1 /* 2 * A fairly generic DMA-API to IOMMU-API glue layer. 3 * 4 * Copyright (C) 2014-2015 ARM Ltd. 5 * 6 * based in part on arch/arm/mm/dma-mapping.c: 7 * Copyright (C) 2000-2004 Russell King 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include <linux/device.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/gfp.h> 25 #include <linux/huge_mm.h> 26 #include <linux/iommu.h> 27 #include <linux/iova.h> 28 #include <linux/mm.h> 29 #include <linux/scatterlist.h> 30 #include <linux/vmalloc.h> 31 32 int iommu_dma_init(void) 33 { 34 return iova_cache_get(); 35 } 36 37 /** 38 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 39 * @domain: IOMMU domain to prepare for DMA-API usage 40 * 41 * IOMMU drivers should normally call this from their domain_alloc 42 * callback when domain->type == IOMMU_DOMAIN_DMA. 43 */ 44 int iommu_get_dma_cookie(struct iommu_domain *domain) 45 { 46 struct iova_domain *iovad; 47 48 if (domain->iova_cookie) 49 return -EEXIST; 50 51 iovad = kzalloc(sizeof(*iovad), GFP_KERNEL); 52 domain->iova_cookie = iovad; 53 54 return iovad ? 0 : -ENOMEM; 55 } 56 EXPORT_SYMBOL(iommu_get_dma_cookie); 57 58 /** 59 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 60 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 61 * 62 * IOMMU drivers should normally call this from their domain_free callback. 63 */ 64 void iommu_put_dma_cookie(struct iommu_domain *domain) 65 { 66 struct iova_domain *iovad = domain->iova_cookie; 67 68 if (!iovad) 69 return; 70 71 put_iova_domain(iovad); 72 kfree(iovad); 73 domain->iova_cookie = NULL; 74 } 75 EXPORT_SYMBOL(iommu_put_dma_cookie); 76 77 /** 78 * iommu_dma_init_domain - Initialise a DMA mapping domain 79 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 80 * @base: IOVA at which the mappable address space starts 81 * @size: Size of IOVA space 82 * 83 * @base and @size should be exact multiples of IOMMU page granularity to 84 * avoid rounding surprises. If necessary, we reserve the page at address 0 85 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 86 * any change which could make prior IOVAs invalid will fail. 87 */ 88 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size) 89 { 90 struct iova_domain *iovad = domain->iova_cookie; 91 unsigned long order, base_pfn, end_pfn; 92 93 if (!iovad) 94 return -ENODEV; 95 96 /* Use the smallest supported page size for IOVA granularity */ 97 order = __ffs(domain->pgsize_bitmap); 98 base_pfn = max_t(unsigned long, 1, base >> order); 99 end_pfn = (base + size - 1) >> order; 100 101 /* Check the domain allows at least some access to the device... */ 102 if (domain->geometry.force_aperture) { 103 if (base > domain->geometry.aperture_end || 104 base + size <= domain->geometry.aperture_start) { 105 pr_warn("specified DMA range outside IOMMU capability\n"); 106 return -EFAULT; 107 } 108 /* ...then finally give it a kicking to make sure it fits */ 109 base_pfn = max_t(unsigned long, base_pfn, 110 domain->geometry.aperture_start >> order); 111 end_pfn = min_t(unsigned long, end_pfn, 112 domain->geometry.aperture_end >> order); 113 } 114 115 /* All we can safely do with an existing domain is enlarge it */ 116 if (iovad->start_pfn) { 117 if (1UL << order != iovad->granule || 118 base_pfn != iovad->start_pfn || 119 end_pfn < iovad->dma_32bit_pfn) { 120 pr_warn("Incompatible range for DMA domain\n"); 121 return -EFAULT; 122 } 123 iovad->dma_32bit_pfn = end_pfn; 124 } else { 125 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn); 126 } 127 return 0; 128 } 129 EXPORT_SYMBOL(iommu_dma_init_domain); 130 131 /** 132 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags 133 * @dir: Direction of DMA transfer 134 * @coherent: Is the DMA master cache-coherent? 135 * 136 * Return: corresponding IOMMU API page protection flags 137 */ 138 int dma_direction_to_prot(enum dma_data_direction dir, bool coherent) 139 { 140 int prot = coherent ? IOMMU_CACHE : 0; 141 142 switch (dir) { 143 case DMA_BIDIRECTIONAL: 144 return prot | IOMMU_READ | IOMMU_WRITE; 145 case DMA_TO_DEVICE: 146 return prot | IOMMU_READ; 147 case DMA_FROM_DEVICE: 148 return prot | IOMMU_WRITE; 149 default: 150 return 0; 151 } 152 } 153 154 static struct iova *__alloc_iova(struct iova_domain *iovad, size_t size, 155 dma_addr_t dma_limit) 156 { 157 unsigned long shift = iova_shift(iovad); 158 unsigned long length = iova_align(iovad, size) >> shift; 159 160 /* 161 * Enforce size-alignment to be safe - there could perhaps be an 162 * attribute to control this per-device, or at least per-domain... 