1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * IOMMU API for ARM architected SMMU implementations. 4 * 5 * Copyright (C) 2013 ARM Limited 6 * 7 * Author: Will Deacon <will.deacon@arm.com> 8 * 9 * This driver currently supports: 10 * - SMMUv1 and v2 implementations 11 * - Stream-matching and stream-indexing 12 * - v7/v8 long-descriptor format 13 * - Non-secure access to the SMMU 14 * - Context fault reporting 15 * - Extended Stream ID (16 bit) 16 */ 17 18 #define pr_fmt(fmt) "arm-smmu: " fmt 19 20 #include <linux/acpi.h> 21 #include <linux/acpi_iort.h> 22 #include <linux/bitfield.h> 23 #include <linux/delay.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/err.h> 26 #include <linux/interrupt.h> 27 #include <linux/io.h> 28 #include <linux/iopoll.h> 29 #include <linux/module.h> 30 #include <linux/of.h> 31 #include <linux/of_address.h> 32 #include <linux/pci.h> 33 #include <linux/platform_device.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/ratelimit.h> 36 #include <linux/slab.h> 37 38 #include <linux/fsl/mc.h> 39 40 #include "arm-smmu.h" 41 #include "../../dma-iommu.h" 42 43 /* 44 * Apparently, some Qualcomm arm64 platforms which appear to expose their SMMU 45 * global register space are still, in fact, using a hypervisor to mediate it 46 * by trapping and emulating register accesses. Sadly, some deployed versions 47 * of said trapping code have bugs wherein they go horribly wrong for stores 48 * using r31 (i.e. XZR/WZR) as the source register. 49 */ 50 #define QCOM_DUMMY_VAL -1 51 52 #define MSI_IOVA_BASE 0x8000000 53 #define MSI_IOVA_LENGTH 0x100000 54 55 static int force_stage; 56 module_param(force_stage, int, S_IRUGO); 57 MODULE_PARM_DESC(force_stage, 58 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation."); 59 static bool disable_bypass = 60 IS_ENABLED(CONFIG_ARM_SMMU_DISABLE_BYPASS_BY_DEFAULT); 61 module_param(disable_bypass, bool, S_IRUGO); 62 MODULE_PARM_DESC(disable_bypass, 63 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU."); 64 65 #define s2cr_init_val (struct arm_smmu_s2cr){ \ 66 .type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS, \ 67 } 68 69 static bool using_legacy_binding, using_generic_binding; 70 71 static inline int arm_smmu_rpm_get(struct arm_smmu_device *smmu) 72 { 73 if (pm_runtime_enabled(smmu->dev)) 74 return pm_runtime_resume_and_get(smmu->dev); 75 76 return 0; 77 } 78 79 static inline void arm_smmu_rpm_put(struct arm_smmu_device *smmu) 80 { 81 if (pm_runtime_enabled(smmu->dev)) 82 pm_runtime_put_autosuspend(smmu->dev); 83 } 84 85 static void arm_smmu_rpm_use_autosuspend(struct arm_smmu_device *smmu) 86 { 87 /* 88 * Setup an autosuspend delay to avoid bouncing runpm state. 89 * Otherwise, if a driver for a suspended consumer device 90 * unmaps buffers, it will runpm resume/suspend for each one. 91 * 92 * For example, when used by a GPU device, when an application 93 * or game exits, it can trigger unmapping 100s or 1000s of 94 * buffers. With a runpm cycle for each buffer, that adds up 95 * to 5-10sec worth of reprogramming the context bank, while 96 * the system appears to be locked up to the user. 97 */ 98 pm_runtime_set_autosuspend_delay(smmu->dev, 20); 99 pm_runtime_use_autosuspend(smmu->dev); 100 } 101 102 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom) 103 { 104 return container_of(dom, struct arm_smmu_domain, domain); 105 } 106 107 static struct platform_driver arm_smmu_driver; 108 static struct iommu_ops arm_smmu_ops; 109 110 #ifdef CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS 111 static struct device_node *dev_get_dev_node(struct device *dev) 112 { 113 if (dev_is_pci(dev)) { 114 struct pci_bus *bus = to_pci_dev(dev)->bus; 115 116 while (!pci_is_root_bus(bus)) 117 bus = bus->parent; 118 return of_node_get(bus->bridge->parent->of_node); 119 } 120 121 return of_node_get(dev->of_node); 122 } 123 124 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data) 125 { 126 *((__be32 *)data) = cpu_to_be32(alias); 127 return 0; /* Continue walking */ 128 } 129 130 static int __find_legacy_master_phandle(struct device *dev, void *data) 131 { 132 struct of_phandle_iterator *it = *(void **)data; 133 struct device_node *np = it->node; 134 int err; 135 136 of_for_each_phandle(it, err, dev->of_node, "mmu-masters", 137 "#stream-id-cells", -1) 138 if (it->node == np) { 139 *(void **)data = dev; 140 return 1; 141 } 142 it->node = np; 143 return err == -ENOENT ? 0 : err; 144 } 145 146 static int arm_smmu_register_legacy_master(struct device *dev, 147 struct arm_smmu_device **smmu) 148 { 149 struct device *smmu_dev; 150 struct device_node *np; 151 struct of_phandle_iterator it; 152 void *data = ⁢ 153 u32 *sids; 154 __be32 pci_sid; 155 int err; 156 157 np = dev_get_dev_node(dev); 158 if (!np || !of_property_present(np, "#stream-id-cells")) { 159 of_node_put(np); 160 return -ENODEV; 161 } 162 163 it.node = np; 164 err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data, 165 __find_legacy_master_phandle); 166 smmu_dev = data; 167 of_node_put(np); 168 if (err == 0) 169 return -ENODEV; 170 if (err < 0) 171 return err; 172 173 if (dev_is_pci(dev)) { 174 /* "mmu-masters" assumes Stream ID == Requester ID */ 175 pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid, 176 &pci_sid); 177 it.cur = &pci_sid; 178 it.cur_count = 1; 179 } 180 181 err = iommu_fwspec_init(dev, NULL); 182 if (err) 183 return err; 184 185 sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL); 186 if (!sids) 187 return -ENOMEM; 188 189 *smmu = dev_get_drvdata(smmu_dev); 190 of_phandle_iterator_args(&it, sids, it.cur_count); 191 err = iommu_fwspec_add_ids(dev, sids, it.cur_count); 192 kfree(sids); 193 return err; 194 } 195 #else 196 static int arm_smmu_register_legacy_master(struct device *dev, 197 struct arm_smmu_device **smmu) 198 { 199 return -ENODEV; 200 } 201 #endif /* CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS */ 202 203 static void __arm_smmu_free_bitmap(unsigned long *map, int idx) 204 { 205 clear_bit(idx, map); 206 } 207 208 /* Wait for any pending TLB invalidations to complete */ 209 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu, int page, 210 int sync, int status) 211 { 212 unsigned int spin_cnt, delay; 213 u32 reg; 214 215 if (smmu->impl && unlikely(smmu->impl->tlb_sync)) 216 return smmu->impl->tlb_sync(smmu, page, sync, status); 217 218 arm_smmu_writel(smmu, page, sync, QCOM_DUMMY_VAL); 219 for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) { 220 for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) { 221 reg = arm_smmu_readl(smmu, page, status); 222 if (!(reg & ARM_SMMU_sTLBGSTATUS_GSACTIVE)) 223 return; 224 cpu_relax(); 225 } 226 udelay(delay); 227 } 228 dev_err_ratelimited(smmu->dev, 229 "TLB sync timed out -- SMMU may be deadlocked\n"); 230 } 231 232 static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu) 233 { 234 unsigned long flags; 235 236 spin_lock_irqsave(&smmu->global_sync_lock, flags); 237 __arm_smmu_tlb_sync(smmu, ARM_SMMU_GR0, ARM_SMMU_GR0_sTLBGSYNC, 238 ARM_SMMU_GR0_sTLBGSTATUS); 239 spin_unlock_irqrestore(&smmu->global_sync_lock, flags); 240 } 241 242 static void arm_smmu_tlb_sync_context(struct arm_smmu_domain *smmu_domain) 243 { 244 struct arm_smmu_device *smmu = smmu_domain->smmu; 245 unsigned long flags; 246 247 spin_lock_irqsave(&smmu_domain->cb_lock, flags); 248 __arm_smmu_tlb_sync(smmu, ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx), 249 ARM_SMMU_CB_TLBSYNC, ARM_SMMU_CB_TLBSTATUS); 250 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags); 251 } 252 253 static void arm_smmu_tlb_inv_context_s1(void *cookie) 254 { 255 struct arm_smmu_domain *smmu_domain = cookie; 256 /* 257 * The TLBI write may be relaxed, so ensure that PTEs cleared by the 258 * current CPU are visible beforehand. 259 */ 260 wmb(); 261 arm_smmu_cb_write(smmu_domain->smmu, smmu_domain->cfg.cbndx, 262 ARM_SMMU_CB_S1_TLBIASID, smmu_domain->cfg.asid); 263 arm_smmu_tlb_sync_context(smmu_domain); 264 } 265 266 static void arm_smmu_tlb_inv_context_s2(void *cookie) 267 { 268 struct arm_smmu_domain *smmu_domain = cookie; 269 struct arm_smmu_device *smmu = smmu_domain->smmu; 270 271 /* See above */ 272 wmb(); 273 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIVMID, smmu_domain->cfg.vmid); 274 arm_smmu_tlb_sync_global(smmu); 275 } 276 277 static void arm_smmu_tlb_inv_range_s1(unsigned long iova, size_t size, 278 size_t granule, void *cookie, int reg) 279 { 280 struct arm_smmu_domain *smmu_domain = cookie; 281 struct arm_smmu_device *smmu = smmu_domain->smmu; 282 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 283 int idx = cfg->cbndx; 284 285 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) 286 wmb(); 287 288 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) { 289 iova = (iova >> 12) << 12; 290 iova |= cfg->asid; 291 do { 292 arm_smmu_cb_write(smmu, idx, reg, iova); 293 iova += granule; 294 } while (size -= granule); 295 } else { 296 iova >>= 12; 297 iova |= (u64)cfg->asid << 48; 298 do { 299 arm_smmu_cb_writeq(smmu, idx, reg, iova); 300 iova += granule >> 12; 301 } while (size -= granule); 302 } 303 } 304 305 static void arm_smmu_tlb_inv_range_s2(unsigned long iova, size_t size, 306 size_t granule, void *cookie, int reg) 307 { 308 struct arm_smmu_domain *smmu_domain = cookie; 309 struct arm_smmu_device *smmu = smmu_domain->smmu; 310 int idx = smmu_domain->cfg.cbndx; 