xref: /linux/drivers/iommu/amd/iommu.c (revision eed4edda910fe34dfae8c6bfbcf57f4593a54295)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40 #include <uapi/linux/iommufd.h>
41 
42 #include "amd_iommu.h"
43 #include "../dma-iommu.h"
44 #include "../irq_remapping.h"
45 
46 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
47 
48 /* IO virtual address start page frame number */
49 #define IOVA_START_PFN		(1)
50 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
51 
52 /* Reserved IOVA ranges */
53 #define MSI_RANGE_START		(0xfee00000)
54 #define MSI_RANGE_END		(0xfeefffff)
55 #define HT_RANGE_START		(0xfd00000000ULL)
56 #define HT_RANGE_END		(0xffffffffffULL)
57 
58 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
59 
60 static DEFINE_SPINLOCK(pd_bitmap_lock);
61 
62 LIST_HEAD(ioapic_map);
63 LIST_HEAD(hpet_map);
64 LIST_HEAD(acpihid_map);
65 
66 const struct iommu_ops amd_iommu_ops;
67 static const struct iommu_dirty_ops amd_dirty_ops;
68 
69 int amd_iommu_max_glx_val = -1;
70 
71 /*
72  * general struct to manage commands send to an IOMMU
73  */
74 struct iommu_cmd {
75 	u32 data[4];
76 };
77 
78 struct kmem_cache *amd_iommu_irq_cache;
79 
80 static void detach_device(struct device *dev);
81 
82 /****************************************************************************
83  *
84  * Helper functions
85  *
86  ****************************************************************************/
87 
88 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
89 {
90 	return (pdom && (pdom->flags & PD_IOMMUV2_MASK));
91 }
92 
93 static inline int get_acpihid_device_id(struct device *dev,
94 					struct acpihid_map_entry **entry)
95 {
96 	struct acpi_device *adev = ACPI_COMPANION(dev);
97 	struct acpihid_map_entry *p;
98 
99 	if (!adev)
100 		return -ENODEV;
101 
102 	list_for_each_entry(p, &acpihid_map, list) {
103 		if (acpi_dev_hid_uid_match(adev, p->hid,
104 					   p->uid[0] ? p->uid : NULL)) {
105 			if (entry)
106 				*entry = p;
107 			return p->devid;
108 		}
109 	}
110 	return -EINVAL;
111 }
112 
113 static inline int get_device_sbdf_id(struct device *dev)
114 {
115 	int sbdf;
116 
117 	if (dev_is_pci(dev))
118 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
119 	else
120 		sbdf = get_acpihid_device_id(dev, NULL);
121 
122 	return sbdf;
123 }
124 
125 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
126 {
127 	struct dev_table_entry *dev_table;
128 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
129 
130 	BUG_ON(pci_seg == NULL);
131 	dev_table = pci_seg->dev_table;
132 	BUG_ON(dev_table == NULL);
133 
134 	return dev_table;
135 }
136 
137 static inline u16 get_device_segment(struct device *dev)
138 {
139 	u16 seg;
140 
141 	if (dev_is_pci(dev)) {
142 		struct pci_dev *pdev = to_pci_dev(dev);
143 
144 		seg = pci_domain_nr(pdev->bus);
145 	} else {
146 		u32 devid = get_acpihid_device_id(dev, NULL);
147 
148 		seg = PCI_SBDF_TO_SEGID(devid);
149 	}
150 
151 	return seg;
152 }
153 
154 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
155 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
156 {
157 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
158 
159 	pci_seg->rlookup_table[devid] = iommu;
160 }
161 
162 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
163 {
164 	struct amd_iommu_pci_seg *pci_seg;
165 
166 	for_each_pci_segment(pci_seg) {
167 		if (pci_seg->id == seg)
168 			return pci_seg->rlookup_table[devid];
169 	}
170 	return NULL;
171 }
172 
173 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
174 {
175 	u16 seg = get_device_segment(dev);
176 	int devid = get_device_sbdf_id(dev);
177 
178 	if (devid < 0)
179 		return NULL;
180 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
181 }
182 
183 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
184 {
185 	return container_of(dom, struct protection_domain, domain);
186 }
187 
188 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
189 {
190 	struct iommu_dev_data *dev_data;
191 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
192 
193 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
194 	if (!dev_data)
195 		return NULL;
196 
197 	spin_lock_init(&dev_data->lock);
198 	dev_data->devid = devid;
199 	ratelimit_default_init(&dev_data->rs);
200 
201 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
202 	return dev_data;
203 }
204 
205 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
206 {
207 	struct iommu_dev_data *dev_data;
208 	struct llist_node *node;
209 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
210 
211 	if (llist_empty(&pci_seg->dev_data_list))
212 		return NULL;
213 
214 	node = pci_seg->dev_data_list.first;
215 	llist_for_each_entry(dev_data, node, dev_data_list) {
216 		if (dev_data->devid == devid)
217 			return dev_data;
218 	}
219 
220 	return NULL;
221 }
222 
223 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
224 {
225 	struct amd_iommu *iommu;
226 	struct dev_table_entry *dev_table;
227 	u16 devid = pci_dev_id(pdev);
228 
229 	if (devid == alias)
230 		return 0;
231 
232 	iommu = rlookup_amd_iommu(&pdev->dev);
233 	if (!iommu)
234 		return 0;
235 
236 	amd_iommu_set_rlookup_table(iommu, alias);
237 	dev_table = get_dev_table(iommu);
238 	memcpy(dev_table[alias].data,
239 	       dev_table[devid].data,
240 	       sizeof(dev_table[alias].data));
241 
242 	return 0;
243 }
244 
245 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
246 {
247 	struct pci_dev *pdev;
248 
249 	if (!dev_is_pci(dev))
250 		return;
251 	pdev = to_pci_dev(dev);
252 
253 	/*
254 	 * The IVRS alias stored in the alias table may not be
255 	 * part of the PCI DMA aliases if it's bus differs
256 	 * from the original device.
257 	 */
258 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
259 
260 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
261 }
262 
263 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
264 {
265 	struct pci_dev *pdev = to_pci_dev(dev);
266 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
267 	u16 ivrs_alias;
268 
269 	/* For ACPI HID devices, there are no aliases */
270 	if (!dev_is_pci(dev))
271 		return;
272 
273 	/*
274 	 * Add the IVRS alias to the pci aliases if it is on the same
275 	 * bus. The IVRS table may know about a quirk that we don't.
276 	 */
277 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
278 	if (ivrs_alias != pci_dev_id(pdev) &&
279 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
280 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
281 
282 	clone_aliases(iommu, dev);
283 }
284 
285 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
286 {
287 	struct iommu_dev_data *dev_data;
288 
289 	dev_data = search_dev_data(iommu, devid);
290 
291 	if (dev_data == NULL) {
292 		dev_data = alloc_dev_data(iommu, devid);
293 		if (!dev_data)
294 			return NULL;
295 
296 		if (translation_pre_enabled(iommu))
297 			dev_data->defer_attach = true;
298 	}
299 
300 	return dev_data;
301 }
302 
303 /*
304 * Find or create an IOMMU group for a acpihid device.
305 */
306 static struct iommu_group *acpihid_device_group(struct device *dev)
307 {
308 	struct acpihid_map_entry *p, *entry = NULL;
309 	int devid;
310 
311 	devid = get_acpihid_device_id(dev, &entry);
312 	if (devid < 0)
313 		return ERR_PTR(devid);
314 
315 	list_for_each_entry(p, &acpihid_map, list) {
316 		if ((devid == p->devid) && p->group)
317 			entry->group = p->group;
318 	}
319 
320 	if (!entry->group)
321 		entry->group = generic_device_group(dev);
322 	else
323 		iommu_group_ref_get(entry->group);
324 
325 	return entry->group;
326 }
327 
328 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
329 {
330 	return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
331 }
332 
333 static u32 pdev_get_caps(struct pci_dev *pdev)
334 {
335 	int features;
336 	u32 flags = 0;
337 
338 	if (pci_ats_supported(pdev))
339 		flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
340 
341 	if (pci_pri_supported(pdev))
342 		flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
343 
344 	features = pci_pasid_features(pdev);
345 	if (features >= 0) {
346 		flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
347 
348 		if (features & PCI_PASID_CAP_EXEC)
349 			flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
350 
351 		if (features & PCI_PASID_CAP_PRIV)
352 			flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
353 	}
354 
355 	return flags;
356 }
357 
358 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
359 {
360 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
361 	int ret = -EINVAL;
362 
363 	if (dev_data->ats_enabled)
364 		return 0;
365 
366 	if (amd_iommu_iotlb_sup &&
367 	    (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
368 		ret = pci_enable_ats(pdev, PAGE_SHIFT);
369 		if (!ret) {
370 			dev_data->ats_enabled = 1;
371 			dev_data->ats_qdep    = pci_ats_queue_depth(pdev);
372 		}
373 	}
374 
375 	return ret;
376 }
377 
378 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
379 {
380 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
381 
382 	if (dev_data->ats_enabled) {
383 		pci_disable_ats(pdev);
384 		dev_data->ats_enabled = 0;
385 	}
386 }
387 
388 int amd_iommu_pdev_enable_cap_pri(struct pci_dev *pdev)
389 {
390 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
391 	int ret = -EINVAL;
392 
393 	if (dev_data->pri_enabled)
394 		return 0;
395 
396 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
397 		/*
398 		 * First reset the PRI state of the device.
399 		 * FIXME: Hardcode number of outstanding requests for now
400 		 */
401 		if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
402 			dev_data->pri_enabled = 1;
403 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
404 
405 			ret = 0;
406 		}
407 	}
408 
409 	return ret;
410 }
411 
412 void amd_iommu_pdev_disable_cap_pri(struct pci_dev *pdev)
413 {
414 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
415 
416 	if (dev_data->pri_enabled) {
417 		pci_disable_pri(pdev);
418 		dev_data->pri_enabled = 0;
419 	}
420 }
421 
422 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
423 {
424 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
425 	int ret = -EINVAL;
426 
427 	if (dev_data->pasid_enabled)
428 		return 0;
429 
430 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
431 		/* Only allow access to user-accessible pages */
432 		ret = pci_enable_pasid(pdev, 0);
433 		if (!ret)
434 			dev_data->pasid_enabled = 1;
435 	}
436 
437 	return ret;
438 }
439 
440 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
441 {
442 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
443 
444 	if (dev_data->pasid_enabled) {
445 		pci_disable_pasid(pdev);
446 		dev_data->pasid_enabled = 0;
447 	}
448 }
449 
450 static void pdev_enable_caps(struct pci_dev *pdev)
451 {
452 	pdev_enable_cap_ats(pdev);
453 	pdev_enable_cap_pasid(pdev);
454 	amd_iommu_pdev_enable_cap_pri(pdev);
455 
456 }
457 
458 static void pdev_disable_caps(struct pci_dev *pdev)
459 {
460 	pdev_disable_cap_ats(pdev);
461 	pdev_disable_cap_pasid(pdev);
462 	amd_iommu_pdev_disable_cap_pri(pdev);
463 }
464 
465 /*
466  * This function checks if the driver got a valid device from the caller to
467  * avoid dereferencing invalid pointers.
468  */
469 static bool check_device(struct device *dev)
470 {
471 	struct amd_iommu_pci_seg *pci_seg;
472 	struct amd_iommu *iommu;
473 	int devid, sbdf;
474 
475 	if (!dev)
476 		return false;
477 
478 	sbdf = get_device_sbdf_id(dev);
479 	if (sbdf < 0)
480 		return false;
481 	devid = PCI_SBDF_TO_DEVID(sbdf);
482 
483 	iommu = rlookup_amd_iommu(dev);
484 	if (!iommu)
485 		return false;
486 
487 	/* Out of our scope? */
488 	pci_seg = iommu->pci_seg;
489 	if (devid > pci_seg->last_bdf)
490 		return false;
491 
492 	return true;
493 }
494 
495 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
496 {
497 	struct iommu_dev_data *dev_data;
498 	int devid, sbdf;
499 
500 	if (dev_iommu_priv_get(dev))
501 		return 0;
502 
503 	sbdf = get_device_sbdf_id(dev);
504 	if (sbdf < 0)
505 		return sbdf;
506 
507 	devid = PCI_SBDF_TO_DEVID(sbdf);
508 	dev_data = find_dev_data(iommu, devid);
509 	if (!dev_data)
510 		return -ENOMEM;
511 
512 	dev_data->dev = dev;
513 	setup_aliases(iommu, dev);
514 
515 	/*
516 	 * By default we use passthrough mode for IOMMUv2 capable device.
517 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
518 	 * invalid address), we ignore the capability for the device so
519 	 * it'll be forced to go into translation mode.
520 	 */
521 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
522 	    dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
523 		dev_data->flags = pdev_get_caps(to_pci_dev(dev));
524 	}
525 
526 	dev_iommu_priv_set(dev, dev_data);
527 
528 	return 0;
529 }
530 
531 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
532 {
533 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
534 	struct dev_table_entry *dev_table = get_dev_table(iommu);
535 	int devid, sbdf;
536 
537 	sbdf = get_device_sbdf_id(dev);
538 	if (sbdf < 0)
539 		return;
540 
541 	devid = PCI_SBDF_TO_DEVID(sbdf);
542 	pci_seg->rlookup_table[devid] = NULL;
543 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
544 
545 	setup_aliases(iommu, dev);
546 }
547 
548 static void amd_iommu_uninit_device(struct device *dev)
549 {
550 	struct iommu_dev_data *dev_data;
551 
552 	dev_data = dev_iommu_priv_get(dev);
553 	if (!dev_data)
554 		return;
555 
556 	if (dev_data->domain)
557 		detach_device(dev);
558 
559 	/*
560 	 * We keep dev_data around for unplugged devices and reuse it when the
561 	 * device is re-plugged - not doing so would introduce a ton of races.