163 */ 164 return alloc_iova(iovad, length, dma_limit >> shift, true); 165 } 166 167 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */ 168 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr) 169 { 170 struct iova_domain *iovad = domain->iova_cookie; 171 unsigned long shift = iova_shift(iovad); 172 unsigned long pfn = dma_addr >> shift; 173 struct iova *iova = find_iova(iovad, pfn); 174 size_t size; 175 176 if (WARN_ON(!iova)) 177 return; 178 179 size = iova_size(iova) << shift; 180 size -= iommu_unmap(domain, pfn << shift, size); 181 /* ...and if we can't, then something is horribly, horribly wrong */ 182 WARN_ON(size > 0); 183 __free_iova(iovad, iova); 184 } 185 186 static void __iommu_dma_free_pages(struct page **pages, int count) 187 { 188 while (count--) 189 __free_page(pages[count]); 190 kvfree(pages); 191 } 192 193 static struct page **__iommu_dma_alloc_pages(unsigned int count, 194 unsigned long order_mask, gfp_t gfp) 195 { 196 struct page **pages; 197 unsigned int i = 0, array_size = count * sizeof(*pages); 198 199 order_mask &= (2U << MAX_ORDER) - 1; 200 if (!order_mask) 201 return NULL; 202 203 if (array_size <= PAGE_SIZE) 204 pages = kzalloc(array_size, GFP_KERNEL); 205 else 206 pages = vzalloc(array_size); 207 if (!pages) 208 return NULL; 209 210 /* IOMMU can map any pages, so himem can also be used here */ 211 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 212 213 while (count) { 214 struct page *page = NULL; 215 unsigned int order_size; 216 217 /* 218 * Higher-order allocations are a convenience rather 219 * than a necessity, hence using __GFP_NORETRY until 220 * falling back to minimum-order allocations. 221 */ 222 for (order_mask &= (2U << __fls(count)) - 1; 223 order_mask; order_mask &= ~order_size) { 224 unsigned int order = __fls(order_mask); 225 226 order_size = 1U << order; 227 page = alloc_pages((order_mask - order_size) ? 228 gfp | __GFP_NORETRY : gfp, order); 229 if (!page) 230 continue; 231 if (!order) 232 break; 233 if (!PageCompound(page)) { 234 split_page(page, order); 235 break; 236 } else if (!split_huge_page(page)) { 237 break; 238 } 239 __free_pages(page, order); 240 } 241 if (!page) { 242 __iommu_dma_free_pages(pages, i); 243 return NULL; 244 } 245 count -= order_size; 246 while (order_size--) 247 pages[i++] = page++; 248 } 249 return pages; 250 } 251 252 /** 253 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() 254 * @dev: Device which owns this buffer 255 * @pages: Array of buffer pages as returned by iommu_dma_alloc() 256 * @size: Size of buffer in bytes 257 * @handle: DMA address of buffer 258 * 259 * Frees both the pages associated with the buffer, and the array 260 * describing them 261 */ 262 void iommu_dma_free(struct device *dev, struct page **pages, size_t size, 263 dma_addr_t *handle) 264 { 265 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle); 266 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 267 *handle = DMA_ERROR_CODE; 268 } 269 270 /** 271 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space 272 * @dev: Device to allocate memory for. Must be a real device 273 * attached to an iommu_dma_domain 274 * @size: Size of buffer in bytes 275 * @gfp: Allocation flags 276 * @attrs: DMA attributes for this allocation 277 * @prot: IOMMU mapping flags 278 * @handle: Out argument for allocated DMA handle 279 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the 280 * given VA/PA are visible to the given non-coherent device. 281 * 282 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 283 * but an IOMMU which supports smaller pages might not map the whole thing. 284 * 285 * Return: Array of struct page pointers describing the buffer, 286 * or NULL on failure. 287 */ 288 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, 289 struct dma_attrs *attrs, int prot, dma_addr_t *handle, 290 void (*flush_page)(struct device *, const void *, phys_addr_t)) 291 { 292 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 293 struct iova_domain *iovad = domain->iova_cookie; 294 struct iova *iova; 295 struct page **pages; 296 struct sg_table sgt; 297 dma_addr_t dma_addr; 298 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 299 300 *handle = DMA_ERROR_CODE; 301 302 min_size = alloc_sizes & -alloc_sizes; 303 if (min_size < PAGE_SIZE) { 304 min_size = PAGE_SIZE; 305 alloc_sizes |= PAGE_SIZE; 306 } else { 307 size = ALIGN(size, min_size); 308 } 309 if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs)) 310 alloc_sizes = min_size; 311 312 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 313 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp); 314 if (!pages) 315 return NULL; 316 317 iova = __alloc_iova(iovad, size, dev->coherent_dma_mask); 318 if (!iova) 319 goto out_free_pages; 320 321 size = iova_align(iovad, size); 322 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 323 goto out_free_iova; 324 325 if (!