1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/pci-ats.h> 15 #include <linux/bitmap.h> 16 #include <linux/slab.h> 17 #include <linux/debugfs.h> 18 #include <linux/scatterlist.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/dma-direct.h> 21 #include <linux/idr.h> 22 #include <linux/iommu-helper.h> 23 #include <linux/delay.h> 24 #include <linux/amd-iommu.h> 25 #include <linux/notifier.h> 26 #include <linux/export.h> 27 #include <linux/irq.h> 28 #include <linux/msi.h> 29 #include <linux/irqdomain.h> 30 #include <linux/percpu.h> 31 #include <linux/io-pgtable.h> 32 #include <linux/cc_platform.h> 33 #include <asm/irq_remapping.h> 34 #include <asm/io_apic.h> 35 #include <asm/apic.h> 36 #include <asm/hw_irq.h> 37 #include <asm/proto.h> 38 #include <asm/iommu.h> 39 #include <asm/gart.h> 40 #include <asm/dma.h> 41 #include <uapi/linux/iommufd.h> 42 43 #include "amd_iommu.h" 44 #include "../dma-iommu.h" 45 #include "../irq_remapping.h" 46 #include "../iommu-pages.h" 47 48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 49 50 /* Reserved IOVA ranges */ 51 #define MSI_RANGE_START (0xfee00000) 52 #define MSI_RANGE_END (0xfeefffff) 53 #define HT_RANGE_START (0xfd00000000ULL) 54 #define HT_RANGE_END (0xffffffffffULL) 55 56 LIST_HEAD(ioapic_map); 57 LIST_HEAD(hpet_map); 58 LIST_HEAD(acpihid_map); 59 60 const struct iommu_ops amd_iommu_ops; 61 static const struct iommu_dirty_ops amd_dirty_ops; 62 63 int amd_iommu_max_glx_val = -1; 64 65 /* 66 * general struct to manage commands send to an IOMMU 67 */ 68 struct iommu_cmd { 69 u32 data[4]; 70 }; 71 72 /* 73 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap 74 * to know which ones are already in use. 75 */ 76 DEFINE_IDA(pdom_ids); 77 78 static int amd_iommu_attach_device(struct iommu_domain *dom, 79 struct device *dev); 80 81 static void set_dte_entry(struct amd_iommu *iommu, 82 struct iommu_dev_data *dev_data); 83 84 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid); 85 86 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid); 87 88 /**************************************************************************** 89 * 90 * Helper functions 91 * 92 ****************************************************************************/ 93 94 static __always_inline void amd_iommu_atomic128_set(__int128 *ptr, __int128 val) 95 { 96 /* 97 * Note: 98 * We use arch_cmpxchg128_local() because: 99 * - Need cmpxchg16b instruction mainly for 128-bit store to DTE 100 * (not necessary for cmpxchg since this function is already 101 * protected by a spin_lock for this DTE). 102 * - Neither need LOCK_PREFIX nor try loop because of the spin_lock. 103 */ 104 arch_cmpxchg128_local(ptr, *ptr, val); 105 } 106 107 static void write_dte_upper128(struct dev_table_entry *ptr, struct dev_table_entry *new) 108 { 109 struct dev_table_entry old; 110 111 old.data128[1] = ptr->data128[1]; 112 /* 113 * Preserve DTE_DATA2_INTR_MASK. This needs to be 114 * done here since it requires to be inside 115 * spin_lock(&dev_data->dte_lock) context. 116 */ 117 new->data[2] &= ~DTE_DATA2_INTR_MASK; 118 new->data[2] |= old.data[2] & DTE_DATA2_INTR_MASK; 119 120 amd_iommu_atomic128_set(&ptr->data128[1], new->data128[1]); 121 } 122 123 static void write_dte_lower128(struct dev_table_entry *ptr, struct dev_table_entry *new) 124 { 125 amd_iommu_atomic128_set(&ptr->data128[0], new->data128[0]); 126 } 127 128 /* 129 * Note: 130 * IOMMU reads the entire Device Table entry in a single 256-bit transaction 131 * but the driver is programming DTE using 2 128-bit cmpxchg. So, the driver 132 * need to ensure the following: 133 * - DTE[V|GV] bit is being written last when setting. 134 * - DTE[V|GV] bit is being written first when clearing. 135 * 136 * This function is used only by code, which updates DMA translation part of the DTE. 137 * So, only consider control bits related to DMA when updating the entry. 138 */ 139 static void update_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data, 140 struct dev_table_entry *new) 141 { 142 unsigned long flags; 143 struct dev_table_entry *dev_table = get_dev_table(iommu); 144 struct dev_table_entry *ptr = &dev_table[dev_data->devid]; 145 146 spin_lock_irqsave(&dev_data->dte_lock, flags); 147 148 if (!(ptr->data[0] & DTE_FLAG_V)) { 149 /* Existing DTE is not valid. */ 150 write_dte_upper128(ptr, new); 151 write_dte_lower128(ptr, new); 152 iommu_flush_dte_sync(iommu, dev_data->devid); 153 } else if (!(new->data[0] & DTE_FLAG_V)) { 154 /* Existing DTE is valid. New DTE is not valid. */ 155 write_dte_lower128(ptr, new); 156 write_dte_upper128(ptr, new); 157 iommu_flush_dte_sync(iommu, dev_data->devid); 158 } else if (!FIELD_GET(DTE_FLAG_GV, ptr->data[0])) { 159 /* 160 * Both DTEs are valid. 161 * Existing DTE has no guest page table. 162 */ 163 write_dte_upper128(ptr, new); 164 write_dte_lower128(ptr, new); 165 iommu_flush_dte_sync(iommu, dev_data->devid); 166 } else if (!FIELD_GET(DTE_FLAG_GV, new->data[0])) { 167 /* 168 * Both DTEs are valid. 169 * Existing DTE has guest page table, 170 * new DTE has no guest page table, 171 */ 172 write_dte_lower128(ptr, new); 173 write_dte_upper128(ptr, new); 174 iommu_flush_dte_sync(iommu, dev_data->devid); 175 } else if (FIELD_GET(DTE_GPT_LEVEL_MASK, ptr->data[2]) != 176 FIELD_GET(DTE_GPT_LEVEL_MASK, new->data[2])) { 177 /* 178 * Both DTEs are valid and have guest page table, 179 * but have different number of levels. So, we need 180 * to upadte both upper and lower 128-bit value, which 181 * require disabling and flushing. 182 */ 183 struct dev_table_entry clear = {}; 184 185 /* First disable DTE */ 186 write_dte_lower128(ptr, &clear); 187 iommu_flush_dte_sync(iommu, dev_data->devid); 188 189 /* Then update DTE */ 190 write_dte_upper128(ptr, new); 191 write_dte_lower128(ptr, new); 192 iommu_flush_dte_sync(iommu, dev_data->devid); 193 } else { 194 /* 195 * Both DTEs are valid and have guest page table, 196 * and same number of levels. We just need to only 197 * update the lower 128-bit. So no need to disable DTE. 198 */ 199 write_dte_lower128(ptr, new); 200 } 201 202 spin_unlock_irqrestore(&dev_data->dte_lock, flags); 203 } 204 205 static void get_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data, 206 struct dev_table_entry *dte) 207 { 208 unsigned long flags; 209 struct dev_table_entry *ptr; 210 struct dev_table_entry *dev_table = get_dev_table(iommu); 211 212 ptr = &dev_table[dev_data->devid]; 213 214 spin_lock_irqsave(&dev_data->dte_lock, flags); 215 dte->data128[0] = ptr->data128[0]; 216 dte->data128[1] = ptr->data128[1]; 217 spin_unlock_irqrestore(&dev_data->dte_lock, flags); 218 } 219 220 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom) 221 { 222 return (pdom && (pdom->pd_mode == PD_MODE_V2)); 223 } 224 225 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom) 226 { 227 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY); 228 } 229 230 /* 231 * We cannot support PASID w/ existing v1 page table in the same domain 232 * since it will be nested. However, existing domain w/ v2 page table 233 * or passthrough mode can be used for PASID. 234 */ 235 static inline bool pdom_is_sva_capable(struct protection_domain *pdom) 236 { 237 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom); 238 } 239 240 static inline int get_acpihid_device_id(struct device *dev, 241 struct acpihid_map_entry **entry) 242 { 243 struct acpi_device *adev = ACPI_COMPANION(dev); 244 struct acpihid_map_entry *p, *p1 = NULL; 245 int hid_count = 0; 246 bool fw_bug; 247 248 if (!adev) 249 return -ENODEV; 250 251 list_for_each_entry(p, &acpihid_map, list) { 252 if (acpi_dev_hid_uid_match(adev, p->hid, 253 p->uid[0] ? p->uid : NULL)) { 254 p1 = p; 255 fw_bug = false; 256 hid_count = 1; 257 break; 258 } 259 260 /* 261 * Count HID matches w/o UID, raise FW_BUG but allow exactly one match 262 */ 263 if (acpi_dev_hid_match(adev, p->hid)) { 264 p1 = p; 265 hid_count++; 266 fw_bug = true; 267 } 268 } 269 270 if (!p1) 271 return -EINVAL; 272 if (fw_bug) 273 dev_err_once(dev, FW_BUG "No ACPI device matched UID, but %d device%s matched HID.\n", 274 hid_count, hid_count > 1 ? "s" : ""); 275 if (hid_count > 1) 276 return -EINVAL; 277 if (entry) 278 *entry = p1; 279 280 return p1->devid; 281 } 282 283 static inline int get_device_sbdf_id(struct device *dev) 284 { 285 int sbdf; 286 287 if (dev_is_pci(dev)) 288 sbdf = get_pci_sbdf_id(to_pci_dev(dev)); 289 else 290 sbdf = get_acpihid_device_id(dev, NULL); 291 292 return sbdf; 293 } 294 295 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu) 296 { 297 struct dev_table_entry *dev_table; 298 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 299 300 BUG_ON(pci_seg == NULL); 301 dev_table = pci_seg->dev_table; 302 BUG_ON(dev_table == NULL); 303 304 return dev_table; 305 } 306 307 static inline u16 get_device_segment(struct device *dev) 308 { 309 u16 seg; 310 311 if (dev_is_pci(dev)) { 312 struct pci_dev *pdev = to_pci_dev(dev); 313 314 seg = pci_domain_nr(pdev->bus); 315 } else { 316 u32 devid = get_acpihid_device_id(dev, NULL); 317 318 seg = PCI_SBDF_TO_SEGID(devid); 319 } 320 321 return seg; 322 } 323 324 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */ 325 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid) 326 { 327 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 328 329 pci_seg->rlookup_table[devid] = iommu; 330 } 331 332 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid) 333 { 334 struct amd_iommu_pci_seg *pci_seg; 335 336 for_each_pci_segment(pci_seg) { 337 if (pci_seg->id == seg) 338 return pci_seg->rlookup_table[devid]; 339 } 340 return NULL; 341 } 342 343 static struct amd_iommu *rlookup_amd_iommu(struct device *dev) 344 { 345 u16 seg = get_device_segment(dev); 346 int devid = get_device_sbdf_id(dev); 347 348 if (devid < 0) 349 return NULL; 350 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid)); 351 } 352 353 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid) 354 { 355 struct iommu_dev_data *dev_data; 356 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 357 358 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 359 if (!dev_data) 360 return NULL; 361 362 mutex_init(&dev_data->mutex); 363 spin_lock_init(&dev_data->dte_lock); 364 dev_data->devid = devid; 365 ratelimit_default_init(&dev_data->rs); 366 367 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list); 368 return dev_data; 369 } 370 371 struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid) 372 { 373 struct iommu_dev_data *dev_data; 374 struct llist_node *node; 375 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 376 377 if (llist_empty(&pci_seg->dev_data_list)) 378 return NULL; 379 380 node = pci_seg->dev_data_list.first; 381 llist_for_each_entry(dev_data, node, dev_data_list) { 382 if (dev_data->devid == devid) 383 return dev_data; 384 } 385 386 return NULL; 387 } 388 389 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 390 { 391 struct dev_table_entry new; 392 struct amd_iommu *iommu; 393 struct iommu_dev_data *dev_data, *alias_data; 394 u16 devid = pci_dev_id(pdev); 395 int ret = 0; 396 397 if (devid == alias) 398 return 0; 399 400 iommu = rlookup_amd_iommu(&pdev->dev); 401 if (!iommu) 402 return 0; 403 404 /* Copy the data from pdev */ 405 dev_data = dev_iommu_priv_get(&pdev->dev); 406 if (!dev_data) { 407 pr_err("%s : Failed to get dev_data for 0x%x\n", __func__, devid); 408 ret = -EINVAL; 409 goto out; 410 } 411 get_dte256(iommu, dev_data, &new); 412 413 /* Setup alias */ 414 alias_data = find_dev_data(iommu, alias); 415 if (!alias_data) { 416 pr_err("%s : Failed to get alias dev_data for 0x%x\n", __func__, alias); 417 ret = -EINVAL; 418 goto out; 419 } 420 update_dte256(iommu, alias_data, &new); 421 422 amd_iommu_set_rlookup_table(iommu, alias); 423 out: 424 return ret; 425 } 426 427 static void clone_aliases(struct amd_iommu *iommu, struct device *dev) 428 { 429 struct pci_dev *pdev; 430 431 if (!dev_is_pci(dev)) 432 return; 433 pdev = to_pci_dev(dev); 434 435 /* 436 * The IVRS alias stored in the alias table may not be 437 * part of the PCI DMA aliases if it's bus differs 438 * from the original device. 439 */ 440 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL); 441 442 pci_for_each_dma_alias(pdev, clone_alias, NULL); 443 } 444 445 static void setup_aliases(struct amd_iommu *iommu, struct device *dev) 446 { 447 struct pci_dev *pdev = to_pci_dev(dev); 448 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 449 u16 ivrs_alias; 450 451 /* For ACPI HID devices, there are no aliases */ 452 if (!dev_is_pci(dev)) 453 return; 454 455 /* 456 * Add the IVRS alias to the pci aliases if it is on the same 457 * bus. The IVRS table may know about a quirk that we don't. 458 */ 459 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)]; 460 if (ivrs_alias != pci_dev_id(pdev) && 461 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 462 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 463 464 clone_aliases(iommu, dev); 465 } 466 467 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid) 468 { 469 struct iommu_dev_data *dev_data; 470 471 dev_data = search_dev_data(iommu, devid); 472 473 if (dev_data == NULL) { 474 dev_data = alloc_dev_data(iommu, devid); 475 if (!dev_data) 476 return NULL; 477 478 if (translation_pre_enabled(iommu)) 479 dev_data->defer_attach = true; 480 } 481 482 return dev_data; 483 } 484 485 /* 486 * Find or create an IOMMU group for a acpihid device. 