562 	 */
563 }
564 
565 /****************************************************************************
566  *
567  * Interrupt handling functions
568  *
569  ****************************************************************************/
570 
571 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
572 {
573 	int i;
574 	struct dev_table_entry *dev_table = get_dev_table(iommu);
575 
576 	for (i = 0; i < 4; ++i)
577 		pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
578 }
579 
580 static void dump_command(unsigned long phys_addr)
581 {
582 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
583 	int i;
584 
585 	for (i = 0; i < 4; ++i)
586 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
587 }
588 
589 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
590 {
591 	struct iommu_dev_data *dev_data = NULL;
592 	int devid, vmg_tag, flags;
593 	struct pci_dev *pdev;
594 	u64 spa;
595 
596 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
597 	vmg_tag = (event[1]) & 0xFFFF;
598 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
599 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
600 
601 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
602 					   devid & 0xff);
603 	if (pdev)
604 		dev_data = dev_iommu_priv_get(&pdev->dev);
605 
606 	if (dev_data) {
607 		if (__ratelimit(&dev_data->rs)) {
608 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
609 				vmg_tag, spa, flags);
610 		}
611 	} else {
612 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
613 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
614 			vmg_tag, spa, flags);
615 	}
616 
617 	if (pdev)
618 		pci_dev_put(pdev);
619 }
620 
621 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
622 {
623 	struct iommu_dev_data *dev_data = NULL;
624 	int devid, flags_rmp, vmg_tag, flags;
625 	struct pci_dev *pdev;
626 	u64 gpa;
627 
628 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
629 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
630 	vmg_tag   = (event[1]) & 0xFFFF;
631 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
632 	gpa       = ((u64)event[3] << 32) | event[2];
633 
634 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
635 					   devid & 0xff);
636 	if (pdev)
637 		dev_data = dev_iommu_priv_get(&pdev->dev);
638 
639 	if (dev_data) {
640 		if (__ratelimit(&dev_data->rs)) {
641 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
642 				vmg_tag, gpa, flags_rmp, flags);
643 		}
644 	} else {
645 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
646 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
647 			vmg_tag, gpa, flags_rmp, flags);
648 	}
649 
650 	if (pdev)
651 		pci_dev_put(pdev);
652 }
653 
654 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
655 	(((flags) & EVENT_FLAG_I) == 0)
656 
657 #define IS_WRITE_REQUEST(flags)			\
658 	((flags) & EVENT_FLAG_RW)
659 
660 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
661 					u16 devid, u16 domain_id,
662 					u64 address, int flags)
663 {
664 	struct iommu_dev_data *dev_data = NULL;
665 	struct pci_dev *pdev;
666 
667 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
668 					   devid & 0xff);
669 	if (pdev)
670 		dev_data = dev_iommu_priv_get(&pdev->dev);
671 
672 	if (dev_data) {
673 		/*
674 		 * If this is a DMA fault (for which the I(nterrupt)
675 		 * bit will be unset), allow report_iommu_fault() to
676 		 * prevent logging it.
677 		 */
678 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
679 			/* Device not attached to domain properly */
680 			if (dev_data->domain == NULL) {
681 				pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
682 				pr_err_ratelimited("  device=%04x:%02x:%02x.%x domain=0x%04x\n",
683 						   iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
684 						   PCI_FUNC(devid), domain_id);
685 				goto out;
686 			}
687 
688 			if (!report_iommu_fault(&dev_data->domain->domain,
689 						&pdev->dev, address,
690 						IS_WRITE_REQUEST(flags) ?
691 							IOMMU_FAULT_WRITE :
692 							IOMMU_FAULT_READ))
693 				goto out;
694 		}
695 
696 		if (__ratelimit(&dev_data->rs)) {
697 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
698 				domain_id, address, flags);
699 		}
700 	} else {
701 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
702 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
703 			domain_id, address, flags);
704 	}
705 
706 out:
707 	if (pdev)
708 		pci_dev_put(pdev);
709 }
710 
711 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
712 {
713 	struct device *dev = iommu->iommu.dev;
714 	int type, devid, flags, tag;
715 	volatile u32 *event = __evt;
716 	int count = 0;
717 	u64 address;
718 	u32 pasid;
719 
720 retry:
721 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
722 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
723 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
724 		  (event[1] & EVENT_DOMID_MASK_LO);
725 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
726 	address = (u64)(((u64)event[3]) << 32) | event[2];
727 
728 	if (type == 0) {
729 		/* Did we hit the erratum? */
730 		if (++count == LOOP_TIMEOUT) {
731 			pr_err("No event written to event log\n");
732 			return;
733 		}
734 		udelay(1);
735 		goto retry;
736 	}
737 
738 	if (type == EVENT_TYPE_IO_FAULT) {
739 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
740 		return;
741 	}
742 
743 	switch (type) {
744 	case EVENT_TYPE_ILL_DEV:
745 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
746 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
747 			pasid, address, flags);
748 		dump_dte_entry(iommu, devid);
749 		break;
750 	case EVENT_TYPE_DEV_TAB_ERR:
751 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
752 			"address=0x%llx flags=0x%04x]\n",
753 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
754 			address, flags);
755 		break;
756 	case EVENT_TYPE_PAGE_TAB_ERR:
757 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
758 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
759 			pasid, address, flags);
760 		break;
761 	case EVENT_TYPE_ILL_CMD:
762 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
763 		dump_command(address);
764 		break;
765 	case EVENT_TYPE_CMD_HARD_ERR:
766 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
767 			address, flags);
768 		break;
769 	case EVENT_TYPE_IOTLB_INV_TO:
770 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
771 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
772 			address);
773 		break;
774 	case EVENT_TYPE_INV_DEV_REQ:
775 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
776 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
777 			pasid, address, flags);
778 		break;
779 	case EVENT_TYPE_RMP_FAULT:
780 		amd_iommu_report_rmp_fault(iommu, event);
781 		break;
782 	case EVENT_TYPE_RMP_HW_ERR:
783 		amd_iommu_report_rmp_hw_error(iommu, event);
784 		break;
785 	case EVENT_TYPE_INV_PPR_REQ:
786 		pasid = PPR_PASID(*((u64 *)__evt));
787 		tag = event[1] & 0x03FF;
788 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
789 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
790 			pasid, address, flags, tag);
791 		break;
792 	default:
793 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
794 			event[0], event[1], event[2], event[3]);
795 	}
796 
797 	/*
798 	 * To detect the hardware errata 732 we need to clear the
799 	 * entry back to zero. This issue does not exist on SNP
800 	 * enabled system. Also this buffer is not writeable on
801 	 * SNP enabled system.
802 	 */
803 	if (!amd_iommu_snp_en)
804 		memset(__evt, 0, 4 * sizeof(u32));
805 }
806 
807 static void iommu_poll_events(struct amd_iommu *iommu)
808 {
809 	u32 head, tail;
810 
811 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
812 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
813 
814 	while (head != tail) {
815 		iommu_print_event(iommu, iommu->evt_buf + head);
816 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
817 	}
818 
819 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
820 }
821 
822 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
823 {
824 	u32 head, tail;
825 
826 	if (iommu->ppr_log == NULL)
827 		return;
828 
829 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
830 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
831 
832 	while (head != tail) {
833 		volatile u64 *raw;
834 		u64 entry[2];
835 		int i;
836 
837 		raw = (u64 *)(iommu->ppr_log + head);
838 
839 		/*
840 		 * Hardware bug: Interrupt may arrive before the entry is
841 		 * written to memory. If this happens we need to wait for the
842 		 * entry to arrive.
843 		 */
844 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
845 			if (PPR_REQ_TYPE(raw[0]) != 0)
846 				break;
847 			udelay(1);
848 		}
849 
850 		/* Avoid memcpy function-call overhead */
851 		entry[0] = raw[0];
852 		entry[1] = raw[1];
853 
854 		/*
855 		 * To detect the hardware errata 733 we need to clear the
856 		 * entry back to zero. This issue does not exist on SNP
857 		 * enabled system. Also this buffer is not writeable on
858 		 * SNP enabled system.
859 		 */
860 		if (!amd_iommu_snp_en)
861 			raw[0] = raw[1] = 0UL;
862 
863 		/* Update head pointer of hardware ring-buffer */
864 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
865 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
866 
867 		/* TODO: PPR Handler will be added when we add IOPF support */
868 
869 		/* Refresh ring-buffer information */
870 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
871 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
872 	}
873 }
874 
875 #ifdef CONFIG_IRQ_REMAP
876 static int (*iommu_ga_log_notifier)(u32);
877 
878 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
879 {
880 	iommu_ga_log_notifier = notifier;
881 
882 	return 0;
883 }
884 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
885 
886 static void iommu_poll_ga_log(struct amd_iommu *iommu)
887 {
888 	u32 head, tail;
889 
890 	if (iommu->ga_log == NULL)
891 		return;
892 
893 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
894 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
895 
896 	while (head != tail) {
897 		volatile u64 *raw;
898 		u64 log_entry;
899 
900 		raw = (u64 *)(iommu->ga_log + head);
901 
902 		/* Avoid memcpy function-call overhead */
903 		log_entry = *raw;
904 
905 		/* Update head pointer of hardware ring-buffer */
906 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
907 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
908 
909 		/* Handle GA entry */
910 		switch (GA_REQ_TYPE(log_entry)) {
911 		case GA_GUEST_NR:
912 			if (!iommu_ga_log_notifier)
913 				break;
914 
915 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
916 				 __func__, GA_DEVID(log_entry),
917 				 GA_TAG(log_entry));
918 
919 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
920 				pr_err("GA log notifier failed.\n");
921 			break;
922 		default:
923 			break;
924 		}
925 	}
926 }
927 
928 static void
929 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
930 {
931 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
932 	    !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
933 		return;
934 
935 	dev_set_msi_domain(dev, iommu->ir_domain);
936 }
937 
938 #else /* CONFIG_IRQ_REMAP */
939 static inline void
940 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
941 #endif /* !CONFIG_IRQ_REMAP */
942 
943 static void amd_iommu_handle_irq(void *data, const char *evt_type,
944 				 u32 int_mask, u32 overflow_mask,
945 				 void (*int_handler)(struct amd_iommu *),
946 				 void (*overflow_handler)(struct amd_iommu *))
947 {
948 	struct amd_iommu *iommu = (struct amd_iommu *) data;
949 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
950 	u32 mask = int_mask | overflow_mask;
951 
952 	while (status & mask) {
953 		/* Enable interrupt sources again */
954 		writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
955 
956 		if (int_handler) {
957 			pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
958 				 iommu->index, evt_type);
959 			int_handler(iommu);
960 		}
961 
962 		if ((status & overflow_mask) && overflow_handler)
963 			overflow_handler(iommu);
964 
965 		/*
966 		 * Hardware bug: ERBT1312
967 		 * When re-enabling interrupt (by writing 1
968 		 * to clear the bit), the hardware might also try to set
969 		 * the interrupt bit in the event status register.
970 		 * In this scenario, the bit will be set, and disable
971 		 * subsequent interrupts.
972 		 *
973 		 * Workaround: The IOMMU driver should read back the
974 		 * status register and check if the interrupt bits are cleared.
975 		 * If not, driver will need to go through the interrupt handler
976 		 * again and re-clear the bits
977 		 */
978 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
979 	}
980 }
981 
982 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
983 {
984 	amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
985 			     MMIO_STATUS_EVT_OVERFLOW_MASK,
986 			     iommu_poll_events, amd_iommu_restart_event_logging);
987 
988 	return IRQ_HANDLED;
989 }
990 
991 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
992 {
993 	amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
994 			     MMIO_STATUS_PPR_OVERFLOW_MASK,
995 			     iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
996 
997 	return IRQ_HANDLED;
998 }
999 
1000 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1001 {
1002 #ifdef CONFIG_IRQ_REMAP
1003 	amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1004 			     MMIO_STATUS_GALOG_OVERFLOW_MASK,
1005 			     iommu_poll_ga_log, amd_iommu_restart_ga_log);
1006 #endif
1007 
1008 	return IRQ_HANDLED;
1009 }
1010 
1011 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1012 {
1013 	amd_iommu_int_thread_evtlog(irq, data);
1014 	amd_iommu_int_thread_pprlog(irq, data);
1015 	amd_iommu_int_thread_galog(irq, data);
1016 
1017 	return IRQ_HANDLED;
1018 }
1019 
1020 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1021 {
1022 	return IRQ_WAKE_THREAD;
1023 }
1024 
1025 /****************************************************************************
1026  *
1027  * IOMMU command queuing functions
1028  *
1029  ****************************************************************************/
1030 
1031 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1032 {
1033 	int i = 0;
1034 
1035 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1036 		udelay(1);
1037 		i += 1;
1038 	}
1039 
1040 	if (i == LOOP_TIMEOUT) {
1041 		pr_alert("Completion-Wait loop timed out\n");
1042 		return -EIO;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1049 			       struct iommu_cmd *cmd)
1050 {
1051 	u8 *target;
1052 	u32 tail;
1053 
1054 	/* Copy command to buffer */
1055 	tail = iommu->cmd_buf_tail;
1056 	target = iommu->cmd_buf + tail;
1057 	memcpy(target, cmd, sizeof(*cmd));
1058 
1059 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1060 	iommu->cmd_buf_tail = tail;
1061 
1062 	/* Tell the IOMMU about it */
1063 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1064 }
1065 
1066 static void build_completion_wait(struct iommu_cmd *cmd,
1067 				  struct amd_iommu *iommu,
1068 				  u64 data)
1069 {
1070 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1071 
1072 	memset(cmd, 0, sizeof(*cmd));
1073 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1074 	cmd->data[1] = upper_32_bits(paddr);
1075 	cmd->data[2] = lower_32_bits(data);
1076 	cmd->data[3] = upper_32_bits(data);
1077 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1078 }
1079 
1080 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1081 {
1082 	memset(cmd, 0, sizeof(*cmd));
1083 	cmd->data[0] = devid;
1084 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1085 }
1086 
1087 /*
1088  * Builds an invalidation address which is suitable for one page or multiple
1089  * pages. Sets the size bit (S) as needed is more than one page is flushed.
