iova(domain, dma_addr, size, &iotlb_gather); 828 } 829 830 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 831 size_t size, int prot, u64 dma_mask) 832 { 833 struct iommu_domain *domain = iommu_get_dma_domain(dev); 834 struct iommu_dma_cookie *cookie = domain->iova_cookie; 835 struct iova_domain *iovad = &cookie->iovad; 836 size_t iova_off = iova_offset(iovad, phys); 837 dma_addr_t iova; 838 839 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 840 iommu_deferred_attach(dev, domain)) 841 return DMA_MAPPING_ERROR; 842 843 /* If anyone ever wants this we'd need support in the IOVA allocator */ 844 if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad), 845 "Unsupported alignment constraint\n")) 846 return DMA_MAPPING_ERROR; 847 848 size = iova_align(iovad, size + iova_off); 849 850 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 851 if (!iova) 852 return DMA_MAPPING_ERROR; 853 854 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { 855 iommu_dma_free_iova(domain, iova, size, NULL); 856 return DMA_MAPPING_ERROR; 857 } 858 return iova + iova_off; 859 } 860 861 static void __iommu_dma_free_pages(struct page **pages, int count) 862 { 863 while (count--) 864 __free_page(pages[count]); 865 kvfree(pages); 866 } 867 868 static struct page **__iommu_dma_alloc_pages(struct device *dev, 869 unsigned int count, unsigned long order_mask, gfp_t gfp) 870 { 871 struct page **pages; 872 unsigned int i = 0, nid = dev_to_node(dev); 873 874 order_mask &= GENMASK(MAX_PAGE_ORDER, 0); 875 if (!order_mask) 876 return NULL; 877 878 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 879 if (!pages) 880 return NULL; 881 882 /* IOMMU can map any pages, so himem can also be used here */ 883 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 884 885 while (count) { 886 struct page *page = NULL; 887 unsigned int order_size; 888 889 /* 890 * Higher-order allocations are a convenience rather 891 * than a necessity, hence using __GFP_NORETRY until 892 * falling back to minimum-order allocations. 893 */ 894 for (order_mask &= GENMASK(__fls(count), 0); 895 order_mask; order_mask &= ~order_size) { 896 unsigned int order = __fls(order_mask); 897 gfp_t alloc_flags = gfp; 898 899 order_size = 1U << order; 900 if (order_mask > order_size) 901 alloc_flags |= __GFP_NORETRY; 902 page = alloc_pages_node(nid, alloc_flags, order); 903 if (!page) 904 continue; 905 if (order) 906 split_page(page, order); 907 break; 908 } 909 if (!page) { 910 __iommu_dma_free_pages(pages, i); 911 return NULL; 912 } 913 count -= order_size; 914 while (order_size--) 915 pages[i++] = page++; 916 } 917 return pages; 918 } 919 920 /* 921 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 922 * but an IOMMU which supports smaller pages might not map the whole thing. 923 */ 924 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 925 size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs) 926 { 927 struct iommu_domain *domain = iommu_get_dma_domain(dev); 928 struct iommu_dma_cookie *cookie = domain->iova_cookie; 929 struct iova_domain *iovad = &cookie->iovad; 930 bool coherent = dev_is_dma_coherent(dev); 931 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 932 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 933 struct page **pages; 934 dma_addr_t iova; 935 ssize_t ret; 936 937 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 938 iommu_deferred_attach(dev, domain)) 939 return NULL; 940 941 min_size = alloc_sizes & -alloc_sizes; 942 if (min_size < PAGE_SIZE) { 943 min_size = PAGE_SIZE; 944 alloc_sizes |= PAGE_SIZE; 945 } else { 946 size = ALIGN(size, min_size); 947 } 948 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 949 alloc_sizes = min_size; 950 951 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 952 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 953 gfp); 954 if (!pages) 955 return NULL; 956 957 size = iova_align(iovad, size); 958 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 959 if (!iova) 960 goto out_free_pages; 961 962 /* 963 * Remove the zone/policy flags from the GFP - these are applied to the 964 * __iommu_dma_alloc_pages() but are not used for the supporting 965 * internal allocations that follow. 966 */ 967 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); 968 969 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) 970 goto out_free_iova; 971 972 if (!(ioprot & IOMMU_CACHE)) { 973 struct scatterlist *sg; 974 int i; 975 976 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 977 arch_dma_prep_coherent(sg_page(sg), sg->length); 978 } 979 980 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, 981 gfp); 982 if (ret < 0 || ret < size) 983 goto out_free_sg; 984 985 sgt->sgl->dma_address = iova; 986 sgt->sgl->dma_length = size; 987 return pages; 988 989 out_free_sg: 990 sg_free_table(sgt); 991 out_free_iova: 992 iommu_dma_free_iova(domain, iova, size, NULL); 993 out_free_pages: 994 __iommu_dma_free_pages(pages, count); 995 return NULL; 996 } 997 998 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 999 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 1000 { 1001 struct page **pages; 1002 struct sg_table sgt; 1003 void *vaddr; 1004 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1005 1006 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs); 1007 if (!pages) 1008 return NULL; 1009 *dma_handle = sgt.sgl->dma_address; 1010 sg_free_table(&sgt); 1011 vaddr = dma_common_pages_remap(pages, size, prot, 1012 __builtin_return_address(0)); 1013 if (!vaddr) 1014 goto out_unmap; 1015 return vaddr; 1016 1017 out_unmap: 1018 __iommu_dma_unmap(dev, *dma_handle, size); 1019 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1020 return NULL; 1021 } 1022 1023 /* 1024 * This is the actual return value from the iommu_dma_alloc_noncontiguous. 