311 312 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) 313 wmb(); 314 315 iova >>= 12; 316 do { 317 if (smmu_domain->cfg.fmt == ARM_SMMU_CTX_FMT_AARCH64) 318 arm_smmu_cb_writeq(smmu, idx, reg, iova); 319 else 320 arm_smmu_cb_write(smmu, idx, reg, iova); 321 iova += granule >> 12; 322 } while (size -= granule); 323 } 324 325 static void arm_smmu_tlb_inv_walk_s1(unsigned long iova, size_t size, 326 size_t granule, void *cookie) 327 { 328 struct arm_smmu_domain *smmu_domain = cookie; 329 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 330 331 if (cfg->flush_walk_prefer_tlbiasid) { 332 arm_smmu_tlb_inv_context_s1(cookie); 333 } else { 334 arm_smmu_tlb_inv_range_s1(iova, size, granule, cookie, 335 ARM_SMMU_CB_S1_TLBIVA); 336 arm_smmu_tlb_sync_context(cookie); 337 } 338 } 339 340 static void arm_smmu_tlb_add_page_s1(struct iommu_iotlb_gather *gather, 341 unsigned long iova, size_t granule, 342 void *cookie) 343 { 344 arm_smmu_tlb_inv_range_s1(iova, granule, granule, cookie, 345 ARM_SMMU_CB_S1_TLBIVAL); 346 } 347 348 static void arm_smmu_tlb_inv_walk_s2(unsigned long iova, size_t size, 349 size_t granule, void *cookie) 350 { 351 arm_smmu_tlb_inv_range_s2(iova, size, granule, cookie, 352 ARM_SMMU_CB_S2_TLBIIPAS2); 353 arm_smmu_tlb_sync_context(cookie); 354 } 355 356 static void arm_smmu_tlb_add_page_s2(struct iommu_iotlb_gather *gather, 357 unsigned long iova, size_t granule, 358 void *cookie) 359 { 360 arm_smmu_tlb_inv_range_s2(iova, granule, granule, cookie, 361 ARM_SMMU_CB_S2_TLBIIPAS2L); 362 } 363 364 static void arm_smmu_tlb_inv_walk_s2_v1(unsigned long iova, size_t size, 365 size_t granule, void *cookie) 366 { 367 arm_smmu_tlb_inv_context_s2(cookie); 368 } 369 /* 370 * On MMU-401 at least, the cost of firing off multiple TLBIVMIDs appears 371 * almost negligible, but the benefit of getting the first one in as far ahead 372 * of the sync as possible is significant, hence we don't just make this a 373 * no-op and call arm_smmu_tlb_inv_context_s2() from .iotlb_sync as you might 374 * think. 375 */ 376 static void arm_smmu_tlb_add_page_s2_v1(struct iommu_iotlb_gather *gather, 377 unsigned long iova, size_t granule, 378 void *cookie) 379 { 380 struct arm_smmu_domain *smmu_domain = cookie; 381 struct arm_smmu_device *smmu = smmu_domain->smmu; 382 383 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) 384 wmb(); 385 386 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIVMID, smmu_domain->cfg.vmid); 387 } 388 389 static const struct iommu_flush_ops arm_smmu_s1_tlb_ops = { 390 .tlb_flush_all = arm_smmu_tlb_inv_context_s1, 391 .tlb_flush_walk = arm_smmu_tlb_inv_walk_s1, 392 .tlb_add_page = arm_smmu_tlb_add_page_s1, 393 }; 394 395 static const struct iommu_flush_ops arm_smmu_s2_tlb_ops_v2 = { 396 .tlb_flush_all = arm_smmu_tlb_inv_context_s2, 397 .tlb_flush_walk = arm_smmu_tlb_inv_walk_s2, 398 .tlb_add_page = arm_smmu_tlb_add_page_s2, 399 }; 400 401 static const struct iommu_flush_ops arm_smmu_s2_tlb_ops_v1 = { 402 .tlb_flush_all = arm_smmu_tlb_inv_context_s2, 403 .tlb_flush_walk = arm_smmu_tlb_inv_walk_s2_v1, 404 .tlb_add_page = arm_smmu_tlb_add_page_s2_v1, 405 }; 406 407 408 void arm_smmu_read_context_fault_info(struct arm_smmu_device *smmu, int idx, 409 struct arm_smmu_context_fault_info *cfi) 410 { 411 cfi->iova = arm_smmu_cb_readq(smmu, idx, ARM_SMMU_CB_FAR); 412 cfi->fsr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSR); 413 cfi->fsynr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSYNR0); 414 cfi->cbfrsynra = arm_smmu_gr1_read(smmu, ARM_SMMU_GR1_CBFRSYNRA(idx)); 415 } 416 417 void arm_smmu_print_context_fault_info(struct arm_smmu_device *smmu, int idx, 418 const struct arm_smmu_context_fault_info *cfi) 419 { 420 dev_err(smmu->dev, 421 "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cbfrsynra=0x%x, cb=%d\n", 422 cfi->fsr, cfi->iova, cfi->fsynr, cfi->cbfrsynra, idx); 423 424 dev_err(smmu->dev, "FSR = %08x [%s%sFormat=%u%s%s%s%s%s%s%s%s], SID=0x%x\n", 425 cfi->fsr, 426 (cfi->fsr & ARM_SMMU_CB_FSR_MULTI) ? "MULTI " : "", 427 (cfi->fsr & ARM_SMMU_CB_FSR_SS) ? "SS " : "", 428 (u32)FIELD_GET(ARM_SMMU_CB_FSR_FORMAT, cfi->fsr), 429 (cfi->fsr & ARM_SMMU_CB_FSR_UUT) ? " UUT" : "", 430 (cfi->fsr & ARM_SMMU_CB_FSR_ASF) ? " ASF" : "", 431 (cfi->fsr & ARM_SMMU_CB_FSR_TLBLKF) ? " TLBLKF" : "", 432 (cfi->fsr & ARM_SMMU_CB_FSR_TLBMCF) ? " TLBMCF" : "", 433 (cfi->fsr & ARM_SMMU_CB_FSR_EF) ? " EF" : "", 434 (cfi->fsr & ARM_SMMU_CB_FSR_PF) ? " PF" : "", 435 (cfi->fsr & ARM_SMMU_CB_FSR_AFF) ? " AFF" : "", 436 (cfi->fsr & ARM_SMMU_CB_FSR_TF) ? " TF" : "", 437 cfi->cbfrsynra); 438 439 dev_err(smmu->dev, "FSYNR0 = %08x [S1CBNDX=%u%s%s%s%s%s%s PLVL=%u]\n", 440 cfi->fsynr, 441 (u32)FIELD_GET(ARM_SMMU_CB_FSYNR0_S1CBNDX, cfi->fsynr), 442 (cfi->fsynr & ARM_SMMU_CB_FSYNR0_AFR) ? " AFR" : "", 443 (cfi->fsynr & ARM_SMMU_CB_FSYNR0_PTWF) ? " PTWF" : "", 444 (cfi->fsynr & ARM_SMMU_CB_FSYNR0_NSATTR) ? " NSATTR" : "", 445 (cfi->fsynr & ARM_SMMU_CB_FSYNR0_IND) ? " IND" : "", 446 (cfi->fsynr & ARM_SMMU_CB_FSYNR0_PNU) ? " PNU" : "", 447 (cfi->fsynr & ARM_SMMU_CB_FSYNR0_WNR) ? " WNR" : "", 448 (u32)FIELD_GET(ARM_SMMU_CB_FSYNR0_PLVL, cfi->fsynr)); 449 } 450 451 static irqreturn_t arm_smmu_context_fault(int irq, void *dev) 452 { 453 struct arm_smmu_context_fault_info cfi; 454 struct arm_smmu_domain *smmu_domain = dev; 455 struct arm_smmu_device *smmu = smmu_domain->smmu; 456 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 457 DEFAULT_RATELIMIT_BURST); 458 int idx = smmu_domain->cfg.cbndx; 459 int ret; 460 461 arm_smmu_read_context_fault_info(smmu, idx, &cfi); 462 463 if (!(cfi.fsr & ARM_SMMU_CB_FSR_FAULT)) 464 return IRQ_NONE; 465 466 ret = report_iommu_fault(&smmu_domain->domain, NULL, cfi.iova, 467 cfi.fsynr & ARM_SMMU_CB_FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ); 468 469 if (ret == -ENOSYS && __ratelimit(&rs)) 470 arm_smmu_print_context_fault_info(smmu, idx, &cfi); 471 472 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_FSR, cfi.fsr); 473 return IRQ_HANDLED; 474 } 475 476 static irqreturn_t arm_smmu_global_fault(int irq, void *dev) 477 { 478 u32 gfsr, gfsynr0, gfsynr1, gfsynr2; 479 struct arm_smmu_device *smmu = dev; 480 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 481 DEFAULT_RATELIMIT_BURST); 482 483 gfsr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSR); 484 gfsynr0 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR0); 485 gfsynr1 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR1); 486 gfsynr2 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR2); 487 488 if (!gfsr) 489 return IRQ_NONE; 490 491 if (__ratelimit(&rs)) { 492 if (IS_ENABLED(CONFIG_ARM_SMMU_DISABLE_BYPASS_BY_DEFAULT) && 493 (gfsr & ARM_SMMU_sGFSR_USF)) 494 dev_err(smmu->dev, 495 "Blocked unknown Stream ID 0x%hx; boot with \"arm-smmu.disable_bypass=0\" to allow, but this may have security implications\n", 496 (u16)gfsynr1); 497 else 498 dev_err(smmu->dev, 499 "Unexpected global fault, this could be serious\n"); 500 dev_err(smmu->dev, 501 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n", 502 gfsr, gfsynr0, gfsynr1, gfsynr2); 503 } 504 505 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sGFSR, gfsr); 506 return IRQ_HANDLED; 507 } 508 509 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain, 510 struct io_pgtable_cfg *pgtbl_cfg) 511 { 512 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 513 struct arm_smmu_cb *cb = &smmu_domain->smmu->cbs[cfg->cbndx]; 514 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; 515 516 cb->cfg = cfg; 517 518 /* TCR */ 519 if (stage1) { 520 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 521 cb->tcr[0] = pgtbl_cfg->arm_v7s_cfg.tcr; 522 } else { 523 cb->tcr[0] = arm_smmu_lpae_tcr(pgtbl_cfg); 524 cb->tcr[1] = arm_smmu_lpae_tcr2(pgtbl_cfg); 525 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) 526 cb->tcr[1] |= ARM_SMMU_TCR2_AS; 527 else 528 cb->tcr[0] |= ARM_SMMU_TCR_EAE; 529 } 530 } else { 531 cb->tcr[0] = arm_smmu_lpae_vtcr(pgtbl_cfg); 532 } 533 534 /* TTBRs */ 535 if (stage1) { 536 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 537 cb->ttbr[0] = pgtbl_cfg->arm_v7s_cfg.ttbr; 538 cb->ttbr[1] = 0; 539 } else { 540 cb->ttbr[0] = FIELD_PREP(ARM_SMMU_TTBRn_ASID, 541 cfg->asid); 542 cb->ttbr[1] = FIELD_PREP(ARM_SMMU_TTBRn_ASID, 543 cfg->asid); 544 545 if (pgtbl_cfg->quirks & IO_PGTABLE_QUIRK_ARM_TTBR1) 546 cb->ttbr[1] |= pgtbl_cfg->arm_lpae_s1_cfg.ttbr; 547 else 548 cb->ttbr[0] |= pgtbl_cfg->arm_lpae_s1_cfg.ttbr; 549 } 550 } else { 551 cb->ttbr[0] = pgtbl_cfg->arm_lpae_s2_cfg.vttbr; 552 } 553 554 /* MAIRs (stage-1 only) */ 555 if (stage1) { 556 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 557 cb->mair[0] = pgtbl_cfg->arm_v7s_cfg.prrr; 558 cb->mair[1] = pgtbl_cfg->arm_v7s_cfg.nmrr; 559 } else { 560 cb->mair[0] = pgtbl_cfg->arm_lpae_s1_cfg.mair; 561 cb->mair[1] = pgtbl_cfg->arm_lpae_s1_cfg.mair >> 32; 562 } 563 } 564 } 565 566 void arm_smmu_write_context_bank(struct arm_smmu_device *smmu, int idx) 567 { 568 u32 reg; 569 bool stage1; 570 struct arm_smmu_cb *cb = &smmu->cbs[idx]; 571 struct arm_smmu_cfg *cfg = cb->cfg; 572 573 /* Unassigned context banks only need disabling */ 574 if (!cfg) { 575 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, 0); 576 return; 577 } 578 579 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; 580 581 /* CBA2R */ 582 if (smmu->version > ARM_SMMU_V1) { 583 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) 584 reg = ARM_SMMU_CBA2R_VA64; 585 else 586 reg = 0; 587 /* 16-bit VMIDs live in CBA2R */ 588 if (smmu->features & ARM_SMMU_FEAT_VMID16) 589 reg |= FIELD_PREP(ARM_SMMU_CBA2R_VMID16, cfg->vmid); 590 591 arm_smmu_gr1_write(smmu, ARM_SMMU_GR1_CBA2R(idx), reg); 592 } 593 594 /* CBAR */ 595 reg = FIELD_PREP(ARM_SMMU_CBAR_TYPE, cfg->cbar); 596 if (smmu->version < ARM_SMMU_V2) 597 reg |= FIELD_PREP(ARM_SMMU_CBAR_IRPTNDX, cfg->irptndx); 598 599 /* 600 * Use the weakest shareability/memory types, so they are 601 * overridden by the ttbcr/pte. 602 */ 603 if (stage1) { 604 reg |= FIELD_PREP(ARM_SMMU_CBAR_S1_BPSHCFG, 605 ARM_SMMU_CBAR_S1_BPSHCFG_NSH) | 606 FIELD_PREP(ARM_SMMU_CBAR_S1_MEMATTR, 607 ARM_SMMU_CBAR_S1_MEMATTR_WB); 608 } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) { 609 /* 8-bit VMIDs live in CBAR */ 610 reg |= FIELD_PREP(ARM_SMMU_CBAR_VMID, cfg->vmid); 611 } 612 arm_smmu_gr1_write(smmu, ARM_SMMU_GR1_CBAR(idx), reg); 613 614 /* 615 * TCR 616 * We must write this before the TTBRs, since it determines the 617 * access behaviour of some fields (in particular, ASID[15:8]). 