1090  */
1091 static inline u64 build_inv_address(u64 address, size_t size)
1092 {
1093 	u64 pages, end, msb_diff;
1094 
1095 	pages = iommu_num_pages(address, size, PAGE_SIZE);
1096 
1097 	if (pages == 1)
1098 		return address & PAGE_MASK;
1099 
1100 	end = address + size - 1;
1101 
1102 	/*
1103 	 * msb_diff would hold the index of the most significant bit that
1104 	 * flipped between the start and end.
1105 	 */
1106 	msb_diff = fls64(end ^ address) - 1;
1107 
1108 	/*
1109 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1110 	 * between the start and the end, invalidate everything.
1111 	 */
1112 	if (unlikely(msb_diff > 51)) {
1113 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1114 	} else {
1115 		/*
1116 		 * The msb-bit must be clear on the address. Just set all the
1117 		 * lower bits.
1118 		 */
1119 		address |= (1ull << msb_diff) - 1;
1120 	}
1121 
1122 	/* Clear bits 11:0 */
1123 	address &= PAGE_MASK;
1124 
1125 	/* Set the size bit - we flush more than one 4kb page */
1126 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1127 }
1128 
1129 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1130 				  size_t size, u16 domid,
1131 				  ioasid_t pasid, bool gn)
1132 {
1133 	u64 inv_address = build_inv_address(address, size);
1134 
1135 	memset(cmd, 0, sizeof(*cmd));
1136 
1137 	cmd->data[1] |= domid;
1138 	cmd->data[2]  = lower_32_bits(inv_address);
1139 	cmd->data[3]  = upper_32_bits(inv_address);
1140 	/* PDE bit - we want to flush everything, not only the PTEs */
1141 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1142 	if (gn) {
1143 		cmd->data[0] |= pasid;
1144 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1145 	}
1146 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1147 }
1148 
1149 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1150 				  u64 address, size_t size,
1151 				  ioasid_t pasid, bool gn)
1152 {
1153 	u64 inv_address = build_inv_address(address, size);
1154 
1155 	memset(cmd, 0, sizeof(*cmd));
1156 
1157 	cmd->data[0]  = devid;
1158 	cmd->data[0] |= (qdep & 0xff) << 24;
1159 	cmd->data[1]  = devid;
1160 	cmd->data[2]  = lower_32_bits(inv_address);
1161 	cmd->data[3]  = upper_32_bits(inv_address);
1162 	if (gn) {
1163 		cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1164 		cmd->data[1] |= (pasid & 0xff) << 16;
1165 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1166 	}
1167 
1168 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1169 }
1170 
1171 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1172 			       int status, int tag, u8 gn)
1173 {
1174 	memset(cmd, 0, sizeof(*cmd));
1175 
1176 	cmd->data[0]  = devid;
1177 	if (gn) {
1178 		cmd->data[1]  = pasid;
1179 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1180 	}
1181 	cmd->data[3]  = tag & 0x1ff;
1182 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1183 
1184 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1185 }
1186 
1187 static void build_inv_all(struct iommu_cmd *cmd)
1188 {
1189 	memset(cmd, 0, sizeof(*cmd));
1190 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1191 }
1192 
1193 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1194 {
1195 	memset(cmd, 0, sizeof(*cmd));
1196 	cmd->data[0] = devid;
1197 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1198 }
1199 
1200 /*
1201  * Writes the command to the IOMMUs command buffer and informs the
1202  * hardware about the new command.
1203  */
1204 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1205 				      struct iommu_cmd *cmd,
1206 				      bool sync)
1207 {
1208 	unsigned int count = 0;
1209 	u32 left, next_tail;
1210 
1211 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1212 again:
1213 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1214 
1215 	if (left <= 0x20) {
1216 		/* Skip udelay() the first time around */
1217 		if (count++) {
1218 			if (count == LOOP_TIMEOUT) {
1219 				pr_err("Command buffer timeout\n");
1220 				return -EIO;
1221 			}
1222 
1223 			udelay(1);
1224 		}
1225 
1226 		/* Update head and recheck remaining space */
1227 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1228 					    MMIO_CMD_HEAD_OFFSET);
1229 
1230 		goto again;
1231 	}
1232 
1233 	copy_cmd_to_buffer(iommu, cmd);
1234 
1235 	/* Do we need to make sure all commands are processed? */
1236 	iommu->need_sync = sync;
1237 
1238 	return 0;
1239 }
1240 
1241 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1242 				    struct iommu_cmd *cmd,
1243 				    bool sync)
1244 {
1245 	unsigned long flags;
1246 	int ret;
1247 
1248 	raw_spin_lock_irqsave(&iommu->lock, flags);
1249 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1250 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1251 
1252 	return ret;
1253 }
1254 
1255 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1256 {
1257 	return iommu_queue_command_sync(iommu, cmd, true);
1258 }
1259 
1260 /*
1261  * This function queues a completion wait command into the command
1262  * buffer of an IOMMU
1263  */
1264 static int iommu_completion_wait(struct amd_iommu *iommu)
1265 {
1266 	struct iommu_cmd cmd;
1267 	unsigned long flags;
1268 	int ret;
1269 	u64 data;
1270 
1271 	if (!iommu->need_sync)
1272 		return 0;
1273 
1274 	data = atomic64_add_return(1, &iommu->cmd_sem_val);
1275 	build_completion_wait(&cmd, iommu, data);
1276 
1277 	raw_spin_lock_irqsave(&iommu->lock, flags);
1278 
1279 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1280 	if (ret)
1281 		goto out_unlock;
1282 
1283 	ret = wait_on_sem(iommu, data);
1284 
1285 out_unlock:
1286 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1287 
1288 	return ret;
1289 }
1290 
1291 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1292 {
1293 	struct iommu_cmd cmd;
1294 
1295 	build_inv_dte(&cmd, devid);
1296 
1297 	return iommu_queue_command(iommu, &cmd);
1298 }
1299 
1300 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1301 {
1302 	u32 devid;
1303 	u16 last_bdf = iommu->pci_seg->last_bdf;
1304 
1305 	for (devid = 0; devid <= last_bdf; ++devid)
1306 		iommu_flush_dte(iommu, devid);
1307 
1308 	iommu_completion_wait(iommu);
1309 }
1310 
1311 /*
1312  * This function uses heavy locking and may disable irqs for some time. But
1313  * this is no issue because it is only called during resume.
1314  */
1315 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1316 {
1317 	u32 dom_id;
1318 	u16 last_bdf = iommu->pci_seg->last_bdf;
1319 
1320 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1321 		struct iommu_cmd cmd;
1322 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1323 				      dom_id, IOMMU_NO_PASID, false);
1324 		iommu_queue_command(iommu, &cmd);
1325 	}
1326 
1327 	iommu_completion_wait(iommu);
1328 }
1329 
1330 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1331 {
1332 	struct iommu_cmd cmd;
1333 
1334 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1335 			      dom_id, IOMMU_NO_PASID, false);
1336 	iommu_queue_command(iommu, &cmd);
1337 
1338 	iommu_completion_wait(iommu);
1339 }
1340 
1341 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1342 {
1343 	struct iommu_cmd cmd;
1344 
1345 	build_inv_all(&cmd);
1346 
1347 	iommu_queue_command(iommu, &cmd);
1348 	iommu_completion_wait(iommu);
1349 }
1350 
1351 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1352 {
1353 	struct iommu_cmd cmd;
1354 
1355 	build_inv_irt(&cmd, devid);
1356 
1357 	iommu_queue_command(iommu, &cmd);
1358 }
1359 
1360 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1361 {
1362 	u32 devid;
1363 	u16 last_bdf = iommu->pci_seg->last_bdf;
1364 
1365 	if (iommu->irtcachedis_enabled)
1366 		return;
1367 
1368 	for (devid = 0; devid <= last_bdf; devid++)
1369 		iommu_flush_irt(iommu, devid);
1370 
1371 	iommu_completion_wait(iommu);
1372 }
1373 
1374 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1375 {
1376 	if (check_feature(FEATURE_IA)) {
1377 		amd_iommu_flush_all(iommu);
1378 	} else {
1379 		amd_iommu_flush_dte_all(iommu);
1380 		amd_iommu_flush_irt_all(iommu);
1381 		amd_iommu_flush_tlb_all(iommu);
1382 	}
1383 }
1384 
1385 /*
1386  * Command send function for flushing on-device TLB
1387  */
1388 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1389 			      size_t size, ioasid_t pasid, bool gn)
1390 {
1391 	struct amd_iommu *iommu;
1392 	struct iommu_cmd cmd;
1393 	int qdep;
1394 
1395 	qdep     = dev_data->ats_qdep;
1396 	iommu    = rlookup_amd_iommu(dev_data->dev);
1397 	if (!iommu)
1398 		return -EINVAL;
1399 
1400 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1401 			      size, pasid, gn);
1402 
1403 	return iommu_queue_command(iommu, &cmd);
1404 }
1405 
1406 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1407 {
1408 	struct amd_iommu *iommu = data;
1409 
1410 	return iommu_flush_dte(iommu, alias);
1411 }
1412 
1413 /*
1414  * Command send function for invalidating a device table entry
1415  */
1416 static int device_flush_dte(struct iommu_dev_data *dev_data)
1417 {
1418 	struct amd_iommu *iommu;
1419 	struct pci_dev *pdev = NULL;
1420 	struct amd_iommu_pci_seg *pci_seg;
1421 	u16 alias;
1422 	int ret;
1423 
1424 	iommu = rlookup_amd_iommu(dev_data->dev);
1425 	if (!iommu)
1426 		return -EINVAL;
1427 
1428 	if (dev_is_pci(dev_data->dev))
1429 		pdev = to_pci_dev(dev_data->dev);
1430 
1431 	if (pdev)
1432 		ret = pci_for_each_dma_alias(pdev,
1433 					     device_flush_dte_alias, iommu);
1434 	else
1435 		ret = iommu_flush_dte(iommu, dev_data->devid);
1436 	if (ret)
1437 		return ret;
1438 
1439 	pci_seg = iommu->pci_seg;
1440 	alias = pci_seg->alias_table[dev_data->devid];
1441 	if (alias != dev_data->devid) {
1442 		ret = iommu_flush_dte(iommu, alias);
1443 		if (ret)
1444 			return ret;
1445 	}
1446 
1447 	if (dev_data->ats_enabled) {
1448 		/* Invalidate the entire contents of an IOTLB */
1449 		ret = device_flush_iotlb(dev_data, 0, ~0UL,
1450 					 IOMMU_NO_PASID, false);
1451 	}
1452 
1453 	return ret;
1454 }
1455 
1456 /*
1457  * TLB invalidation function which is called from the mapping functions.
1458  * It invalidates a single PTE if the range to flush is within a single
1459  * page. Otherwise it flushes the whole TLB of the IOMMU.
1460  */
1461 static void __domain_flush_pages(struct protection_domain *domain,
1462 				 u64 address, size_t size)
1463 {
1464 	struct iommu_dev_data *dev_data;
1465 	struct iommu_cmd cmd;
1466 	int ret = 0, i;
1467 	ioasid_t pasid = IOMMU_NO_PASID;
1468 	bool gn = false;
1469 
1470 	if (pdom_is_v2_pgtbl_mode(domain))
1471 		gn = true;
1472 
1473 	build_inv_iommu_pages(&cmd, address, size, domain->id, pasid, gn);
1474 
1475 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1476 		if (!domain->dev_iommu[i])
1477 			continue;
1478 
1479 		/*
1480 		 * Devices of this domain are behind this IOMMU
1481 		 * We need a TLB flush
1482 		 */
1483 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1484 	}
1485 
1486 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1487 
1488 		if (!dev_data->ats_enabled)
1489 			continue;
1490 
1491 		ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1492 	}
1493 
1494 	WARN_ON(ret);
1495 }
1496 
1497 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1498 				  u64 address, size_t size)
1499 {
1500 	if (likely(!amd_iommu_np_cache)) {
1501 		__domain_flush_pages(domain, address, size);
1502 
1503 		/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1504 		amd_iommu_domain_flush_complete(domain);
1505 
1506 		return;
1507 	}
1508 
1509 	/*
1510 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1511 	 * In such setups it is best to avoid flushes of ranges which are not
1512 	 * naturally aligned, since it would lead to flushes of unmodified
1513 	 * PTEs. Such flushes would require the hypervisor to do more work than
1514 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1515 	 * until you cover the range. Each iteration flushes the smaller
1516 	 * between the natural alignment of the address that we flush and the
1517 	 * greatest naturally aligned region that fits in the range.