487 */ 488 static struct iommu_group *acpihid_device_group(struct device *dev) 489 { 490 struct acpihid_map_entry *p, *entry = NULL; 491 int devid; 492 493 devid = get_acpihid_device_id(dev, &entry); 494 if (devid < 0) 495 return ERR_PTR(devid); 496 497 list_for_each_entry(p, &acpihid_map, list) { 498 if ((devid == p->devid) && p->group) 499 entry->group = p->group; 500 } 501 502 if (!entry->group) 503 entry->group = generic_device_group(dev); 504 else 505 iommu_group_ref_get(entry->group); 506 507 return entry->group; 508 } 509 510 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data) 511 { 512 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP); 513 } 514 515 static u32 pdev_get_caps(struct pci_dev *pdev) 516 { 517 int features; 518 u32 flags = 0; 519 520 if (pci_ats_supported(pdev)) 521 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 522 523 if (pci_pri_supported(pdev)) 524 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 525 526 features = pci_pasid_features(pdev); 527 if (features >= 0) { 528 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 529 530 if (features & PCI_PASID_CAP_EXEC) 531 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 532 533 if (features & PCI_PASID_CAP_PRIV) 534 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 535 } 536 537 return flags; 538 } 539 540 static inline int pdev_enable_cap_ats(struct pci_dev *pdev) 541 { 542 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 543 int ret = -EINVAL; 544 545 if (dev_data->ats_enabled) 546 return 0; 547 548 if (amd_iommu_iotlb_sup && 549 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) { 550 ret = pci_enable_ats(pdev, PAGE_SHIFT); 551 if (!ret) { 552 dev_data->ats_enabled = 1; 553 dev_data->ats_qdep = pci_ats_queue_depth(pdev); 554 } 555 } 556 557 return ret; 558 } 559 560 static inline void pdev_disable_cap_ats(struct pci_dev *pdev) 561 { 562 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 563 564 if (dev_data->ats_enabled) { 565 pci_disable_ats(pdev); 566 dev_data->ats_enabled = 0; 567 } 568 } 569 570 static inline int pdev_enable_cap_pri(struct pci_dev *pdev) 571 { 572 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 573 int ret = -EINVAL; 574 575 if (dev_data->pri_enabled) 576 return 0; 577 578 if (!dev_data->ats_enabled) 579 return 0; 580 581 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) { 582 /* 583 * First reset the PRI state of the device. 584 * FIXME: Hardcode number of outstanding requests for now 585 */ 586 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) { 587 dev_data->pri_enabled = 1; 588 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 589 590 ret = 0; 591 } 592 } 593 594 return ret; 595 } 596 597 static inline void pdev_disable_cap_pri(struct pci_dev *pdev) 598 { 599 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 600 601 if (dev_data->pri_enabled) { 602 pci_disable_pri(pdev); 603 dev_data->pri_enabled = 0; 604 } 605 } 606 607 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev) 608 { 609 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 610 int ret = -EINVAL; 611 612 if (dev_data->pasid_enabled) 613 return 0; 614 615 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) { 616 /* Only allow access to user-accessible pages */ 617 ret = pci_enable_pasid(pdev, 0); 618 if (!ret) 619 dev_data->pasid_enabled = 1; 620 } 621 622 return ret; 623 } 624 625 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev) 626 { 627 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 628 629 if (dev_data->pasid_enabled) { 630 pci_disable_pasid(pdev); 631 dev_data->pasid_enabled = 0; 632 } 633 } 634 635 static void pdev_enable_caps(struct pci_dev *pdev) 636 { 637 pdev_enable_cap_ats(pdev); 638 pdev_enable_cap_pasid(pdev); 639 pdev_enable_cap_pri(pdev); 640 } 641 642 static void pdev_disable_caps(struct pci_dev *pdev) 643 { 644 pdev_disable_cap_ats(pdev); 645 pdev_disable_cap_pasid(pdev); 646 pdev_disable_cap_pri(pdev); 647 } 648 649 /* 650 * This function checks if the driver got a valid device from the caller to 651 * avoid dereferencing invalid pointers. 652 */ 653 static bool check_device(struct device *dev) 654 { 655 struct amd_iommu_pci_seg *pci_seg; 656 struct amd_iommu *iommu; 657 int devid, sbdf; 658 659 if (!dev) 660 return false; 661 662 sbdf = get_device_sbdf_id(dev); 663 if (sbdf < 0) 664 return false; 665 devid = PCI_SBDF_TO_DEVID(sbdf); 666 667 iommu = rlookup_amd_iommu(dev); 668 if (!iommu) 669 return false; 670 671 /* Out of our scope? */ 672 pci_seg = iommu->pci_seg; 673 if (devid > pci_seg->last_bdf) 674 return false; 675 676 return true; 677 } 678 679 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev) 680 { 681 struct iommu_dev_data *dev_data; 682 int devid, sbdf; 683 684 if (dev_iommu_priv_get(dev)) 685 return 0; 686 687 sbdf = get_device_sbdf_id(dev); 688 if (sbdf < 0) 689 return sbdf; 690 691 devid = PCI_SBDF_TO_DEVID(sbdf); 692 dev_data = find_dev_data(iommu, devid); 693 if (!dev_data) 694 return -ENOMEM; 695 696 dev_data->dev = dev; 697 698 /* 699 * The dev_iommu_priv_set() needes to be called before setup_aliases. 700 * Otherwise, subsequent call to dev_iommu_priv_get() will fail. 701 */ 702 dev_iommu_priv_set(dev, dev_data); 703 setup_aliases(iommu, dev); 704 705 /* 706 * By default we use passthrough mode for IOMMUv2 capable device. 707 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 708 * invalid address), we ignore the capability for the device so 709 * it'll be forced to go into translation mode. 710 */ 711 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 712 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) { 713 dev_data->flags = pdev_get_caps(to_pci_dev(dev)); 714 } 715 716 return 0; 717 } 718 719 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev) 720 { 721 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 722 struct dev_table_entry *dev_table = get_dev_table(iommu); 723 int devid, sbdf; 724 725 sbdf = get_device_sbdf_id(dev); 726 if (sbdf < 0) 727 return; 728 729 devid = PCI_SBDF_TO_DEVID(sbdf); 730 pci_seg->rlookup_table[devid] = NULL; 731 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry)); 732 733 setup_aliases(iommu, dev); 734 } 735 736 737 /**************************************************************************** 738 * 739 * Interrupt handling functions 740 * 741 ****************************************************************************/ 742 743 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid) 744 { 745 int i; 746 struct dev_table_entry dte; 747 struct iommu_dev_data *dev_data = find_dev_data(iommu, devid); 748 749 get_dte256(iommu, dev_data, &dte); 750 751 for (i = 0; i < 4; ++i) 752 pr_err("DTE[%d]: %016llx\n", i, dte.data[i]); 753 } 754 755 static void dump_command(unsigned long phys_addr) 756 { 757 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 758 int i; 759 760 for (i = 0; i < 4; ++i) 761 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 762 } 763 764 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event) 765 { 766 struct iommu_dev_data *dev_data = NULL; 767 int devid, vmg_tag, flags; 768 struct pci_dev *pdev; 769 u64 spa; 770 771 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 772 vmg_tag = (event[1]) & 0xFFFF; 773 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 774 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); 775 776 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 777 devid & 0xff); 778 if (pdev) 779 dev_data = dev_iommu_priv_get(&pdev->dev); 780 781 if (dev_data) { 782 if (__ratelimit(&dev_data->rs)) { 783 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 784 vmg_tag, spa, flags); 785 } 786 } else { 787 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 788 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 789 vmg_tag, spa, flags); 790 } 791 792 if (pdev) 793 pci_dev_put(pdev); 794 } 795 796 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event) 797 { 798 struct iommu_dev_data *dev_data = NULL; 799 int devid, flags_rmp, vmg_tag, flags; 800 struct pci_dev *pdev; 801 u64 gpa; 802 803 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 804 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; 805 vmg_tag = (event[1]) & 0xFFFF; 806 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 807 gpa = ((u64)event[3] << 32) | event[2]; 808 809 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 810 devid & 0xff); 811 if (pdev) 812 dev_data = dev_iommu_priv_get(&pdev->dev); 813 814 if (dev_data) { 815 if (__ratelimit(&dev_data->rs)) { 816 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 817 vmg_tag, gpa, flags_rmp, flags); 818 } 819 } else { 820 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 821 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 822 vmg_tag, gpa, flags_rmp, flags); 823 } 824 825 if (pdev) 826 pci_dev_put(pdev); 827 } 828 829 #define IS_IOMMU_MEM_TRANSACTION(flags) \ 830 (((flags) & EVENT_FLAG_I) == 0) 831 832 #define IS_WRITE_REQUEST(flags) \ 833 ((flags) & EVENT_FLAG_RW) 834 835 static void amd_iommu_report_page_fault(struct amd_iommu *iommu, 836 u16 devid, u16 domain_id, 837 u64 address, int flags) 838 { 839 struct iommu_dev_data *dev_data = NULL; 840 struct pci_dev *pdev; 841 842 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 843 devid & 0xff); 844 if (pdev) 845 dev_data = dev_iommu_priv_get(&pdev->dev); 846 847 if (dev_data) { 848 /* 849 * If this is a DMA fault (for which the I(nterrupt) 850 * bit will be unset), allow report_iommu_fault() to 851 * prevent logging it. 852 */ 853 if (IS_IOMMU_MEM_TRANSACTION(flags)) { 854 /* Device not attached to domain properly */ 855 if (dev_data->domain == NULL) { 856 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n"); 857 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n", 858 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), 859 PCI_FUNC(devid), domain_id); 860 goto out; 861 } 862 863 if (!report_iommu_fault(&dev_data->domain->domain, 864 &pdev->dev, address, 865 IS_WRITE_REQUEST(flags) ? 866 IOMMU_FAULT_WRITE : 867 IOMMU_FAULT_READ)) 868 goto out; 869 } 870 871 if (__ratelimit(&dev_data->rs)) { 872 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 873 domain_id, address, flags); 874 } 875 } else { 876 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 877 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 878 domain_id, address, flags); 879 } 880 881 out: 882 if (pdev) 883 pci_dev_put(pdev); 884 } 885 886 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 887 { 888 struct device *dev = iommu->iommu.dev; 889 int type, devid, flags, tag; 890 volatile u32 *event = __evt; 891 int count = 0; 892 u64 address, ctrl; 893 u32 pasid; 894 895 retry: 896 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 897 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 898 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 899 (event[1] & EVENT_DOMID_MASK_LO); 900 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 901 address = (u64)(((u64)event[3]) << 32) | event[2]; 902 ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET); 903 904 if (type == 0) { 905 /* Did we hit the erratum? */ 906 if (++count == LOOP_TIMEOUT) { 907 pr_err("No event written to event log\n"); 908 return; 909 } 910 udelay(1); 911 goto retry; 912 } 913 914 if (type == EVENT_TYPE_IO_FAULT) { 915 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags); 916 return; 917 } 918 919 switch (type) { 920 case EVENT_TYPE_ILL_DEV: 921 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 922 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 923 pasid, address, flags); 924 dev_err(dev, "Control Reg : 0x%llx\n", ctrl); 925 dump_dte_entry(iommu, devid); 926 break; 927 case EVENT_TYPE_DEV_TAB_ERR: 928 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x " 929 "address=0x%llx flags=0x%04x]\n", 930 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 931 address, flags); 932 break; 933 case EVENT_TYPE_PAGE_TAB_ERR: 934 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 935 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 936 pasid, address, flags); 937 break; 938 case EVENT_TYPE_ILL_CMD: 939 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 940 dump_command(address); 941 break; 942 case EVENT_TYPE_CMD_HARD_ERR: 943 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 944 address, flags); 945 break; 946 case EVENT_TYPE_IOTLB_INV_TO: 947 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n", 948 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 949 address); 950 break; 951 case EVENT_TYPE_INV_DEV_REQ: 952 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 953 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 954 pasid, address, flags); 955 break; 956 case EVENT_TYPE_RMP_FAULT: 957 amd_iommu_report_rmp_fault(iommu, event); 958 break; 959 case EVENT_TYPE_RMP_HW_ERR: 960 amd_iommu_report_rmp_hw_error(iommu, event); 961 break; 962 case EVENT_TYPE_INV_PPR_REQ: 963 pasid = PPR_PASID(*((u64 *)__evt)); 964 tag = event[1] & 0x03FF; 965 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 966 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 967 pasid, address, flags, tag); 968 break; 969 default: 970 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 971 event[0], event[1], event[2], event[3]); 972 } 973 974 /* 975 * To detect the hardware errata 732 we need to clear the 976 * entry back to zero. This issue does not exist on SNP 977 * enabled system. Also this buffer is not writeable on 978 * SNP enabled system. 979 */ 980 if (!amd_iommu_snp_en) 981 memset(__evt, 0, 4 * sizeof(u32)); 982 } 983 984 static void iommu_poll_events(struct amd_iommu *iommu) 985 { 986 u32 head, tail; 987 988 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 989 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 990 991 while (head != tail) { 992 iommu_print_event(iommu, iommu->evt_buf + head); 993 994 /* Update head pointer of hardware ring-buffer */ 995 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 996 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 997 } 998 999 } 1000 1001 #ifdef CONFIG_IRQ_REMAP 1002 static int (*iommu_ga_log_notifier)(u32); 1003 1004 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 1005 { 1006 iommu_ga_log_notifier = notifier; 1007 1008 /* 1009 * Ensure all in-flight IRQ handlers run to completion before returning 1010 * to the caller, e.g. to ensure module code isn't unloaded while it's 1011 * being executed in the IRQ handler. 1012 */ 1013 if (!notifier) 1014 synchronize_rcu(); 1015 1016 return 0; 1017 } 1018 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 1019 1020 static void iommu_poll_ga_log(struct amd_iommu *iommu) 1021 { 1022 u32 head, tail; 1023 1024 if (iommu->ga_log == NULL) 1025 return; 1026 1027 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 1028 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 1029 1030 while (head != tail) { 1031 volatile u64 *raw; 1032 u64 log_entry; 1033 1034 raw = (u64 *)(iommu->ga_log + head); 1035 1036 /* Avoid memcpy function-call overhead */ 1037 log_entry = *raw; 1038 1039 /* Update head pointer of hardware ring-buffer */ 1040 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 1041 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 1042 1043 /* Handle GA entry */ 1044 switch (GA_REQ_TYPE(log_entry)) { 1045 case GA_GUEST_NR: 1046 if (!iommu_ga_log_notifier) 1047 break; 1048 1049 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 1050 __func__, GA_DEVID(log_entry), 1051 GA_TAG(log_entry)); 1052 1053 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 1054 pr_err("GA log notifier failed.