618 */ 619 if (stage1 && smmu->version > ARM_SMMU_V1) 620 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TCR2, cb->tcr[1]); 621 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TCR, cb->tcr[0]); 622 623 /* TTBRs */ 624 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 625 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_CONTEXTIDR, cfg->asid); 626 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TTBR0, cb->ttbr[0]); 627 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TTBR1, cb->ttbr[1]); 628 } else { 629 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_TTBR0, cb->ttbr[0]); 630 if (stage1) 631 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_TTBR1, 632 cb->ttbr[1]); 633 } 634 635 /* MAIRs (stage-1 only) */ 636 if (stage1) { 637 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_S1_MAIR0, cb->mair[0]); 638 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_S1_MAIR1, cb->mair[1]); 639 } 640 641 /* SCTLR */ 642 reg = ARM_SMMU_SCTLR_CFIE | ARM_SMMU_SCTLR_CFRE | ARM_SMMU_SCTLR_AFE | 643 ARM_SMMU_SCTLR_TRE | ARM_SMMU_SCTLR_M; 644 if (stage1) 645 reg |= ARM_SMMU_SCTLR_S1_ASIDPNE; 646 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 647 reg |= ARM_SMMU_SCTLR_E; 648 649 if (smmu->impl && smmu->impl->write_sctlr) 650 smmu->impl->write_sctlr(smmu, idx, reg); 651 else 652 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, reg); 653 } 654 655 static int arm_smmu_alloc_context_bank(struct arm_smmu_domain *smmu_domain, 656 struct arm_smmu_device *smmu, 657 struct device *dev, unsigned int start) 658 { 659 if (smmu->impl && smmu->impl->alloc_context_bank) 660 return smmu->impl->alloc_context_bank(smmu_domain, smmu, dev, start); 661 662 return __arm_smmu_alloc_bitmap(smmu->context_map, start, smmu->num_context_banks); 663 } 664 665 static int arm_smmu_init_domain_context(struct arm_smmu_domain *smmu_domain, 666 struct arm_smmu_device *smmu, 667 struct device *dev) 668 { 669 int irq, start, ret = 0; 670 unsigned long ias, oas; 671 struct io_pgtable_ops *pgtbl_ops; 672 struct io_pgtable_cfg pgtbl_cfg; 673 enum io_pgtable_fmt fmt; 674 struct iommu_domain *domain = &smmu_domain->domain; 675 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 676 irqreturn_t (*context_fault)(int irq, void *dev); 677 678 mutex_lock(&smmu_domain->init_mutex); 679 if (smmu_domain->smmu) 680 goto out_unlock; 681 682 /* 683 * Mapping the requested stage onto what we support is surprisingly 684 * complicated, mainly because the spec allows S1+S2 SMMUs without 685 * support for nested translation. That means we end up with the 686 * following table: 687 * 688 * Requested Supported Actual 689 * S1 N S1 690 * S1 S1+S2 S1 691 * S1 S2 S2 692 * S1 S1 S1 693 * N N N 694 * N S1+S2 S2 695 * N S2 S2 696 * N S1 S1 697 * 698 * Note that you can't actually request stage-2 mappings. 699 */ 700 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1)) 701 smmu_domain->stage = ARM_SMMU_DOMAIN_S2; 702 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2)) 703 smmu_domain->stage = ARM_SMMU_DOMAIN_S1; 704 705 /* 706 * Choosing a suitable context format is even more fiddly. Until we 707 * grow some way for the caller to express a preference, and/or move 708 * the decision into the io-pgtable code where it arguably belongs, 709 * just aim for the closest thing to the rest of the system, and hope 710 * that the hardware isn't esoteric enough that we can't assume AArch64 711 * support to be a superset of AArch32 support... 712 */ 713 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L) 714 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L; 715 if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) && 716 !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) && 717 (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) && 718 (smmu_domain->stage == ARM_SMMU_DOMAIN_S1)) 719 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S; 720 if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) && 721 (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K | 722 ARM_SMMU_FEAT_FMT_AARCH64_16K | 723 ARM_SMMU_FEAT_FMT_AARCH64_4K))) 724 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64; 725 726 if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) { 727 ret = -EINVAL; 728 goto out_unlock; 729 } 730 731 switch (smmu_domain->stage) { 732 case ARM_SMMU_DOMAIN_S1: 733 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS; 734 start = smmu->num_s2_context_banks; 735 ias = smmu->va_size; 736 oas = smmu->ipa_size; 737 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) { 738 fmt = ARM_64_LPAE_S1; 739 } else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) { 740 fmt = ARM_32_LPAE_S1; 741 ias = min(ias, 32UL); 742 oas = min(oas, 40UL); 743 } else { 744 fmt = ARM_V7S; 745 ias = min(ias, 32UL); 746 oas = min(oas, 32UL); 747 } 748 smmu_domain->flush_ops = &arm_smmu_s1_tlb_ops; 749 break; 750 case ARM_SMMU_DOMAIN_NESTED: 751 /* 752 * We will likely want to change this if/when KVM gets 753 * involved. 754 */ 755 case ARM_SMMU_DOMAIN_S2: 756 cfg->cbar = CBAR_TYPE_S2_TRANS; 757 start = 0; 758 ias = smmu->ipa_size; 759 oas = smmu->pa_size; 760 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) { 761 fmt = ARM_64_LPAE_S2; 762 } else { 763 fmt = ARM_32_LPAE_S2; 764 ias = min(ias, 40UL); 765 oas = min(oas, 40UL); 766 } 767 if (smmu->version == ARM_SMMU_V2) 768 smmu_domain->flush_ops = &arm_smmu_s2_tlb_ops_v2; 769 else 770 smmu_domain->flush_ops = &arm_smmu_s2_tlb_ops_v1; 771 break; 772 default: 773 ret = -EINVAL; 774 goto out_unlock; 775 } 776 777 ret = arm_smmu_alloc_context_bank(smmu_domain, smmu, dev, start); 778 if (ret < 0) { 779 goto out_unlock; 780 } 781 782 smmu_domain->smmu = smmu; 783 784 cfg->cbndx = ret; 785 if (smmu->version < ARM_SMMU_V2) { 786 cfg->irptndx = atomic_inc_return(&smmu->irptndx); 787 cfg->irptndx %= smmu->num_context_irqs; 788 } else { 789 cfg->irptndx = cfg->cbndx; 790 } 791 792 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2) 793 cfg->vmid = cfg->cbndx + 1; 794 else 795 cfg->asid = cfg->cbndx; 796 797 pgtbl_cfg = (struct io_pgtable_cfg) { 798 .pgsize_bitmap = smmu->pgsize_bitmap, 799 .ias = ias, 800 .oas = oas, 801 .coherent_walk = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK, 802 .tlb = smmu_domain->flush_ops, 803 .iommu_dev = smmu->dev, 804 }; 805 806 if (smmu->impl && smmu->impl->init_context) { 807 ret = smmu->impl->init_context(smmu_domain, &pgtbl_cfg, dev); 808 if (ret) 809 goto out_clear_smmu; 810 } 811 812 if (smmu_domain->pgtbl_quirks) 813 pgtbl_cfg.quirks |= smmu_domain->pgtbl_quirks; 814 815 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain); 816 if (!pgtbl_ops) { 817 ret = -ENOMEM; 818 goto out_clear_smmu; 819 } 820 821 /* Update the domain's page sizes to reflect the page table format */ 822 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap; 823 824 if (pgtbl_cfg.quirks & IO_PGTABLE_QUIRK_ARM_TTBR1) { 825 domain->geometry.aperture_start = ~0UL << ias; 826 domain->geometry.aperture_end = ~0UL; 827 } else { 828 domain->geometry.aperture_end = (1UL << ias) - 1; 829 } 830 831 domain->geometry.force_aperture = true; 832 833 /* Initialise the context bank with our page table cfg */ 834 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg); 835 arm_smmu_write_context_bank(smmu, cfg->cbndx); 836 837 /* 838 * Request context fault interrupt. Do this last to avoid the 839 * handler seeing a half-initialised domain state. 