1518 	 */
1519 	while (size != 0) {
1520 		int addr_alignment = __ffs(address);
1521 		int size_alignment = __fls(size);
1522 		int min_alignment;
1523 		size_t flush_size;
1524 
1525 		/*
1526 		 * size is always non-zero, but address might be zero, causing
1527 		 * addr_alignment to be negative. As the casting of the
1528 		 * argument in __ffs(address) to long might trim the high bits
1529 		 * of the address on x86-32, cast to long when doing the check.
1530 		 */
1531 		if (likely((unsigned long)address != 0))
1532 			min_alignment = min(addr_alignment, size_alignment);
1533 		else
1534 			min_alignment = size_alignment;
1535 
1536 		flush_size = 1ul << min_alignment;
1537 
1538 		__domain_flush_pages(domain, address, flush_size);
1539 		address += flush_size;
1540 		size -= flush_size;
1541 	}
1542 
1543 	/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1544 	amd_iommu_domain_flush_complete(domain);
1545 }
1546 
1547 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1548 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1549 {
1550 	amd_iommu_domain_flush_pages(domain, 0,
1551 				     CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1552 }
1553 
1554 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1555 {
1556 	int i;
1557 
1558 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1559 		if (domain && !domain->dev_iommu[i])
1560 			continue;
1561 
1562 		/*
1563 		 * Devices of this domain are behind this IOMMU
1564 		 * We need to wait for completion of all commands.
1565 		 */
1566 		iommu_completion_wait(amd_iommus[i]);
1567 	}
1568 }
1569 
1570 /* Flush the not present cache if it exists */
1571 static void domain_flush_np_cache(struct protection_domain *domain,
1572 		dma_addr_t iova, size_t size)
1573 {
1574 	if (unlikely(amd_iommu_np_cache)) {
1575 		unsigned long flags;
1576 
1577 		spin_lock_irqsave(&domain->lock, flags);
1578 		amd_iommu_domain_flush_pages(domain, iova, size);
1579 		spin_unlock_irqrestore(&domain->lock, flags);
1580 	}
1581 }
1582 
1583 
1584 /*
1585  * This function flushes the DTEs for all devices in domain
1586  */
1587 static void domain_flush_devices(struct protection_domain *domain)
1588 {
1589 	struct iommu_dev_data *dev_data;
1590 
1591 	list_for_each_entry(dev_data, &domain->dev_list, list)
1592 		device_flush_dte(dev_data);
1593 }
1594 
1595 /****************************************************************************
1596  *
1597  * The next functions belong to the domain allocation. A domain is
1598  * allocated for every IOMMU as the default domain. If device isolation
1599  * is enabled, every device get its own domain. The most important thing
1600  * about domains is the page table mapping the DMA address space they
1601  * contain.
1602  *
1603  ****************************************************************************/
1604 
1605 static u16 domain_id_alloc(void)
1606 {
1607 	int id;
1608 
1609 	spin_lock(&pd_bitmap_lock);
1610 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1611 	BUG_ON(id == 0);
1612 	if (id > 0 && id < MAX_DOMAIN_ID)
1613 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1614 	else
1615 		id = 0;
1616 	spin_unlock(&pd_bitmap_lock);
1617 
1618 	return id;
1619 }
1620 
1621 static void domain_id_free(int id)
1622 {
1623 	spin_lock(&pd_bitmap_lock);
1624 	if (id > 0 && id < MAX_DOMAIN_ID)
1625 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1626 	spin_unlock(&pd_bitmap_lock);
1627 }
1628 
1629 static void free_gcr3_tbl_level1(u64 *tbl)
1630 {
1631 	u64 *ptr;
1632 	int i;
1633 
1634 	for (i = 0; i < 512; ++i) {
1635 		if (!(tbl[i] & GCR3_VALID))
1636 			continue;
1637 
1638 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1639 
1640 		free_page((unsigned long)ptr);
1641 	}
1642 }
1643 
1644 static void free_gcr3_tbl_level2(u64 *tbl)
1645 {
1646 	u64 *ptr;
1647 	int i;
1648 
1649 	for (i = 0; i < 512; ++i) {
1650 		if (!(tbl[i] & GCR3_VALID))
1651 			continue;
1652 
1653 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1654 
1655 		free_gcr3_tbl_level1(ptr);
1656 	}
1657 }
1658 
1659 static void free_gcr3_table(struct protection_domain *domain)
1660 {
1661 	if (domain->glx == 2)
1662 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1663 	else if (domain->glx == 1)
1664 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1665 	else
1666 		BUG_ON(domain->glx != 0);
1667 
1668 	free_page((unsigned long)domain->gcr3_tbl);
1669 }
1670 
1671 /*
1672  * Number of GCR3 table levels required. Level must be 4-Kbyte
1673  * page and can contain up to 512 entries.
1674  */
1675 static int get_gcr3_levels(int pasids)
1676 {
1677 	int levels;
1678 
1679 	if (pasids == -1)
1680 		return amd_iommu_max_glx_val;
1681 
1682 	levels = get_count_order(pasids);
1683 
1684 	return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1685 }
1686 
1687 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */
1688 static int setup_gcr3_table(struct protection_domain *domain, int pasids)
1689 {
1690 	int levels = get_gcr3_levels(pasids);
1691 
1692 	if (levels > amd_iommu_max_glx_val)
1693 		return -EINVAL;
1694 
1695 	domain->gcr3_tbl = alloc_pgtable_page(domain->nid, GFP_ATOMIC);
1696 	if (domain->gcr3_tbl == NULL)
1697 		return -ENOMEM;
1698 
1699 	domain->glx      = levels;
1700 	domain->flags   |= PD_IOMMUV2_MASK;
1701 
1702 	amd_iommu_domain_update(domain);
1703 
1704 	return 0;
1705 }
1706 
1707 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1708 			  struct protection_domain *domain, bool ats, bool ppr)
1709 {
1710 	u64 pte_root = 0;
1711 	u64 flags = 0;
1712 	u32 old_domid;
1713 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1714 
1715 	if (domain->iop.mode != PAGE_MODE_NONE)
1716 		pte_root = iommu_virt_to_phys(domain->iop.root);
1717 
1718 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1719 		    << DEV_ENTRY_MODE_SHIFT;
1720 
1721 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1722 
1723 	/*
1724 	 * When SNP is enabled, Only set TV bit when IOMMU
1725 	 * page translation is in use.
1726 	 */
1727 	if (!amd_iommu_snp_en || (domain->id != 0))
1728 		pte_root |= DTE_FLAG_TV;
1729 
1730 	flags = dev_table[devid].data[1];
1731 
1732 	if (ats)
1733 		flags |= DTE_FLAG_IOTLB;
1734 
1735 	if (ppr)
1736 		pte_root |= 1ULL << DEV_ENTRY_PPR;
1737 
1738 	if (domain->dirty_tracking)
1739 		pte_root |= DTE_FLAG_HAD;
1740 
1741 	if (domain->flags & PD_IOMMUV2_MASK) {
1742 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1743 		u64 glx  = domain->glx;
1744 		u64 tmp;
1745 
1746 		pte_root |= DTE_FLAG_GV;
1747 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1748 
1749 		/* First mask out possible old values for GCR3 table */
1750 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1751 		flags    &= ~tmp;
1752 
1753 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1754 		flags    &= ~tmp;
1755 
1756 		/* Encode GCR3 table into DTE */
1757 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1758 		pte_root |= tmp;
1759 
1760 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1761 		flags    |= tmp;
1762 
1763 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1764 		flags    |= tmp;
1765 
1766 		if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1767 			dev_table[devid].data[2] |=
1768 				((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1769 		}
1770 
1771 		if (domain->flags & PD_GIOV_MASK)
1772 			pte_root |= DTE_FLAG_GIOV;
1773 	}
1774 
1775 	flags &= ~DEV_DOMID_MASK;
1776 	flags |= domain->id;
1777 
1778 	old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1779 	dev_table[devid].data[1]  = flags;
1780 	dev_table[devid].data[0]  = pte_root;
1781 
1782 	/*
1783 	 * A kdump kernel might be replacing a domain ID that was copied from
1784 	 * the previous kernel--if so, it needs to flush the translation cache
1785 	 * entries for the old domain ID that is being overwritten
1786 	 */
1787 	if (old_domid) {
1788 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1789 	}
1790 }
1791 
1792 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1793 {
1794 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1795 
1796 	/* remove entry from the device table seen by the hardware */
1797 	dev_table[devid].data[0]  = DTE_FLAG_V;
1798 
1799 	if (!amd_iommu_snp_en)
1800 		dev_table[devid].data[0] |= DTE_FLAG_TV;
1801 
1802 	dev_table[devid].data[1] &= DTE_FLAG_MASK;
1803 
1804 	amd_iommu_apply_erratum_63(iommu, devid);
1805 }
1806 
1807 static void do_attach(struct iommu_dev_data *dev_data,
1808 		      struct protection_domain *domain)
1809 {
1810 	struct amd_iommu *iommu;
1811 	bool ats;
1812 
1813 	iommu = rlookup_amd_iommu(dev_data->dev);
1814 	if (!iommu)
1815 		return;
1816 	ats   = dev_data->ats_enabled;
1817 
1818 	/* Update data structures */
1819 	dev_data->domain = domain;
1820 	list_add(&dev_data->list, &domain->dev_list);
1821 
1822 	/* Update NUMA Node ID */
1823 	if (domain->nid == NUMA_NO_NODE)
1824 		domain->nid = dev_to_node(dev_data->dev);
1825 
1826 	/* Do reference counting */
1827 	domain->dev_iommu[iommu->index] += 1;
1828 	domain->dev_cnt                 += 1;
1829 
1830 	/* Update device table */
1831 	set_dte_entry(iommu, dev_data->devid, domain,
1832 		      ats, dev_data->ppr);
1833 	clone_aliases(iommu, dev_data->dev);
1834 
1835 	device_flush_dte(dev_data);
1836 }
1837 
1838 static void do_detach(struct iommu_dev_data *dev_data)
1839 {
1840 	struct protection_domain *domain = dev_data->domain;
1841 	struct amd_iommu *iommu;
1842 
1843 	iommu = rlookup_amd_iommu(dev_data->dev);
1844 	if (!iommu)
1845 		return;
1846 
1847 	/* Update data structures */
1848 	dev_data->domain = NULL;
1849 	list_del(&dev_data->list);
1850 	clear_dte_entry(iommu, dev_data->devid);
1851 	clone_aliases(iommu, dev_data->dev);
1852 
1853 	/* Flush the DTE entry */
1854 	device_flush_dte(dev_data);
1855 
1856 	/* Flush IOTLB and wait for the flushes to finish */
1857 	amd_iommu_domain_flush_all(domain);
1858 
1859 	/* decrease reference counters - needs to happen after the flushes */
1860 	domain->dev_iommu[iommu->index] -= 1;
1861 	domain->dev_cnt                 -= 1;
1862 }
1863 
1864 /*
1865  * If a device is not yet associated with a domain, this function makes the
1866  * device visible in the domain
1867  */
1868 static int attach_device(struct device *dev,
1869 			 struct protection_domain *domain)
1870 {
1871 	struct iommu_dev_data *dev_data;
1872 	unsigned long flags;
1873 	int ret = 0;
1874 
1875 	spin_lock_irqsave(&domain->lock, flags);
1876 
1877 	dev_data = dev_iommu_priv_get(dev);
1878 
1879 	spin_lock(&dev_data->lock);
1880 
1881 	if (dev_data->domain != NULL) {
1882 		ret = -EBUSY;
1883 		goto out;
1884 	}
1885 
1886 	if (dev_is_pci(dev))
1887 		pdev_enable_caps(to_pci_dev(dev));
1888 
1889 	do_attach(dev_data, domain);
1890 
1891 out:
1892 	spin_unlock(&dev_data->lock);
1893 
1894 	spin_unlock_irqrestore(&domain->lock, flags);
1895 
1896 	return ret;
1897 }
1898 
1899 /*
1900  * Removes a device from a protection domain (with devtable_lock held)
1901  */
1902 static void detach_device(struct device *dev)
1903 {
1904 	struct protection_domain *domain;
1905 	struct iommu_dev_data *dev_data;
1906 	unsigned long flags;
1907 
1908 	dev_data = dev_iommu_priv_get(dev);
1909 	domain   = dev_data->domain;
1910 
1911 	spin_lock_irqsave(&domain->lock, flags);
1912 
1913 	spin_lock(&dev_data->lock);
1914 
1915 	/*
1916 	 * First check if the device is still attached. It might already
1917 	 * be detached from its domain because the generic
1918 	 * iommu_detach_group code detached it and we try again here in
1919 	 * our alias handling.