\n"); 1055 break; 1056 default: 1057 break; 1058 } 1059 } 1060 } 1061 1062 static void 1063 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 1064 { 1065 if (!irq_remapping_enabled || !dev_is_pci(dev) || 1066 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev))) 1067 return; 1068 1069 dev_set_msi_domain(dev, iommu->ir_domain); 1070 } 1071 1072 #else /* CONFIG_IRQ_REMAP */ 1073 static inline void 1074 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 1075 #endif /* !CONFIG_IRQ_REMAP */ 1076 1077 static void amd_iommu_handle_irq(void *data, const char *evt_type, 1078 u32 int_mask, u32 overflow_mask, 1079 void (*int_handler)(struct amd_iommu *), 1080 void (*overflow_handler)(struct amd_iommu *)) 1081 { 1082 struct amd_iommu *iommu = (struct amd_iommu *) data; 1083 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 1084 u32 mask = int_mask | overflow_mask; 1085 1086 while (status & mask) { 1087 /* Enable interrupt sources again */ 1088 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET); 1089 1090 if (int_handler) { 1091 pr_devel("Processing IOMMU (ivhd%d) %s Log\n", 1092 iommu->index, evt_type); 1093 int_handler(iommu); 1094 } 1095 1096 if ((status & overflow_mask) && overflow_handler) 1097 overflow_handler(iommu); 1098 1099 /* 1100 * Hardware bug: ERBT1312 1101 * When re-enabling interrupt (by writing 1 1102 * to clear the bit), the hardware might also try to set 1103 * the interrupt bit in the event status register. 1104 * In this scenario, the bit will be set, and disable 1105 * subsequent interrupts. 1106 * 1107 * Workaround: The IOMMU driver should read back the 1108 * status register and check if the interrupt bits are cleared. 1109 * If not, driver will need to go through the interrupt handler 1110 * again and re-clear the bits 1111 */ 1112 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 1113 } 1114 } 1115 1116 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data) 1117 { 1118 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK, 1119 MMIO_STATUS_EVT_OVERFLOW_MASK, 1120 iommu_poll_events, amd_iommu_restart_event_logging); 1121 1122 return IRQ_HANDLED; 1123 } 1124 1125 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data) 1126 { 1127 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK, 1128 MMIO_STATUS_PPR_OVERFLOW_MASK, 1129 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log); 1130 1131 return IRQ_HANDLED; 1132 } 1133 1134 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data) 1135 { 1136 #ifdef CONFIG_IRQ_REMAP 1137 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK, 1138 MMIO_STATUS_GALOG_OVERFLOW_MASK, 1139 iommu_poll_ga_log, amd_iommu_restart_ga_log); 1140 #endif 1141 1142 return IRQ_HANDLED; 1143 } 1144 1145 irqreturn_t amd_iommu_int_thread(int irq, void *data) 1146 { 1147 amd_iommu_int_thread_evtlog(irq, data); 1148 amd_iommu_int_thread_pprlog(irq, data); 1149 amd_iommu_int_thread_galog(irq, data); 1150 1151 return IRQ_HANDLED; 1152 } 1153 1154 irqreturn_t amd_iommu_int_handler(int irq, void *data) 1155 { 1156 return IRQ_WAKE_THREAD; 1157 } 1158 1159 /**************************************************************************** 1160 * 1161 * IOMMU command queuing functions 1162 * 1163 ****************************************************************************/ 1164 1165 static int wait_on_sem(struct amd_iommu *iommu, u64 data) 1166 { 1167 int i = 0; 1168 1169 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { 1170 udelay(1); 1171 i += 1; 1172 } 1173 1174 if (i == LOOP_TIMEOUT) { 1175 pr_alert("Completion-Wait loop timed out\n"); 1176 return -EIO; 1177 } 1178 1179 return 0; 1180 } 1181 1182 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 1183 struct iommu_cmd *cmd) 1184 { 1185 u8 *target; 1186 u32 tail; 1187 1188 /* Copy command to buffer */ 1189 tail = iommu->cmd_buf_tail; 1190 target = iommu->cmd_buf + tail; 1191 memcpy(target, cmd, sizeof(*cmd)); 1192 1193 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1194 iommu->cmd_buf_tail = tail; 1195 1196 /* Tell the IOMMU about it */ 1197 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 1198 } 1199 1200 static void build_completion_wait(struct iommu_cmd *cmd, 1201 struct amd_iommu *iommu, 1202 u64 data) 1203 { 1204 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); 1205 1206 memset(cmd, 0, sizeof(*cmd)); 1207 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 1208 cmd->data[1] = upper_32_bits(paddr); 1209 cmd->data[2] = lower_32_bits(data); 1210 cmd->data[3] = upper_32_bits(data); 1211 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 1212 } 1213 1214 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 1215 { 1216 memset(cmd, 0, sizeof(*cmd)); 1217 cmd->data[0] = devid; 1218 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 1219 } 1220 1221 /* 1222 * Builds an invalidation address which is suitable for one page or multiple 1223 * pages. Sets the size bit (S) as needed is more than one page is flushed. 1224 */ 1225 static inline u64 build_inv_address(u64 address, size_t size) 1226 { 1227 u64 pages, end, msb_diff; 1228 1229 pages = iommu_num_pages(address, size, PAGE_SIZE); 1230 1231 if (pages == 1) 1232 return address & PAGE_MASK; 1233 1234 end = address + size - 1; 1235 1236 /* 1237 * msb_diff would hold the index of the most significant bit that 1238 * flipped between the start and end. 1239 */ 1240 msb_diff = fls64(end ^ address) - 1; 1241 1242 /* 1243 * Bits 63:52 are sign extended. If for some reason bit 51 is different 1244 * between the start and the end, invalidate everything. 1245 */ 1246 if (unlikely(msb_diff > 51)) { 1247 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 1248 } else { 1249 /* 1250 * The msb-bit must be clear on the address. Just set all the 1251 * lower bits. 1252 */ 1253 address |= (1ull << msb_diff) - 1; 1254 } 1255 1256 /* Clear bits 11:0 */ 1257 address &= PAGE_MASK; 1258 1259 /* Set the size bit - we flush more than one 4kb page */ 1260 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; 1261 } 1262 1263 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 1264 size_t size, u16 domid, 1265 ioasid_t pasid, bool gn) 1266 { 1267 u64 inv_address = build_inv_address(address, size); 1268 1269 memset(cmd, 0, sizeof(*cmd)); 1270 1271 cmd->data[1] |= domid; 1272 cmd->data[2] = lower_32_bits(inv_address); 1273 cmd->data[3] = upper_32_bits(inv_address); 1274 /* PDE bit - we want to flush everything, not only the PTEs */ 1275 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1276 if (gn) { 1277 cmd->data[0] |= pasid; 1278 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1279 } 1280 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1281 } 1282 1283 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 1284 u64 address, size_t size, 1285 ioasid_t pasid, bool gn) 1286 { 1287 u64 inv_address = build_inv_address(address, size); 1288 1289 memset(cmd, 0, sizeof(*cmd)); 1290 1291 cmd->data[0] = devid; 1292 cmd->data[0] |= (qdep & 0xff) << 24; 1293 cmd->data[1] = devid; 1294 cmd->data[2] = lower_32_bits(inv_address); 1295 cmd->data[3] = upper_32_bits(inv_address); 1296 if (gn) { 1297 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 1298 cmd->data[1] |= (pasid & 0xff) << 16; 1299 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1300 } 1301 1302 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1303 } 1304 1305 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1306 int status, int tag, u8 gn) 1307 { 1308 memset(cmd, 0, sizeof(*cmd)); 1309 1310 cmd->data[0] = devid; 1311 if (gn) { 1312 cmd->data[1] = pasid; 1313 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 1314 } 1315 cmd->data[3] = tag & 0x1ff; 1316 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 1317 1318 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 1319 } 1320 1321 static void build_inv_all(struct iommu_cmd *cmd) 1322 { 1323 memset(cmd, 0, sizeof(*cmd)); 1324 CMD_SET_TYPE(cmd, CMD_INV_ALL); 1325 } 1326 1327 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 1328 { 1329 memset(cmd, 0, sizeof(*cmd)); 1330 cmd->data[0] = devid; 1331 CMD_SET_TYPE(cmd, CMD_INV_IRT); 1332 } 1333 1334 /* 1335 * Writes the command to the IOMMUs command buffer and informs the 1336 * hardware about the new command. 1337 */ 1338 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 1339 struct iommu_cmd *cmd, 1340 bool sync) 1341 { 1342 unsigned int count = 0; 1343 u32 left, next_tail; 1344 1345 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1346 again: 1347 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1348 1349 if (left <= 0x20) { 1350 /* Skip udelay() the first time around */ 1351 if (count++) { 1352 if (count == LOOP_TIMEOUT) { 1353 pr_err("Command buffer timeout\n"); 1354 return -EIO; 1355 } 1356 1357 udelay(1); 1358 } 1359 1360 /* Update head and recheck remaining space */ 1361 iommu->cmd_buf_head = readl(iommu->mmio_base + 1362 MMIO_CMD_HEAD_OFFSET); 1363 1364 goto again; 1365 } 1366 1367 copy_cmd_to_buffer(iommu, cmd); 1368 1369 /* Do we need to make sure all commands are processed? */ 1370 iommu->need_sync = sync; 1371 1372 return 0; 1373 } 1374 1375 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1376 struct iommu_cmd *cmd, 1377 bool sync) 1378 { 1379 unsigned long flags; 1380 int ret; 1381 1382 raw_spin_lock_irqsave(&iommu->lock, flags); 1383 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1384 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1385 1386 return ret; 1387 } 1388 1389 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1390 { 1391 return iommu_queue_command_sync(iommu, cmd, true); 1392 } 1393 1394 /* 1395 * This function queues a completion wait command into the command 1396 * buffer of an IOMMU 1397 */ 1398 static int iommu_completion_wait(struct amd_iommu *iommu) 1399 { 1400 struct iommu_cmd cmd; 1401 unsigned long flags; 1402 int ret; 1403 u64 data; 1404 1405 if (!iommu->need_sync) 1406 return 0; 1407 1408 data = atomic64_inc_return(&iommu->cmd_sem_val); 1409 build_completion_wait(&cmd, iommu, data); 1410 1411 raw_spin_lock_irqsave(&iommu->lock, flags); 1412 1413 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1414 if (ret) 1415 goto out_unlock; 1416 1417 ret = wait_on_sem(iommu, data); 1418 1419 out_unlock: 1420 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1421 1422 return ret; 1423 } 1424 1425 static void domain_flush_complete(struct protection_domain *domain) 1426 { 1427 struct pdom_iommu_info *pdom_iommu_info; 1428 unsigned long i; 1429 1430 lockdep_assert_held(&domain->lock); 1431 1432 /* 1433 * Devices of this domain are behind this IOMMU 1434 * We need to wait for completion of all commands. 1435 */ 1436 xa_for_each(&domain->iommu_array, i, pdom_iommu_info) 1437 iommu_completion_wait(pdom_iommu_info->iommu); 1438 } 1439 1440 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1441 { 1442 struct iommu_cmd cmd; 1443 1444 build_inv_dte(&cmd, devid); 1445 1446 return iommu_queue_command(iommu, &cmd); 1447 } 1448 1449 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid) 1450 { 1451 int ret; 1452 1453 ret = iommu_flush_dte(iommu, devid); 1454 if (!ret) 1455 iommu_completion_wait(iommu); 1456 } 1457 1458 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1459 { 1460 u32 devid; 1461 u16 last_bdf = iommu->pci_seg->last_bdf; 1462 1463 for (devid = 0; devid <= last_bdf; ++devid) 1464 iommu_flush_dte(iommu, devid); 1465 1466 iommu_completion_wait(iommu); 1467 } 1468 1469 /* 1470 * This function uses heavy locking and may disable irqs for some time. But 1471 * this is no issue because it is only called during resume. 