840 */ 841 irq = smmu->irqs[cfg->irptndx]; 842 843 if (smmu->impl && smmu->impl->context_fault) 844 context_fault = smmu->impl->context_fault; 845 else 846 context_fault = arm_smmu_context_fault; 847 848 if (smmu->impl && smmu->impl->context_fault_needs_threaded_irq) 849 ret = devm_request_threaded_irq(smmu->dev, irq, NULL, 850 context_fault, 851 IRQF_ONESHOT | IRQF_SHARED, 852 "arm-smmu-context-fault", 853 smmu_domain); 854 else 855 ret = devm_request_irq(smmu->dev, irq, context_fault, IRQF_SHARED, 856 "arm-smmu-context-fault", smmu_domain); 857 858 if (ret < 0) { 859 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n", 860 cfg->irptndx, irq); 861 cfg->irptndx = ARM_SMMU_INVALID_IRPTNDX; 862 } 863 864 mutex_unlock(&smmu_domain->init_mutex); 865 866 /* Publish page table ops for map/unmap */ 867 smmu_domain->pgtbl_ops = pgtbl_ops; 868 return 0; 869 870 out_clear_smmu: 871 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx); 872 smmu_domain->smmu = NULL; 873 out_unlock: 874 mutex_unlock(&smmu_domain->init_mutex); 875 return ret; 876 } 877 878 static void arm_smmu_destroy_domain_context(struct arm_smmu_domain *smmu_domain) 879 { 880 struct arm_smmu_device *smmu = smmu_domain->smmu; 881 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 882 int ret, irq; 883 884 if (!smmu) 885 return; 886 887 ret = arm_smmu_rpm_get(smmu); 888 if (ret < 0) 889 return; 890 891 /* 892 * Disable the context bank and free the page tables before freeing 893 * it. 894 */ 895 smmu->cbs[cfg->cbndx].cfg = NULL; 896 arm_smmu_write_context_bank(smmu, cfg->cbndx); 897 898 if (cfg->irptndx != ARM_SMMU_INVALID_IRPTNDX) { 899 irq = smmu->irqs[cfg->irptndx]; 900 devm_free_irq(smmu->dev, irq, smmu_domain); 901 } 902 903 free_io_pgtable_ops(smmu_domain->pgtbl_ops); 904 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx); 905 906 arm_smmu_rpm_put(smmu); 907 } 908 909 static struct iommu_domain *arm_smmu_domain_alloc_paging(struct device *dev) 910 { 911 struct arm_smmu_domain *smmu_domain; 912 913 /* 914 * Allocate the domain and initialise some of its data structures. 915 * We can't really do anything meaningful until we've added a 916 * master. 917 */ 918 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL); 919 if (!smmu_domain) 920 return NULL; 921 922 mutex_init(&smmu_domain->init_mutex); 923 spin_lock_init(&smmu_domain->cb_lock); 924 925 return &smmu_domain->domain; 926 } 927 928 static void arm_smmu_domain_free(struct iommu_domain *domain) 929 { 930 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 931 932 /* 933 * Free the domain resources. We assume that all devices have 934 * already been detached. 935 */ 936 arm_smmu_destroy_domain_context(smmu_domain); 937 kfree(smmu_domain); 938 } 939 940 static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx) 941 { 942 struct arm_smmu_smr *smr = smmu->smrs + idx; 943 u32 reg = FIELD_PREP(ARM_SMMU_SMR_ID, smr->id) | 944 FIELD_PREP(ARM_SMMU_SMR_MASK, smr->mask); 945 946 if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid) 947 reg |= ARM_SMMU_SMR_VALID; 948 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(idx), reg); 949 } 950 951 static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx) 952 { 953 struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx; 954 u32 reg; 955 956 if (smmu->impl && smmu->impl->write_s2cr) { 957 smmu->impl->write_s2cr(smmu, idx); 958 return; 959 } 960 961 reg = FIELD_PREP(ARM_SMMU_S2CR_TYPE, s2cr->type) | 962 FIELD_PREP(ARM_SMMU_S2CR_CBNDX, s2cr->cbndx) | 963 FIELD_PREP(ARM_SMMU_S2CR_PRIVCFG, s2cr->privcfg); 964 965 if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs && 966 smmu->smrs[idx].valid) 967 reg |= ARM_SMMU_S2CR_EXIDVALID; 968 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_S2CR(idx), reg); 969 } 970 971 static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx) 972 { 973 arm_smmu_write_s2cr(smmu, idx); 974 if (smmu->smrs) 975 arm_smmu_write_smr(smmu, idx); 976 } 977 978 /* 979 * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function 980 * should be called after sCR0 is written. 981 */ 982 static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu) 983 { 984 u32 smr; 985 int i; 986 987 if (!smmu->smrs) 988 return; 989 /* 990 * If we've had to accommodate firmware memory regions, we may 991 * have live SMRs by now; tread carefully... 992 * 993 * Somewhat perversely, not having a free SMR for this test implies we 994 * can get away without it anyway, as we'll only be able to 'allocate' 995 * these SMRs for the ID/mask values we're already trusting to be OK. 996 */ 997 for (i = 0; i < smmu->num_mapping_groups; i++) 998 if (!smmu->smrs[i].valid) 999 goto smr_ok; 1000 return; 1001 smr_ok: 1002 /* 1003 * SMR.ID bits may not be preserved if the corresponding MASK 1004 * bits are set, so check each one separately. We can reject 1005 * masters later if they try to claim IDs outside these masks. 1006 */ 1007 smr = FIELD_PREP(ARM_SMMU_SMR_ID, smmu->streamid_mask); 1008 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(i), smr); 1009 smr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_SMR(i)); 1010 smmu->streamid_mask = FIELD_GET(ARM_SMMU_SMR_ID, smr); 1011 1012 smr = FIELD_PREP(ARM_SMMU_SMR_MASK, smmu->streamid_mask); 1013 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(i), smr); 1014 smr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_SMR(i)); 1015 smmu->smr_mask_mask = FIELD_GET(ARM_SMMU_SMR_MASK, smr); 1016 } 1017 1018 static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask) 1019 { 1020 struct arm_smmu_smr *smrs = smmu->smrs; 1021 int i, free_idx = -ENOSPC; 1022 1023 /* Stream indexing is blissfully easy */ 1024 if (!smrs) 1025 return id; 1026 1027 /* Validating SMRs is... less so */ 1028 for (i = 0; i < smmu->num_mapping_groups; ++i) { 1029 if (!smrs[i].valid) { 1030 /* 1031 * Note the first free entry we come across, which 1032 * we'll claim in the end if nothing else matches. 1033 */ 1034 if (free_idx < 0) 1035 free_idx = i; 1036 continue; 1037 } 1038 /* 1039 * If the new entry is _entirely_ matched by an existing entry, 1040 * then reuse that, with the guarantee that there also cannot 1041 * be any subsequent conflicting entries. In normal use we'd 1042 * expect simply identical entries for this case, but there's 1043 * no harm in accommodating the generalisation. 1044 */ 1045 if ((mask & smrs[i].mask) == mask && 1046 !((id ^ smrs[i].id) & ~smrs[i].mask)) 1047 return i; 1048 /* 1049 * If the new entry has any other overlap with an existing one, 1050 * though, then there always exists at least one stream ID 1051 * which would cause a conflict, and we can't allow that risk. 1052 */ 1053 if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask))) 1054 return -EINVAL; 1055 } 1056 1057 return free_idx; 1058 } 1059 1060 static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx) 1061 { 1062 if (--smmu->s2crs[idx].count) 1063 return false; 1064 1065 smmu->s2crs[idx] = s2cr_init_val; 1066 if (smmu->smrs) 1067 smmu->smrs[idx].valid = false; 1068 1069 return true; 1070 } 1071 1072 static int arm_smmu_master_alloc_smes(struct device *dev) 1073 { 1074 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1075 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1076 struct arm_smmu_device *smmu = cfg->smmu; 1077 struct arm_smmu_smr *smrs = smmu->smrs; 1078 int i, idx, ret; 1079 1080 mutex_lock(&smmu->stream_map_mutex); 1081 /* Figure out a viable stream map entry allocation */ 1082 for_each_cfg_sme(cfg, fwspec, i, idx) { 1083 u16 sid = FIELD_GET(ARM_SMMU_SMR_ID, fwspec->ids[i]); 1084 u16 mask = FIELD_GET(ARM_SMMU_SMR_MASK, fwspec->ids[i]); 1085 1086 if (idx != INVALID_SMENDX) { 1087 ret = -EEXIST; 1088 goto out_err; 1089 } 1090 1091 ret = arm_smmu_find_sme(smmu, sid, mask); 1092 if (ret < 0) 1093 goto out_err; 1094 1095 idx = ret; 1096 if (smrs && smmu->s2crs[idx].count == 0) { 1097 smrs[idx].id = sid; 1098 smrs[idx].mask = mask; 1099 smrs[idx].valid = true; 1100 } 1101 smmu->s2crs[idx].count++; 1102 cfg->smendx[i] = (s16)idx; 1103 } 1104 1105 /* It worked! Now, poke the actual hardware */ 1106 for_each_cfg_sme(cfg, fwspec, i, idx) 1107 arm_smmu_write_sme(smmu, idx); 1108 1109 mutex_unlock(&smmu->stream_map_mutex); 1110 return 0; 1111 1112 out_err: 1113 while (i--) { 1114 arm_smmu_free_sme(smmu, cfg->smendx[i]); 1115 cfg->smendx[i] = INVALID_SMENDX; 1116 } 1117 mutex_unlock(&smmu->stream_map_mutex); 1118 return ret; 1119 } 1120 1121 static void arm_smmu_master_free_smes(struct arm_smmu_master_cfg *cfg, 1122 struct iommu_fwspec *fwspec) 1123 { 1124 struct arm_smmu_device *smmu = cfg->smmu; 1125 int i, idx; 1126 1127 mutex_lock(&smmu->stream_map_mutex); 1128 for_each_cfg_sme(cfg, fwspec, i, idx) { 1129 if (arm_smmu_free_sme(smmu, idx)) 1130 arm_smmu_write_sme(smmu, idx); 1131 cfg->smendx[i] = INVALID_SMENDX; 1132 } 1133 mutex_unlock(&smmu->stream_map_mutex); 1134 } 1135 1136 static void arm_smmu_master_install_s2crs(struct arm_smmu_master_cfg *cfg, 1137 enum arm_smmu_s2cr_type type, 1138 u8 cbndx, struct iommu_fwspec *fwspec) 1139 { 1140 struct arm_smmu_device *smmu = cfg->smmu; 1141 struct arm_smmu_s2cr *s2cr = smmu->s2crs; 1142 int i, idx; 1143 1144 for_each_cfg_sme(cfg, fwspec, i, idx) { 1145 if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx) 1146 continue; 1147 1148 s2cr[idx].type = type; 1149 s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT; 1150 s2cr[idx].cbndx = cbndx; 1151 arm_smmu_write_s2cr(smmu, idx); 1152 } 1153 } 1154 1155 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev) 1156 { 1157 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1158 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1159 struct arm_smmu_master_cfg *cfg; 1160 struct arm_smmu_device *smmu; 1161 int ret; 1162 1163 /* 1164 * FIXME: The arch/arm DMA API code tries to attach devices to its own 1165 * domains between of_xlate() and probe_device() - we have no way to cope 1166 * with that, so until ARM gets converted to rely on groups and default 1167 * domains, just say no (but more politely than by dereferencing NULL). 1168 * This should be at least a WARN_ON once that's sorted. 