1025 * 1026 * The users of the DMA API should only care about the sg_table, but to make 1027 * the DMA-API internal vmaping and freeing easier we stash away the page 1028 * array as well (except for the fallback case). This can go away any time, 1029 * e.g. when a vmap-variant that takes a scatterlist comes along. 1030 */ 1031 struct dma_sgt_handle { 1032 struct sg_table sgt; 1033 struct page **pages; 1034 }; 1035 #define sgt_handle(sgt) \ 1036 container_of((sgt), struct dma_sgt_handle, sgt) 1037 1038 struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size, 1039 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 1040 { 1041 struct dma_sgt_handle *sh; 1042 1043 sh = kmalloc(sizeof(*sh), gfp); 1044 if (!sh) 1045 return NULL; 1046 1047 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs); 1048 if (!sh->pages) { 1049 kfree(sh); 1050 return NULL; 1051 } 1052 return &sh->sgt; 1053 } 1054 1055 void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 1056 struct sg_table *sgt, enum dma_data_direction dir) 1057 { 1058 struct dma_sgt_handle *sh = sgt_handle(sgt); 1059 1060 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 1061 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 1062 sg_free_table(&sh->sgt); 1063 kfree(sh); 1064 } 1065 1066 void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size, 1067 struct sg_table *sgt) 1068 { 1069 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1070 1071 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 1072 } 1073 1074 int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 1075 size_t size, struct sg_table *sgt) 1076 { 1077 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1078 1079 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 1080 return -ENXIO; 1081 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 1082 } 1083 1084 void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, 1085 size_t size, enum dma_data_direction dir) 1086 { 1087 phys_addr_t phys; 1088 1089 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1090 return; 1091 1092 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1093 if (!dev_is_dma_coherent(dev)) 1094 arch_sync_dma_for_cpu(phys, size, dir); 1095 1096 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 1097 } 1098 1099 void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, 1100 size_t size, enum dma_data_direction dir) 1101 { 1102 phys_addr_t phys; 1103 1104 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 1105 return; 1106 1107 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 1108 swiotlb_sync_single_for_device(dev, phys, size, dir); 1109 1110 if (!dev_is_dma_coherent(dev)) 1111 arch_sync_dma_for_device(phys, size, dir); 1112 } 1113 1114 void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 1115 int nelems, enum dma_data_direction dir) 1116 { 1117 struct scatterlist *sg; 1118 int i; 1119 1120 if (sg_dma_is_swiotlb(sgl)) 1121 for_each_sg(sgl, sg, nelems, i) 1122 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 1123 sg->length, dir); 1124 else if (!dev_is_dma_coherent(dev)) 1125 for_each_sg(sgl, sg, nelems, i) 1126 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 1127 } 1128 1129 void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 1130 int nelems, enum dma_data_direction dir) 1131 { 1132 struct scatterlist *sg; 1133 int i; 1134 1135 if (sg_dma_is_swiotlb(sgl)) 1136 for_each_sg(sgl, sg, nelems, i) 1137 iommu_dma_sync_single_for_device(dev, 1138 sg_dma_address(sg), 1139 sg->length, dir); 1140 else if (!dev_is_dma_coherent(dev)) 1141 for_each_sg(sgl, sg, nelems, i) 1142 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 1143 } 1144 1145 static phys_addr_t iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys, 1146 size_t size, enum dma_data_direction dir, unsigned long attrs) 1147 { 1148 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1149 struct iova_domain *iovad = &domain->iova_cookie->iovad; 1150 1151 if (!is_swiotlb_active(dev)) { 1152 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 1153 return (phys_addr_t)DMA_MAPPING_ERROR; 1154 } 1155 1156 trace_swiotlb_bounced(dev, phys, size); 1157 1158 phys = swiotlb_tbl_map_single(dev, phys, size, iova_mask(iovad), dir, 1159 attrs); 1160 1161 /* 1162 * Untrusted devices should not see padding areas with random leftover 1163 * kernel data, so zero the pre- and post-padding. 1164 * swiotlb_tbl_map_single() has initialized the bounce buffer proper to 1165 * the contents of the original memory buffer. 1166 */ 1167 if (phys != (phys_addr_t)DMA_MAPPING_ERROR && dev_is_untrusted(dev)) { 1168 size_t start, virt = (size_t)phys_to_virt(phys); 1169 1170 /* Pre-padding */ 1171 start = iova_align_down(iovad, virt); 1172 memset((void *)start, 0, virt - start); 1173 1174 /* Post-padding */ 1175 start = virt + size; 1176 memset((void *)start, 0, iova_align(iovad, start) - start); 1177 } 1178 1179 return phys; 1180 } 1181 1182 /* 1183 * Checks if a physical buffer has unaligned boundaries with respect to 1184 * the IOMMU granule. Returns non-zero if either the start or end 1185 * address is not aligned to the granule boundary. 