1472 */ 1473 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1474 { 1475 u32 dom_id; 1476 u16 last_bdf = iommu->pci_seg->last_bdf; 1477 1478 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) { 1479 struct iommu_cmd cmd; 1480 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1481 dom_id, IOMMU_NO_PASID, false); 1482 iommu_queue_command(iommu, &cmd); 1483 } 1484 1485 iommu_completion_wait(iommu); 1486 } 1487 1488 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1489 { 1490 struct iommu_cmd cmd; 1491 1492 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1493 dom_id, IOMMU_NO_PASID, false); 1494 iommu_queue_command(iommu, &cmd); 1495 1496 iommu_completion_wait(iommu); 1497 } 1498 1499 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1500 { 1501 struct iommu_cmd cmd; 1502 1503 build_inv_all(&cmd); 1504 1505 iommu_queue_command(iommu, &cmd); 1506 iommu_completion_wait(iommu); 1507 } 1508 1509 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1510 { 1511 struct iommu_cmd cmd; 1512 1513 build_inv_irt(&cmd, devid); 1514 1515 iommu_queue_command(iommu, &cmd); 1516 } 1517 1518 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1519 { 1520 u32 devid; 1521 u16 last_bdf = iommu->pci_seg->last_bdf; 1522 1523 if (iommu->irtcachedis_enabled) 1524 return; 1525 1526 for (devid = 0; devid <= last_bdf; devid++) 1527 iommu_flush_irt(iommu, devid); 1528 1529 iommu_completion_wait(iommu); 1530 } 1531 1532 void amd_iommu_flush_all_caches(struct amd_iommu *iommu) 1533 { 1534 if (check_feature(FEATURE_IA)) { 1535 amd_iommu_flush_all(iommu); 1536 } else { 1537 amd_iommu_flush_dte_all(iommu); 1538 amd_iommu_flush_irt_all(iommu); 1539 amd_iommu_flush_tlb_all(iommu); 1540 } 1541 } 1542 1543 /* 1544 * Command send function for flushing on-device TLB 1545 */ 1546 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address, 1547 size_t size, ioasid_t pasid, bool gn) 1548 { 1549 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 1550 struct iommu_cmd cmd; 1551 int qdep = dev_data->ats_qdep; 1552 1553 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, 1554 size, pasid, gn); 1555 1556 return iommu_queue_command(iommu, &cmd); 1557 } 1558 1559 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1560 { 1561 struct amd_iommu *iommu = data; 1562 1563 return iommu_flush_dte(iommu, alias); 1564 } 1565 1566 /* 1567 * Command send function for invalidating a device table entry 1568 */ 1569 static int device_flush_dte(struct iommu_dev_data *dev_data) 1570 { 1571 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 1572 struct pci_dev *pdev = NULL; 1573 struct amd_iommu_pci_seg *pci_seg; 1574 u16 alias; 1575 int ret; 1576 1577 if (dev_is_pci(dev_data->dev)) 1578 pdev = to_pci_dev(dev_data->dev); 1579 1580 if (pdev) 1581 ret = pci_for_each_dma_alias(pdev, 1582 device_flush_dte_alias, iommu); 1583 else 1584 ret = iommu_flush_dte(iommu, dev_data->devid); 1585 if (ret) 1586 return ret; 1587 1588 pci_seg = iommu->pci_seg; 1589 alias = pci_seg->alias_table[dev_data->devid]; 1590 if (alias != dev_data->devid) { 1591 ret = iommu_flush_dte(iommu, alias); 1592 if (ret) 1593 return ret; 1594 } 1595 1596 if (dev_data->ats_enabled) { 1597 /* Invalidate the entire contents of an IOTLB */ 1598 ret = device_flush_iotlb(dev_data, 0, ~0UL, 1599 IOMMU_NO_PASID, false); 1600 } 1601 1602 return ret; 1603 } 1604 1605 static int domain_flush_pages_v2(struct protection_domain *pdom, 1606 u64 address, size_t size) 1607 { 1608 struct iommu_dev_data *dev_data; 1609 struct iommu_cmd cmd; 1610 int ret = 0; 1611 1612 lockdep_assert_held(&pdom->lock); 1613 list_for_each_entry(dev_data, &pdom->dev_list, list) { 1614 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 1615 u16 domid = dev_data->gcr3_info.domid; 1616 1617 build_inv_iommu_pages(&cmd, address, size, 1618 domid, IOMMU_NO_PASID, true); 1619 1620 ret |= iommu_queue_command(iommu, &cmd); 1621 } 1622 1623 return ret; 1624 } 1625 1626 static int domain_flush_pages_v1(struct protection_domain *pdom, 1627 u64 address, size_t size) 1628 { 1629 struct pdom_iommu_info *pdom_iommu_info; 1630 struct iommu_cmd cmd; 1631 int ret = 0; 1632 unsigned long i; 1633 1634 lockdep_assert_held(&pdom->lock); 1635 1636 build_inv_iommu_pages(&cmd, address, size, 1637 pdom->id, IOMMU_NO_PASID, false); 1638 1639 xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) { 1640 /* 1641 * Devices of this domain are behind this IOMMU 1642 * We need a TLB flush 1643 */ 1644 ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd); 1645 } 1646 1647 return ret; 1648 } 1649 1650 /* 1651 * TLB invalidation function which is called from the mapping functions. 1652 * It flushes range of PTEs of the domain. 1653 */ 1654 static void __domain_flush_pages(struct protection_domain *domain, 1655 u64 address, size_t size) 1656 { 1657 struct iommu_dev_data *dev_data; 1658 int ret = 0; 1659 ioasid_t pasid = IOMMU_NO_PASID; 1660 bool gn = false; 1661 1662 lockdep_assert_held(&domain->lock); 1663 1664 if (pdom_is_v2_pgtbl_mode(domain)) { 1665 gn = true; 1666 ret = domain_flush_pages_v2(domain, address, size); 1667 } else { 1668 ret = domain_flush_pages_v1(domain, address, size); 1669 } 1670 1671 list_for_each_entry(dev_data, &domain->dev_list, list) { 1672 1673 if (!dev_data->ats_enabled) 1674 continue; 1675 1676 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn); 1677 } 1678 1679 WARN_ON(ret); 1680 } 1681 1682 void amd_iommu_domain_flush_pages(struct protection_domain *domain, 1683 u64 address, size_t size) 1684 { 1685 lockdep_assert_held(&domain->lock); 1686 1687 if (likely(!amd_iommu_np_cache)) { 1688 __domain_flush_pages(domain, address, size); 1689 1690 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */ 1691 domain_flush_complete(domain); 1692 1693 return; 1694 } 1695 1696 /* 1697 * When NpCache is on, we infer that we run in a VM and use a vIOMMU. 1698 * In such setups it is best to avoid flushes of ranges which are not 1699 * naturally aligned, since it would lead to flushes of unmodified 1700 * PTEs. Such flushes would require the hypervisor to do more work than 1701 * necessary. Therefore, perform repeated flushes of aligned ranges 1702 * until you cover the range. Each iteration flushes the smaller 1703 * between the natural alignment of the address that we flush and the 1704 * greatest naturally aligned region that fits in the range. 1705 */ 1706 while (size != 0) { 1707 int addr_alignment = __ffs(address); 1708 int size_alignment = __fls(size); 1709 int min_alignment; 1710 size_t flush_size; 1711 1712 /* 1713 * size is always non-zero, but address might be zero, causing 1714 * addr_alignment to be negative. As the casting of the 1715 * argument in __ffs(address) to long might trim the high bits 1716 * of the address on x86-32, cast to long when doing the check. 1717 */ 1718 if (likely((unsigned long)address != 0)) 1719 min_alignment = min(addr_alignment, size_alignment); 1720 else 1721 min_alignment = size_alignment; 1722 1723 flush_size = 1ul << min_alignment; 1724 1725 __domain_flush_pages(domain, address, flush_size); 1726 address += flush_size; 1727 size -= flush_size; 1728 } 1729 1730 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */ 1731 domain_flush_complete(domain); 1732 } 1733 1734 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1735 static void amd_iommu_domain_flush_all(struct protection_domain *domain) 1736 { 1737 amd_iommu_domain_flush_pages(domain, 0, 1738 CMD_INV_IOMMU_ALL_PAGES_ADDRESS); 1739 } 1740 1741 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data, 1742 ioasid_t pasid, u64 address, size_t size) 1743 { 1744 struct iommu_cmd cmd; 1745 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 1746 1747 build_inv_iommu_pages(&cmd, address, size, 1748 dev_data->gcr3_info.domid, pasid, true); 1749 iommu_queue_command(iommu, &cmd); 1750 1751 if (dev_data->ats_enabled) 1752 device_flush_iotlb(dev_data, address, size, pasid, true); 1753 1754 iommu_completion_wait(iommu); 1755 } 1756 1757 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data, 1758 ioasid_t pasid) 1759 { 1760 amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0, 1761 CMD_INV_IOMMU_ALL_PAGES_ADDRESS); 1762 } 1763 1764 /* Flush the not present cache if it exists */ 1765 static void domain_flush_np_cache(struct protection_domain *domain, 1766 dma_addr_t iova, size_t size) 1767 { 1768 if (unlikely(amd_iommu_np_cache)) { 1769 unsigned long flags; 1770 1771 spin_lock_irqsave(&domain->lock, flags); 1772 amd_iommu_domain_flush_pages(domain, iova, size); 1773 spin_unlock_irqrestore(&domain->lock, flags); 1774 } 1775 } 1776 1777 1778 /* 1779 * This function flushes the DTEs for all devices in domain 1780 */ 1781 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) 1782 { 1783 struct iommu_dev_data *dev_data; 1784 1785 lockdep_assert_held(&domain->lock); 1786 1787 list_for_each_entry(dev_data, &domain->dev_list, list) { 1788 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev); 1789 1790 set_dte_entry(iommu, dev_data); 1791 clone_aliases(iommu, dev_data->dev); 1792 } 1793 1794 list_for_each_entry(dev_data, &domain->dev_list, list) 1795 device_flush_dte(dev_data); 1796 1797 domain_flush_complete(domain); 1798 } 1799 1800 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag) 1801 { 1802 struct iommu_dev_data *dev_data; 1803 struct amd_iommu *iommu; 1804 struct iommu_cmd cmd; 1805 1806 dev_data = dev_iommu_priv_get(dev); 1807 iommu = get_amd_iommu_from_dev(dev); 1808 1809 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 1810 tag, dev_data->pri_tlp); 1811 1812 return iommu_queue_command(iommu, &cmd); 1813 } 1814 1815 /**************************************************************************** 1816 * 1817 * The next functions belong to the domain allocation. A domain is 1818 * allocated for every IOMMU as the default domain. If device isolation 1819 * is enabled, every device get its own domain. The most important thing 1820 * about domains is the page table mapping the DMA address space they 1821 * contain. 1822 * 1823 ****************************************************************************/ 1824 1825 static int pdom_id_alloc(void) 1826 { 1827 return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC); 1828 } 1829 1830 static void pdom_id_free(int id) 1831 { 1832 ida_free(&pdom_ids, id); 1833 } 1834 1835 static void free_gcr3_tbl_level1(u64 *tbl) 1836 { 1837 u64 *ptr; 1838 int i; 1839 1840 for (i = 0; i < 512; ++i) { 1841 if (!(tbl[i] & GCR3_VALID)) 1842 continue; 1843 1844 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1845 1846 iommu_free_pages(ptr); 1847 } 1848 } 1849 1850 static void free_gcr3_tbl_level2(u64 *tbl) 1851 { 1852 u64 *ptr; 1853 int i; 1854 1855 for (i = 0; i < 512; ++i) { 1856 if (!(tbl[i] & GCR3_VALID)) 1857 continue; 1858 1859 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1860 1861 free_gcr3_tbl_level1(ptr); 1862 } 1863 } 1864 1865 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info) 1866 { 1867 if (gcr3_info->glx == 2) 1868 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl); 1869 else if (gcr3_info->glx == 1) 1870 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl); 1871 else 1872 WARN_ON_ONCE(gcr3_info->glx != 0); 1873 1874 gcr3_info->glx = 0; 1875 1876 /* Free per device domain ID */ 1877 pdom_id_free(gcr3_info->domid); 1878 1879 iommu_free_pages(gcr3_info->gcr3_tbl); 1880 gcr3_info->gcr3_tbl = NULL; 1881 } 1882 1883 /* 1884 * Number of GCR3 table levels required. Level must be 4-Kbyte 1885 * page and can contain up to 512 entries. 1886 */ 1887 static int get_gcr3_levels(int pasids) 1888 { 1889 int levels; 1890 1891 if (pasids == -1) 1892 return amd_iommu_max_glx_val; 1893 1894 levels = get_count_order(pasids); 1895 1896 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels; 1897 } 1898 1899 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info, 1900 struct amd_iommu *iommu, int pasids) 1901 { 1902 int levels = get_gcr3_levels(pasids); 1903 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE; 1904 int domid; 1905 1906 if (levels > amd_iommu_max_glx_val) 1907 return -EINVAL; 1908 1909 if (gcr3_info->gcr3_tbl) 1910 return -EBUSY; 1911 1912 /* Allocate per device domain ID */ 1913 domid = pdom_id_alloc(); 1914 if (domid <= 0) 1915 return -ENOSPC; 1916 gcr3_info->domid = domid; 1917 1918 gcr3_info->gcr3_tbl = iommu_alloc_pages_node_sz(nid, GFP_ATOMIC, SZ_4K); 1919 if (gcr3_info->gcr3_tbl == NULL) { 1920 pdom_id_free(domid); 1921 return -ENOMEM; 1922 } 1923 1924 gcr3_info->glx = levels; 1925 1926 return 0; 1927 } 1928 1929 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info, 1930 ioasid_t pasid, bool alloc) 1931 { 1932 int index; 1933 u64 *pte; 1934 u64 *root = gcr3_info->gcr3_tbl; 1935 int level = gcr3_info->glx; 1936 1937 while (true) { 1938 1939 index = (pasid >> (9 * level)) & 0x1ff; 1940 pte = &root[index]; 1941 1942 if (level == 0) 1943 break; 1944 1945 if (!(*pte & GCR3_VALID)) { 1946 if (!alloc) 1947 return NULL; 1948 1949 root = (void *)get_zeroed_page(GFP_ATOMIC); 1950 if (root == NULL) 1951 return NULL; 1952 1953 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 1954 } 1955 1956 root = iommu_phys_to_virt(*pte & PAGE_MASK); 1957 1958 level -= 1; 1959 } 1960 1961 return pte; 1962 } 1963 1964 static int update_gcr3(struct iommu_dev_data *dev_data, 1965 ioasid_t pasid, unsigned long gcr3, bool set) 1966 { 1967 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1968 u64 *pte; 1969 1970 pte = __get_gcr3_pte(gcr3_info, pasid, true); 1971 if (pte == NULL) 1972 return -ENOMEM; 1973 1974 if (set) 1975 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID; 1976 else 1977 *pte = 0; 1978 1979 dev_flush_pasid_all(dev_data, pasid); 1980 return 0; 1981 } 1982 1983 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid, 1984 unsigned long gcr3) 1985 { 1986 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1987 int ret; 1988 1989 iommu_group_mutex_assert(dev_data->dev); 1990 1991 ret = update_gcr3(dev_data, pasid, gcr3, true); 1992 if (ret) 1993 return ret; 1994 1995 gcr3_info->pasid_cnt++; 1996 return ret; 1997 } 1998 1999 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid) 2000 { 2001 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 2002 int ret; 2003 2004 iommu_group_mutex_assert(dev_data->dev); 2005 2006 ret = update_gcr3(dev_data, pasid, 0, false); 2007 if (ret) 2008 return ret; 2009 2010 gcr3_info->pasid_cnt--; 2011 return ret; 2012 } 2013 2014 static void make_clear_dte(struct iommu_dev_data *dev_data, struct dev_table_entry *ptr, 2015 struct dev_table_entry *new) 2016 { 2017 /* All existing DTE must have V bit set */ 2018 new->data128[0] = DTE_FLAG_V; 2019 new->data128[1] = 0; 2020 } 2021 2022 /* 2023 * Note: 2024 * The old value for GCR3 table and GPT have been cleared from caller. 2025 */ 2026 static void set_dte_gcr3_table(struct amd_iommu *iommu, 2027 struct iommu_dev_data *dev_data, 2028 struct dev_table_entry *target) 2029 { 2030 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 2031 u64 gcr3; 2032 2033 if (!gcr3_info->gcr3_tbl) 2034 return; 2035 2036 pr_debug("%s: devid=%#x, glx=%#x, gcr3_tbl=%#llx\n", 2037 __func__, dev_data->devid, gcr3_info->glx, 2038 (unsigned long long)gcr3_info->gcr3_tbl); 2039 2040 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl); 2041 2042 target->data[0] |= DTE_FLAG_GV | 2043 FIELD_PREP(DTE_GLX, gcr3_info->glx) | 2044 FIELD_PREP(DTE_GCR3_14_12, gcr3 >> 12); 2045 if (pdom_is_v2_pgtbl_mode(dev_data->domain)) 2046 target->data[0] |= DTE_FLAG_GIOV; 2047 2048 target->data[1] |= FIELD_PREP(DTE_GCR3_30_15, gcr3 >> 15) | 2049 FIELD_PREP(DTE_GCR3_51_31, gcr3 >> 31); 2050 2051 /* Guest page table can only support 4 and 5 levels */ 2052 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) 2053 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_5_LEVEL); 2054 else 2055 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_4_LEVEL); 2056 } 2057 2058 static void set_dte_entry(struct amd_iommu *iommu, 2059 struct iommu_dev_data *dev_data) 2060 { 2061 u16 domid; 2062 u32 old_domid; 2063 struct dev_table_entry *initial_dte; 2064 struct dev_table_entry new = {}; 2065 struct protection_domain *domain = dev_data->domain; 2066 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 2067 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid]; 2068 2069 if (gcr3_info && gcr3_info->gcr3_tbl) 2070 domid = dev_data->gcr3_info.domid; 2071 else 2072 domid = domain->id; 2073 2074 make_clear_dte(dev_data, dte, &new); 2075 2076 if (domain->iop.mode != PAGE_MODE_NONE) 2077 new.data[0] |= iommu_virt_to_phys(domain->iop.root); 2078 2079 new.data[0] |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) 2080 << DEV_ENTRY_MODE_SHIFT; 2081 2082 new.data[0] |= DTE_FLAG_IR | DTE_FLAG_IW; 2083 2084 /* 2085 * When SNP is enabled, we can only support TV=1 with non-zero domain ID. 2086 * This is prevented by the SNP-enable and IOMMU_DOMAIN_IDENTITY check in 2087 * do_iommu_domain_alloc(). 