1169 */ 1170 cfg = dev_iommu_priv_get(dev); 1171 if (!cfg) 1172 return -ENODEV; 1173 1174 smmu = cfg->smmu; 1175 1176 ret = arm_smmu_rpm_get(smmu); 1177 if (ret < 0) 1178 return ret; 1179 1180 /* Ensure that the domain is finalised */ 1181 ret = arm_smmu_init_domain_context(smmu_domain, smmu, dev); 1182 if (ret < 0) 1183 goto rpm_put; 1184 1185 /* 1186 * Sanity check the domain. We don't support domains across 1187 * different SMMUs. 1188 */ 1189 if (smmu_domain->smmu != smmu) { 1190 ret = -EINVAL; 1191 goto rpm_put; 1192 } 1193 1194 /* Looks ok, so add the device to the domain */ 1195 arm_smmu_master_install_s2crs(cfg, S2CR_TYPE_TRANS, 1196 smmu_domain->cfg.cbndx, fwspec); 1197 arm_smmu_rpm_use_autosuspend(smmu); 1198 rpm_put: 1199 arm_smmu_rpm_put(smmu); 1200 return ret; 1201 } 1202 1203 static int arm_smmu_attach_dev_type(struct device *dev, 1204 enum arm_smmu_s2cr_type type) 1205 { 1206 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1207 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1208 struct arm_smmu_device *smmu; 1209 int ret; 1210 1211 if (!cfg) 1212 return -ENODEV; 1213 smmu = cfg->smmu; 1214 1215 ret = arm_smmu_rpm_get(smmu); 1216 if (ret < 0) 1217 return ret; 1218 1219 arm_smmu_master_install_s2crs(cfg, type, 0, fwspec); 1220 arm_smmu_rpm_use_autosuspend(smmu); 1221 arm_smmu_rpm_put(smmu); 1222 return 0; 1223 } 1224 1225 static int arm_smmu_attach_dev_identity(struct iommu_domain *domain, 1226 struct device *dev) 1227 { 1228 return arm_smmu_attach_dev_type(dev, S2CR_TYPE_BYPASS); 1229 } 1230 1231 static const struct iommu_domain_ops arm_smmu_identity_ops = { 1232 .attach_dev = arm_smmu_attach_dev_identity, 1233 }; 1234 1235 static struct iommu_domain arm_smmu_identity_domain = { 1236 .type = IOMMU_DOMAIN_IDENTITY, 1237 .ops = &arm_smmu_identity_ops, 1238 }; 1239 1240 static int arm_smmu_attach_dev_blocked(struct iommu_domain *domain, 1241 struct device *dev) 1242 { 1243 return arm_smmu_attach_dev_type(dev, S2CR_TYPE_FAULT); 1244 } 1245 1246 static const struct iommu_domain_ops arm_smmu_blocked_ops = { 1247 .attach_dev = arm_smmu_attach_dev_blocked, 1248 }; 1249 1250 static struct iommu_domain arm_smmu_blocked_domain = { 1251 .type = IOMMU_DOMAIN_BLOCKED, 1252 .ops = &arm_smmu_blocked_ops, 1253 }; 1254 1255 static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova, 1256 phys_addr_t paddr, size_t pgsize, size_t pgcount, 1257 int prot, gfp_t gfp, size_t *mapped) 1258 { 1259 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops; 1260 struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu; 1261 int ret; 1262 1263 if (!ops) 1264 return -ENODEV; 1265 1266 arm_smmu_rpm_get(smmu); 1267 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped); 1268 arm_smmu_rpm_put(smmu); 1269 1270 return ret; 1271 } 1272 1273 static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova, 1274 size_t pgsize, size_t pgcount, 1275 struct iommu_iotlb_gather *iotlb_gather) 1276 { 1277 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops; 1278 struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu; 1279 size_t ret; 1280 1281 if (!ops) 1282 return 0; 1283 1284 arm_smmu_rpm_get(smmu); 1285 ret = ops->unmap_pages(ops, iova, pgsize, pgcount, iotlb_gather); 1286 arm_smmu_rpm_put(smmu); 1287 1288 return ret; 1289 } 1290 1291 static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain) 1292 { 1293 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1294 struct arm_smmu_device *smmu = smmu_domain->smmu; 1295 1296 if (smmu_domain->flush_ops) { 1297 arm_smmu_rpm_get(smmu); 1298 smmu_domain->flush_ops->tlb_flush_all(smmu_domain); 1299 arm_smmu_rpm_put(smmu); 1300 } 1301 } 1302 1303 static void arm_smmu_iotlb_sync(struct iommu_domain *domain, 1304 struct iommu_iotlb_gather *gather) 1305 { 1306 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1307 struct arm_smmu_device *smmu = smmu_domain->smmu; 1308 1309 if (!smmu) 1310 return; 1311 1312 arm_smmu_rpm_get(smmu); 1313 if (smmu->version == ARM_SMMU_V2 || 1314 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) 1315 arm_smmu_tlb_sync_context(smmu_domain); 1316 else 1317 arm_smmu_tlb_sync_global(smmu); 1318 arm_smmu_rpm_put(smmu); 1319 } 1320 1321 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain, 1322 dma_addr_t iova) 1323 { 1324 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1325 struct arm_smmu_device *smmu = smmu_domain->smmu; 1326 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 1327 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops; 1328 struct device *dev = smmu->dev; 1329 void __iomem *reg; 1330 u32 tmp; 1331 u64 phys; 1332 unsigned long va, flags; 1333 int ret, idx = cfg->cbndx; 1334 phys_addr_t addr = 0; 1335 1336 ret = arm_smmu_rpm_get(smmu); 1337 if (ret < 0) 1338 return 0; 1339 1340 spin_lock_irqsave(&smmu_domain->cb_lock, flags); 1341 va = iova & ~0xfffUL; 1342 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) 1343 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_ATS1PR, va); 1344 else 1345 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_ATS1PR, va); 1346 1347 reg = arm_smmu_page(smmu, ARM_SMMU_CB(smmu, idx)) + ARM_SMMU_CB_ATSR; 1348 if (readl_poll_timeout_atomic(reg, tmp, !(tmp & ARM_SMMU_CB_ATSR_ACTIVE), 1349 5, 50)) { 1350 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags); 1351 dev_err(dev, 1352 "iova to phys timed out on %pad. Falling back to software table walk.\n", 1353 &iova); 1354 arm_smmu_rpm_put(smmu); 1355 return ops->iova_to_phys(ops, iova); 1356 } 1357 1358 phys = arm_smmu_cb_readq(smmu, idx, ARM_SMMU_CB_PAR); 1359 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags); 1360 if (phys & ARM_SMMU_CB_PAR_F) { 1361 dev_err(dev, "translation fault!\n"); 1362 dev_err(dev, "PAR = 0x%llx\n", phys); 1363 goto out; 1364 } 1365 1366 addr = (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff); 1367 out: 1368 arm_smmu_rpm_put(smmu); 1369 1370 return addr; 1371 } 1372 1373 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain, 1374 dma_addr_t iova) 1375 { 1376 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1377 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops; 1378 1379 if (!ops) 1380 return 0; 1381 1382 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS && 1383 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) 1384 return arm_smmu_iova_to_phys_hard(domain, iova); 1385 1386 return ops->iova_to_phys(ops, iova); 1387 } 1388 1389 static bool arm_smmu_capable(struct device *dev, enum iommu_cap cap) 1390 { 1391 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1392 1393 switch (cap) { 1394 case IOMMU_CAP_CACHE_COHERENCY: 1395 /* 1396 * It's overwhelmingly the case in practice that when the pagetable 1397 * walk interface is connected to a coherent interconnect, all the 1398 * translation interfaces are too. Furthermore if the device is 1399 * natively coherent, then its translation interface must also be. 1400 */ 1401 return cfg->smmu->features & ARM_SMMU_FEAT_COHERENT_WALK || 1402 device_get_dma_attr(dev) == DEV_DMA_COHERENT; 1403 case IOMMU_CAP_NOEXEC: 1404 case IOMMU_CAP_DEFERRED_FLUSH: 1405 return true; 1406 default: 1407 return false; 1408 } 1409 } 1410 1411 static 1412 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode) 1413 { 1414 struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver, 1415 fwnode); 1416 put_device(dev); 1417 return dev ? dev_get_drvdata(dev) : NULL; 1418 } 1419 1420 static struct iommu_device *arm_smmu_probe_device(struct device *dev) 1421 { 1422 struct arm_smmu_device *smmu = NULL; 1423 struct arm_smmu_master_cfg *cfg; 1424 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1425 int i, ret; 1426 1427 if (using_legacy_binding) { 1428 ret = arm_smmu_register_legacy_master(dev, &smmu); 1429 1430 /* 1431 * If dev->iommu_fwspec is initally NULL, arm_smmu_register_legacy_master() 1432 * will allocate/initialise a new one. Thus we need to update fwspec for 1433 * later use. 1434 */ 1435 fwspec = dev_iommu_fwspec_get(dev); 1436 if (ret) 1437 goto out_free; 1438 } else { 1439 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode); 1440 1441 /* 1442 * Defer probe if the relevant SMMU instance hasn't finished 1443 * probing yet. This is a fragile hack and we'd ideally 1444 * avoid this race in the core code. Until that's ironed 1445 * out, however, this is the most pragmatic option on the 1446 * table. 