1186 */ 1187 static inline size_t iova_unaligned(struct iova_domain *iovad, phys_addr_t phys, 1188 size_t size) 1189 { 1190 return iova_offset(iovad, phys | size); 1191 } 1192 1193 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 1194 unsigned long offset, size_t size, enum dma_data_direction dir, 1195 unsigned long attrs) 1196 { 1197 phys_addr_t phys = page_to_phys(page) + offset; 1198 bool coherent = dev_is_dma_coherent(dev); 1199 int prot = dma_info_to_prot(dir, coherent, attrs); 1200 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1201 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1202 struct iova_domain *iovad = &cookie->iovad; 1203 dma_addr_t iova, dma_mask = dma_get_mask(dev); 1204 1205 /* 1206 * If both the physical buffer start address and size are page aligned, 1207 * we don't need to use a bounce page. 1208 */ 1209 if (dev_use_swiotlb(dev, size, dir) && 1210 iova_unaligned(iovad, phys, size)) { 1211 phys = iommu_dma_map_swiotlb(dev, phys, size, dir, attrs); 1212 if (phys == (phys_addr_t)DMA_MAPPING_ERROR) 1213 return DMA_MAPPING_ERROR; 1214 } 1215 1216 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1217 arch_sync_dma_for_device(phys, size, dir); 1218 1219 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1220 if (iova == DMA_MAPPING_ERROR) 1221 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1222 return iova; 1223 } 1224 1225 void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1226 size_t size, enum dma_data_direction dir, unsigned long attrs) 1227 { 1228 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1229 phys_addr_t phys; 1230 1231 phys = iommu_iova_to_phys(domain, dma_handle); 1232 if (WARN_ON(!phys)) 1233 return; 1234 1235 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1236 arch_sync_dma_for_cpu(phys, size, dir); 1237 1238 __iommu_dma_unmap(dev, dma_handle, size); 1239 1240 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1241 } 1242 1243 /* 1244 * Prepare a successfully-mapped scatterlist to give back to the caller. 1245 * 1246 * At this point the segments are already laid out by iommu_dma_map_sg() to 1247 * avoid individually crossing any boundaries, so we merely need to check a 1248 * segment's start address to avoid concatenating across one. 1249 */ 1250 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1251 dma_addr_t dma_addr) 1252 { 1253 struct scatterlist *s, *cur = sg; 1254 unsigned long seg_mask = dma_get_seg_boundary(dev); 1255 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1256 int i, count = 0; 1257 1258 for_each_sg(sg, s, nents, i) { 1259 /* Restore this segment's original unaligned fields first */ 1260 dma_addr_t s_dma_addr = sg_dma_address(s); 1261 unsigned int s_iova_off = sg_dma_address(s); 1262 unsigned int s_length = sg_dma_len(s); 1263 unsigned int s_iova_len = s->length; 1264 1265 sg_dma_address(s) = DMA_MAPPING_ERROR; 1266 sg_dma_len(s) = 0; 1267 1268 if (sg_dma_is_bus_address(s)) { 1269 if (i > 0) 1270 cur = sg_next(cur); 1271 1272 sg_dma_unmark_bus_address(s); 1273 sg_dma_address(cur) = s_dma_addr; 1274 sg_dma_len(cur) = s_length; 1275 sg_dma_mark_bus_address(cur); 1276 count++; 1277 cur_len = 0; 1278 continue; 1279 } 1280 1281 s->offset += s_iova_off; 1282 s->length = s_length; 1283 1284 /* 1285 * Now fill in the real DMA data. If... 1286 * - there is a valid output segment to append to 1287 * - and this segment starts on an IOVA page boundary 1288 * - but doesn't fall at a segment boundary 1289 * - and wouldn't make the resulting output segment too long 1290 */ 1291 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1292 (max_len - cur_len >= s_length)) { 1293 /* ...then concatenate it with the previous one */ 1294 cur_len += s_length; 1295 } else { 1296 /* Otherwise start the next output segment */ 1297 if (i > 0) 1298 cur = sg_next(cur); 1299 cur_len = s_length; 1300 count++; 1301 1302 sg_dma_address(cur) = dma_addr + s_iova_off; 1303 } 1304 1305 sg_dma_len(cur) = cur_len; 1306 dma_addr += s_iova_len; 1307 1308 if (s_length + s_iova_off < s_iova_len) 1309 cur_len = 0; 1310 } 1311 return count; 1312 } 1313 1314 /* 1315 * If mapping failed, then just restore the original list, 1316 * but making sure the DMA fields are invalidated. 1317 */ 1318 static void __invalidate_sg(struct scatterlist *sg, int nents) 1319 { 1320 struct scatterlist *s; 1321 int i; 1322 1323 for_each_sg(sg, s, nents, i) { 1324 if (sg_dma_is_bus_address(s)) { 1325 sg_dma_unmark_bus_address(s); 1326 } else { 1327 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1328 s->offset += sg_dma_address(s); 1329 if (sg_dma_len(s)) 1330 s->length = sg_dma_len(s); 1331 } 1332 sg_dma_address(s) = DMA_MAPPING_ERROR; 1333 sg_dma_len(s) = 0; 1334 } 1335 } 1336 1337 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1338 int nents, enum dma_data_direction dir, unsigned long attrs) 1339 { 1340 struct scatterlist *s; 1341 int i; 1342 1343 for_each_sg(sg, s, nents, i) 1344 iommu_dma_unmap_page(dev, sg_dma_address(s), 1345 sg_dma_len(s), dir, attrs); 1346 } 1347 1348 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1349 int nents, enum dma_data_direction dir, unsigned long attrs) 1350 { 1351 struct scatterlist *s; 1352 int i; 1353 1354 sg_dma_mark_swiotlb(sg); 1355 1356 for_each_sg(sg, s, nents, i) { 1357 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1358 s->offset, s->length, dir, attrs); 1359 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1360 goto out_unmap; 1361 sg_dma_len(s) = s->length; 1362 } 1363 1364 return nents; 1365 1366 out_unmap: 1367 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1368 return -EIO; 1369 } 1370 1371 /* 1372 * The DMA API client is passing in a scatterlist which could describe 1373 * any old buffer layout, but the IOMMU API requires everything to be 1374 * aligned to IOMMU pages. Hence the need for this complicated bit of 1375 * impedance-matching, to be able to hand off a suitably-aligned list, 1376 * but still preserve the original offsets and sizes for the caller. 