(prot & IOMMU_CACHE)) { 326 struct sg_mapping_iter miter; 327 /* 328 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't 329 * sufficient here, so skip it by using the "wrong" direction. 330 */ 331 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); 332 while (sg_miter_next(&miter)) 333 flush_page(dev, miter.addr, page_to_phys(miter.page)); 334 sg_miter_stop(&miter); 335 } 336 337 dma_addr = iova_dma_addr(iovad, iova); 338 if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot) 339 < size) 340 goto out_free_sg; 341 342 *handle = dma_addr; 343 sg_free_table(&sgt); 344 return pages; 345 346 out_free_sg: 347 sg_free_table(&sgt); 348 out_free_iova: 349 __free_iova(iovad, iova); 350 out_free_pages: 351 __iommu_dma_free_pages(pages, count); 352 return NULL; 353 } 354 355 /** 356 * iommu_dma_mmap - Map a buffer into provided user VMA 357 * @pages: Array representing buffer from iommu_dma_alloc() 358 * @size: Size of buffer in bytes 359 * @vma: VMA describing requested userspace mapping 360 * 361 * Maps the pages of the buffer in @pages into @vma. The caller is responsible 362 * for verifying the correct size and protection of @vma beforehand. 363 */ 364 365 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) 366 { 367 unsigned long uaddr = vma->vm_start; 368 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; 369 int ret = -ENXIO; 370 371 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { 372 ret = vm_insert_page(vma, uaddr, pages[i]); 373 if (ret) 374 break; 375 uaddr += PAGE_SIZE; 376 } 377 return ret; 378 } 379 380 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 381 unsigned long offset, size_t size, int prot) 382 { 383 dma_addr_t dma_addr; 384 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 385 struct iova_domain *iovad = domain->iova_cookie; 386 phys_addr_t phys = page_to_phys(page) + offset; 387 size_t iova_off = iova_offset(iovad, phys); 388 size_t len = iova_align(iovad, size + iova_off); 389 struct iova *iova = __alloc_iova(iovad, len, dma_get_mask(dev)); 390 391 if (!iova) 392 return DMA_ERROR_CODE; 393 394 dma_addr = iova_dma_addr(iovad, iova); 395 if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) { 396 __free_iova(iovad, iova); 397 return DMA_ERROR_CODE; 398 } 399 return dma_addr + iova_off; 400 } 401 402 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, 403 enum dma_data_direction dir, struct dma_attrs *attrs) 404 { 405 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle); 406 } 407 408 /* 409 * Prepare a successfully-mapped scatterlist to give back to the caller. 410 * 411 * At this point the segments are already laid out by iommu_dma_map_sg() to 412 * avoid individually crossing any boundaries, so we merely need to check a 413 * segment's start address to avoid concatenating across one. 414 */ 415 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 416 dma_addr_t dma_addr) 417 { 418 struct scatterlist *s, *cur = sg; 419 unsigned long seg_mask = dma_get_seg_boundary(dev); 420 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 421 int i, count = 0; 422 423 for_each_sg(sg, s, nents, i) { 424 /* Restore this segment's original unaligned fields first */ 425 unsigned int s_iova_off = sg_dma_address(s); 426 unsigned int s_length = sg_dma_len(s); 427 unsigned int s_iova_len = s->length; 428 429 s->offset += s_iova_off; 430 s->length = s_length; 431 sg_dma_address(s) = DMA_ERROR_CODE; 432 sg_dma_len(s) = 0; 433 434 /* 435 * Now fill in the real DMA data. If... 436 * - there is a valid output segment to append to 437 * - and this segment starts on an IOVA page boundary 438 * - but doesn't fall at a segment boundary 439 * - and wouldn't make the resulting output segment too long 440 */ 441 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 442 (cur_len + s_length <= max_len)) { 443 /* ...then concatenate it with the previous one */ 444 cur_len += s_length; 445 } else { 446 /* Otherwise start the next output segment */ 447 if (i > 0) 448 cur = sg_next(cur); 449 cur_len = s_length; 450 count++; 451 452 sg_dma_address(cur) = dma_addr + s_iova_off; 453 } 454 455 sg_dma_len(cur) = cur_len; 456 dma_addr += s_iova_len; 457 458 if (s_length + s_iova_off < s_iova_len) 459 cur_len = 0; 460 } 461 return count; 462 } 463 464 /* 465 * If mapping failed, then just restore the original list, 466 * but making sure the DMA fields are invalidated. 