1920 	 */
1921 	if (WARN_ON(!dev_data->domain))
1922 		goto out;
1923 
1924 	do_detach(dev_data);
1925 
1926 	if (dev_is_pci(dev))
1927 		pdev_disable_caps(to_pci_dev(dev));
1928 
1929 out:
1930 	spin_unlock(&dev_data->lock);
1931 
1932 	spin_unlock_irqrestore(&domain->lock, flags);
1933 }
1934 
1935 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1936 {
1937 	struct iommu_device *iommu_dev;
1938 	struct amd_iommu *iommu;
1939 	int ret;
1940 
1941 	if (!check_device(dev))
1942 		return ERR_PTR(-ENODEV);
1943 
1944 	iommu = rlookup_amd_iommu(dev);
1945 	if (!iommu)
1946 		return ERR_PTR(-ENODEV);
1947 
1948 	/* Not registered yet? */
1949 	if (!iommu->iommu.ops)
1950 		return ERR_PTR(-ENODEV);
1951 
1952 	if (dev_iommu_priv_get(dev))
1953 		return &iommu->iommu;
1954 
1955 	ret = iommu_init_device(iommu, dev);
1956 	if (ret) {
1957 		if (ret != -ENOTSUPP)
1958 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1959 		iommu_dev = ERR_PTR(ret);
1960 		iommu_ignore_device(iommu, dev);
1961 	} else {
1962 		amd_iommu_set_pci_msi_domain(dev, iommu);
1963 		iommu_dev = &iommu->iommu;
1964 	}
1965 
1966 	iommu_completion_wait(iommu);
1967 
1968 	return iommu_dev;
1969 }
1970 
1971 static void amd_iommu_probe_finalize(struct device *dev)
1972 {
1973 	/* Domains are initialized for this device - have a look what we ended up with */
1974 	set_dma_ops(dev, NULL);
1975 	iommu_setup_dma_ops(dev, 0, U64_MAX);
1976 }
1977 
1978 static void amd_iommu_release_device(struct device *dev)
1979 {
1980 	struct amd_iommu *iommu;
1981 
1982 	if (!check_device(dev))
1983 		return;
1984 
1985 	iommu = rlookup_amd_iommu(dev);
1986 	if (!iommu)
1987 		return;
1988 
1989 	amd_iommu_uninit_device(dev);
1990 	iommu_completion_wait(iommu);
1991 }
1992 
1993 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1994 {
1995 	if (dev_is_pci(dev))
1996 		return pci_device_group(dev);
1997 
1998 	return acpihid_device_group(dev);
1999 }
2000 
2001 /*****************************************************************************
2002  *
2003  * The next functions belong to the dma_ops mapping/unmapping code.
2004  *
2005  *****************************************************************************/
2006 
2007 static void update_device_table(struct protection_domain *domain)
2008 {
2009 	struct iommu_dev_data *dev_data;
2010 
2011 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2012 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
2013 
2014 		if (!iommu)
2015 			continue;
2016 		set_dte_entry(iommu, dev_data->devid, domain,
2017 			      dev_data->ats_enabled, dev_data->ppr);
2018 		clone_aliases(iommu, dev_data->dev);
2019 	}
2020 }
2021 
2022 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
2023 {
2024 	update_device_table(domain);
2025 	domain_flush_devices(domain);
2026 }
2027 
2028 void amd_iommu_domain_update(struct protection_domain *domain)
2029 {
2030 	/* Update device table */
2031 	amd_iommu_update_and_flush_device_table(domain);
2032 
2033 	/* Flush domain TLB(s) and wait for completion */
2034 	amd_iommu_domain_flush_all(domain);
2035 }
2036 
2037 /*****************************************************************************
2038  *
2039  * The following functions belong to the exported interface of AMD IOMMU
2040  *
2041  * This interface allows access to lower level functions of the IOMMU
2042  * like protection domain handling and assignement of devices to domains
2043  * which is not possible with the dma_ops interface.
2044  *
2045  *****************************************************************************/
2046 
2047 static void cleanup_domain(struct protection_domain *domain)
2048 {
2049 	struct iommu_dev_data *entry;
2050 
2051 	lockdep_assert_held(&domain->lock);
2052 
2053 	if (!domain->dev_cnt)
2054 		return;
2055 
2056 	while (!list_empty(&domain->dev_list)) {
2057 		entry = list_first_entry(&domain->dev_list,
2058 					 struct iommu_dev_data, list);
2059 		BUG_ON(!entry->domain);
2060 		do_detach(entry);
2061 	}
2062 	WARN_ON(domain->dev_cnt != 0);
2063 }
2064 
2065 static void protection_domain_free(struct protection_domain *domain)
2066 {
2067 	if (!domain)
2068 		return;
2069 
2070 	if (domain->iop.pgtbl_cfg.tlb)
2071 		free_io_pgtable_ops(&domain->iop.iop.ops);
2072 
2073 	if (domain->flags & PD_IOMMUV2_MASK)
2074 		free_gcr3_table(domain);
2075 
2076 	if (domain->iop.root)
2077 		free_page((unsigned long)domain->iop.root);
2078 
2079 	if (domain->id)
2080 		domain_id_free(domain->id);
2081 
2082 	kfree(domain);
2083 }
2084 
2085 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2086 {
2087 	u64 *pt_root = NULL;
2088 
2089 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2090 
2091 	if (mode != PAGE_MODE_NONE) {
2092 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2093 		if (!pt_root)
2094 			return -ENOMEM;
2095 	}
2096 
2097 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2098 
2099 	return 0;
2100 }
2101 
2102 static int protection_domain_init_v2(struct protection_domain *domain)
2103 {
2104 	domain->flags |= PD_GIOV_MASK;
2105 
2106 	domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
2107 
2108 	if (setup_gcr3_table(domain, 1))
2109 		return -ENOMEM;
2110 
2111 	return 0;
2112 }
2113 
2114 static struct protection_domain *protection_domain_alloc(unsigned int type)
2115 {
2116 	struct io_pgtable_ops *pgtbl_ops;
2117 	struct protection_domain *domain;
2118 	int pgtable;
2119 	int ret;
2120 
2121 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2122 	if (!domain)
2123 		return NULL;
2124 
2125 	domain->id = domain_id_alloc();
2126 	if (!domain->id)
2127 		goto out_err;
2128 
2129 	spin_lock_init(&domain->lock);
2130 	INIT_LIST_HEAD(&domain->dev_list);
2131 	domain->nid = NUMA_NO_NODE;
2132 
2133 	switch (type) {
2134 	/* No need to allocate io pgtable ops in passthrough mode */
2135 	case IOMMU_DOMAIN_IDENTITY:
2136 		return domain;
2137 	case IOMMU_DOMAIN_DMA:
2138 		pgtable = amd_iommu_pgtable;
2139 		break;
2140 	/*
2141 	 * Force IOMMU v1 page table when allocating
2142 	 * domain for pass-through devices.
2143 	 */
2144 	case IOMMU_DOMAIN_UNMANAGED:
2145 		pgtable = AMD_IOMMU_V1;
2146 		break;
2147 	default:
2148 		goto out_err;
2149 	}
2150 
2151 	switch (pgtable) {
2152 	case AMD_IOMMU_V1:
2153 		ret = protection_domain_init_v1(domain, DEFAULT_PGTABLE_LEVEL);
2154 		break;
2155 	case AMD_IOMMU_V2:
2156 		ret = protection_domain_init_v2(domain);
2157 		break;
2158 	default:
2159 		ret = -EINVAL;
2160 		break;
2161 	}
2162 
2163 	if (ret)
2164 		goto out_err;
2165 
2166 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2167 	if (!pgtbl_ops)
2168 		goto out_err;
2169 
2170 	return domain;
2171 out_err:
2172 	protection_domain_free(domain);
2173 	return NULL;
2174 }
2175 
2176 static inline u64 dma_max_address(void)
2177 {
2178 	if (amd_iommu_pgtable == AMD_IOMMU_V1)
2179 		return ~0ULL;
2180 
2181 	/* V2 with 4/5 level page table */
2182 	return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2183 }
2184 
2185 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2186 {
2187 	return iommu && (iommu->features & FEATURE_HDSUP);
2188 }
2189 
2190 static struct iommu_domain *do_iommu_domain_alloc(unsigned int type,
2191 						  struct device *dev, u32 flags)
2192 {
2193 	bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2194 	struct protection_domain *domain;
2195 	struct amd_iommu *iommu = NULL;
2196 
2197 	if (dev) {
2198 		iommu = rlookup_amd_iommu(dev);
2199 		if (!iommu)
2200 			return ERR_PTR(-ENODEV);
2201 	}
2202 
2203 	/*
2204 	 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2205 	 * default to use IOMMU_DOMAIN_DMA[_FQ].
2206 	 */
2207 	if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2208 		return ERR_PTR(-EINVAL);
2209 
2210 	if (dirty_tracking && !amd_iommu_hd_support(iommu))
2211 		return ERR_PTR(-EOPNOTSUPP);
2212 
2213 	domain = protection_domain_alloc(type);
2214 	if (!domain)
2215 		return ERR_PTR(-ENOMEM);
2216 
2217 	domain->domain.geometry.aperture_start = 0;
2218 	domain->domain.geometry.aperture_end   = dma_max_address();
2219 	domain->domain.geometry.force_aperture = true;
2220 
2221 	if (iommu) {
2222 		domain->domain.type = type;
2223 		domain->domain.pgsize_bitmap = iommu->iommu.ops->pgsize_bitmap;
2224 		domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2225 
2226 		if (dirty_tracking)
2227 			domain->domain.dirty_ops = &amd_dirty_ops;
2228 	}
2229 
2230 	return &domain->domain;
2231 }
2232 
2233 static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type)
2234 {
2235 	struct iommu_domain *domain;
2236 
2237 	domain = do_iommu_domain_alloc(type, NULL, 0);
2238 	if (IS_ERR(domain))
2239 		return NULL;
2240 
2241 	return domain;
2242 }
2243 
2244 static struct iommu_domain *
2245 amd_iommu_domain_alloc_user(struct device *dev, u32 flags,
2246 			    struct iommu_domain *parent,
2247 			    const struct iommu_user_data *user_data)
2248 
2249 {
2250 	unsigned int type = IOMMU_DOMAIN_UNMANAGED;
2251 
2252 	if ((flags & ~IOMMU_HWPT_ALLOC_DIRTY_TRACKING) || parent || user_data)
2253 		return ERR_PTR(-EOPNOTSUPP);
2254 
2255 	return do_iommu_domain_alloc(type, dev, flags);
2256 }
2257 
2258 static void amd_iommu_domain_free(struct iommu_domain *dom)
2259 {
2260 	struct protection_domain *domain;
2261 	unsigned long flags;
2262 
2263 	if (!dom)
2264 		return;
2265 
2266 	domain = to_pdomain(dom);
2267 
2268 	spin_lock_irqsave(&domain->lock, flags);
2269 
2270 	cleanup_domain(domain);
2271 
2272 	spin_unlock_irqrestore(&domain->lock, flags);
2273 
2274 	protection_domain_free(domain);
2275 }
2276 
2277 static int amd_iommu_attach_device(struct iommu_domain *dom,
2278 				   struct device *dev)
2279 {
2280 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2281 	struct protection_domain *domain = to_pdomain(dom);
2282 	struct amd_iommu *iommu = rlookup_amd_iommu(dev);
2283 	int ret;
2284 
2285 	/*
2286 	 * Skip attach device to domain if new domain is same as
2287 	 * devices current domain
2288 	 */
2289 	if (dev_data->domain == domain)
2290 		return 0;
2291 
2292 	dev_data->defer_attach = false;
2293 
2294 	/*
2295 	 * Restrict to devices with compatible IOMMU hardware support
2296 	 * when enforcement of dirty tracking is enabled.
2297 	 */
2298 	if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2299 		return -EINVAL;
2300 
2301 	if (dev_data->domain)
2302 		detach_device(dev);
2303 
2304 	ret = attach_device(dev, domain);
2305 
2306 #ifdef CONFIG_IRQ_REMAP
2307 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2308 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2309 			dev_data->use_vapic = 1;
2310 		else
2311 			dev_data->use_vapic = 0;
2312 	}
2313 #endif
2314 
2315 	iommu_completion_wait(iommu);
2316 
2317 	return ret;
2318 }
2319 
2320 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2321 				    unsigned long iova, size_t size)
2322 {
2323 	struct protection_domain *domain = to_pdomain(dom);
2324 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2325 
2326 	if (ops->map_pages)
2327 		domain_flush_np_cache(domain, iova, size);
2328 	return 0;
2329 }
2330 
2331 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2332 			       phys_addr_t paddr, size_t pgsize, size_t pgcount,
2333 			       int iommu_prot, gfp_t gfp, size_t *mapped)
2334 {
2335 	struct protection_domain *domain = to_pdomain(dom);
2336 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2337 	int prot = 0;
2338 	int ret = -EINVAL;
2339 
2340 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2341 	    (domain->iop.mode == PAGE_MODE_NONE))
2342 		return -EINVAL;
2343 
2344 	if (iommu_prot & IOMMU_READ)
2345 		prot |= IOMMU_PROT_IR;
2346 	if (iommu_prot & IOMMU_WRITE)
2347 		prot |= IOMMU_PROT_IW;
2348 
2349 	if (ops->map_pages) {
2350 		ret = ops->map_pages(ops, iova, paddr, pgsize,
2351 				     pgcount, prot, gfp, mapped);
2352 	}
2353 
2354 	return ret;
2355 }
2356 
2357 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2358 					    struct iommu_iotlb_gather *gather,
2359 					    unsigned long iova, size_t size)
2360 {
2361 	/*
2362 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2363 	 * Unless we run in a virtual machine, which can be inferred according
2364 	 * to whether "non-present cache" is on, it is probably best to prefer
2365 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2366 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2367 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2368 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2369 	 * should be avoided.