1377 */ 1378 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1379 enum dma_data_direction dir, unsigned long attrs) 1380 { 1381 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1382 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1383 struct iova_domain *iovad = &cookie->iovad; 1384 struct scatterlist *s, *prev = NULL; 1385 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1386 struct pci_p2pdma_map_state p2pdma_state = {}; 1387 dma_addr_t iova; 1388 size_t iova_len = 0; 1389 unsigned long mask = dma_get_seg_boundary(dev); 1390 ssize_t ret; 1391 int i; 1392 1393 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1394 ret = iommu_deferred_attach(dev, domain); 1395 if (ret) 1396 goto out; 1397 } 1398 1399 if (dev_use_sg_swiotlb(dev, sg, nents, dir)) 1400 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1401 1402 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1403 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1404 1405 /* 1406 * Work out how much IOVA space we need, and align the segments to 1407 * IOVA granules for the IOMMU driver to handle. With some clever 1408 * trickery we can modify the list in-place, but reversibly, by 1409 * stashing the unaligned parts in the as-yet-unused DMA fields. 1410 */ 1411 for_each_sg(sg, s, nents, i) { 1412 size_t s_iova_off = iova_offset(iovad, s->offset); 1413 size_t s_length = s->length; 1414 size_t pad_len = (mask - iova_len + 1) & mask; 1415 1416 switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(s))) { 1417 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1418 /* 1419 * Mapping through host bridge should be mapped with 1420 * regular IOVAs, thus we do nothing here and continue 1421 * below. 1422 */ 1423 break; 1424 case PCI_P2PDMA_MAP_NONE: 1425 break; 1426 case PCI_P2PDMA_MAP_BUS_ADDR: 1427 /* 1428 * iommu_map_sg() will skip this segment as it is marked 1429 * as a bus address, __finalise_sg() will copy the dma 1430 * address into the output segment. 1431 */ 1432 s->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state, 1433 sg_phys(s)); 1434 sg_dma_len(s) = sg->length; 1435 sg_dma_mark_bus_address(s); 1436 continue; 1437 default: 1438 ret = -EREMOTEIO; 1439 goto out_restore_sg; 1440 } 1441 1442 sg_dma_address(s) = s_iova_off; 1443 sg_dma_len(s) = s_length; 1444 s->offset -= s_iova_off; 1445 s_length = iova_align(iovad, s_length + s_iova_off); 1446 s->length = s_length; 1447 1448 /* 1449 * Due to the alignment of our single IOVA allocation, we can 1450 * depend on these assumptions about the segment boundary mask: 1451 * - If mask size >= IOVA size, then the IOVA range cannot 1452 * possibly fall across a boundary, so we don't care. 1453 * - If mask size < IOVA size, then the IOVA range must start 1454 * exactly on a boundary, therefore we can lay things out 1455 * based purely on segment lengths without needing to know 1456 * the actual addresses beforehand. 1457 * - The mask must be a power of 2, so pad_len == 0 if 1458 * iova_len == 0, thus we cannot dereference prev the first 1459 * time through here (i.e. before it has a meaningful value). 1460 */ 1461 if (pad_len && pad_len < s_length - 1) { 1462 prev->length += pad_len; 1463 iova_len += pad_len; 1464 } 1465 1466 iova_len += s_length; 1467 prev = s; 1468 } 1469 1470 if (!iova_len) 1471 return __finalise_sg(dev, sg, nents, 0); 1472 1473 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1474 if (!iova) { 1475 ret = -ENOMEM; 1476 goto out_restore_sg; 1477 } 1478 1479 /* 1480 * We'll leave any physical concatenation to the IOMMU driver's 1481 * implementation - it knows better than we do. 1482 */ 1483 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 1484 if (ret < 0 || ret < iova_len) 1485 goto out_free_iova; 1486 1487 return __finalise_sg(dev, sg, nents, iova); 1488 1489 out_free_iova: 1490 iommu_dma_free_iova(domain, iova, iova_len, NULL); 1491 out_restore_sg: 1492 __invalidate_sg(sg, nents); 1493 out: 1494 if (ret != -ENOMEM && ret != -EREMOTEIO) 1495 return -EINVAL; 1496 return ret; 1497 } 1498 1499 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1500 enum dma_data_direction dir, unsigned long attrs) 1501 { 1502 dma_addr_t end = 0, start; 1503 struct scatterlist *tmp; 1504 int i; 1505 1506 if (sg_dma_is_swiotlb(sg)) { 1507 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1508 return; 1509 } 1510 1511 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1512 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1513 1514 /* 1515 * The scatterlist segments are mapped into a single 1516 * contiguous IOVA allocation, the start and end points 1517 * just have to be determined. 