1447 */ 1448 if (!smmu) 1449 return ERR_PTR(dev_err_probe(dev, -EPROBE_DEFER, 1450 "smmu dev has not bound yet\n")); 1451 } 1452 1453 ret = -EINVAL; 1454 for (i = 0; i < fwspec->num_ids; i++) { 1455 u16 sid = FIELD_GET(ARM_SMMU_SMR_ID, fwspec->ids[i]); 1456 u16 mask = FIELD_GET(ARM_SMMU_SMR_MASK, fwspec->ids[i]); 1457 1458 if (sid & ~smmu->streamid_mask) { 1459 dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n", 1460 sid, smmu->streamid_mask); 1461 goto out_free; 1462 } 1463 if (mask & ~smmu->smr_mask_mask) { 1464 dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n", 1465 mask, smmu->smr_mask_mask); 1466 goto out_free; 1467 } 1468 } 1469 1470 ret = -ENOMEM; 1471 cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]), 1472 GFP_KERNEL); 1473 if (!cfg) 1474 goto out_free; 1475 1476 cfg->smmu = smmu; 1477 dev_iommu_priv_set(dev, cfg); 1478 while (i--) 1479 cfg->smendx[i] = INVALID_SMENDX; 1480 1481 ret = arm_smmu_rpm_get(smmu); 1482 if (ret < 0) 1483 goto out_cfg_free; 1484 1485 ret = arm_smmu_master_alloc_smes(dev); 1486 arm_smmu_rpm_put(smmu); 1487 1488 if (ret) 1489 goto out_cfg_free; 1490 1491 device_link_add(dev, smmu->dev, 1492 DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_SUPPLIER); 1493 1494 return &smmu->iommu; 1495 1496 out_cfg_free: 1497 kfree(cfg); 1498 out_free: 1499 iommu_fwspec_free(dev); 1500 return ERR_PTR(ret); 1501 } 1502 1503 static void arm_smmu_release_device(struct device *dev) 1504 { 1505 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1506 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1507 int ret; 1508 1509 ret = arm_smmu_rpm_get(cfg->smmu); 1510 if (ret < 0) 1511 return; 1512 1513 arm_smmu_master_free_smes(cfg, fwspec); 1514 1515 arm_smmu_rpm_put(cfg->smmu); 1516 1517 kfree(cfg); 1518 } 1519 1520 static void arm_smmu_probe_finalize(struct device *dev) 1521 { 1522 struct arm_smmu_master_cfg *cfg; 1523 struct arm_smmu_device *smmu; 1524 1525 cfg = dev_iommu_priv_get(dev); 1526 smmu = cfg->smmu; 1527 1528 if (smmu->impl && smmu->impl->probe_finalize) 1529 smmu->impl->probe_finalize(smmu, dev); 1530 } 1531 1532 static struct iommu_group *arm_smmu_device_group(struct device *dev) 1533 { 1534 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1535 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1536 struct arm_smmu_device *smmu = cfg->smmu; 1537 struct iommu_group *group = NULL; 1538 int i, idx; 1539 1540 mutex_lock(&smmu->stream_map_mutex); 1541 for_each_cfg_sme(cfg, fwspec, i, idx) { 1542 if (group && smmu->s2crs[idx].group && 1543 group != smmu->s2crs[idx].group) { 1544 mutex_unlock(&smmu->stream_map_mutex); 1545 return ERR_PTR(-EINVAL); 1546 } 1547 1548 group = smmu->s2crs[idx].group; 1549 } 1550 1551 if (group) { 1552 mutex_unlock(&smmu->stream_map_mutex); 1553 return iommu_group_ref_get(group); 1554 } 1555 1556 if (dev_is_pci(dev)) 1557 group = pci_device_group(dev); 1558 else if (dev_is_fsl_mc(dev)) 1559 group = fsl_mc_device_group(dev); 1560 else 1561 group = generic_device_group(dev); 1562 1563 /* Remember group for faster lookups */ 1564 if (!IS_ERR(group)) 1565 for_each_cfg_sme(cfg, fwspec, i, idx) 1566 smmu->s2crs[idx].group = group; 1567 1568 mutex_unlock(&smmu->stream_map_mutex); 1569 return group; 1570 } 1571 1572 static int arm_smmu_set_pgtable_quirks(struct iommu_domain *domain, 1573 unsigned long quirks) 1574 { 1575 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1576 int ret = 0; 1577 1578 mutex_lock(&smmu_domain->init_mutex); 1579 if (smmu_domain->smmu) 1580 ret = -EPERM; 1581 else 1582 smmu_domain->pgtbl_quirks = quirks; 1583 mutex_unlock(&smmu_domain->init_mutex); 1584 1585 return ret; 1586 } 1587 1588 static int arm_smmu_of_xlate(struct device *dev, 1589 const struct of_phandle_args *args) 1590 { 1591 u32 mask, fwid = 0; 1592 1593 if (args->args_count > 0) 1594 fwid |= FIELD_PREP(ARM_SMMU_SMR_ID, args->args[0]); 1595 1596 if (args->args_count > 1) 1597 fwid |= FIELD_PREP(ARM_SMMU_SMR_MASK, args->args[1]); 1598 else if (!of_property_read_u32(args->np, "stream-match-mask", &mask)) 1599 fwid |= FIELD_PREP(ARM_SMMU_SMR_MASK, mask); 1600 1601 return iommu_fwspec_add_ids(dev, &fwid, 1); 1602 } 1603 1604 static void arm_smmu_get_resv_regions(struct device *dev, 1605 struct list_head *head) 1606 { 1607 struct iommu_resv_region *region; 1608 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1609 1610 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH, 1611 prot, IOMMU_RESV_SW_MSI, GFP_KERNEL); 1612 if (!region) 1613 return; 1614 1615 list_add_tail(®ion->list, head); 1616 1617 iommu_dma_get_resv_regions(dev, head); 1618 } 1619 1620 static int arm_smmu_def_domain_type(struct device *dev) 1621 { 1622 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1623 const struct arm_smmu_impl *impl = cfg->smmu->impl; 1624 1625 if (using_legacy_binding) 1626 return IOMMU_DOMAIN_IDENTITY; 1627 1628 if (impl && impl->def_domain_type) 1629 return impl->def_domain_type(dev); 1630 1631 return 0; 1632 } 1633 1634 static struct iommu_ops arm_smmu_ops = { 1635 .identity_domain = &arm_smmu_identity_domain, 1636 .blocked_domain = &arm_smmu_blocked_domain, 1637 .capable = arm_smmu_capable, 1638 .domain_alloc_paging = arm_smmu_domain_alloc_paging, 1639 .probe_device = arm_smmu_probe_device, 1640 .release_device = arm_smmu_release_device, 1641 .probe_finalize = arm_smmu_probe_finalize, 1642 .device_group = arm_smmu_device_group, 1643 .of_xlate = arm_smmu_of_xlate, 1644 .get_resv_regions = arm_smmu_get_resv_regions, 1645 .def_domain_type = arm_smmu_def_domain_type, 1646 .pgsize_bitmap = -1UL, /* Restricted during device attach */ 1647 .owner = THIS_MODULE, 1648 .default_domain_ops = &(const struct iommu_domain_ops) { 1649 .attach_dev = arm_smmu_attach_dev, 1650 .map_pages = arm_smmu_map_pages, 1651 .unmap_pages = arm_smmu_unmap_pages, 1652 .flush_iotlb_all = arm_smmu_flush_iotlb_all, 1653 .iotlb_sync = arm_smmu_iotlb_sync, 1654 .iova_to_phys = arm_smmu_iova_to_phys, 1655 .set_pgtable_quirks = arm_smmu_set_pgtable_quirks, 1656 .free = arm_smmu_domain_free, 1657 } 1658 }; 1659 1660 static void arm_smmu_device_reset(struct arm_smmu_device *smmu) 1661 { 1662 int i; 1663 u32 reg; 1664 1665 /* clear global FSR */ 1666 reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSR); 1667 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sGFSR, reg); 1668 1669 /* 1670 * Reset stream mapping groups: Initial values mark all SMRn as 1671 * invalid and all S2CRn as bypass unless overridden. 1672 */ 1673 for (i = 0; i < smmu->num_mapping_groups; ++i) 1674 arm_smmu_write_sme(smmu, i); 1675 1676 /* Make sure all context banks are disabled and clear CB_FSR */ 1677 for (i = 0; i < smmu->num_context_banks; ++i) { 1678 arm_smmu_write_context_bank(smmu, i); 1679 arm_smmu_cb_write(smmu, i, ARM_SMMU_CB_FSR, ARM_SMMU_CB_FSR_FAULT); 1680 } 1681 1682 /* Invalidate the TLB, just in case */ 1683 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIALLH, QCOM_DUMMY_VAL); 1684 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIALLNSNH, QCOM_DUMMY_VAL); 1685 1686 reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sCR0); 1687 1688 /* Enable fault reporting */ 1689 reg |= (ARM_SMMU_sCR0_GFRE | ARM_SMMU_sCR0_GFIE | 1690 ARM_SMMU_sCR0_GCFGFRE | ARM_SMMU_sCR0_GCFGFIE); 1691 1692 /* Disable TLB broadcasting. */ 1693 reg |= (ARM_SMMU_sCR0_VMIDPNE | ARM_SMMU_sCR0_PTM); 1694 1695 /* Enable client access, handling unmatched streams as appropriate */ 1696 reg &= ~ARM_SMMU_sCR0_CLIENTPD; 1697 if (disable_bypass) 1698 reg |= ARM_SMMU_sCR0_USFCFG; 1699 else 1700 reg &= ~ARM_SMMU_sCR0_USFCFG; 1701 1702 /* Disable forced broadcasting */ 1703 reg &= ~ARM_SMMU_sCR0_FB; 1704 1705 /* Don't upgrade barriers */ 1706 reg &= ~(ARM_SMMU_sCR0_BSU); 1707 1708 if (smmu->features & ARM_SMMU_FEAT_VMID16) 1709 reg |= ARM_SMMU_sCR0_VMID16EN; 1710 1711 if (smmu->features & ARM_SMMU_FEAT_EXIDS) 1712 reg |= ARM_SMMU_sCR0_EXIDENABLE; 1713 1714 if (smmu->impl && smmu->impl->reset) 1715 smmu->impl->reset(smmu); 1716 1717 /* Push the button */ 1718 arm_smmu_tlb_sync_global(smmu); 1719 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, reg); 1720 } 1721 1722 static int arm_smmu_id_size_to_bits(int size) 1723 { 1724 switch (size) { 1725 case 0: 1726 return 32; 1727 case 1: 1728 return 36; 1729 case 2: 1730 return 40; 1731 case 3: 1732 return 42; 1733 case 4: 1734 return 44; 1735 case 5: 1736 default: 1737 return 48; 1738 } 1739 } 1740 1741 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu) 1742 { 1743 unsigned int size; 1744 u32 id; 1745 bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK; 1746 int i, ret; 1747 1748 dev_notice(smmu->dev, "probing hardware configuration...\n"); 1749 dev_notice(smmu->dev, "SMMUv%d with:\n", 1750 smmu->version == ARM_SMMU_V2 ? 2 : 1); 1751 1752 /* ID0 */ 1753 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID0); 1754 1755 /* Restrict available stages based on module parameter */ 1756 if (force_stage == 1) 1757 id &= ~(ARM_SMMU_ID0_S2TS | ARM_SMMU_ID0_NTS); 1758 else if (force_stage == 2) 1759 id &= ~(ARM_SMMU_ID0_S1TS | ARM_SMMU_ID0_NTS); 1760 1761 if (id & ARM_SMMU_ID0_S1TS) { 1762 smmu->features |= ARM_SMMU_FEAT_TRANS_S1; 1763 dev_notice(smmu->dev, "\tstage 1 translation\n"); 1764 } 1765 1766 if (id & ARM_SMMU_ID0_S2TS) { 1767 smmu->features |= ARM_SMMU_FEAT_TRANS_S2; 1768 dev_notice(smmu->dev, "\tstage 2 translation\n"); 1769 } 1770 1771 if (id & ARM_SMMU_ID0_NTS) { 1772 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED; 1773 dev_notice(smmu->dev, "\tnested translation\n"); 1774 } 1775 1776 if (!(smmu->features & 1777 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) { 1778 dev_err(smmu->dev, "\tno translation support!\n"); 1779 return -ENODEV; 1780 } 1781 1782 if ((id & ARM_SMMU_ID0_S1TS) && 1783 ((smmu->version < ARM_SMMU_V2) || !(id & ARM_SMMU_ID0_ATOSNS))) { 1784 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS; 1785 dev_notice(smmu->dev, "\taddress translation ops\n"); 1786 } 1787 1788 /* 1789 * In order for DMA API calls to work properly, we must defer to what 1790 * the FW says about coherency, regardless of what the hardware claims. 1791 * Fortunately, this also opens up a workaround for systems where the 1792 * ID register value has ended up configured incorrectly. 1793 */ 1794 cttw_reg = !!