2088 */ 2089 WARN_ON(amd_iommu_snp_en && (domid == 0)); 2090 new.data[0] |= DTE_FLAG_TV; 2091 2092 if (dev_data->ppr) 2093 new.data[0] |= 1ULL << DEV_ENTRY_PPR; 2094 2095 if (domain->dirty_tracking) 2096 new.data[0] |= DTE_FLAG_HAD; 2097 2098 if (dev_data->ats_enabled) 2099 new.data[1] |= DTE_FLAG_IOTLB; 2100 2101 old_domid = READ_ONCE(dte->data[1]) & DEV_DOMID_MASK; 2102 new.data[1] |= domid; 2103 2104 /* 2105 * Restore cached persistent DTE bits, which can be set by information 2106 * in IVRS table. See set_dev_entry_from_acpi(). 2107 */ 2108 initial_dte = amd_iommu_get_ivhd_dte_flags(iommu->pci_seg->id, dev_data->devid); 2109 if (initial_dte) { 2110 new.data128[0] |= initial_dte->data128[0]; 2111 new.data128[1] |= initial_dte->data128[1]; 2112 } 2113 2114 set_dte_gcr3_table(iommu, dev_data, &new); 2115 2116 update_dte256(iommu, dev_data, &new); 2117 2118 /* 2119 * A kdump kernel might be replacing a domain ID that was copied from 2120 * the previous kernel--if so, it needs to flush the translation cache 2121 * entries for the old domain ID that is being overwritten 2122 */ 2123 if (old_domid) { 2124 amd_iommu_flush_tlb_domid(iommu, old_domid); 2125 } 2126 } 2127 2128 /* 2129 * Clear DMA-remap related flags to block all DMA (blockeded domain) 2130 */ 2131 static void clear_dte_entry(struct amd_iommu *iommu, struct iommu_dev_data *dev_data) 2132 { 2133 struct dev_table_entry new = {}; 2134 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid]; 2135 2136 make_clear_dte(dev_data, dte, &new); 2137 update_dte256(iommu, dev_data, &new); 2138 } 2139 2140 /* Update and flush DTE for the given device */ 2141 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set) 2142 { 2143 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 2144 2145 if (set) 2146 set_dte_entry(iommu, dev_data); 2147 else 2148 clear_dte_entry(iommu, dev_data); 2149 2150 clone_aliases(iommu, dev_data->dev); 2151 device_flush_dte(dev_data); 2152 iommu_completion_wait(iommu); 2153 } 2154 2155 /* 2156 * If domain is SVA capable then initialize GCR3 table. Also if domain is 2157 * in v2 page table mode then update GCR3[0]. 2158 */ 2159 static int init_gcr3_table(struct iommu_dev_data *dev_data, 2160 struct protection_domain *pdom) 2161 { 2162 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2163 int max_pasids = dev_data->max_pasids; 2164 int ret = 0; 2165 2166 /* 2167 * If domain is in pt mode then setup GCR3 table only if device 2168 * is PASID capable 2169 */ 2170 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data)) 2171 return ret; 2172 2173 /* 2174 * By default, setup GCR3 table to support MAX PASIDs 2175 * supported by the device/IOMMU. 2176 */ 2177 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu, 2178 max_pasids > 0 ? max_pasids : 1); 2179 if (ret) 2180 return ret; 2181 2182 /* Setup GCR3[0] only if domain is setup with v2 page table mode */ 2183 if (!pdom_is_v2_pgtbl_mode(pdom)) 2184 return ret; 2185 2186 ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true); 2187 if (ret) 2188 free_gcr3_table(&dev_data->gcr3_info); 2189 2190 return ret; 2191 } 2192 2193 static void destroy_gcr3_table(struct iommu_dev_data *dev_data, 2194 struct protection_domain *pdom) 2195 { 2196 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 2197 2198 if (pdom_is_v2_pgtbl_mode(pdom)) 2199 update_gcr3(dev_data, 0, 0, false); 2200 2201 if (gcr3_info->gcr3_tbl == NULL) 2202 return; 2203 2204 free_gcr3_table(gcr3_info); 2205 } 2206 2207 static int pdom_attach_iommu(struct amd_iommu *iommu, 2208 struct protection_domain *pdom) 2209 { 2210 struct pdom_iommu_info *pdom_iommu_info, *curr; 2211 unsigned long flags; 2212 int ret = 0; 2213 2214 spin_lock_irqsave(&pdom->lock, flags); 2215 2216 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index); 2217 if (pdom_iommu_info) { 2218 pdom_iommu_info->refcnt++; 2219 goto out_unlock; 2220 } 2221 2222 pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC); 2223 if (!pdom_iommu_info) { 2224 ret = -ENOMEM; 2225 goto out_unlock; 2226 } 2227 2228 pdom_iommu_info->iommu = iommu; 2229 pdom_iommu_info->refcnt = 1; 2230 2231 curr = xa_cmpxchg(&pdom->iommu_array, iommu->index, 2232 NULL, pdom_iommu_info, GFP_ATOMIC); 2233 if (curr) { 2234 kfree(pdom_iommu_info); 2235 ret = -ENOSPC; 2236 goto out_unlock; 2237 } 2238 2239 out_unlock: 2240 spin_unlock_irqrestore(&pdom->lock, flags); 2241 return ret; 2242 } 2243 2244 static void pdom_detach_iommu(struct amd_iommu *iommu, 2245 struct protection_domain *pdom) 2246 { 2247 struct pdom_iommu_info *pdom_iommu_info; 2248 unsigned long flags; 2249 2250 spin_lock_irqsave(&pdom->lock, flags); 2251 2252 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index); 2253 if (!pdom_iommu_info) { 2254 spin_unlock_irqrestore(&pdom->lock, flags); 2255 return; 2256 } 2257 2258 pdom_iommu_info->refcnt--; 2259 if (pdom_iommu_info->refcnt == 0) { 2260 xa_erase(&pdom->iommu_array, iommu->index); 2261 kfree(pdom_iommu_info); 2262 } 2263 2264 spin_unlock_irqrestore(&pdom->lock, flags); 2265 } 2266 2267 /* 2268 * If a device is not yet associated with a domain, this function makes the 2269 * device visible in the domain 2270 */ 2271 static int attach_device(struct device *dev, 2272 struct protection_domain *domain) 2273 { 2274 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2275 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2276 struct pci_dev *pdev; 2277 unsigned long flags; 2278 int ret = 0; 2279 2280 mutex_lock(&dev_data->mutex); 2281 2282 if (dev_data->domain != NULL) { 2283 ret = -EBUSY; 2284 goto out; 2285 } 2286 2287 /* Do reference counting */ 2288 ret = pdom_attach_iommu(iommu, domain); 2289 if (ret) 2290 goto out; 2291 2292 /* Setup GCR3 table */ 2293 if (pdom_is_sva_capable(domain)) { 2294 ret = init_gcr3_table(dev_data, domain); 2295 if (ret) { 2296 pdom_detach_iommu(iommu, domain); 2297 goto out; 2298 } 2299 } 2300 2301 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL; 2302 if (pdev && pdom_is_sva_capable(domain)) { 2303 pdev_enable_caps(pdev); 2304 2305 /* 2306 * Device can continue to function even if IOPF 2307 * enablement failed. Hence in error path just 2308 * disable device PRI support. 2309 */ 2310 if (amd_iommu_iopf_add_device(iommu, dev_data)) 2311 pdev_disable_cap_pri(pdev); 2312 } else if (pdev) { 2313 pdev_enable_cap_ats(pdev); 2314 } 2315 2316 /* Update data structures */ 2317 dev_data->domain = domain; 2318 spin_lock_irqsave(&domain->lock, flags); 2319 list_add(&dev_data->list, &domain->dev_list); 2320 spin_unlock_irqrestore(&domain->lock, flags); 2321 2322 /* Update device table */ 2323 dev_update_dte(dev_data, true); 2324 2325 out: 2326 mutex_unlock(&dev_data->mutex); 2327 2328 return ret; 2329 } 2330 2331 /* 2332 * Removes a device from a protection domain (with devtable_lock held) 2333 */ 2334 static void detach_device(struct device *dev) 2335 { 2336 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2337 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2338 struct protection_domain *domain = dev_data->domain; 2339 unsigned long flags; 2340 2341 mutex_lock(&dev_data->mutex); 2342 2343 /* 2344 * First check if the device is still attached. It might already 2345 * be detached from its domain because the generic 2346 * iommu_detach_group code detached it and we try again here in 2347 * our alias handling. 2348 */ 2349 if (WARN_ON(!dev_data->domain)) 2350 goto out; 2351 2352 /* Remove IOPF handler */ 2353 if (dev_data->ppr) { 2354 iopf_queue_flush_dev(dev); 2355 amd_iommu_iopf_remove_device(iommu, dev_data); 2356 } 2357 2358 if (dev_is_pci(dev)) 2359 pdev_disable_caps(to_pci_dev(dev)); 2360 2361 /* Clear DTE and flush the entry */ 2362 dev_update_dte(dev_data, false); 2363 2364 /* Flush IOTLB and wait for the flushes to finish */ 2365 spin_lock_irqsave(&domain->lock, flags); 2366 amd_iommu_domain_flush_all(domain); 2367 list_del(&dev_data->list); 2368 spin_unlock_irqrestore(&domain->lock, flags); 2369 2370 /* Clear GCR3 table */ 2371 if (pdom_is_sva_capable(domain)) 2372 destroy_gcr3_table(dev_data, domain); 2373 2374 /* Update data structures */ 2375 dev_data->domain = NULL; 2376 2377 /* decrease reference counters - needs to happen after the flushes */ 2378 pdom_detach_iommu(iommu, domain); 2379 2380 out: 2381 mutex_unlock(&dev_data->mutex); 2382 } 2383 2384 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 2385 { 2386 struct iommu_device *iommu_dev; 2387 struct amd_iommu *iommu; 2388 struct iommu_dev_data *dev_data; 2389 int ret; 2390 2391 if (!check_device(dev)) 2392 return ERR_PTR(-ENODEV); 2393 2394 iommu = rlookup_amd_iommu(dev); 2395 if (!iommu) 2396 return ERR_PTR(-ENODEV); 2397 2398 /* Not registered yet? */ 2399 if (!iommu->iommu.ops) 2400 return ERR_PTR(-ENODEV); 2401 2402 if (dev_iommu_priv_get(dev)) 2403 return &iommu->iommu; 2404 2405 ret = iommu_init_device(iommu, dev); 2406 if (ret) { 2407 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 2408 iommu_dev = ERR_PTR(ret); 2409 iommu_ignore_device(iommu, dev); 2410 goto out_err; 2411 } 2412 2413 amd_iommu_set_pci_msi_domain(dev, iommu); 2414 iommu_dev = &iommu->iommu; 2415 2416 /* 2417 * If IOMMU and device supports PASID then it will contain max 2418 * supported PASIDs, else it will be zero. 2419 */ 2420 dev_data = dev_iommu_priv_get(dev); 2421 if (amd_iommu_pasid_supported() && dev_is_pci(dev) && 2422 pdev_pasid_supported(dev_data)) { 2423 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids, 2424 pci_max_pasids(to_pci_dev(dev))); 2425 } 2426 2427 out_err: 2428 2429 iommu_completion_wait(iommu); 2430 2431 if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2)) 2432 dev_data->max_irqs = MAX_IRQS_PER_TABLE_2K; 2433 else 2434 dev_data->max_irqs = MAX_IRQS_PER_TABLE_512; 2435 2436 if (dev_is_pci(dev)) 2437 pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT); 2438 2439 return iommu_dev; 2440 } 2441 2442 static void amd_iommu_release_device(struct device *dev) 2443 { 2444 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2445 2446 WARN_ON(dev_data->domain); 2447 2448 /* 2449 * We keep dev_data around for unplugged devices and reuse it when the 2450 * device is re-plugged - not doing so would introduce a ton of races. 2451 */ 2452 } 2453 2454 static struct iommu_group *amd_iommu_device_group(struct device *dev) 2455 { 2456 if (dev_is_pci(dev)) 2457 return pci_device_group(dev); 2458 2459 return acpihid_device_group(dev); 2460 } 2461 2462 /***************************************************************************** 2463 * 2464 * The following functions belong to the exported interface of AMD IOMMU 2465 * 2466 * This interface allows access to lower level functions of the IOMMU 2467 * like protection domain handling and assignement of devices to domains 2468 * which is not possible with the dma_ops interface. 2469 * 2470 *****************************************************************************/ 2471 2472 static void protection_domain_init(struct protection_domain *domain) 2473 { 2474 spin_lock_init(&domain->lock); 2475 INIT_LIST_HEAD(&domain->dev_list); 2476 INIT_LIST_HEAD(&domain->dev_data_list); 2477 xa_init(&domain->iommu_array); 2478 } 2479 2480 struct protection_domain *protection_domain_alloc(void) 2481 { 2482 struct protection_domain *domain; 2483 int domid; 2484 2485 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2486 if (!domain) 2487 return NULL; 2488 2489 domid = pdom_id_alloc(); 2490 if (domid <= 0) { 2491 kfree(domain); 2492 return NULL; 2493 } 2494 domain->id = domid; 2495 2496 protection_domain_init(domain); 2497 2498 return domain; 2499 } 2500 2501 static int pdom_setup_pgtable(struct protection_domain *domain, 2502 struct device *dev) 2503 { 2504 struct io_pgtable_ops *pgtbl_ops; 2505 enum io_pgtable_fmt fmt; 2506 2507 switch (domain->pd_mode) { 2508 case PD_MODE_V1: 2509 fmt = AMD_IOMMU_V1; 2510 break; 2511 case PD_MODE_V2: 2512 fmt = AMD_IOMMU_V2; 2513 break; 2514 } 2515 2516 domain->iop.pgtbl.cfg.amd.nid = dev_to_node(dev); 2517 pgtbl_ops = alloc_io_pgtable_ops(fmt, &domain->iop.pgtbl.cfg, domain); 2518 if (!pgtbl_ops) 2519 return -ENOMEM; 2520 2521 return 0; 2522 } 2523 2524 static inline u64 dma_max_address(enum protection_domain_mode pgtable) 2525 { 2526 if (pgtable == PD_MODE_V1) 2527 return ~0ULL; 2528 2529 /* V2 with 4/5 level page table */ 2530 return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1); 2531 } 2532 2533 static bool amd_iommu_hd_support(struct amd_iommu *iommu) 2534 { 2535 return iommu && (iommu->features & FEATURE_HDSUP); 2536 } 2537 2538 static struct iommu_domain * 2539 do_iommu_domain_alloc(struct device *dev, u32 flags, 2540 enum protection_domain_mode pgtable) 2541 { 2542 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING; 2543 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2544 struct protection_domain *domain; 2545 int ret; 2546 2547 domain = protection_domain_alloc(); 2548 if (!domain) 2549 return ERR_PTR(-ENOMEM); 2550 2551 domain->pd_mode = pgtable; 2552 ret = pdom_setup_pgtable(domain, dev); 2553 if (ret) { 2554 pdom_id_free(domain->id); 2555 kfree(domain); 2556 return ERR_PTR(ret); 2557 } 2558 2559 domain->domain.geometry.aperture_start = 0; 2560 domain->domain.geometry.aperture_end = dma_max_address(pgtable); 2561 domain->domain.geometry.force_aperture = true; 2562 domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap; 2563 2564 domain->domain.type = IOMMU_DOMAIN_UNMANAGED; 2565 domain->domain.ops = iommu->iommu.ops->default_domain_ops; 2566 2567 if (dirty_tracking) 2568 domain->domain.dirty_ops = &amd_dirty_ops; 2569 2570 return &domain->domain; 2571 } 2572 2573 static struct iommu_domain * 2574 amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags, 2575 const struct iommu_user_data *user_data) 2576 2577 { 2578 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2579 const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING | 2580 IOMMU_HWPT_ALLOC_PASID; 2581 2582 if ((flags & ~supported_flags) || user_data) 2583 return ERR_PTR(-EOPNOTSUPP); 2584 2585 switch (flags & supported_flags) { 2586 case IOMMU_HWPT_ALLOC_DIRTY_TRACKING: 2587 /* Allocate domain with v1 page table for dirty tracking */ 2588 if (!amd_iommu_hd_support(iommu)) 2589 break; 2590 return do_iommu_domain_alloc(dev, flags, PD_MODE_V1); 2591 case IOMMU_HWPT_ALLOC_PASID: 2592 /* Allocate domain with v2 page table if IOMMU supports PASID. */ 2593 if (!amd_iommu_pasid_supported()) 2594 break; 2595 return do_iommu_domain_alloc(dev, flags, PD_MODE_V2); 2596 case 0: 2597 /* If nothing specific is required use the kernel commandline default */ 2598 return do_iommu_domain_alloc(dev, 0, amd_iommu_pgtable); 2599 default: 2600 break; 2601 } 2602 return ERR_PTR(-EOPNOTSUPP); 2603 } 2604 2605 void amd_iommu_domain_free(struct iommu_domain *dom) 2606 { 2607 struct protection_domain *domain = to_pdomain(dom); 2608 2609 WARN_ON(!list_empty(&domain->dev_list)); 2610 if (domain->domain.type & __IOMMU_DOMAIN_PAGING) 2611 free_io_pgtable_ops(&domain->iop.pgtbl.ops); 2612 pdom_id_free(domain->id); 2613 kfree(domain); 2614 } 2615 2616 static int blocked_domain_attach_device(struct iommu_domain *domain, 2617 struct device *dev) 2618 { 2619 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2620 2621 if (dev_data->domain) 2622 detach_device(dev); 2623 2624 /* Clear DTE and flush the entry */ 2625 mutex_lock(&dev_data->mutex); 2626 dev_update_dte(dev_data, false); 2627 mutex_unlock(&dev_data->mutex); 2628 2629 return 0; 2630 } 2631 2632 static int blocked_domain_set_dev_pasid(struct iommu_domain *domain, 2633 struct device *dev, ioasid_t pasid, 2634 struct iommu_domain *old) 2635 { 2636 amd_iommu_remove_dev_pasid(dev, pasid, old); 2637 return 0; 2638 } 2639 2640 static struct iommu_domain blocked_domain = { 2641 .type = IOMMU_DOMAIN_BLOCKED, 2642 .ops = &(const struct iommu_domain_ops) { 2643 .attach_dev = blocked_domain_attach_device, 2644 .set_dev_pasid = blocked_domain_set_dev_pasid, 2645 } 2646 }; 2647 2648 static struct protection_domain identity_domain; 2649 2650 static const struct iommu_domain_ops identity_domain_ops = { 2651 .attach_dev = amd_iommu_attach_device, 2652 }; 2653 2654 void amd_iommu_init_identity_domain(void) 2655 { 2656 struct iommu_domain *domain = &identity_domain.domain; 2657 2658 domain->type = IOMMU_DOMAIN_IDENTITY; 2659 domain->ops = &identity_domain_ops; 2660 domain->owner = &amd_iommu_ops; 2661 2662 identity_domain.id = pdom_id_alloc(); 2663 2664 protection_domain_init(&identity_domain); 2665 } 2666 2667 /* Same as blocked domain except it supports only ops->attach_dev() */ 2668 static struct iommu_domain release_domain = { 2669 .type = IOMMU_DOMAIN_BLOCKED, 2670 .ops = &(const struct iommu_domain_ops) { 2671 .attach_dev = blocked_domain_attach_device, 2672 } 2673 }; 2674 2675 static int amd_iommu_attach_device(struct iommu_domain *dom, 2676 struct device *dev) 2677 { 2678 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2679 struct protection_domain *domain = to_pdomain(dom); 2680 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2681 int ret; 2682 2683 /* 2684 * Skip attach device to domain if new domain is same as 2685 * devices current domain 2686 */ 2687 if (dev_data->domain == domain) 2688 return 0; 2689 2690 dev_data->defer_attach = false; 2691 2692 /* 2693 * Restrict to devices with compatible IOMMU hardware support 2694 * when enforcement of dirty tracking is enabled. 2695 */ 2696 if (dom->dirty_ops && !amd_iommu_hd_support(iommu)) 2697 return -EINVAL; 2698 2699 if (dev_data->domain) 2700 detach_device(dev); 2701 2702 ret = attach_device(dev, domain); 2703 2704 #ifdef CONFIG_IRQ_REMAP 2705 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2706 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2707 dev_data->use_vapic = 1; 2708 else 2709 dev_data->use_vapic = 0; 2710 } 2711 #endif 2712 2713 return ret; 2714 } 2715 2716 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom, 2717 unsigned long iova, size_t size) 2718 { 2719 struct protection_domain *domain = to_pdomain(dom); 2720 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2721 2722 if (ops->map_pages) 2723 domain_flush_np_cache(domain, iova, size); 2724 return 0; 2725 } 2726 2727 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova, 2728 phys_addr_t paddr, size_t pgsize, size_t pgcount, 2729 int iommu_prot, gfp_t gfp, size_t *mapped) 2730 { 2731 struct protection_domain *domain = to_pdomain(dom); 2732 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2733 int prot = 0; 2734 int ret = -EINVAL; 2735 2736 if ((domain->pd_mode == PD_MODE_V1) && 2737 (domain->iop.mode == PAGE_MODE_NONE)) 2738 return -EINVAL; 2739 2740 if (iommu_prot & IOMMU_READ) 2741 prot |= IOMMU_PROT_IR; 2742 if (iommu_prot & IOMMU_WRITE) 2743 prot |= IOMMU_PROT_IW; 2744 2745 if (ops->map_pages) { 2746 ret = ops->map_pages(ops, iova, paddr, pgsize, 2747 pgcount, prot, gfp, mapped); 2748 } 2749 2750 return ret; 2751 } 2752 2753 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, 2754 struct iommu_iotlb_gather *gather, 2755 unsigned long iova, size_t size) 2756 { 2757 /* 2758 * AMD's IOMMU can flush as many pages as necessary in a single flush. 2759 * Unless we run in a virtual machine, which can be inferred according 2760 * to whether "non-present cache" is on, it is probably best to prefer 2761 * (potentially) too extensive TLB flushing (i.e., more misses) over 2762 * mutliple TLB flushes (i.e., more flushes). For virtual machines the 2763 * hypervisor needs to synchronize the host IOMMU PTEs with those of 2764 * the guest, and the trade-off is different: unnecessary TLB flushes 2765 * should be avoided. 2766 */ 2767 if (amd_iommu_np_cache && 2768 iommu_iotlb_gather_is_disjoint(gather, iova, size)) 2769 iommu_iotlb_sync(domain, gather); 2770 2771 iommu_iotlb_gather_add_range(gather, iova, size); 2772 } 2773 2774 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova, 2775 size_t pgsize, size_t pgcount, 2776 struct iommu_iotlb_gather *gather) 2777 { 2778 struct protection_domain *domain = to_pdomain(dom); 2779 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2780 size_t r; 2781 2782 if ((domain->pd_mode == PD_MODE_V1) && 2783 (domain->iop.mode == PAGE_MODE_NONE)) 2784 return 0; 2785 2786 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0; 2787 2788 if (r) 2789 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r); 2790 2791 return r; 2792 } 2793 2794 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2795 dma_addr_t iova) 2796 { 2797 struct protection_domain *domain = to_pdomain(dom); 2798 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2799 2800 return ops->iova_to_phys(ops, iova); 2801 } 2802 2803 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap) 2804 { 2805 switch (cap) { 2806 case IOMMU_CAP_CACHE_COHERENCY: 2807 return true; 2808 case IOMMU_CAP_NOEXEC: 2809 return false; 2810 case IOMMU_CAP_PRE_BOOT_PROTECTION: 2811 return amdr_ivrs_remap_support; 2812 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY: 2813 return true; 2814 case IOMMU_CAP_DEFERRED_FLUSH: 2815 return true; 2816 case IOMMU_CAP_DIRTY_TRACKING: { 2817 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2818 2819 return amd_iommu_hd_support(iommu); 2820 } 2821 default: 2822 break; 2823 } 2824 2825 return false; 2826 } 2827 2828 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain, 2829 bool enable) 2830 { 2831 struct protection_domain *pdomain = to_pdomain(domain); 2832 struct dev_table_entry *dte; 2833 struct iommu_dev_data *dev_data; 2834 bool domain_flush = false; 2835 struct amd_iommu *iommu; 2836 unsigned long flags; 2837 u64 new; 2838 2839 spin_lock_irqsave(&pdomain->lock, flags); 2840 if (!(pdomain->dirty_tracking ^ enable)) { 2841 spin_unlock_irqrestore(&pdomain->lock, flags); 2842 return 0; 2843 } 2844 2845 list_for_each_entry(dev_data, &pdomain->dev_list, list) { 2846 spin_lock(&dev_data->dte_lock); 2847 iommu = get_amd_iommu_from_dev_data(dev_data); 2848 dte = &get_dev_table(iommu)[dev_data->devid]; 2849 new = dte->data[0]; 2850 new = (enable ? new | DTE_FLAG_HAD : new & ~DTE_FLAG_HAD); 2851 dte->data[0] = new; 2852 spin_unlock(&dev_data->dte_lock); 2853 2854 /* Flush device DTE */ 2855 device_flush_dte(dev_data); 2856 domain_flush = true; 2857 } 2858 2859 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */ 2860 if (domain_flush) 2861 amd_iommu_domain_flush_all(pdomain); 2862 2863 pdomain->dirty_tracking = enable; 2864 spin_unlock_irqrestore(&pdomain->lock, flags); 2865 2866 return 0; 2867 } 2868 2869 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain, 2870 unsigned long iova, size_t size, 2871 unsigned long flags, 2872 struct iommu_dirty_bitmap *dirty) 2873 { 2874 struct protection_domain *pdomain = to_pdomain(domain); 2875 struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops; 2876 unsigned long lflags; 2877 2878 if (!ops || !ops->read_and_clear_dirty) 2879 return -EOPNOTSUPP; 2880 2881 spin_lock_irqsave(&pdomain->lock, lflags); 2882 if (!pdomain->dirty_tracking && dirty->bitmap) { 2883 spin_unlock_irqrestore(&pdomain->lock, lflags); 2884 return -EINVAL; 2885 } 2886 spin_unlock_irqrestore(&pdomain->lock, lflags); 2887 2888 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty); 2889 } 2890 2891 static void amd_iommu_get_resv_regions(struct device *dev, 2892 struct list_head *head) 2893 { 2894 struct iommu_resv_region *region; 2895 struct unity_map_entry *entry; 2896 struct amd_iommu *iommu; 2897 struct amd_iommu_pci_seg *pci_seg; 2898 int devid, sbdf; 2899 2900 sbdf = get_device_sbdf_id(dev); 2901 if (sbdf < 0) 2902 return; 2903 2904 devid = PCI_SBDF_TO_DEVID(sbdf); 2905 iommu = get_amd_iommu_from_dev(dev); 2906 pci_seg = iommu->pci_seg; 2907 2908 list_for_each_entry(entry, &pci_seg->unity_map, list) { 2909 int type, prot = 0; 2910 size_t length; 2911 2912 if (devid < entry->devid_start || devid > entry->devid_end) 2913 continue; 2914 2915 type = IOMMU_RESV_DIRECT; 2916 length = entry->address_end - entry->address_start; 2917 if (entry->prot & IOMMU_PROT_IR) 2918 prot |= IOMMU_READ; 2919 if (entry->prot & IOMMU_PROT_IW) 2920 prot |= IOMMU_WRITE; 2921 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2922 /* Exclusion range */ 2923 type = IOMMU_RESV_RESERVED; 2924 2925 region = iommu_alloc_resv_region(entry->address_start, 2926 length, prot, type, 2927 GFP_KERNEL); 2928 if (!region) { 2929 dev_err(dev, "Out of memory allocating dm-regions\n"); 2930 return; 2931 } 2932 list_add_tail(®ion->list, head); 2933 } 2934 2935 region = iommu_alloc_resv_region(MSI_RANGE_START, 2936 MSI_RANGE_END - MSI_RANGE_START + 1, 2937 0, IOMMU_RESV_MSI, GFP_KERNEL); 2938 if (!region) 2939 return; 2940 list_add_tail(®ion->list, head); 2941 2942 if (amd_iommu_ht_range_ignore()) 2943 return; 2944 2945 region = iommu_alloc_resv_region(HT_RANGE_START, 2946 HT_RANGE_END - HT_RANGE_START + 1, 2947 0, IOMMU_RESV_RESERVED, GFP_KERNEL); 2948 if (!region) 2949 return; 2950 list_add_tail(®ion->list, head); 2951 } 2952 2953 static bool amd_iommu_is_attach_deferred(struct device *dev) 2954 { 2955 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2956 2957 return dev_data->defer_attach; 2958 } 2959 2960 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2961 { 2962 struct protection_domain *dom = to_pdomain(domain); 2963 unsigned long flags; 2964 2965 spin_lock_irqsave(&dom->lock, flags); 2966 amd_iommu_domain_flush_all(dom); 2967 spin_unlock_irqrestore(&dom->lock, flags); 2968 } 2969 2970 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2971 struct iommu_iotlb_gather *gather) 2972 { 2973 struct protection_domain *dom = to_pdomain(domain); 2974 unsigned long flags; 2975 2976 spin_lock_irqsave(&dom->lock, flags); 2977 amd_iommu_domain_flush_pages(dom, gather->start, 2978 gather->end - gather->start + 1); 2979 spin_unlock_irqrestore(&dom->lock, flags); 2980 } 2981 2982 static int amd_iommu_def_domain_type(struct device *dev) 2983 { 2984 struct iommu_dev_data *dev_data; 2985 2986 dev_data = dev_iommu_priv_get(dev); 2987 if (!dev_data) 2988 return 0; 2989 2990 /* Always use DMA domain for untrusted device */ 2991 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 2992 return IOMMU_DOMAIN_DMA; 2993 2994 /* 2995 * Do not identity map IOMMUv2 capable devices when: 2996 * - memory encryption is active, because some of those devices 2997 * (AMD GPUs) don't have the encryption bit in their DMA-mask 2998 * and require remapping. 2999 * - SNP is enabled, because it prohibits DTE[Mode]=0. 