1518 */ 1519 for_each_sg(sg, tmp, nents, i) { 1520 if (sg_dma_is_bus_address(tmp)) { 1521 sg_dma_unmark_bus_address(tmp); 1522 continue; 1523 } 1524 1525 if (sg_dma_len(tmp) == 0) 1526 break; 1527 1528 start = sg_dma_address(tmp); 1529 break; 1530 } 1531 1532 nents -= i; 1533 for_each_sg(tmp, tmp, nents, i) { 1534 if (sg_dma_is_bus_address(tmp)) { 1535 sg_dma_unmark_bus_address(tmp); 1536 continue; 1537 } 1538 1539 if (sg_dma_len(tmp) == 0) 1540 break; 1541 1542 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1543 } 1544 1545 if (end) 1546 __iommu_dma_unmap(dev, start, end - start); 1547 } 1548 1549 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1550 size_t size, enum dma_data_direction dir, unsigned long attrs) 1551 { 1552 return __iommu_dma_map(dev, phys, size, 1553 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1554 dma_get_mask(dev)); 1555 } 1556 1557 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1558 size_t size, enum dma_data_direction dir, unsigned long attrs) 1559 { 1560 __iommu_dma_unmap(dev, handle, size); 1561 } 1562 1563 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1564 { 1565 size_t alloc_size = PAGE_ALIGN(size); 1566 int count = alloc_size >> PAGE_SHIFT; 1567 struct page *page = NULL, **pages = NULL; 1568 1569 /* Non-coherent atomic allocation? Easy */ 1570 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1571 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1572 return; 1573 1574 if (is_vmalloc_addr(cpu_addr)) { 1575 /* 1576 * If it the address is remapped, then it's either non-coherent 1577 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1578 */ 1579 pages = dma_common_find_pages(cpu_addr); 1580 if (!pages) 1581 page = vmalloc_to_page(cpu_addr); 1582 dma_common_free_remap(cpu_addr, alloc_size); 1583 } else { 1584 /* Lowmem means a coherent atomic or CMA allocation */ 1585 page = virt_to_page(cpu_addr); 1586 } 1587 1588 if (pages) 1589 __iommu_dma_free_pages(pages, count); 1590 if (page) 1591 dma_free_contiguous(dev, page, alloc_size); 1592 } 1593 1594 void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1595 dma_addr_t handle, unsigned long attrs) 1596 { 1597 __iommu_dma_unmap(dev, handle, size); 1598 __iommu_dma_free(dev, size, cpu_addr); 1599 } 1600 1601 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1602 struct page **pagep, gfp_t gfp, unsigned long attrs) 1603 { 1604 bool coherent = dev_is_dma_coherent(dev); 1605 size_t alloc_size = PAGE_ALIGN(size); 1606 int node = dev_to_node(dev); 1607 struct page *page = NULL; 1608 void *cpu_addr; 1609 1610 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1611 if (!page) 1612 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1613 if (!page) 1614 return NULL; 1615 1616 if (!coherent || PageHighMem(page)) { 1617 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1618 1619 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1620 prot, __builtin_return_address(0)); 1621 if (!cpu_addr) 1622 goto out_free_pages; 1623 1624 if (!coherent) 1625 arch_dma_prep_coherent(page, size); 1626 } else { 1627 cpu_addr = page_address(page); 1628 } 1629 1630 *pagep = page; 1631 memset(cpu_addr, 0, alloc_size); 1632 return cpu_addr; 1633 out_free_pages: 1634 dma_free_contiguous(dev, page, alloc_size); 1635 return NULL; 1636 } 1637 1638 void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 1639 gfp_t gfp, unsigned long attrs) 1640 { 1641 bool coherent = dev_is_dma_coherent(dev); 1642 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1643 struct page *page = NULL; 1644 void *cpu_addr; 1645 1646 gfp |= __GFP_ZERO; 1647 1648 if (gfpflags_allow_blocking(gfp) && 1649 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1650 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs); 1651 } 1652 1653 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1654 !gfpflags_allow_blocking(gfp) && !coherent) 1655 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1656 gfp, NULL); 1657 else 1658 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1659 if (!cpu_addr) 1660 return NULL; 1661 1662 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1663 dev->coherent_dma_mask); 1664 if (*handle == DMA_MAPPING_ERROR) { 1665 __iommu_dma_free(dev, size, cpu_addr); 1666 return NULL; 1667 } 1668 1669 return cpu_addr; 1670 } 1671 1672 int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1673 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1674 unsigned long attrs) 1675 { 1676 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1677 unsigned long pfn, off = vma->vm_pgoff; 1678 int ret; 1679 1680 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1681 1682 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1683 return ret; 1684 1685 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1686 return -ENXIO; 1687 1688 if (is_vmalloc_addr(cpu_addr)) { 1689 struct page **pages = dma_common_find_pages(cpu_addr); 1690 1691 if (pages) 1692 return vm_map_pages(vma, pages, nr_pages); 1693 pfn = vmalloc_to_pfn(cpu_addr); 1694 } else { 1695 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1696 } 1697 1698 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1699 vma->vm_end - vma->vm_start, 1700 vma->vm_page_prot); 1701 } 1702 1703 int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1704 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1705 unsigned long attrs) 1706 { 1707 struct page *page; 1708 int ret; 1709 1710 if (is_vmalloc_addr(cpu_addr)) { 