(id & ARM_SMMU_ID0_CTTW); 1795 if (cttw_fw || cttw_reg) 1796 dev_notice(smmu->dev, "\t%scoherent table walk\n", 1797 cttw_fw ? "" : "non-"); 1798 if (cttw_fw != cttw_reg) 1799 dev_notice(smmu->dev, 1800 "\t(IDR0.CTTW overridden by FW configuration)\n"); 1801 1802 /* Max. number of entries we have for stream matching/indexing */ 1803 if (smmu->version == ARM_SMMU_V2 && id & ARM_SMMU_ID0_EXIDS) { 1804 smmu->features |= ARM_SMMU_FEAT_EXIDS; 1805 size = 1 << 16; 1806 } else { 1807 size = 1 << FIELD_GET(ARM_SMMU_ID0_NUMSIDB, id); 1808 } 1809 smmu->streamid_mask = size - 1; 1810 if (id & ARM_SMMU_ID0_SMS) { 1811 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH; 1812 size = FIELD_GET(ARM_SMMU_ID0_NUMSMRG, id); 1813 if (size == 0) { 1814 dev_err(smmu->dev, 1815 "stream-matching supported, but no SMRs present!\n"); 1816 return -ENODEV; 1817 } 1818 1819 /* Zero-initialised to mark as invalid */ 1820 smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs), 1821 GFP_KERNEL); 1822 if (!smmu->smrs) 1823 return -ENOMEM; 1824 1825 dev_notice(smmu->dev, 1826 "\tstream matching with %u register groups", size); 1827 } 1828 /* s2cr->type == 0 means translation, so initialise explicitly */ 1829 smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs), 1830 GFP_KERNEL); 1831 if (!smmu->s2crs) 1832 return -ENOMEM; 1833 for (i = 0; i < size; i++) 1834 smmu->s2crs[i] = s2cr_init_val; 1835 1836 smmu->num_mapping_groups = size; 1837 mutex_init(&smmu->stream_map_mutex); 1838 spin_lock_init(&smmu->global_sync_lock); 1839 1840 if (smmu->version < ARM_SMMU_V2 || 1841 !(id & ARM_SMMU_ID0_PTFS_NO_AARCH32)) { 1842 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L; 1843 if (!(id & ARM_SMMU_ID0_PTFS_NO_AARCH32S)) 1844 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S; 1845 } 1846 1847 /* ID1 */ 1848 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID1); 1849 smmu->pgshift = (id & ARM_SMMU_ID1_PAGESIZE) ? 16 : 12; 1850 1851 /* Check for size mismatch of SMMU address space from mapped region */ 1852 size = 1 << (FIELD_GET(ARM_SMMU_ID1_NUMPAGENDXB, id) + 1); 1853 if (smmu->numpage != 2 * size << smmu->pgshift) 1854 dev_warn(smmu->dev, 1855 "SMMU address space size (0x%x) differs from mapped region size (0x%x)!\n", 1856 2 * size << smmu->pgshift, smmu->numpage); 1857 /* Now properly encode NUMPAGE to subsequently derive SMMU_CB_BASE */ 1858 smmu->numpage = size; 1859 1860 smmu->num_s2_context_banks = FIELD_GET(ARM_SMMU_ID1_NUMS2CB, id); 1861 smmu->num_context_banks = FIELD_GET(ARM_SMMU_ID1_NUMCB, id); 1862 if (smmu->num_s2_context_banks > smmu->num_context_banks) { 1863 dev_err(smmu->dev, "impossible number of S2 context banks!\n"); 1864 return -ENODEV; 1865 } 1866 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n", 1867 smmu->num_context_banks, smmu->num_s2_context_banks); 1868 smmu->cbs = devm_kcalloc(smmu->dev, smmu->num_context_banks, 1869 sizeof(*smmu->cbs), GFP_KERNEL); 1870 if (!smmu->cbs) 1871 return -ENOMEM; 1872 1873 /* ID2 */ 1874 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID2); 1875 size = arm_smmu_id_size_to_bits(FIELD_GET(ARM_SMMU_ID2_IAS, id)); 1876 smmu->ipa_size = size; 1877 1878 /* The output mask is also applied for bypass */ 1879 size = arm_smmu_id_size_to_bits(FIELD_GET(ARM_SMMU_ID2_OAS, id)); 1880 smmu->pa_size = size; 1881 1882 if (id & ARM_SMMU_ID2_VMID16) 1883 smmu->features |= ARM_SMMU_FEAT_VMID16; 1884 1885 /* 1886 * What the page table walker can address actually depends on which 1887 * descriptor format is in use, but since a) we don't know that yet, 1888 * and b) it can vary per context bank, this will have to do... 1889 */ 1890 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size))) 1891 dev_warn(smmu->dev, 1892 "failed to set DMA mask for table walker\n"); 1893 1894 if (smmu->version < ARM_SMMU_V2) { 1895 smmu->va_size = smmu->ipa_size; 1896 if (smmu->version == ARM_SMMU_V1_64K) 1897 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K; 1898 } else { 1899 size = FIELD_GET(ARM_SMMU_ID2_UBS, id); 1900 smmu->va_size = arm_smmu_id_size_to_bits(size); 1901 if (id & ARM_SMMU_ID2_PTFS_4K) 1902 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K; 1903 if (id & ARM_SMMU_ID2_PTFS_16K) 1904 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K; 1905 if (id & ARM_SMMU_ID2_PTFS_64K) 1906 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K; 1907 } 1908 1909 if (smmu->impl && smmu->impl->cfg_probe) { 1910 ret = smmu->impl->cfg_probe(smmu); 1911 if (ret) 1912 return ret; 1913 } 1914 1915 /* Now we've corralled the various formats, what'll it do? */ 1916 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) 1917 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M; 1918 if (smmu->features & 1919 (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K)) 1920 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G; 1921 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K) 1922 smmu->pgsize_bitmap |= SZ_16K | SZ_32M; 1923 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K) 1924 smmu->pgsize_bitmap |= SZ_64K | SZ_512M; 1925 1926 if (arm_smmu_ops.pgsize_bitmap == -1UL) 1927 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap; 1928 else 1929 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap; 1930 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", 1931 smmu->pgsize_bitmap); 1932 1933 1934 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) 1935 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n", 1936 smmu->va_size, smmu->ipa_size); 1937 1938 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) 1939 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n", 1940 smmu->ipa_size, smmu->pa_size); 1941 1942 return 0; 1943 } 1944 1945 struct arm_smmu_match_data { 1946 enum arm_smmu_arch_version version; 1947 enum arm_smmu_implementation model; 1948 }; 1949 1950 #define ARM_SMMU_MATCH_DATA(name, ver, imp) \ 1951 static const struct arm_smmu_match_data name = { .version = ver, .model = imp } 1952 1953 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU); 1954 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU); 1955 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU); 1956 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500); 1957 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2); 1958 ARM_SMMU_MATCH_DATA(qcom_smmuv2, ARM_SMMU_V2, QCOM_SMMUV2); 1959 1960 static const struct of_device_id arm_smmu_of_match[] = { 1961 { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 }, 1962 { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 }, 1963 { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 }, 1964 { .compatible = "arm,mmu-401", .data = &arm_mmu401 }, 1965 { .compatible = "arm,mmu-500", .data = &arm_mmu500 }, 1966 { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 }, 1967 { .compatible = "nvidia,smmu-500", .data = &arm_mmu500 }, 1968 { .compatible = "qcom,smmu-v2", .data = &qcom_smmuv2 }, 1969 { }, 1970 }; 1971 MODULE_DEVICE_TABLE(of, arm_smmu_of_match); 1972 1973 #ifdef CONFIG_ACPI 1974 static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu) 1975 { 1976 int ret = 0; 1977 1978 switch (model) { 1979 case ACPI_IORT_SMMU_V1: 1980 case ACPI_IORT_SMMU_CORELINK_MMU400: 1981 smmu->version = ARM_SMMU_V1; 1982 smmu->model = GENERIC_SMMU; 1983 break; 1984 case ACPI_IORT_SMMU_CORELINK_MMU401: 1985 smmu->version = ARM_SMMU_V1_64K; 1986 smmu->model = GENERIC_SMMU; 1987 break; 1988 case ACPI_IORT_SMMU_V2: 1989 smmu->version = ARM_SMMU_V2; 1990 smmu->model = GENERIC_SMMU; 1991 break; 1992 case ACPI_IORT_SMMU_CORELINK_MMU500: 1993 smmu->version = ARM_SMMU_V2; 1994 smmu->model = ARM_MMU500; 1995 break; 1996 case ACPI_IORT_SMMU_CAVIUM_THUNDERX: 1997 smmu->version = ARM_SMMU_V2; 1998 smmu->model = CAVIUM_SMMUV2; 1999 break; 2000 default: 2001 ret = -ENODEV; 2002 } 2003 2004 return ret; 2005 } 2006 2007 static int arm_smmu_device_acpi_probe(struct arm_smmu_device *smmu, 2008 u32 *global_irqs, u32 *pmu_irqs) 2009 { 2010 struct device *dev = smmu->dev; 2011 struct acpi_iort_node *node = 2012 *(struct acpi_iort_node **)dev_get_platdata(dev); 2013 struct acpi_iort_smmu *iort_smmu; 2014 int ret; 2015 2016 /* Retrieve SMMU1/2 specific data */ 2017 iort_smmu = (struct acpi_iort_smmu *)node->node_data; 2018 2019 ret = acpi_smmu_get_data(iort_smmu->model, smmu); 2020 if (ret < 0) 2021 return ret; 2022 2023 /* Ignore the configuration access interrupt */ 2024 *global_irqs = 1; 2025 *pmu_irqs = 0; 2026 2027 if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) 2028 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK; 2029 2030 return 0; 2031 } 2032 #else 2033 static inline int arm_smmu_device_acpi_probe(struct arm_smmu_device *smmu, 2034 u32 *global_irqs, u32 *pmu_irqs) 2035 { 2036 return -ENODEV; 2037 } 2038 #endif 2039 2040 static int arm_smmu_device_dt_probe(struct arm_smmu_device *smmu, 2041 u32 *global_irqs, u32 *pmu_irqs) 2042 { 2043 const struct arm_smmu_match_data *data; 2044 struct device *dev = smmu->dev; 2045 bool legacy_binding; 2046 2047 if (of_property_read_u32(dev->of_node, "#global-interrupts", global_irqs)) 2048 return dev_err_probe(dev, -ENODEV, 2049 "missing #global-interrupts property\n"); 2050 *pmu_irqs = 0; 2051 2052 data = of_device_get_match_data(dev); 2053 smmu->version = data->version; 2054 smmu->model = data->model; 2055 2056 legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL); 2057 if (legacy_binding && !using_generic_binding) { 2058 if (!using_legacy_binding) { 2059 pr_notice("deprecated \"mmu-masters\" DT property in use; %s support unavailable\n", 2060 IS_ENABLED(CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS) ? "DMA API" : "SMMU"); 2061 } 2062 using_legacy_binding = true; 2063 } else if (!legacy_binding && !using_legacy_binding) { 2064 using_generic_binding = true; 2065 } else { 2066 dev_err(dev, "not probing due to mismatched DT properties\n"); 2067 return -ENODEV; 2068 } 2069 2070 if (of_dma_is_coherent(dev->of_node)) 2071 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK; 2072 2073 return 0; 2074 } 2075 2076 static void arm_smmu_rmr_install_bypass_smr(struct arm_smmu_device *smmu) 2077 { 2078 struct list_head rmr_list; 2079 struct iommu_resv_region *e; 2080 int idx, cnt = 0; 2081 u32 reg; 2082 2083 INIT_LIST_HEAD(&rmr_list); 2084 iort_get_rmr_sids(dev_fwnode(smmu->dev), &rmr_list); 2085 2086 /* 2087 * Rather than trying to look at existing mappings that 2088 * are setup by the firmware and then invalidate the ones 2089 * that do no have matching RMR entries, just disable the 2090 * SMMU until it gets enabled again in the reset routine. 