3000 */ 3001 if (pdev_pasid_supported(dev_data) && 3002 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) && 3003 !amd_iommu_snp_en) { 3004 return IOMMU_DOMAIN_IDENTITY; 3005 } 3006 3007 return 0; 3008 } 3009 3010 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain) 3011 { 3012 /* IOMMU_PTE_FC is always set */ 3013 return true; 3014 } 3015 3016 static const struct iommu_dirty_ops amd_dirty_ops = { 3017 .set_dirty_tracking = amd_iommu_set_dirty_tracking, 3018 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty, 3019 }; 3020 3021 const struct iommu_ops amd_iommu_ops = { 3022 .capable = amd_iommu_capable, 3023 .blocked_domain = &blocked_domain, 3024 .release_domain = &release_domain, 3025 .identity_domain = &identity_domain.domain, 3026 .domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags, 3027 .domain_alloc_sva = amd_iommu_domain_alloc_sva, 3028 .probe_device = amd_iommu_probe_device, 3029 .release_device = amd_iommu_release_device, 3030 .device_group = amd_iommu_device_group, 3031 .get_resv_regions = amd_iommu_get_resv_regions, 3032 .is_attach_deferred = amd_iommu_is_attach_deferred, 3033 .def_domain_type = amd_iommu_def_domain_type, 3034 .page_response = amd_iommu_page_response, 3035 .default_domain_ops = &(const struct iommu_domain_ops) { 3036 .attach_dev = amd_iommu_attach_device, 3037 .map_pages = amd_iommu_map_pages, 3038 .unmap_pages = amd_iommu_unmap_pages, 3039 .iotlb_sync_map = amd_iommu_iotlb_sync_map, 3040 .iova_to_phys = amd_iommu_iova_to_phys, 3041 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 3042 .iotlb_sync = amd_iommu_iotlb_sync, 3043 .free = amd_iommu_domain_free, 3044 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency, 3045 } 3046 }; 3047 3048 #ifdef CONFIG_IRQ_REMAP 3049 3050 /***************************************************************************** 3051 * 3052 * Interrupt Remapping Implementation 3053 * 3054 *****************************************************************************/ 3055 3056 static struct irq_chip amd_ir_chip; 3057 static DEFINE_SPINLOCK(iommu_table_lock); 3058 3059 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid) 3060 { 3061 int ret; 3062 u64 data; 3063 unsigned long flags; 3064 struct iommu_cmd cmd, cmd2; 3065 3066 if (iommu->irtcachedis_enabled) 3067 return; 3068 3069 build_inv_irt(&cmd, devid); 3070 data = atomic64_inc_return(&iommu->cmd_sem_val); 3071 build_completion_wait(&cmd2, iommu, data); 3072 3073 raw_spin_lock_irqsave(&iommu->lock, flags); 3074 ret = __iommu_queue_command_sync(iommu, &cmd, true); 3075 if (ret) 3076 goto out; 3077 ret = __iommu_queue_command_sync(iommu, &cmd2, false); 3078 if (ret) 3079 goto out; 3080 wait_on_sem(iommu, data); 3081 out: 3082 raw_spin_unlock_irqrestore(&iommu->lock, flags); 3083 } 3084 3085 static inline u8 iommu_get_int_tablen(struct iommu_dev_data *dev_data) 3086 { 3087 if (dev_data && dev_data->max_irqs == MAX_IRQS_PER_TABLE_2K) 3088 return DTE_INTTABLEN_2K; 3089 return DTE_INTTABLEN_512; 3090 } 3091 3092 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid, 3093 struct irq_remap_table *table) 3094 { 3095 u64 new; 3096 struct dev_table_entry *dte = &get_dev_table(iommu)[devid]; 3097 struct iommu_dev_data *dev_data = search_dev_data(iommu, devid); 3098 3099 if (dev_data) 3100 spin_lock(&dev_data->dte_lock); 3101 3102 new = READ_ONCE(dte->data[2]); 3103 new &= ~DTE_IRQ_PHYS_ADDR_MASK; 3104 new |= iommu_virt_to_phys(table->table); 3105 new |= DTE_IRQ_REMAP_INTCTL; 3106 new |= iommu_get_int_tablen(dev_data); 3107 new |= DTE_IRQ_REMAP_ENABLE; 3108 WRITE_ONCE(dte->data[2], new); 3109 3110 if (dev_data) 3111 spin_unlock(&dev_data->dte_lock); 3112 } 3113 3114 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid) 3115 { 3116 struct irq_remap_table *table; 3117 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 3118 3119 if (WARN_ONCE(!pci_seg->rlookup_table[devid], 3120 "%s: no iommu for devid %x:%x\n", 3121 __func__, pci_seg->id, devid)) 3122 return NULL; 3123 3124 table = pci_seg->irq_lookup_table[devid]; 3125 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n", 3126 __func__, pci_seg->id, devid)) 3127 return NULL; 3128 3129 return table; 3130 } 3131 3132 static struct irq_remap_table *__alloc_irq_table(int nid, size_t size) 3133 { 3134 struct irq_remap_table *table; 3135 3136 table = kzalloc(sizeof(*table), GFP_KERNEL); 3137 if (!table) 3138 return NULL; 3139 3140 table->table = iommu_alloc_pages_node_sz( 3141 nid, GFP_KERNEL, max(DTE_INTTAB_ALIGNMENT, size)); 3142 if (!table->table) { 3143 kfree(table); 3144 return NULL; 3145 } 3146 raw_spin_lock_init(&table->lock); 3147 3148 return table; 3149 } 3150 3151 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 3152 struct irq_remap_table *table) 3153 { 3154 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 3155 3156 pci_seg->irq_lookup_table[devid] = table; 3157 set_dte_irq_entry(iommu, devid, table); 3158 iommu_flush_dte(iommu, devid); 3159 } 3160 3161 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 3162 void *data) 3163 { 3164 struct irq_remap_table *table = data; 3165 struct amd_iommu_pci_seg *pci_seg; 3166 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev); 3167 3168 if (!iommu) 3169 return -EINVAL; 3170 3171 pci_seg = iommu->pci_seg; 3172 pci_seg->irq_lookup_table[alias] = table; 3173 set_dte_irq_entry(iommu, alias, table); 3174 iommu_flush_dte(pci_seg->rlookup_table[alias], alias); 3175 3176 return 0; 3177 } 3178 3179 static inline size_t get_irq_table_size(unsigned int max_irqs) 3180 { 3181 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3182 return max_irqs * sizeof(u32); 3183 3184 return max_irqs * (sizeof(u64) * 2); 3185 } 3186 3187 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu, 3188 u16 devid, struct pci_dev *pdev, 3189 unsigned int max_irqs) 3190 { 3191 struct irq_remap_table *table = NULL; 3192 struct irq_remap_table *new_table = NULL; 3193 struct amd_iommu_pci_seg *pci_seg; 3194 unsigned long flags; 3195 int nid = iommu && iommu->dev ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE; 3196 u16 alias; 3197 3198 spin_lock_irqsave(&iommu_table_lock, flags); 3199 3200 pci_seg = iommu->pci_seg; 3201 table = pci_seg->irq_lookup_table[devid]; 3202 if (table) 3203 goto out_unlock; 3204 3205 alias = pci_seg->alias_table[devid]; 3206 table = pci_seg->irq_lookup_table[alias]; 3207 if (table) { 3208 set_remap_table_entry(iommu, devid, table); 3209 goto out_wait; 3210 } 3211 spin_unlock_irqrestore(&iommu_table_lock, flags); 3212 3213 /* Nothing there yet, allocate new irq remapping table */ 3214 new_table = __alloc_irq_table(nid, get_irq_table_size(max_irqs)); 3215 if (!new_table) 3216 return NULL; 3217 3218 spin_lock_irqsave(&iommu_table_lock, flags); 3219 3220 table = pci_seg->irq_lookup_table[devid]; 3221 if (table) 3222 goto out_unlock; 3223 3224 table = pci_seg->irq_lookup_table[alias]; 3225 if (table) { 3226 set_remap_table_entry(iommu, devid, table); 3227 goto out_wait; 3228 } 3229 3230 table = new_table; 3231 new_table = NULL; 3232 3233 if (pdev) 3234 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 3235 table); 3236 else 3237 set_remap_table_entry(iommu, devid, table); 3238 3239 if (devid != alias) 3240 set_remap_table_entry(iommu, alias, table); 3241 3242 out_wait: 3243 iommu_completion_wait(iommu); 3244 3245 out_unlock: 3246 spin_unlock_irqrestore(&iommu_table_lock, flags); 3247 3248 if (new_table) { 3249 iommu_free_pages(new_table->table); 3250 kfree(new_table); 3251 } 3252 return table; 3253 } 3254 3255 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count, 3256 bool align, struct pci_dev *pdev, 3257 unsigned long max_irqs) 3258 { 3259 struct irq_remap_table *table; 3260 int index, c, alignment = 1; 3261 unsigned long flags; 3262 3263 table = alloc_irq_table(iommu, devid, pdev, max_irqs); 3264 if (!table) 3265 return -ENODEV; 3266 3267 if (align) 3268 alignment = roundup_pow_of_two(count); 3269 3270 raw_spin_lock_irqsave(&table->lock, flags); 3271 3272 /* Scan table for free entries */ 3273 for (index = ALIGN(table->min_index, alignment), c = 0; 3274 index < max_irqs;) { 3275 if (!iommu->irte_ops->is_allocated(table, index)) { 3276 c += 1; 3277 } else { 3278 c = 0; 3279 index = ALIGN(index + 1, alignment); 3280 continue; 3281 } 3282 3283 if (c == count) { 3284 for (; c != 0; --c) 3285 iommu->irte_ops->set_allocated(table, index - c + 1); 3286 3287 index -= count - 1; 3288 goto out; 3289 } 3290 3291 index++; 3292 } 3293 3294 index = -ENOSPC; 3295 3296 out: 3297 raw_spin_unlock_irqrestore(&table->lock, flags); 3298 3299 return index; 3300 } 3301 3302 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 3303 struct irte_ga *irte) 3304 { 3305 struct irq_remap_table *table; 3306 struct irte_ga *entry; 3307 unsigned long flags; 3308 u128 old; 3309 3310 table = get_irq_table(iommu, devid); 3311 if (!table) 3312 return -ENOMEM; 3313 3314 raw_spin_lock_irqsave(&table->lock, flags); 3315 3316 entry = (struct irte_ga *)table->table; 3317 entry = &entry[index]; 3318 3319 /* 3320 * We use cmpxchg16 to atomically update the 128-bit IRTE, 3321 * and it cannot be updated by the hardware or other processors 3322 * behind us, so the return value of cmpxchg16 should be the 3323 * same as the old value. 3324 */ 3325 old = entry->irte; 3326 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte)); 3327 3328 raw_spin_unlock_irqrestore(&table->lock, flags); 3329 3330 return 0; 3331 } 3332 3333 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 3334 struct irte_ga *irte) 3335 { 3336 bool ret; 3337 3338 ret = __modify_irte_ga(iommu, devid, index, irte); 3339 if (ret) 3340 return ret; 3341 3342 iommu_flush_irt_and_complete(iommu, devid); 3343 3344 return 0; 3345 } 3346 3347 static int modify_irte(struct amd_iommu *iommu, 3348 u16 devid, int index, union irte *irte) 3349 { 3350 struct irq_remap_table *table; 3351 unsigned long flags; 3352 3353 table = get_irq_table(iommu, devid); 3354 if (!table) 3355 return -ENOMEM; 3356 3357 raw_spin_lock_irqsave(&table->lock, flags); 3358 table->table[index] = irte->val; 3359 raw_spin_unlock_irqrestore(&table->lock, flags); 3360 3361 iommu_flush_irt_and_complete(iommu, devid); 3362 3363 return 0; 3364 } 3365 3366 static void free_irte(struct amd_iommu *iommu, u16 devid, int index) 3367 { 3368 struct irq_remap_table *table; 3369 unsigned long flags; 3370 3371 table = get_irq_table(iommu, devid); 3372 if (!table) 3373 return; 3374 3375 raw_spin_lock_irqsave(&table->lock, flags); 3376 iommu->irte_ops->clear_allocated(table, index); 3377 raw_spin_unlock_irqrestore(&table->lock, flags); 3378 3379 iommu_flush_irt_and_complete(iommu, devid); 3380 } 3381 3382 static void irte_prepare(void *entry, 3383 u32 delivery_mode, bool dest_mode, 3384 u8 vector, u32 dest_apicid, int devid) 3385 { 3386 union irte *irte = (union irte *) entry; 3387 3388 irte->val = 0; 3389 irte->fields.vector = vector; 3390 irte->fields.int_type = delivery_mode; 3391 irte->fields.destination = dest_apicid; 3392 irte->fields.dm = dest_mode; 3393 irte->fields.valid = 1; 3394 } 3395 3396 static void irte_ga_prepare(void *entry, 3397 u32 delivery_mode, bool dest_mode, 3398 u8 vector, u32 dest_apicid, int devid) 3399 { 3400 struct irte_ga *irte = (struct irte_ga *) entry; 3401 3402 irte->lo.val = 0; 3403 irte->hi.val = 0; 3404 irte->lo.fields_remap.int_type = delivery_mode; 3405 irte->lo.fields_remap.dm = dest_mode; 3406 irte->hi.fields.vector = vector; 3407 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3408 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3409 irte->lo.fields_remap.valid = 1; 3410 } 3411 3412 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3413 { 3414 union irte *irte = (union irte *) entry; 3415 3416 irte->fields.valid = 1; 3417 modify_irte(iommu, devid, index, irte); 3418 } 3419 3420 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3421 { 3422 struct irte_ga *irte = (struct irte_ga *) entry; 3423 3424 irte->lo.fields_remap.valid = 1; 3425 modify_irte_ga(iommu, devid, index, irte); 3426 } 3427 3428 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3429 { 3430 union irte *irte = (union irte *) entry; 3431 3432 irte->fields.valid = 0; 3433 modify_irte(iommu, devid, index, irte); 3434 } 3435 3436 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3437 { 3438 struct irte_ga *irte = (struct irte_ga *) entry; 3439 3440 irte->lo.fields_remap.valid = 0; 3441 modify_irte_ga(iommu, devid, index, irte); 3442 } 3443 3444 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3445 u8 vector, u32 dest_apicid) 3446 { 3447 union irte *irte = (union irte *) entry; 3448 3449 irte->fields.vector = vector; 3450 irte->fields.destination = dest_apicid; 3451 modify_irte(iommu, devid, index, irte); 3452 } 3453 3454 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3455 u8 vector, u32 dest_apicid) 3456 { 3457 struct irte_ga *irte = (struct irte_ga *) entry; 3458 3459 if (!irte->lo.fields_remap.guest_mode) { 3460 irte->hi.fields.vector = vector; 3461 irte->lo.fields_remap.destination = 3462 APICID_TO_IRTE_DEST_LO(dest_apicid); 3463 irte->hi.fields.destination = 3464 APICID_TO_IRTE_DEST_HI(dest_apicid); 3465 modify_irte_ga(iommu, devid, index, irte); 3466 } 3467 } 3468 3469 #define IRTE_ALLOCATED (~1U) 3470 static void irte_set_allocated(struct irq_remap_table *table, int index) 3471 { 3472 table->table[index] = IRTE_ALLOCATED; 3473 } 3474 3475 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3476 { 3477 struct irte_ga *ptr = (struct irte_ga *)table->table; 3478 struct irte_ga *irte = &ptr[index]; 3479 3480 memset(&irte->lo.val, 0, sizeof(u64)); 3481 memset(&irte->hi.val, 0, sizeof(u64)); 3482 irte->hi.fields.vector = 0xff; 3483 } 3484 3485 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3486 { 3487 union irte *ptr = (union irte *)table->table; 3488 union irte *irte = &ptr[index]; 3489 3490 return irte->val != 0; 3491 } 3492 3493 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3494 { 3495 struct irte_ga *ptr = (struct irte_ga *)table->table; 3496 struct irte_ga *irte = &ptr[index]; 3497 3498 return irte->hi.fields.vector != 0; 3499 } 3500 3501 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3502 { 3503 table->table[index] = 0; 3504 } 3505 3506 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3507 { 3508 struct irte_ga *ptr = (struct irte_ga *)table->table; 3509 struct irte_ga *irte = &ptr[index]; 3510 3511 memset(&irte->lo.val, 0, sizeof(u64)); 3512 memset(&irte->hi.val, 0, sizeof(u64)); 3513 } 3514 3515 static int get_devid(struct irq_alloc_info *info) 3516 { 3517 switch (info->type) { 3518 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3519 return get_ioapic_devid(info->devid); 3520 case X86_IRQ_ALLOC_TYPE_HPET: 3521 return get_hpet_devid(info->devid); 3522 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3523 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3524 return get_device_sbdf_id(msi_desc_to_dev(info->desc)); 3525 default: 3526 WARN_ON_ONCE(1); 3527 return -1; 3528 } 3529 } 3530 3531 struct irq_remap_ops amd_iommu_irq_ops = { 3532 .prepare = amd_iommu_prepare, 3533 .enable = amd_iommu_enable, 3534 .disable = amd_iommu_disable, 3535 .reenable = amd_iommu_reenable, 3536 .enable_faulting = amd_iommu_enable_faulting, 3537 }; 3538 3539 static void fill_msi_msg(struct msi_msg *msg, u32 index) 3540 { 3541 msg->data = index; 3542 msg->address_lo = 0; 3543 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 3544 /* 3545 * The struct msi_msg.dest_mode_logical is used to set the DM bit 3546 * in MSI Message Address Register. For device w/ 2K int-remap support, 3547 * this is bit must be set to 1 regardless of the actual destination 3548 * mode, which is signified by the IRTE[DM]. 