1711 struct page **pages = dma_common_find_pages(cpu_addr); 1712 1713 if (pages) { 1714 return sg_alloc_table_from_pages(sgt, pages, 1715 PAGE_ALIGN(size) >> PAGE_SHIFT, 1716 0, size, GFP_KERNEL); 1717 } 1718 1719 page = vmalloc_to_page(cpu_addr); 1720 } else { 1721 page = virt_to_page(cpu_addr); 1722 } 1723 1724 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1725 if (!ret) 1726 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1727 return ret; 1728 } 1729 1730 unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1731 { 1732 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1733 1734 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1735 } 1736 1737 size_t iommu_dma_opt_mapping_size(void) 1738 { 1739 return iova_rcache_range(); 1740 } 1741 1742 size_t iommu_dma_max_mapping_size(struct device *dev) 1743 { 1744 if (dev_is_untrusted(dev)) 1745 return swiotlb_max_mapping_size(dev); 1746 1747 return SIZE_MAX; 1748 } 1749 1750 /** 1751 * dma_iova_try_alloc - Try to allocate an IOVA space 1752 * @dev: Device to allocate the IOVA space for 1753 * @state: IOVA state 1754 * @phys: physical address 1755 * @size: IOVA size 1756 * 1757 * Check if @dev supports the IOVA-based DMA API, and if yes allocate IOVA space 1758 * for the given base address and size. 1759 * 1760 * Note: @phys is only used to calculate the IOVA alignment. Callers that always 1761 * do PAGE_SIZE aligned transfers can safely pass 0 here. 1762 * 1763 * Returns %true if the IOVA-based DMA API can be used and IOVA space has been 1764 * allocated, or %false if the regular DMA API should be used. 1765 */ 1766 bool dma_iova_try_alloc(struct device *dev, struct dma_iova_state *state, 1767 phys_addr_t phys, size_t size) 1768 { 1769 struct iommu_dma_cookie *cookie; 1770 struct iommu_domain *domain; 1771 struct iova_domain *iovad; 1772 size_t iova_off; 1773 dma_addr_t addr; 1774 1775 memset(state, 0, sizeof(*state)); 1776 if (!use_dma_iommu(dev)) 1777 return false; 1778 1779 domain = iommu_get_dma_domain(dev); 1780 cookie = domain->iova_cookie; 1781 iovad = &cookie->iovad; 1782 iova_off = iova_offset(iovad, phys); 1783 1784 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 1785 iommu_deferred_attach(dev, iommu_get_domain_for_dev(dev))) 1786 return false; 1787 1788 if (WARN_ON_ONCE(!size)) 1789 return false; 1790 1791 /* 1792 * DMA_IOVA_USE_SWIOTLB is flag which is set by dma-iommu 1793 * internals, make sure that caller didn't set it and/or 1794 * didn't use this interface to map SIZE_MAX. 1795 */ 1796 if (WARN_ON_ONCE((u64)size & DMA_IOVA_USE_SWIOTLB)) 1797 return false; 1798 1799 addr = iommu_dma_alloc_iova(domain, 1800 iova_align(iovad, size + iova_off), 1801 dma_get_mask(dev), dev); 1802 if (!addr) 1803 return false; 1804 1805 state->addr = addr + iova_off; 1806 state->__size = size; 1807 return true; 1808 } 1809 EXPORT_SYMBOL_GPL(dma_iova_try_alloc); 1810 1811 /** 1812 * dma_iova_free - Free an IOVA space 1813 * @dev: Device to free the IOVA space for 1814 * @state: IOVA state 1815 * 1816 * Undoes a successful dma_try_iova_alloc(). 1817 * 1818 * Note that all dma_iova_link() calls need to be undone first. For callers 1819 * that never call dma_iova_unlink(), dma_iova_destroy() can be used instead 1820 * which unlinks all ranges and frees the IOVA space in a single efficient 1821 * operation. 1822 */ 1823 void dma_iova_free(struct device *dev, struct dma_iova_state *state) 1824 { 1825 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1826 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1827 struct iova_domain *iovad = &cookie->iovad; 1828 size_t iova_start_pad = iova_offset(iovad, state->addr); 1829 size_t size = dma_iova_size(state); 1830 1831 iommu_dma_free_iova(domain, state->addr - iova_start_pad, 1832 iova_align(iovad, size + iova_start_pad), NULL); 1833 } 1834 EXPORT_SYMBOL_GPL(dma_iova_free); 1835 1836 static int __dma_iova_link(struct device *dev, dma_addr_t addr, 1837 phys_addr_t phys, size_t size, enum dma_data_direction dir, 1838 unsigned long attrs) 1839 { 1840 bool coherent = dev_is_dma_coherent(dev); 1841 1842 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1843 arch_sync_dma_for_device(phys, size, dir); 1844 1845 return iommu_map_nosync(iommu_get_dma_domain(dev), addr, phys, size, 1846 dma_info_to_prot(dir, coherent, attrs), GFP_ATOMIC); 1847 } 1848 1849 static int iommu_dma_iova_bounce_and_link(struct device *dev, dma_addr_t addr, 1850 phys_addr_t phys, size_t bounce_len, 1851 enum dma_data_direction dir, unsigned long attrs, 1852 size_t iova_start_pad) 1853 { 1854 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1855 struct iova_domain *iovad = &domain->iova_cookie->iovad; 1856 phys_addr_t bounce_phys; 1857 int error; 1858 1859 bounce_phys = iommu_dma_map_swiotlb(dev, phys, bounce_len, dir, attrs); 1860 if (bounce_phys == DMA_MAPPING_ERROR) 1861 return -ENOMEM; 1862 1863 error = __dma_iova_link(dev, addr - iova_start_pad, 1864 bounce_phys - iova_start_pad, 1865 iova_align(iovad, bounce_len), dir, attrs); 1866 if (error) 1867 swiotlb_tbl_unmap_single(dev, bounce_phys, bounce_len, dir, 1868 attrs); 1869 return error; 1870 } 1871 1872 static int iommu_dma_iova_link_swiotlb(struct device *dev, 1873 struct dma_iova_state *state, phys_addr_t phys, size_t offset, 1874 size_t size, enum dma_data_direction dir, unsigned long attrs) 1875 { 1876 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1877 