2370 	 */
2371 	if (amd_iommu_np_cache &&
2372 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2373 		iommu_iotlb_sync(domain, gather);
2374 
2375 	iommu_iotlb_gather_add_range(gather, iova, size);
2376 }
2377 
2378 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2379 				    size_t pgsize, size_t pgcount,
2380 				    struct iommu_iotlb_gather *gather)
2381 {
2382 	struct protection_domain *domain = to_pdomain(dom);
2383 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2384 	size_t r;
2385 
2386 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2387 	    (domain->iop.mode == PAGE_MODE_NONE))
2388 		return 0;
2389 
2390 	r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2391 
2392 	if (r)
2393 		amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2394 
2395 	return r;
2396 }
2397 
2398 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2399 					  dma_addr_t iova)
2400 {
2401 	struct protection_domain *domain = to_pdomain(dom);
2402 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2403 
2404 	return ops->iova_to_phys(ops, iova);
2405 }
2406 
2407 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2408 {
2409 	switch (cap) {
2410 	case IOMMU_CAP_CACHE_COHERENCY:
2411 		return true;
2412 	case IOMMU_CAP_NOEXEC:
2413 		return false;
2414 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2415 		return amdr_ivrs_remap_support;
2416 	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2417 		return true;
2418 	case IOMMU_CAP_DEFERRED_FLUSH:
2419 		return true;
2420 	case IOMMU_CAP_DIRTY_TRACKING: {
2421 		struct amd_iommu *iommu = rlookup_amd_iommu(dev);
2422 
2423 		return amd_iommu_hd_support(iommu);
2424 	}
2425 	default:
2426 		break;
2427 	}
2428 
2429 	return false;
2430 }
2431 
2432 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2433 					bool enable)
2434 {
2435 	struct protection_domain *pdomain = to_pdomain(domain);
2436 	struct dev_table_entry *dev_table;
2437 	struct iommu_dev_data *dev_data;
2438 	bool domain_flush = false;
2439 	struct amd_iommu *iommu;
2440 	unsigned long flags;
2441 	u64 pte_root;
2442 
2443 	spin_lock_irqsave(&pdomain->lock, flags);
2444 	if (!(pdomain->dirty_tracking ^ enable)) {
2445 		spin_unlock_irqrestore(&pdomain->lock, flags);
2446 		return 0;
2447 	}
2448 
2449 	list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2450 		iommu = rlookup_amd_iommu(dev_data->dev);
2451 		if (!iommu)
2452 			continue;
2453 
2454 		dev_table = get_dev_table(iommu);
2455 		pte_root = dev_table[dev_data->devid].data[0];
2456 
2457 		pte_root = (enable ? pte_root | DTE_FLAG_HAD :
2458 				     pte_root & ~DTE_FLAG_HAD);
2459 
2460 		/* Flush device DTE */
2461 		dev_table[dev_data->devid].data[0] = pte_root;
2462 		device_flush_dte(dev_data);
2463 		domain_flush = true;
2464 	}
2465 
2466 	/* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2467 	if (domain_flush)
2468 		amd_iommu_domain_flush_all(pdomain);
2469 
2470 	pdomain->dirty_tracking = enable;
2471 	spin_unlock_irqrestore(&pdomain->lock, flags);
2472 
2473 	return 0;
2474 }
2475 
2476 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2477 					  unsigned long iova, size_t size,
2478 					  unsigned long flags,
2479 					  struct iommu_dirty_bitmap *dirty)
2480 {
2481 	struct protection_domain *pdomain = to_pdomain(domain);
2482 	struct io_pgtable_ops *ops = &pdomain->iop.iop.ops;
2483 	unsigned long lflags;
2484 
2485 	if (!ops || !ops->read_and_clear_dirty)
2486 		return -EOPNOTSUPP;
2487 
2488 	spin_lock_irqsave(&pdomain->lock, lflags);
2489 	if (!pdomain->dirty_tracking && dirty->bitmap) {
2490 		spin_unlock_irqrestore(&pdomain->lock, lflags);
2491 		return -EINVAL;
2492 	}
2493 	spin_unlock_irqrestore(&pdomain->lock, lflags);
2494 
2495 	return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2496 }
2497 
2498 static void amd_iommu_get_resv_regions(struct device *dev,
2499 				       struct list_head *head)
2500 {
2501 	struct iommu_resv_region *region;
2502 	struct unity_map_entry *entry;
2503 	struct amd_iommu *iommu;
2504 	struct amd_iommu_pci_seg *pci_seg;
2505 	int devid, sbdf;
2506 
2507 	sbdf = get_device_sbdf_id(dev);
2508 	if (sbdf < 0)
2509 		return;
2510 
2511 	devid = PCI_SBDF_TO_DEVID(sbdf);
2512 	iommu = rlookup_amd_iommu(dev);
2513 	if (!iommu)
2514 		return;
2515 	pci_seg = iommu->pci_seg;
2516 
2517 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2518 		int type, prot = 0;
2519 		size_t length;
2520 
2521 		if (devid < entry->devid_start || devid > entry->devid_end)
2522 			continue;
2523 
2524 		type   = IOMMU_RESV_DIRECT;
2525 		length = entry->address_end - entry->address_start;
2526 		if (entry->prot & IOMMU_PROT_IR)
2527 			prot |= IOMMU_READ;
2528 		if (entry->prot & IOMMU_PROT_IW)
2529 			prot |= IOMMU_WRITE;
2530 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2531 			/* Exclusion range */
2532 			type = IOMMU_RESV_RESERVED;
2533 
2534 		region = iommu_alloc_resv_region(entry->address_start,
2535 						 length, prot, type,
2536 						 GFP_KERNEL);
2537 		if (!region) {
2538 			dev_err(dev, "Out of memory allocating dm-regions\n");
2539 			return;
2540 		}
2541 		list_add_tail(&region->list, head);
2542 	}
2543 
2544 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2545 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2546 					 0, IOMMU_RESV_MSI, GFP_KERNEL);
2547 	if (!region)
2548 		return;
2549 	list_add_tail(&region->list, head);
2550 
2551 	region = iommu_alloc_resv_region(HT_RANGE_START,
2552 					 HT_RANGE_END - HT_RANGE_START + 1,
2553 					 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2554 	if (!region)
2555 		return;
2556 	list_add_tail(&region->list, head);
2557 }
2558 
2559 bool amd_iommu_is_attach_deferred(struct device *dev)
2560 {
2561 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2562 
2563 	return dev_data->defer_attach;
2564 }
2565 
2566 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2567 {
2568 	struct protection_domain *dom = to_pdomain(domain);
2569 	unsigned long flags;
2570 
2571 	spin_lock_irqsave(&dom->lock, flags);
2572 	amd_iommu_domain_flush_all(dom);
2573 	spin_unlock_irqrestore(&dom->lock, flags);
2574 }
2575 
2576 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2577 				 struct iommu_iotlb_gather *gather)
2578 {
2579 	struct protection_domain *dom = to_pdomain(domain);
2580 	unsigned long flags;
2581 
2582 	spin_lock_irqsave(&dom->lock, flags);
2583 	amd_iommu_domain_flush_pages(dom, gather->start,
2584 				     gather->end - gather->start + 1);
2585 	spin_unlock_irqrestore(&dom->lock, flags);
2586 }
2587 
2588 static int amd_iommu_def_domain_type(struct device *dev)
2589 {
2590 	struct iommu_dev_data *dev_data;
2591 
2592 	dev_data = dev_iommu_priv_get(dev);
2593 	if (!dev_data)
2594 		return 0;
2595 
2596 	/*
2597 	 * Do not identity map IOMMUv2 capable devices when:
2598 	 *  - memory encryption is active, because some of those devices
2599 	 *    (AMD GPUs) don't have the encryption bit in their DMA-mask
2600 	 *    and require remapping.
2601 	 *  - SNP is enabled, because it prohibits DTE[Mode]=0.
2602 	 */
2603 	if (pdev_pasid_supported(dev_data) &&
2604 	    !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2605 	    !amd_iommu_snp_en) {
2606 		return IOMMU_DOMAIN_IDENTITY;
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2613 {
2614 	/* IOMMU_PTE_FC is always set */
2615 	return true;
2616 }
2617 
2618 static const struct iommu_dirty_ops amd_dirty_ops = {
2619 	.set_dirty_tracking = amd_iommu_set_dirty_tracking,
2620 	.read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2621 };
2622 
2623 const struct iommu_ops amd_iommu_ops = {
2624 	.capable = amd_iommu_capable,
2625 	.domain_alloc = amd_iommu_domain_alloc,
2626 	.domain_alloc_user = amd_iommu_domain_alloc_user,
2627 	.probe_device = amd_iommu_probe_device,
2628 	.release_device = amd_iommu_release_device,
2629 	.probe_finalize = amd_iommu_probe_finalize,
2630 	.device_group = amd_iommu_device_group,
2631 	.get_resv_regions = amd_iommu_get_resv_regions,
2632 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2633 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2634 	.def_domain_type = amd_iommu_def_domain_type,
2635 	.default_domain_ops = &(const struct iommu_domain_ops) {
2636 		.attach_dev	= amd_iommu_attach_device,
2637 		.map_pages	= amd_iommu_map_pages,
2638 		.unmap_pages	= amd_iommu_unmap_pages,
2639 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2640 		.iova_to_phys	= amd_iommu_iova_to_phys,
2641 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2642 		.iotlb_sync	= amd_iommu_iotlb_sync,
2643 		.free		= amd_iommu_domain_free,
2644 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2645 	}
2646 };
2647 
2648 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2649 			 u64 address, size_t size)
2650 {
2651 	struct iommu_dev_data *dev_data;
2652 	struct iommu_cmd cmd;
2653 	int i, ret;
2654 
2655 	if (!(domain->flags & PD_IOMMUV2_MASK))
2656 		return -EINVAL;
2657 
2658 	build_inv_iommu_pages(&cmd, address, size, domain->id, pasid, true);
2659 
2660 	/*
2661 	 * IOMMU TLB needs to be flushed before Device TLB to
2662 	 * prevent device TLB refill from IOMMU TLB
2663 	 */
2664 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2665 		if (domain->dev_iommu[i] == 0)
2666 			continue;
2667 
2668 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2669 		if (ret != 0)
2670 			goto out;
2671 	}
2672 
2673 	/* Wait until IOMMU TLB flushes are complete */
2674 	amd_iommu_domain_flush_complete(domain);
2675 
2676 	/* Now flush device TLBs */
2677 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2678 		struct amd_iommu *iommu;
2679 		int qdep;
2680 
2681 		/*
2682 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2683 		 * domain.