3549 */ 3550 if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2)) 3551 msg->arch_addr_lo.dest_mode_logical = true; 3552 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 3553 } 3554 3555 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3556 struct irq_cfg *irq_cfg, 3557 struct irq_alloc_info *info, 3558 int devid, int index, int sub_handle) 3559 { 3560 struct irq_2_irte *irte_info = &data->irq_2_irte; 3561 struct amd_iommu *iommu = data->iommu; 3562 3563 if (!iommu) 3564 return; 3565 3566 data->irq_2_irte.devid = devid; 3567 data->irq_2_irte.index = index + sub_handle; 3568 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED, 3569 apic->dest_mode_logical, irq_cfg->vector, 3570 irq_cfg->dest_apicid, devid); 3571 3572 switch (info->type) { 3573 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3574 case X86_IRQ_ALLOC_TYPE_HPET: 3575 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3576 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3577 fill_msi_msg(&data->msi_entry, irte_info->index); 3578 break; 3579 3580 default: 3581 BUG_ON(1); 3582 break; 3583 } 3584 } 3585 3586 struct amd_irte_ops irte_32_ops = { 3587 .prepare = irte_prepare, 3588 .activate = irte_activate, 3589 .deactivate = irte_deactivate, 3590 .set_affinity = irte_set_affinity, 3591 .set_allocated = irte_set_allocated, 3592 .is_allocated = irte_is_allocated, 3593 .clear_allocated = irte_clear_allocated, 3594 }; 3595 3596 struct amd_irte_ops irte_128_ops = { 3597 .prepare = irte_ga_prepare, 3598 .activate = irte_ga_activate, 3599 .deactivate = irte_ga_deactivate, 3600 .set_affinity = irte_ga_set_affinity, 3601 .set_allocated = irte_ga_set_allocated, 3602 .is_allocated = irte_ga_is_allocated, 3603 .clear_allocated = irte_ga_clear_allocated, 3604 }; 3605 3606 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3607 unsigned int nr_irqs, void *arg) 3608 { 3609 struct irq_alloc_info *info = arg; 3610 struct irq_data *irq_data; 3611 struct amd_ir_data *data = NULL; 3612 struct amd_iommu *iommu; 3613 struct irq_cfg *cfg; 3614 struct iommu_dev_data *dev_data; 3615 unsigned long max_irqs; 3616 int i, ret, devid, seg, sbdf; 3617 int index; 3618 3619 if (!info) 3620 return -EINVAL; 3621 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI) 3622 return -EINVAL; 3623 3624 sbdf = get_devid(info); 3625 if (sbdf < 0) 3626 return -EINVAL; 3627 3628 seg = PCI_SBDF_TO_SEGID(sbdf); 3629 devid = PCI_SBDF_TO_DEVID(sbdf); 3630 iommu = __rlookup_amd_iommu(seg, devid); 3631 if (!iommu) 3632 return -EINVAL; 3633 3634 dev_data = search_dev_data(iommu, devid); 3635 max_irqs = dev_data ? dev_data->max_irqs : MAX_IRQS_PER_TABLE_512; 3636 3637 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3638 if (ret < 0) 3639 return ret; 3640 3641 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3642 struct irq_remap_table *table; 3643 3644 table = alloc_irq_table(iommu, devid, NULL, max_irqs); 3645 if (table) { 3646 if (!table->min_index) { 3647 /* 3648 * Keep the first 32 indexes free for IOAPIC 3649 * interrupts. 3650 */ 3651 table->min_index = 32; 3652 for (i = 0; i < 32; ++i) 3653 iommu->irte_ops->set_allocated(table, i); 3654 } 3655 WARN_ON(table->min_index != 32); 3656 index = info->ioapic.pin; 3657 } else { 3658 index = -ENOMEM; 3659 } 3660 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3661 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3662 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3663 3664 index = alloc_irq_index(iommu, devid, nr_irqs, align, 3665 msi_desc_to_pci_dev(info->desc), 3666 max_irqs); 3667 } else { 3668 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL, 3669 max_irqs); 3670 } 3671 3672 if (index < 0) { 3673 pr_warn("Failed to allocate IRTE\n"); 3674 ret = index; 3675 goto out_free_parent; 3676 } 3677 3678 for (i = 0; i < nr_irqs; i++) { 3679 irq_data = irq_domain_get_irq_data(domain, virq + i); 3680 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3681 if (!cfg) { 3682 ret = -EINVAL; 3683 goto out_free_data; 3684 } 3685 3686 ret = -ENOMEM; 3687 data = kzalloc(sizeof(*data), GFP_KERNEL); 3688 if (!data) 3689 goto out_free_data; 3690 3691 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3692 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3693 else 3694 data->entry = kzalloc(sizeof(struct irte_ga), 3695 GFP_KERNEL); 3696 if (!data->entry) { 3697 kfree(data); 3698 goto out_free_data; 3699 } 3700 3701 data->iommu = iommu; 3702 irq_data->hwirq = (devid << 16) + i; 3703 irq_data->chip_data = data; 3704 irq_data->chip = &amd_ir_chip; 3705 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3706 } 3707 3708 return 0; 3709 3710 out_free_data: 3711 for (i--; i >= 0; i--) { 3712 irq_data = irq_domain_get_irq_data(domain, virq + i); 3713 if (irq_data) 3714 kfree(irq_data->chip_data); 3715 } 3716 for (i = 0; i < nr_irqs; i++) 3717 free_irte(iommu, devid, index + i); 3718 out_free_parent: 3719 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3720 return ret; 3721 } 3722 3723 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3724 unsigned int nr_irqs) 3725 { 3726 struct irq_2_irte *irte_info; 3727 struct irq_data *irq_data; 3728 struct amd_ir_data *data; 3729 int i; 3730 3731 for (i = 0; i < nr_irqs; i++) { 3732 irq_data = irq_domain_get_irq_data(domain, virq + i); 3733 if (irq_data && irq_data->chip_data) { 3734 data = irq_data->chip_data; 3735 irte_info = &data->irq_2_irte; 3736 free_irte(data->iommu, irte_info->devid, irte_info->index); 3737 kfree(data->entry); 3738 kfree(data); 3739 } 3740 } 3741 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3742 } 3743 3744 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3745 struct amd_ir_data *ir_data, 3746 struct irq_2_irte *irte_info, 3747 struct irq_cfg *cfg); 3748 3749 static int irq_remapping_activate(struct irq_domain *domain, 3750 struct irq_data *irq_data, bool reserve) 3751 { 3752 struct amd_ir_data *data = irq_data->chip_data; 3753 struct irq_2_irte *irte_info = &data->irq_2_irte; 3754 struct amd_iommu *iommu = data->iommu; 3755 struct irq_cfg *cfg = irqd_cfg(irq_data); 3756 3757 if (!iommu) 3758 return 0; 3759 3760 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid, 3761 irte_info->index); 3762 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3763 return 0; 3764 } 3765 3766 static void irq_remapping_deactivate(struct irq_domain *domain, 3767 struct irq_data *irq_data) 3768 { 3769 struct amd_ir_data *data = irq_data->chip_data; 3770 struct irq_2_irte *irte_info = &data->irq_2_irte; 3771 struct amd_iommu *iommu = data->iommu; 3772 3773 if (iommu) 3774 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid, 3775 irte_info->index); 3776 } 3777 3778 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, 3779 enum irq_domain_bus_token bus_token) 3780 { 3781 struct amd_iommu *iommu; 3782 int devid = -1; 3783 3784 if (!amd_iommu_irq_remap) 3785 return 0; 3786 3787 if (x86_fwspec_is_ioapic(fwspec)) 3788 devid = get_ioapic_devid(fwspec->param[0]); 3789 else if (x86_fwspec_is_hpet(fwspec)) 3790 devid = get_hpet_devid(fwspec->param[0]); 3791 3792 if (devid < 0) 3793 return 0; 3794 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff)); 3795 3796 return iommu && iommu->ir_domain == d; 3797 } 3798 3799 static const struct irq_domain_ops amd_ir_domain_ops = { 3800 .select = irq_remapping_select, 3801 .alloc = irq_remapping_alloc, 3802 .free = irq_remapping_free, 3803 .activate = irq_remapping_activate, 3804 .deactivate = irq_remapping_deactivate, 3805 }; 3806 3807 int amd_iommu_activate_guest_mode(void *data) 3808 { 3809 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3810 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3811 u64 valid; 3812 3813 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry) 3814 return 0; 3815 3816 valid = entry->lo.fields_vapic.valid; 3817 3818 entry->lo.val = 0; 3819 entry->hi.val = 0; 3820 3821 entry->lo.fields_vapic.valid = valid; 3822 entry->lo.fields_vapic.guest_mode = 1; 3823 entry->lo.fields_vapic.ga_log_intr = 1; 3824 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3825 entry->hi.fields.vector = ir_data->ga_vector; 3826 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3827 3828 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3829 ir_data->irq_2_irte.index, entry); 3830 } 3831 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3832 3833 int amd_iommu_deactivate_guest_mode(void *data) 3834 { 3835 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3836 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3837 struct irq_cfg *cfg = ir_data->cfg; 3838 u64 valid; 3839 3840 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3841 !entry || !entry->lo.fields_vapic.guest_mode) 3842 return 0; 3843 3844 valid = entry->lo.fields_remap.valid; 3845 3846 entry->lo.val = 0; 3847 entry->hi.val = 0; 3848 3849 entry->lo.fields_remap.valid = valid; 3850 entry->lo.fields_remap.dm = apic->dest_mode_logical; 3851 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED; 3852 entry->hi.fields.vector = cfg->vector; 3853 entry->lo.fields_remap.destination = 3854 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3855 entry->hi.fields.destination = 3856 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3857 3858 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3859 ir_data->irq_2_irte.index, entry); 3860 } 3861 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3862 3863 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3864 { 3865 int ret; 3866 struct amd_iommu_pi_data *pi_data = vcpu_info; 3867 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3868 struct amd_ir_data *ir_data = data->chip_data; 3869 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3870 struct iommu_dev_data *dev_data; 3871 3872 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))) 3873 return -EINVAL; 3874 3875 if (ir_data->iommu == NULL) 3876 return -EINVAL; 3877 3878 dev_data = search_dev_data(ir_data->iommu, irte_info->devid); 3879 3880 /* Note: 3881 * This device has never been set up for guest mode. 3882 * we should not modify the IRTE 3883 */ 3884 if (!dev_data || !dev_data->use_vapic) 3885 return -EINVAL; 3886 3887 ir_data->cfg = irqd_cfg(data); 3888 pi_data->ir_data = ir_data; 3889 3890 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3891 if (pi_data->is_guest_mode) { 3892 ir_data->ga_root_ptr = (pi_data->base >> 12); 3893 ir_data->ga_vector = vcpu_pi_info->vector; 3894 ir_data->ga_tag = pi_data->ga_tag; 3895 ret = amd_iommu_activate_guest_mode(ir_data); 3896 if (!ret) 3897 ir_data->cached_ga_tag = pi_data->ga_tag; 3898 } else { 3899 ret = amd_iommu_deactivate_guest_mode(ir_data); 3900 3901 /* 3902 * This communicates the ga_tag back to the caller 3903 * so that it can do all the necessary clean up. 3904 */ 3905 if (!ret) 3906 ir_data->cached_ga_tag = 0; 3907 } 3908 3909 return ret; 3910 } 3911 3912 3913 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3914 struct amd_ir_data *ir_data, 3915 struct irq_2_irte *irte_info, 3916 struct irq_cfg *cfg) 3917 { 3918 3919 /* 3920 * Atomically updates the IRTE with the new destination, vector 3921 * and flushes the interrupt entry cache. 3922 */ 3923 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid, 3924 irte_info->index, cfg->vector, 3925 cfg->dest_apicid); 3926 } 3927 3928 static int amd_ir_set_affinity(struct irq_data *data, 3929 const struct cpumask *mask, bool force) 3930 { 3931 struct amd_ir_data *ir_data = data->chip_data; 3932 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3933 struct irq_cfg *cfg = irqd_cfg(data); 3934 struct irq_data *parent = data->parent_data; 3935 struct amd_iommu *iommu = ir_data->iommu; 3936 int ret; 3937 3938 if (!iommu) 3939 return -ENODEV; 3940 3941 ret = parent->chip->irq_set_affinity(parent, mask, force); 3942 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3943 return ret; 3944 3945 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3946 /* 3947 * After this point, all the interrupts will start arriving 3948 * at the new destination. So, time to cleanup the previous 3949 * vector allocation. 3950 */ 3951 vector_schedule_cleanup(cfg); 3952 3953 return IRQ_SET_MASK_OK_DONE; 3954 } 3955 3956 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3957 { 3958 struct amd_ir_data *ir_data = irq_data->chip_data; 3959 3960 *msg = ir_data->msi_entry; 3961 } 3962 3963 static struct irq_chip amd_ir_chip = { 3964 .name = "AMD-IR", 3965 .irq_ack = apic_ack_irq, 3966 .irq_set_affinity = amd_ir_set_affinity, 3967 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3968 .irq_compose_msi_msg = ir_compose_msi_msg, 3969 }; 3970 3971 static const struct msi_parent_ops amdvi_msi_parent_ops = { 3972 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI, 3973 .prefix = "IR-", 3974 .init_dev_msi_info = msi_parent_init_dev_msi_info, 3975 }; 3976 3977 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3978 { 3979 struct fwnode_handle *fn; 3980 3981 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3982 if (!fn) 3983 return -ENOMEM; 3984 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0, 3985 fn, &amd_ir_domain_ops, iommu); 3986 if (!iommu->ir_domain) { 3987 irq_domain_free_fwnode(fn); 3988 return -ENOMEM; 3989 } 3990 3991 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI); 3992 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT | 3993 IRQ_DOMAIN_FLAG_ISOLATED_MSI; 3994 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops; 3995 3996 return 0; 3997 } 3998 3999 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 4000 { 4001 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 4002 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 4003 4004 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 4005 !entry || !entry->lo.fields_vapic.guest_mode) 4006 return 0; 4007 4008 if (!ir_data->iommu) 4009 return -ENODEV; 4010 4011 if (cpu >= 0) { 4012 entry->lo.fields_vapic.destination = 4013 APICID_TO_IRTE_DEST_LO(cpu); 4014 entry->hi.fields.destination = 4015 APICID_TO_IRTE_DEST_HI(cpu); 4016 } 4017 entry->lo.fields_vapic.is_run = is_run; 4018 4019 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 4020 ir_data->irq_2_irte.index, entry); 4021 } 4022 EXPORT_SYMBOL(amd_iommu_update_ga); 4023 #endif 4024