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1878 struct iova_domain *iovad = &cookie->iovad; 1879 size_t iova_start_pad = iova_offset(iovad, phys); 1880 size_t iova_end_pad = iova_offset(iovad, phys + size); 1881 dma_addr_t addr = state->addr + offset; 1882 size_t mapped = 0; 1883 int error; 1884 1885 if (iova_start_pad) { 1886 size_t bounce_len = min(size, iovad->granule - iova_start_pad); 1887 1888 error = iommu_dma_iova_bounce_and_link(dev, addr, phys, 1889 bounce_len, dir, attrs, iova_start_pad); 1890 if (error) 1891 return error; 1892 state->__size |= DMA_IOVA_USE_SWIOTLB; 1893 1894 mapped += bounce_len; 1895 size -= bounce_len; 1896 if (!size) 1897 return 0; 1898 } 1899 1900 size -= iova_end_pad; 1901 error = __dma_iova_link(dev, addr + mapped, phys + mapped, size, dir, 1902 attrs); 1903 if (error) 1904 goto out_unmap; 1905 mapped += size; 1906 1907 if (iova_end_pad) { 1908 error = iommu_dma_iova_bounce_and_link(dev, addr + mapped, 1909 phys + mapped, iova_end_pad, dir, attrs, 0); 1910 if (error) 1911 goto out_unmap; 1912 state->__size |= DMA_IOVA_USE_SWIOTLB; 1913 } 1914 1915 return 0; 1916 1917 out_unmap: 1918 dma_iova_unlink(dev, state, 0, mapped, dir, attrs); 1919 return error; 1920 } 1921 1922 /** 1923 * dma_iova_link - Link a range of IOVA space 1924 * @dev: DMA device 1925 * @state: IOVA state 1926 * @phys: physical address to link 1927 * @offset: offset into the IOVA state to map into 1928 * @size: size of the buffer 1929 * @dir: DMA direction 1930 * @attrs: attributes of mapping properties 1931 * 1932 * Link a range of IOVA space for the given IOVA state without IOTLB sync. 1933 * This function is used to link multiple physical addresses in contiguous 1934 * IOVA space without performing costly IOTLB sync. 1935 * 1936 * The caller is responsible to call to dma_iova_sync() to sync IOTLB at 1937 * the end of linkage. 1938 */ 1939 int dma_iova_link(struct device *dev, struct dma_iova_state *state, 1940 phys_addr_t phys, size_t offset, size_t size, 1941 enum dma_data_direction dir, unsigned long attrs) 1942 { 1943 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1944 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1945 struct iova_domain *iovad = &cookie->iovad; 1946 size_t iova_start_pad = iova_offset(iovad, phys); 1947 1948 if (WARN_ON_ONCE(iova_start_pad && offset > 0)) 1949 return -EIO; 1950 1951 if (dev_use_swiotlb(dev, size, dir) && 1952 iova_unaligned(iovad, phys, size)) 1953 return iommu_dma_iova_link_swiotlb(dev, state, phys, offset, 1954 size, dir, attrs); 1955 1956 return __dma_iova_link(dev, state->addr + offset - iova_start_pad, 1957 phys - iova_start_pad, 1958 iova_align(iovad, size + iova_start_pad), dir, attrs); 1959 } 1960 EXPORT_SYMBOL_GPL(dma_iova_link); 1961 1962 /** 1963 * dma_iova_sync - Sync IOTLB 1964 * @dev: DMA device 1965 * @state: IOVA state 1966 * @offset: offset into the IOVA state to sync 1967 * @size: size of the buffer 1968 * 1969 * Sync IOTLB for the given IOVA state. This function should be called on 1970 * the IOVA-contiguous range created by one ore more dma_iova_link() calls 1971 * to sync the IOTLB. 1972 */ 1973 int dma_iova_sync(struct device *dev, struct dma_iova_state *state, 1974 size_t offset, size_t size) 1975 { 1976 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1977 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1978 struct iova_domain *iovad = &cookie->iovad; 1979 dma_addr_t addr = state->addr + offset; 1980 size_t iova_start_pad = iova_offset(iovad, addr); 1981 1982 return iommu_sync_map(domain, addr - iova_start_pad, 1983 iova_align(iovad, size + iova_start_pad)); 1984 } 1985 EXPORT_SYMBOL_GPL(dma_iova_sync); 1986 1987 static void iommu_dma_iova_unlink_range_slow(struct device *dev, 1988 dma_addr_t addr, size_t size, enum dma_data_direction dir, 1989 unsigned long attrs) 1990 { 1991 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1992 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1993 struct iova_domain *iovad = &cookie->iovad; 1994 size_t iova_start_pad = iova_offset(iovad, addr); 1995 dma_addr_t end = addr + size; 1996 1997 do { 1998 phys_addr_t phys; 1999 size_t len; 2000 2001 phys = iommu_iova_to_phys(domain, addr); 2002 if (WARN_ON(!phys)) 2003 /* Something very horrible happen here */ 2004 return; 2005 2006 len = min_t(size_t, 2007 end - addr, iovad->granule - iova_start_pad); 2008 2009 if (!dev_is_dma_coherent(dev) && 2010 !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 2011 arch_sync_dma_for_cpu(phys, len, dir); 2012 2013 swiotlb_tbl_unmap_single(dev, phys, len, dir, attrs); 2014 2015 addr += len; 2016 iova_start_pad = 0; 2017 } while (addr < end); 2018 } 2019 2020 static void __iommu_dma_iova_unlink(struct device *dev, 2021 struct dma_iova_state *state, size_t offset, size_t size, 2022 enum dma_data_direction dir, unsigned long attrs, 2023 bool free_iova) 2024 { 2025 struct iommu_domain *domain = iommu_get_dma_domain(dev); 2026 struct iommu_dma_cookie *cookie = domain->iova_cookie; 2027 struct iova_domain *iovad = &cookie->iovad; 2028 dma_addr_t addr = state->addr + offset; 2029 size_t iova_start_pad = iova_offset(iovad, addr); 2030 struct iommu_iotlb_gather iotlb_gather; 2031 size_t unmapped; 2032 2033 if ((state->__size & DMA_IOVA_USE_SWIOTLB) || 2034 (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))) 2035 iommu_dma_iova_unlink_range_slow(dev, addr, size, dir, attrs); 