2091 */ 2092 reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sCR0); 2093 reg |= ARM_SMMU_sCR0_CLIENTPD; 2094 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, reg); 2095 2096 list_for_each_entry(e, &rmr_list, list) { 2097 struct iommu_iort_rmr_data *rmr; 2098 int i; 2099 2100 rmr = container_of(e, struct iommu_iort_rmr_data, rr); 2101 for (i = 0; i < rmr->num_sids; i++) { 2102 idx = arm_smmu_find_sme(smmu, rmr->sids[i], ~0); 2103 if (idx < 0) 2104 continue; 2105 2106 if (smmu->s2crs[idx].count == 0) { 2107 smmu->smrs[idx].id = rmr->sids[i]; 2108 smmu->smrs[idx].mask = 0; 2109 smmu->smrs[idx].valid = true; 2110 } 2111 smmu->s2crs[idx].count++; 2112 smmu->s2crs[idx].type = S2CR_TYPE_BYPASS; 2113 smmu->s2crs[idx].privcfg = S2CR_PRIVCFG_DEFAULT; 2114 2115 cnt++; 2116 } 2117 } 2118 2119 dev_notice(smmu->dev, "\tpreserved %d boot mapping%s\n", cnt, 2120 cnt == 1 ? "" : "s"); 2121 iort_put_rmr_sids(dev_fwnode(smmu->dev), &rmr_list); 2122 } 2123 2124 static int arm_smmu_device_probe(struct platform_device *pdev) 2125 { 2126 struct resource *res; 2127 struct arm_smmu_device *smmu; 2128 struct device *dev = &pdev->dev; 2129 int num_irqs, i, err; 2130 u32 global_irqs, pmu_irqs; 2131 irqreturn_t (*global_fault)(int irq, void *dev); 2132 2133 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL); 2134 if (!smmu) { 2135 dev_err(dev, "failed to allocate arm_smmu_device\n"); 2136 return -ENOMEM; 2137 } 2138 smmu->dev = dev; 2139 2140 if (dev->of_node) 2141 err = arm_smmu_device_dt_probe(smmu, &global_irqs, &pmu_irqs); 2142 else 2143 err = arm_smmu_device_acpi_probe(smmu, &global_irqs, &pmu_irqs); 2144 if (err) 2145 return err; 2146 2147 smmu->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2148 if (IS_ERR(smmu->base)) 2149 return PTR_ERR(smmu->base); 2150 smmu->ioaddr = res->start; 2151 2152 /* 2153 * The resource size should effectively match the value of SMMU_TOP; 2154 * stash that temporarily until we know PAGESIZE to validate it with. 2155 */ 2156 smmu->numpage = resource_size(res); 2157 2158 smmu = arm_smmu_impl_init(smmu); 2159 if (IS_ERR(smmu)) 2160 return PTR_ERR(smmu); 2161 2162 num_irqs = platform_irq_count(pdev); 2163 2164 smmu->num_context_irqs = num_irqs - global_irqs - pmu_irqs; 2165 if (smmu->num_context_irqs <= 0) 2166 return dev_err_probe(dev, -ENODEV, 2167 "found %d interrupts but expected at least %d\n", 2168 num_irqs, global_irqs + pmu_irqs + 1); 2169 2170 smmu->irqs = devm_kcalloc(dev, smmu->num_context_irqs, 2171 sizeof(*smmu->irqs), GFP_KERNEL); 2172 if (!smmu->irqs) 2173 return dev_err_probe(dev, -ENOMEM, "failed to allocate %d irqs\n", 2174 smmu->num_context_irqs); 2175 2176 for (i = 0; i < smmu->num_context_irqs; i++) { 2177 int irq = platform_get_irq(pdev, global_irqs + pmu_irqs + i); 2178 2179 if (irq < 0) 2180 return irq; 2181 smmu->irqs[i] = irq; 2182 } 2183 2184 err = devm_clk_bulk_get_all(dev, &smmu->clks); 2185 if (err < 0) { 2186 dev_err(dev, "failed to get clocks %d\n", err); 2187 return err; 2188 } 2189 smmu->num_clks = err; 2190 2191 err = clk_bulk_prepare_enable(smmu->num_clks, smmu->clks); 2192 if (err) 2193 return err; 2194 2195 err = arm_smmu_device_cfg_probe(smmu); 2196 if (err) 2197 return err; 2198 2199 if (smmu->version == ARM_SMMU_V2) { 2200 if (smmu->num_context_banks > smmu->num_context_irqs) { 2201 dev_err(dev, 2202 "found only %d context irq(s) but %d required\n", 2203 smmu->num_context_irqs, smmu->num_context_banks); 2204 return -ENODEV; 2205 } 2206 2207 /* Ignore superfluous interrupts */ 2208 smmu->num_context_irqs = smmu->num_context_banks; 2209 } 2210 2211 if (smmu->impl && smmu->impl->global_fault) 2212 global_fault = smmu->impl->global_fault; 2213 else 2214 global_fault = arm_smmu_global_fault; 2215 2216 for (i = 0; i < global_irqs; i++) { 2217 int irq = platform_get_irq(pdev, i); 2218 2219 if (irq < 0) 2220 return irq; 2221 2222 err = devm_request_irq(dev, irq, global_fault, IRQF_SHARED, 2223 "arm-smmu global fault", smmu); 2224 if (err) 2225 return dev_err_probe(dev, err, 2226 "failed to request global IRQ %d (%u)\n", 2227 i, irq); 2228 } 2229 2230 err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL, 2231 "smmu.%pa", &smmu->ioaddr); 2232 if (err) { 2233 dev_err(dev, "Failed to register iommu in sysfs\n"); 2234 return err; 2235 } 2236 2237 err = iommu_device_register(&smmu->iommu, &arm_smmu_ops, 2238 using_legacy_binding ? NULL : dev); 2239 if (err) { 2240 dev_err(dev, "Failed to register iommu\n"); 2241 iommu_device_sysfs_remove(&smmu->iommu); 2242 return err; 2243 } 2244 2245 platform_set_drvdata(pdev, smmu); 2246 2247 /* Check for RMRs and install bypass SMRs if any */ 2248 arm_smmu_rmr_install_bypass_smr(smmu); 2249 2250 arm_smmu_device_reset(smmu); 2251 arm_smmu_test_smr_masks(smmu); 2252 2253 /* 2254 * We want to avoid touching dev->power.lock in fastpaths unless 2255 * it's really going to do something useful - pm_runtime_enabled() 2256 * can serve as an ideal proxy for that decision. So, conditionally 2257 * enable pm_runtime. 2258 */ 2259 if (dev->pm_domain) { 2260 pm_runtime_set_active(dev); 2261 pm_runtime_enable(dev); 2262 } 2263 2264 return 0; 2265 } 2266 2267 static void arm_smmu_device_shutdown(struct platform_device *pdev) 2268 { 2269 struct arm_smmu_device *smmu = platform_get_drvdata(pdev); 2270 2271 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS)) 2272 dev_notice(&pdev->dev, "disabling translation\n"); 2273 2274 arm_smmu_rpm_get(smmu); 2275 /* Turn the thing off */ 2276 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, ARM_SMMU_sCR0_CLIENTPD); 2277 arm_smmu_rpm_put(smmu); 2278 2279 if (pm_runtime_enabled(smmu->dev)) 2280 pm_runtime_force_suspend(smmu->dev); 2281 else 2282 clk_bulk_disable(smmu->num_clks, smmu->clks); 2283 2284 clk_bulk_unprepare(smmu->num_clks, smmu->clks); 2285 } 2286 2287 static void arm_smmu_device_remove(struct platform_device *pdev) 2288 { 2289 struct arm_smmu_device *smmu = platform_get_drvdata(pdev); 2290 2291 iommu_device_unregister(&smmu->iommu); 2292 iommu_device_sysfs_remove(&smmu->iommu); 2293 2294 arm_smmu_device_shutdown(pdev); 2295 } 2296 2297 static int __maybe_unused arm_smmu_runtime_resume(struct device *dev) 2298 { 2299 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2300 int ret; 2301 2302 ret = clk_bulk_enable(smmu->num_clks, smmu->clks); 2303 if (ret) 2304 return ret; 2305 2306 arm_smmu_device_reset(smmu); 2307 2308 return 0; 2309 } 2310 2311 static int __maybe_unused arm_smmu_runtime_suspend(struct device *dev) 2312 { 2313 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2314 2315 clk_bulk_disable(smmu->num_clks, smmu->clks); 2316 2317 return 0; 2318 } 2319 2320 static int __maybe_unused arm_smmu_pm_resume(struct device *dev) 2321 { 2322 int ret; 2323 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2324 2325 ret = clk_bulk_prepare(smmu->num_clks, smmu->clks); 2326 if (ret) 2327 return ret; 2328 2329 if (pm_runtime_suspended(dev)) 2330 return 0; 2331 2332 ret = arm_smmu_runtime_resume(dev); 2333 if (ret) 2334 clk_bulk_unprepare(smmu->num_clks, smmu->clks); 2335 2336 return ret; 2337 } 2338 2339 static int __maybe_unused arm_smmu_pm_suspend(struct device *dev) 2340 { 2341 int ret = 0; 2342 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2343 2344 if (pm_runtime_suspended(dev)) 2345 goto clk_unprepare; 2346 2347 ret = arm_smmu_runtime_suspend(dev); 2348 if (ret) 2349 return ret; 2350 2351 clk_unprepare: 2352 clk_bulk_unprepare(smmu->num_clks, smmu->clks); 2353 return ret; 2354 } 2355 2356 static const struct dev_pm_ops arm_smmu_pm_ops = { 2357 SET_SYSTEM_SLEEP_PM_OPS(arm_smmu_pm_suspend, arm_smmu_pm_resume) 2358 SET_RUNTIME_PM_OPS(arm_smmu_runtime_suspend, 2359 arm_smmu_runtime_resume, NULL) 2360 }; 2361 2362 static struct platform_driver arm_smmu_driver = { 2363 .driver = { 2364 .name = "arm-smmu", 2365 .of_match_table = arm_smmu_of_match, 2366 .pm = &arm_smmu_pm_ops, 2367 .suppress_bind_attrs = true, 2368 }, 2369 .probe = arm_smmu_device_probe, 2370 .remove_new = arm_smmu_device_remove, 2371 .shutdown = arm_smmu_device_shutdown, 2372 }; 2373 module_platform_driver(arm_smmu_driver); 2374 2375 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations"); 2376 MODULE_AUTHOR("Will Deacon <will@kernel.org>"); 2377 MODULE_ALIAS("platform:arm-smmu"); 2378 MODULE_LICENSE("GPL v2"); 2379