467 */ 468 static void __invalidate_sg(struct scatterlist *sg, int nents) 469 { 470 struct scatterlist *s; 471 int i; 472 473 for_each_sg(sg, s, nents, i) { 474 if (sg_dma_address(s) != DMA_ERROR_CODE) 475 s->offset += sg_dma_address(s); 476 if (sg_dma_len(s)) 477 s->length = sg_dma_len(s); 478 sg_dma_address(s) = DMA_ERROR_CODE; 479 sg_dma_len(s) = 0; 480 } 481 } 482 483 /* 484 * The DMA API client is passing in a scatterlist which could describe 485 * any old buffer layout, but the IOMMU API requires everything to be 486 * aligned to IOMMU pages. Hence the need for this complicated bit of 487 * impedance-matching, to be able to hand off a suitably-aligned list, 488 * but still preserve the original offsets and sizes for the caller. 489 */ 490 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 491 int nents, int prot) 492 { 493 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 494 struct iova_domain *iovad = domain->iova_cookie; 495 struct iova *iova; 496 struct scatterlist *s, *prev = NULL; 497 dma_addr_t dma_addr; 498 size_t iova_len = 0; 499 unsigned long mask = dma_get_seg_boundary(dev); 500 int i; 501 502 /* 503 * Work out how much IOVA space we need, and align the segments to 504 * IOVA granules for the IOMMU driver to handle. With some clever 505 * trickery we can modify the list in-place, but reversibly, by 506 * stashing the unaligned parts in the as-yet-unused DMA fields. 507 */ 508 for_each_sg(sg, s, nents, i) { 509 size_t s_iova_off = iova_offset(iovad, s->offset); 510 size_t s_length = s->length; 511 size_t pad_len = (mask - iova_len + 1) & mask; 512 513 sg_dma_address(s) = s_iova_off; 514 sg_dma_len(s) = s_length; 515 s->offset -= s_iova_off; 516 s_length = iova_align(iovad, s_length + s_iova_off); 517 s->length = s_length; 518 519 /* 520 * Due to the alignment of our single IOVA allocation, we can 521 * depend on these assumptions about the segment boundary mask: 522 * - If mask size >= IOVA size, then the IOVA range cannot 523 * possibly fall across a boundary, so we don't care. 524 * - If mask size < IOVA size, then the IOVA range must start 525 * exactly on a boundary, therefore we can lay things out 526 * based purely on segment lengths without needing to know 527 * the actual addresses beforehand. 528 * - The mask must be a power of 2, so pad_len == 0 if 529 * iova_len == 0, thus we cannot dereference prev the first 530 * time through here (i.e. before it has a meaningful value). 531 */ 532 if (pad_len && pad_len < s_length - 1) { 533 prev->length += pad_len; 534 iova_len += pad_len; 535 } 536 537 iova_len += s_length; 538 prev = s; 539 } 540 541 iova = __alloc_iova(iovad, iova_len, dma_get_mask(dev)); 542 if (!iova) 543 goto out_restore_sg; 544 545 /* 546 * We'll leave any physical concatenation to the IOMMU driver's 547 * implementation - it knows better than we do. 548 */ 549 dma_addr = iova_dma_addr(iovad, iova); 550 if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len) 551 goto out_free_iova; 552 553 return __finalise_sg(dev, sg, nents, dma_addr); 554 555 out_free_iova: 556 __free_iova(iovad, iova); 557 out_restore_sg: 558 __invalidate_sg(sg, nents); 559 return 0; 560 } 561 562 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 563 enum dma_data_direction dir, struct dma_attrs *attrs) 564 { 565 /* 566 * The scatterlist segments are mapped into a single 567 * contiguous IOVA allocation, so this is incredibly easy. 568 */ 569 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg)); 570 } 571 572 int iommu_dma_supported(struct device *dev, u64 mask) 573 { 574 /* 575 * 'Special' IOMMUs which don't have the same addressing capability 576 * as the CPU will have to wait until we have some way to query that 577 * before they'll be able to use this framework. 578 */ 579 return 1; 580 } 581 582 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 583 { 584 return dma_addr == DMA_ERROR_CODE; 585 } 586