2684 		 */
2685 		if (!dev_data->ats_enabled)
2686 			continue;
2687 
2688 		qdep  = dev_data->ats_qdep;
2689 		iommu = rlookup_amd_iommu(dev_data->dev);
2690 		if (!iommu)
2691 			continue;
2692 		build_inv_iotlb_pages(&cmd, dev_data->devid, qdep,
2693 				      address, size, pasid, true);
2694 
2695 		ret = iommu_queue_command(iommu, &cmd);
2696 		if (ret != 0)
2697 			goto out;
2698 	}
2699 
2700 	/* Wait until all device TLBs are flushed */
2701 	amd_iommu_domain_flush_complete(domain);
2702 
2703 	ret = 0;
2704 
2705 out:
2706 
2707 	return ret;
2708 }
2709 
2710 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2711 				  u64 address)
2712 {
2713 	return __flush_pasid(domain, pasid, address, PAGE_SIZE);
2714 }
2715 
2716 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2717 			 u64 address)
2718 {
2719 	struct protection_domain *domain = to_pdomain(dom);
2720 	unsigned long flags;
2721 	int ret;
2722 
2723 	spin_lock_irqsave(&domain->lock, flags);
2724 	ret = __amd_iommu_flush_page(domain, pasid, address);
2725 	spin_unlock_irqrestore(&domain->lock, flags);
2726 
2727 	return ret;
2728 }
2729 
2730 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2731 {
2732 	return __flush_pasid(domain, pasid, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
2733 }
2734 
2735 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2736 {
2737 	struct protection_domain *domain = to_pdomain(dom);
2738 	unsigned long flags;
2739 	int ret;
2740 
2741 	spin_lock_irqsave(&domain->lock, flags);
2742 	ret = __amd_iommu_flush_tlb(domain, pasid);
2743 	spin_unlock_irqrestore(&domain->lock, flags);
2744 
2745 	return ret;
2746 }
2747 
2748 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2749 {
2750 	int index;
2751 	u64 *pte;
2752 
2753 	while (true) {
2754 
2755 		index = (pasid >> (9 * level)) & 0x1ff;
2756 		pte   = &root[index];
2757 
2758 		if (level == 0)
2759 			break;
2760 
2761 		if (!(*pte & GCR3_VALID)) {
2762 			if (!alloc)
2763 				return NULL;
2764 
2765 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2766 			if (root == NULL)
2767 				return NULL;
2768 
2769 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2770 		}
2771 
2772 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2773 
2774 		level -= 1;
2775 	}
2776 
2777 	return pte;
2778 }
2779 
2780 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2781 		      unsigned long cr3)
2782 {
2783 	u64 *pte;
2784 
2785 	if (domain->iop.mode != PAGE_MODE_NONE)
2786 		return -EINVAL;
2787 
2788 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2789 	if (pte == NULL)
2790 		return -ENOMEM;
2791 
2792 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2793 
2794 	return __amd_iommu_flush_tlb(domain, pasid);
2795 }
2796 
2797 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2798 {
2799 	u64 *pte;
2800 
2801 	if (domain->iop.mode != PAGE_MODE_NONE)
2802 		return -EINVAL;
2803 
2804 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2805 	if (pte == NULL)
2806 		return 0;
2807 
2808 	*pte = 0;
2809 
2810 	return __amd_iommu_flush_tlb(domain, pasid);
2811 }
2812 
2813 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2814 			      unsigned long cr3)
2815 {
2816 	struct protection_domain *domain = to_pdomain(dom);
2817 	unsigned long flags;
2818 	int ret;
2819 
2820 	spin_lock_irqsave(&domain->lock, flags);
2821 	ret = __set_gcr3(domain, pasid, cr3);
2822 	spin_unlock_irqrestore(&domain->lock, flags);
2823 
2824 	return ret;
2825 }
2826 
2827 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2828 {
2829 	struct protection_domain *domain = to_pdomain(dom);
2830 	unsigned long flags;
2831 	int ret;
2832 
2833 	spin_lock_irqsave(&domain->lock, flags);
2834 	ret = __clear_gcr3(domain, pasid);
2835 	spin_unlock_irqrestore(&domain->lock, flags);
2836 
2837 	return ret;
2838 }
2839 
2840 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2841 			   int status, int tag)
2842 {
2843 	struct iommu_dev_data *dev_data;
2844 	struct amd_iommu *iommu;
2845 	struct iommu_cmd cmd;
2846 
2847 	dev_data = dev_iommu_priv_get(&pdev->dev);
2848 	iommu    = rlookup_amd_iommu(&pdev->dev);
2849 	if (!iommu)
2850 		return -ENODEV;
2851 
2852 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2853 			   tag, dev_data->pri_tlp);
2854 
2855 	return iommu_queue_command(iommu, &cmd);
2856 }
2857 
2858 #ifdef CONFIG_IRQ_REMAP
2859 
2860 /*****************************************************************************
2861  *
2862  * Interrupt Remapping Implementation
2863  *
2864  *****************************************************************************/
2865 
2866 static struct irq_chip amd_ir_chip;
2867 static DEFINE_SPINLOCK(iommu_table_lock);
2868 
2869 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2870 {
2871 	int ret;
2872 	u64 data;
2873 	unsigned long flags;
2874 	struct iommu_cmd cmd, cmd2;
2875 
2876 	if (iommu->irtcachedis_enabled)
2877 		return;
2878 
2879 	build_inv_irt(&cmd, devid);
2880 	data = atomic64_add_return(1, &iommu->cmd_sem_val);
2881 	build_completion_wait(&cmd2, iommu, data);
2882 
2883 	raw_spin_lock_irqsave(&iommu->lock, flags);
2884 	ret = __iommu_queue_command_sync(iommu, &cmd, true);
2885 	if (ret)
2886 		goto out;
2887 	ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2888 	if (ret)
2889 		goto out;
2890 	wait_on_sem(iommu, data);
2891 out:
2892 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
2893 }
2894 
2895 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2896 			      struct irq_remap_table *table)
2897 {
2898 	u64 dte;
2899 	struct dev_table_entry *dev_table = get_dev_table(iommu);
2900 
2901 	dte	= dev_table[devid].data[2];
2902 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2903 	dte	|= iommu_virt_to_phys(table->table);
2904 	dte	|= DTE_IRQ_REMAP_INTCTL;
2905 	dte	|= DTE_INTTABLEN;
2906 	dte	|= DTE_IRQ_REMAP_ENABLE;
2907 
2908 	dev_table[devid].data[2] = dte;
2909 }
2910 
2911 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2912 {
2913 	struct irq_remap_table *table;
2914 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2915 
2916 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2917 		      "%s: no iommu for devid %x:%x\n",
2918 		      __func__, pci_seg->id, devid))
2919 		return NULL;
2920 
2921 	table = pci_seg->irq_lookup_table[devid];
2922 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2923 		      __func__, pci_seg->id, devid))
2924 		return NULL;
2925 
2926 	return table;
2927 }
2928 
2929 static struct irq_remap_table *__alloc_irq_table(void)
2930 {
2931 	struct irq_remap_table *table;
2932 
2933 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2934 	if (!table)
2935 		return NULL;
2936 
2937 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2938 	if (!table->table) {
2939 		kfree(table);
2940 		return NULL;
2941 	}
2942 	raw_spin_lock_init(&table->lock);
2943 
2944 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2945 		memset(table->table, 0,
2946 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2947 	else
2948 		memset(table->table, 0,
2949 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2950 	return table;
2951 }
2952 
2953 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2954 				  struct irq_remap_table *table)
2955 {
2956 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2957 
2958 	pci_seg->irq_lookup_table[devid] = table;
2959 	set_dte_irq_entry(iommu, devid, table);
2960 	iommu_flush_dte(iommu, devid);
2961 }
2962 
2963 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2964 				       void *data)
2965 {
2966 	struct irq_remap_table *table = data;
2967 	struct amd_iommu_pci_seg *pci_seg;
2968 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2969 
2970 	if (!iommu)
2971 		return -EINVAL;
2972 
2973 	pci_seg = iommu->pci_seg;
2974 	pci_seg->irq_lookup_table[alias] = table;
2975 	set_dte_irq_entry(iommu, alias, table);
2976 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2977 
2978 	return 0;
2979 }
2980 
2981 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2982 					       u16 devid, struct pci_dev *pdev)
2983 {
2984 	struct irq_remap_table *table = NULL;
2985 	struct irq_remap_table *new_table = NULL;
2986 	struct amd_iommu_pci_seg *pci_seg;
2987 	unsigned long flags;
2988 	u16 alias;
2989 
2990 	spin_lock_irqsave(&iommu_table_lock, flags);
2991 
2992 	pci_seg = iommu->pci_seg;
2993 	table = pci_seg->irq_lookup_table[devid];
2994 	if (table)
2995 		goto out_unlock;
2996 
2997 	alias = pci_seg->alias_table[devid];
2998 	table = pci_seg->irq_lookup_table[alias];
2999 	if (table) {
3000 		set_remap_table_entry(iommu, devid, table);
3001 		goto out_wait;
3002 	}
3003 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3004 
3005 	/* Nothing there yet, allocate new irq remapping table */
3006 	new_table = __alloc_irq_table();
3007 	if (!new_table)
3008 		return NULL;
3009 
3010 	spin_lock_irqsave(&iommu_table_lock, flags);
3011 
3012 	table = pci_seg->irq_lookup_table[devid];
3013 	if (table)
3014 		goto out_unlock;
3015 
3016 	table = pci_seg->irq_lookup_table[alias];
3017 	if (table) {
3018 		set_remap_table_entry(iommu, devid, table);
3019 		goto out_wait;
3020 	}
3021 
3022 	table = new_table;
3023 	new_table = NULL;
3024 
3025 	if (pdev)
3026 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3027 				       table);
3028 	else
3029 		set_remap_table_entry(iommu, devid, table);
3030 
3031 	if (devid != alias)
3032 		set_remap_table_entry(iommu, alias, table);
3033 
3034 out_wait:
3035 	iommu_completion_wait(iommu);
3036 
3037 out_unlock:
3038 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3039 
3040 	if (new_table) {
3041 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3042 		kfree(new_table);
3043 	}
3044 	return table;
3045 }
3046 
3047 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3048 			   bool align, struct pci_dev *pdev)
3049 {
3050 	struct irq_remap_table *table;
3051 	int index, c, alignment = 1;
3052 	unsigned long flags;
3053 
3054 	table = alloc_irq_table(iommu, devid, pdev);
3055 	if (!table)
3056 		return -ENODEV;
3057 
3058 	if (align)
3059 		alignment = roundup_pow_of_two(count);
3060 
3061 	raw_spin_lock_irqsave(&table->lock, flags);
3062 
3063 	/* Scan table for free entries */
3064 	for (index = ALIGN(table->min_index, alignment), c = 0;
3065 	     index < MAX_IRQS_PER_TABLE;) {
3066 		if (!iommu->irte_ops->is_allocated(table, index)) {
3067 			c += 1;
3068 		} else {
3069 			c     = 0;
3070 			index = ALIGN(index + 1, alignment);
3071 			continue;
3072 		}
3073 
3074 		if (c == count)	{
3075 			for (; c != 0; --c)
3076 				iommu->irte_ops->set_allocated(table, index - c + 1);
3077 
3078 			index -= count - 1;
3079 			goto out;
3080 		}
3081 
3082 		index++;
3083 	}
3084 
3085 	index = -ENOSPC;
3086 
3087 out:
3088 	raw_spin_unlock_irqrestore(&table->lock, flags);
3089 
3090 	return index;
3091 }
3092 
3093 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3094 			    struct irte_ga *irte)
3095 {
3096 	struct irq_remap_table *table;
3097 	struct irte_ga *entry;
3098 	unsigned long flags;
3099 	u128 old;
3100 
3101 	table = get_irq_table(iommu, devid);
3102 	if (!table)
3103 		return -ENOMEM;
3104 
3105 	raw_spin_lock_irqsave(&table->lock, flags);
3106 
3107 	entry = (struct irte_ga *)table->table;
3108 	entry = &entry[index];
3109 
3110 	/*
3111 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3112 	 * and it cannot be updated by the hardware or other processors
3113 	 * behind us, so the return value of cmpxchg16 should be the
3114 	 * same as the old value.
3115 	 */
3116 	old = entry->irte;
3117 	WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3118 
3119 	raw_spin_unlock_irqrestore(&table->lock, flags);
3120 
3121 	return 0;
3122 }
3123 
3124 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3125 			  struct irte_ga *irte)
3126 {
3127 	bool ret;
3128 
3129 	ret = __modify_irte_ga(iommu, devid, index, irte);
3130 	if (ret)
3131 		return ret;
3132 
3133 	iommu_flush_irt_and_complete(iommu, devid);
3134 
3135 	return 0;
3136 }
3137 
3138 static int modify_irte(struct amd_iommu *iommu,
3139 		       u16 devid, int index, union irte *irte)
3140 {
3141 	struct irq_remap_table *table;
3142 	unsigned long flags;
3143 
3144 	table = get_irq_table(iommu, devid);
3145 	if (!table)
3146 		return -ENOMEM;
3147 
3148 	raw_spin_lock_irqsave(&table->lock, flags);
3149 	table->table[index] = irte->val;
3150 	raw_spin_unlock_irqrestore(&table->lock, flags);
3151 
3152 	iommu_flush_irt_and_complete(iommu, devid);
3153 
3154 	return 0;
3155 }
3156 
3157 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3158 {
3159 	struct irq_remap_table *table;
3160 	unsigned long flags;
3161 
3162 	table = get_irq_table(iommu, devid);
3163 	if (!table)
3164 		return;
3165 
3166 	raw_spin_lock_irqsave(&table->lock, flags);
3167 	iommu->irte_ops->clear_allocated(table, index);
3168 	raw_spin_unlock_irqrestore(&table->lock, flags);
3169 
3170 	iommu_flush_irt_and_complete(iommu, devid);
3171 }
3172 
3173 static void irte_prepare(void *entry,
3174 			 u32 delivery_mode, bool dest_mode,
3175 			 u8 vector, u32 dest_apicid, int devid)
3176 {
3177 	union irte *irte = (union irte *) entry;
3178 
3179 	irte->val                = 0;
3180 	irte->fields.vector      = vector;
3181 	irte->fields.int_type    = delivery_mode;
3182 	irte->fields.destination = dest_apicid;
3183 	irte->fields.dm          = dest_mode;
3184 	irte->fields.valid       = 1;
3185 }
3186 
3187 static void irte_ga_prepare(void *entry,
3188 			    u32 delivery_mode, bool dest_mode,
3189 			    u8 vector, u32 dest_apicid, int devid)
3190 {
3191 	struct irte_ga *irte = (struct irte_ga *) entry;
3192 
3193 	irte->lo.val                      = 0;
3194 	irte->hi.val                      = 0;
3195 	irte->lo.fields_remap.int_type    = delivery_mode;
3196 	irte->lo.fields_remap.dm          = dest_mode;
3197 	irte->hi.fields.vector            = vector;
3198 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3199 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3200 	irte->lo.fields_remap.valid       = 1;
3201 }
3202 
3203 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3204 {
3205 	union irte *irte = (union irte *) entry;
3206 
3207 	irte->fields.valid = 1;
3208 	modify_irte(iommu, devid, index, irte);
3209 }
3210 
3211 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3212 {
3213 	struct irte_ga *irte = (struct irte_ga *) entry;
3214 
3215 	irte->lo.fields_remap.valid = 1;
3216 	modify_irte_ga(iommu, devid, index, irte);
3217 }
3218 
3219 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3220 {
3221 	union irte *irte = (union irte *) entry;
3222 
3223 	irte->fields.valid = 0;
3224 	modify_irte(iommu, devid, index, irte);
3225 }
3226 
3227 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3228 {
3229 	struct irte_ga *irte = (struct irte_ga *) entry;
3230 
3231 	irte->lo.fields_remap.valid = 0;
3232 	modify_irte_ga(iommu, devid, index, irte);
3233 }
3234 
3235 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3236 			      u8 vector, u32 dest_apicid)
3237 {
3238 	union irte *irte = (union irte *) entry;
3239 
3240 	irte->fields.vector = vector;
3241 	irte->fields.destination = dest_apicid;
3242 	modify_irte(iommu, devid, index, irte);