2036 2037 iommu_iotlb_gather_init(&iotlb_gather); 2038 iotlb_gather.queued = free_iova && READ_ONCE(cookie->fq_domain); 2039 2040 size = iova_align(iovad, size + iova_start_pad); 2041 addr -= iova_start_pad; 2042 unmapped = iommu_unmap_fast(domain, addr, size, &iotlb_gather); 2043 WARN_ON(unmapped != size); 2044 2045 if (!iotlb_gather.queued) 2046 iommu_iotlb_sync(domain, &iotlb_gather); 2047 if (free_iova) 2048 iommu_dma_free_iova(domain, addr, size, &iotlb_gather); 2049 } 2050 2051 /** 2052 * dma_iova_unlink - Unlink a range of IOVA space 2053 * @dev: DMA device 2054 * @state: IOVA state 2055 * @offset: offset into the IOVA state to unlink 2056 * @size: size of the buffer 2057 * @dir: DMA direction 2058 * @attrs: attributes of mapping properties 2059 * 2060 * Unlink a range of IOVA space for the given IOVA state. 2061 */ 2062 void dma_iova_unlink(struct device *dev, struct dma_iova_state *state, 2063 size_t offset, size_t size, enum dma_data_direction dir, 2064 unsigned long attrs) 2065 { 2066 __iommu_dma_iova_unlink(dev, state, offset, size, dir, attrs, false); 2067 } 2068 EXPORT_SYMBOL_GPL(dma_iova_unlink); 2069 2070 /** 2071 * dma_iova_destroy - Finish a DMA mapping transaction 2072 * @dev: DMA device 2073 * @state: IOVA state 2074 * @mapped_len: number of bytes to unmap 2075 * @dir: DMA direction 2076 * @attrs: attributes of mapping properties 2077 * 2078 * Unlink the IOVA range up to @mapped_len and free the entire IOVA space. The 2079 * range of IOVA from dma_addr to @mapped_len must all be linked, and be the 2080 * only linked IOVA in state. 2081 */ 2082 void dma_iova_destroy(struct device *dev, struct dma_iova_state *state, 2083 size_t mapped_len, enum dma_data_direction dir, 2084 unsigned long attrs) 2085 { 2086 if (mapped_len) 2087 __iommu_dma_iova_unlink(dev, state, 0, mapped_len, dir, attrs, 2088 true); 2089 else 2090 /* 2091 * We can be here if first call to dma_iova_link() failed and 2092 * there is nothing to unlink, so let's be more clear. 2093 */ 2094 dma_iova_free(dev, state); 2095 } 2096 EXPORT_SYMBOL_GPL(dma_iova_destroy); 2097 2098 void iommu_setup_dma_ops(struct device *dev) 2099 { 2100 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 2101 2102 if (dev_is_pci(dev)) 2103 dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac; 2104 2105 dev->dma_iommu = iommu_is_dma_domain(domain); 2106 if (dev->dma_iommu && iommu_dma_init_domain(domain, dev)) 2107 goto out_err; 2108 2109 return; 2110 out_err: 2111 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 2112 dev_name(dev)); 2113 dev->dma_iommu = false; 2114 } 2115 2116 static bool has_msi_cookie(const struct iommu_domain *domain) 2117 { 2118 return domain && (domain->cookie_type == IOMMU_COOKIE_DMA_IOVA || 2119 domain->cookie_type == IOMMU_COOKIE_DMA_MSI); 2120 } 2121 2122 static size_t cookie_msi_granule(const struct iommu_domain *domain) 2123 { 2124 switch (domain->cookie_type) { 2125 case IOMMU_COOKIE_DMA_IOVA: 2126 return domain->iova_cookie->iovad.granule; 2127 case IOMMU_COOKIE_DMA_MSI: 2128 return PAGE_SIZE; 2129 default: 2130 BUG(); 2131 } 2132 } 2133 2134 static struct list_head *cookie_msi_pages(const struct iommu_domain *domain) 2135 { 2136 switch (domain->cookie_type) { 2137 case IOMMU_COOKIE_DMA_IOVA: 2138 return &domain->iova_cookie->msi_page_list; 2139 case IOMMU_COOKIE_DMA_MSI: 2140 return &domain->msi_cookie->msi_page_list; 2141 default: 2142 BUG(); 2143 } 2144 } 2145 2146 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 2147 phys_addr_t msi_addr, struct iommu_domain *domain) 2148 { 2149 struct list_head *msi_page_list = cookie_msi_pages(domain); 2150 struct iommu_dma_msi_page *msi_page; 2151 dma_addr_t iova; 2152 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 2153 size_t size = cookie_msi_granule(domain); 2154 2155 msi_addr &= ~(phys_addr_t)(size - 1); 2156 list_for_each_entry(msi_page, msi_page_list, list) 2157 if (msi_page->phys == msi_addr) 2158 return msi_page; 2159 2160 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 2161 if (!msi_page) 2162 return NULL; 2163 2164 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 2165 if (!iova) 2166 goto out_free_page; 2167 2168 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) 2169 goto out_free_iova; 2170 2171 INIT_LIST_HEAD(&msi_page->list); 2172 msi_page->phys = msi_addr; 2173 msi_page->iova = iova; 2174 list_add(&msi_page->list, msi_page_list); 2175 return msi_page; 2176 2177 out_free_iova: 2178 iommu_dma_free_iova(domain, iova, size, NULL); 2179 out_free_page: 2180 kfree(msi_page); 2181 return NULL; 2182 } 2183 2184 int iommu_dma_sw_msi(struct iommu_domain *domain, struct msi_desc *desc, 2185 phys_addr_t msi_addr) 2186 { 2187 struct device *dev = msi_desc_to_dev(desc); 2188 const struct iommu_dma_msi_page *msi_page; 2189 2190 if (!has_msi_cookie(domain)) { 2191 msi_desc_set_iommu_msi_iova(desc, 0, 0); 2192 return 0; 2193 } 2194 2195 iommu_group_mutex_assert(dev); 2196 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 2197 if (!msi_page) 2198 return -ENOMEM; 2199 2200 msi_desc_set_iommu_msi_iova(desc, msi_page->iova, 2201 ilog2(cookie_msi_granule(domain))); 2202 return 0; 2203 } 2204 2205 static int iommu_dma_init(void) 2206 { 2207 if (is_kdump_kernel()) 2208 static_branch_enable(&iommu_deferred_attach_enabled); 2209 2210 return iova_cache_get(); 2211 } 2212 arch_initcall(iommu_dma_init); 2213