3243 }
3244 
3245 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3246 				 u8 vector, u32 dest_apicid)
3247 {
3248 	struct irte_ga *irte = (struct irte_ga *) entry;
3249 
3250 	if (!irte->lo.fields_remap.guest_mode) {
3251 		irte->hi.fields.vector = vector;
3252 		irte->lo.fields_remap.destination =
3253 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3254 		irte->hi.fields.destination =
3255 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3256 		modify_irte_ga(iommu, devid, index, irte);
3257 	}
3258 }
3259 
3260 #define IRTE_ALLOCATED (~1U)
3261 static void irte_set_allocated(struct irq_remap_table *table, int index)
3262 {
3263 	table->table[index] = IRTE_ALLOCATED;
3264 }
3265 
3266 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3267 {
3268 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3269 	struct irte_ga *irte = &ptr[index];
3270 
3271 	memset(&irte->lo.val, 0, sizeof(u64));
3272 	memset(&irte->hi.val, 0, sizeof(u64));
3273 	irte->hi.fields.vector = 0xff;
3274 }
3275 
3276 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3277 {
3278 	union irte *ptr = (union irte *)table->table;
3279 	union irte *irte = &ptr[index];
3280 
3281 	return irte->val != 0;
3282 }
3283 
3284 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3285 {
3286 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3287 	struct irte_ga *irte = &ptr[index];
3288 
3289 	return irte->hi.fields.vector != 0;
3290 }
3291 
3292 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3293 {
3294 	table->table[index] = 0;
3295 }
3296 
3297 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3298 {
3299 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3300 	struct irte_ga *irte = &ptr[index];
3301 
3302 	memset(&irte->lo.val, 0, sizeof(u64));
3303 	memset(&irte->hi.val, 0, sizeof(u64));
3304 }
3305 
3306 static int get_devid(struct irq_alloc_info *info)
3307 {
3308 	switch (info->type) {
3309 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3310 		return get_ioapic_devid(info->devid);
3311 	case X86_IRQ_ALLOC_TYPE_HPET:
3312 		return get_hpet_devid(info->devid);
3313 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3314 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3315 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3316 	default:
3317 		WARN_ON_ONCE(1);
3318 		return -1;
3319 	}
3320 }
3321 
3322 struct irq_remap_ops amd_iommu_irq_ops = {
3323 	.prepare		= amd_iommu_prepare,
3324 	.enable			= amd_iommu_enable,
3325 	.disable		= amd_iommu_disable,
3326 	.reenable		= amd_iommu_reenable,
3327 	.enable_faulting	= amd_iommu_enable_faulting,
3328 };
3329 
3330 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3331 {
3332 	msg->data = index;
3333 	msg->address_lo = 0;
3334 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3335 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3336 }
3337 
3338 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3339 				       struct irq_cfg *irq_cfg,
3340 				       struct irq_alloc_info *info,
3341 				       int devid, int index, int sub_handle)
3342 {
3343 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3344 	struct amd_iommu *iommu = data->iommu;
3345 
3346 	if (!iommu)
3347 		return;
3348 
3349 	data->irq_2_irte.devid = devid;
3350 	data->irq_2_irte.index = index + sub_handle;
3351 	iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3352 				 apic->dest_mode_logical, irq_cfg->vector,
3353 				 irq_cfg->dest_apicid, devid);
3354 
3355 	switch (info->type) {
3356 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3357 	case X86_IRQ_ALLOC_TYPE_HPET:
3358 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3359 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3360 		fill_msi_msg(&data->msi_entry, irte_info->index);
3361 		break;
3362 
3363 	default:
3364 		BUG_ON(1);
3365 		break;
3366 	}
3367 }
3368 
3369 struct amd_irte_ops irte_32_ops = {
3370 	.prepare = irte_prepare,
3371 	.activate = irte_activate,
3372 	.deactivate = irte_deactivate,
3373 	.set_affinity = irte_set_affinity,
3374 	.set_allocated = irte_set_allocated,
3375 	.is_allocated = irte_is_allocated,
3376 	.clear_allocated = irte_clear_allocated,
3377 };
3378 
3379 struct amd_irte_ops irte_128_ops = {
3380 	.prepare = irte_ga_prepare,
3381 	.activate = irte_ga_activate,
3382 	.deactivate = irte_ga_deactivate,
3383 	.set_affinity = irte_ga_set_affinity,
3384 	.set_allocated = irte_ga_set_allocated,
3385 	.is_allocated = irte_ga_is_allocated,
3386 	.clear_allocated = irte_ga_clear_allocated,
3387 };
3388 
3389 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3390 			       unsigned int nr_irqs, void *arg)
3391 {
3392 	struct irq_alloc_info *info = arg;
3393 	struct irq_data *irq_data;
3394 	struct amd_ir_data *data = NULL;
3395 	struct amd_iommu *iommu;
3396 	struct irq_cfg *cfg;
3397 	int i, ret, devid, seg, sbdf;
3398 	int index;
3399 
3400 	if (!info)
3401 		return -EINVAL;
3402 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3403 		return -EINVAL;
3404 
3405 	sbdf = get_devid(info);
3406 	if (sbdf < 0)
3407 		return -EINVAL;
3408 
3409 	seg = PCI_SBDF_TO_SEGID(sbdf);
3410 	devid = PCI_SBDF_TO_DEVID(sbdf);
3411 	iommu = __rlookup_amd_iommu(seg, devid);
3412 	if (!iommu)
3413 		return -EINVAL;
3414 
3415 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3416 	if (ret < 0)
3417 		return ret;
3418 
3419 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3420 		struct irq_remap_table *table;
3421 
3422 		table = alloc_irq_table(iommu, devid, NULL);
3423 		if (table) {
3424 			if (!table->min_index) {
3425 				/*
3426 				 * Keep the first 32 indexes free for IOAPIC
3427 				 * interrupts.
3428 				 */
3429 				table->min_index = 32;
3430 				for (i = 0; i < 32; ++i)
3431 					iommu->irte_ops->set_allocated(table, i);
3432 			}
3433 			WARN_ON(table->min_index != 32);
3434 			index = info->ioapic.pin;
3435 		} else {
3436 			index = -ENOMEM;
3437 		}
3438 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3439 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3440 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3441 
3442 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3443 					msi_desc_to_pci_dev(info->desc));
3444 	} else {
3445 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3446 	}
3447 
3448 	if (index < 0) {
3449 		pr_warn("Failed to allocate IRTE\n");
3450 		ret = index;
3451 		goto out_free_parent;
3452 	}
3453 
3454 	for (i = 0; i < nr_irqs; i++) {
3455 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3456 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3457 		if (!cfg) {
3458 			ret = -EINVAL;
3459 			goto out_free_data;
3460 		}
3461 
3462 		ret = -ENOMEM;
3463 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3464 		if (!data)
3465 			goto out_free_data;
3466 
3467 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3468 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3469 		else
3470 			data->entry = kzalloc(sizeof(struct irte_ga),
3471 						     GFP_KERNEL);
3472 		if (!data->entry) {
3473 			kfree(data);
3474 			goto out_free_data;
3475 		}
3476 
3477 		data->iommu = iommu;
3478 		irq_data->hwirq = (devid << 16) + i;
3479 		irq_data->chip_data = data;
3480 		irq_data->chip = &amd_ir_chip;
3481 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3482 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3483 	}
3484 
3485 	return 0;
3486 
3487 out_free_data:
3488 	for (i--; i >= 0; i--) {
3489 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3490 		if (irq_data)
3491 			kfree(irq_data->chip_data);
3492 	}
3493 	for (i = 0; i < nr_irqs; i++)
3494 		free_irte(iommu, devid, index + i);
3495 out_free_parent:
3496 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3497 	return ret;
3498 }
3499 
3500 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3501 			       unsigned int nr_irqs)
3502 {
3503 	struct irq_2_irte *irte_info;
3504 	struct irq_data *irq_data;
3505 	struct amd_ir_data *data;
3506 	int i;
3507 
3508 	for (i = 0; i < nr_irqs; i++) {
3509 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3510 		if (irq_data && irq_data->chip_data) {
3511 			data = irq_data->chip_data;
3512 			irte_info = &data->irq_2_irte;
3513 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3514 			kfree(data->entry);
3515 			kfree(data);
3516 		}
3517 	}
3518 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3519 }
3520 
3521 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3522 			       struct amd_ir_data *ir_data,
3523 			       struct irq_2_irte *irte_info,
3524 			       struct irq_cfg *cfg);
3525 
3526 static int irq_remapping_activate(struct irq_domain *domain,
3527 				  struct irq_data *irq_data, bool reserve)
3528 {
3529 	struct amd_ir_data *data = irq_data->chip_data;
3530 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3531 	struct amd_iommu *iommu = data->iommu;
3532 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3533 
3534 	if (!iommu)
3535 		return 0;
3536 
3537 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3538 				  irte_info->index);
3539 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3540 	return 0;
3541 }
3542 
3543 static void irq_remapping_deactivate(struct irq_domain *domain,
3544 				     struct irq_data *irq_data)
3545 {
3546 	struct amd_ir_data *data = irq_data->chip_data;
3547 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3548 	struct amd_iommu *iommu = data->iommu;
3549 
3550 	if (iommu)
3551 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3552 					    irte_info->index);
3553 }
3554 
3555 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3556 				enum irq_domain_bus_token bus_token)
3557 {
3558 	struct amd_iommu *iommu;
3559 	int devid = -1;
3560 
3561 	if (!amd_iommu_irq_remap)
3562 		return 0;
3563 
3564 	if (x86_fwspec_is_ioapic(fwspec))
3565 		devid = get_ioapic_devid(fwspec->param[0]);
3566 	else if (x86_fwspec_is_hpet(fwspec))
3567 		devid = get_hpet_devid(fwspec->param[0]);
3568 
3569 	if (devid < 0)
3570 		return 0;
3571 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3572 
3573 	return iommu && iommu->ir_domain == d;
3574 }
3575 
3576 static const struct irq_domain_ops amd_ir_domain_ops = {
3577 	.select = irq_remapping_select,
3578 	.alloc = irq_remapping_alloc,
3579 	.free = irq_remapping_free,
3580 	.activate = irq_remapping_activate,
3581 	.deactivate = irq_remapping_deactivate,
3582 };
3583 
3584 int amd_iommu_activate_guest_mode(void *data)
3585 {
3586 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3587 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3588 	u64 valid;
3589 
3590 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3591 		return 0;
3592 
3593 	valid = entry->lo.fields_vapic.valid;
3594 
3595 	entry->lo.val = 0;
3596 	entry->hi.val = 0;
3597 
3598 	entry->lo.fields_vapic.valid       = valid;
3599 	entry->lo.fields_vapic.guest_mode  = 1;
3600 	entry->lo.fields_vapic.ga_log_intr = 1;
3601 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3602 	entry->hi.fields.vector            = ir_data->ga_vector;
3603 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3604 
3605 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3606 			      ir_data->irq_2_irte.index, entry);
3607 }
3608 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3609 
3610 int amd_iommu_deactivate_guest_mode(void *data)
3611 {
3612 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3613 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3614 	struct irq_cfg *cfg = ir_data->cfg;
3615 	u64 valid;
3616 
3617 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3618 	    !entry || !entry->lo.fields_vapic.guest_mode)
3619 		return 0;
3620 
3621 	valid = entry->lo.fields_remap.valid;
3622 
3623 	entry->lo.val = 0;
3624 	entry->hi.val = 0;
3625 
3626 	entry->lo.fields_remap.valid       = valid;
3627 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3628 	entry->lo.fields_remap.int_type    = APIC_DELIVERY_MODE_FIXED;
3629 	entry->hi.fields.vector            = cfg->vector;
3630 	entry->lo.fields_remap.destination =
3631 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3632 	entry->hi.fields.destination =
3633 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3634 
3635 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3636 			      ir_data->irq_2_irte.index, entry);
3637 }
3638 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3639 
3640 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3641 {
3642 	int ret;
3643 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3644 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3645 	struct amd_ir_data *ir_data = data->chip_data;
3646 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3647 	struct iommu_dev_data *dev_data;
3648 
3649 	if (ir_data->iommu == NULL)
3650 		return -EINVAL;
3651 
3652 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3653 
3654 	/* Note:
3655 	 * This device has never been set up for guest mode.
3656 	 * we should not modify the IRTE
3657 	 */
3658 	if (!dev_data || !dev_data->use_vapic)
3659 		return 0;
3660 
3661 	ir_data->cfg = irqd_cfg(data);
3662 	pi_data->ir_data = ir_data;
3663 
3664 	/* Note:
3665 	 * SVM tries to set up for VAPIC mode, but we are in
3666 	 * legacy mode. So, we force legacy mode instead.
3667 	 */
3668 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3669 		pr_debug("%s: Fall back to using intr legacy remap\n",
3670 			 __func__);
3671 		pi_data->is_guest_mode = false;
3672 	}
3673 
3674 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3675 	if (pi_data->is_guest_mode) {
3676 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3677 		ir_data->ga_vector = vcpu_pi_info->vector;
3678 		ir_data->ga_tag = pi_data->ga_tag;
3679 		ret = amd_iommu_activate_guest_mode(ir_data);
3680 		if (!ret)
3681 			ir_data->cached_ga_tag = pi_data->ga_tag;
3682 	} else {
3683 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3684 
3685 		/*
3686 		 * This communicates the ga_tag back to the caller
3687 		 * so that it can do all the necessary clean up.
3688 		 */
3689 		if (!ret)
3690 			ir_data->cached_ga_tag = 0;
3691 	}
3692 
3693 	return ret;
3694 }
3695 
3696 
3697 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3698 			       struct amd_ir_data *ir_data,
3699 			       struct irq_2_irte *irte_info,
3700 			       struct irq_cfg *cfg)
3701 {
3702 
3703 	/*
3704 	 * Atomically updates the IRTE with the new destination, vector
3705 	 * and flushes the interrupt entry cache.
3706 	 */
3707 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3708 				      irte_info->index, cfg->vector,
3709 				      cfg->dest_apicid);
3710 }
3711 
3712 static int amd_ir_set_affinity(struct irq_data *data,
3713 			       const struct cpumask *mask, bool force)
3714 {
3715 	struct amd_ir_data *ir_data = data->chip_data;
3716 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3717 	struct irq_cfg *cfg = irqd_cfg(data);
3718 	struct irq_data *parent = data->parent_data;
3719 	struct amd_iommu *iommu = ir_data->iommu;
3720 	int ret;
3721 
3722 	if (!iommu)
3723 		return -ENODEV;
3724 
3725 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3726 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3727 		return ret;
3728 
3729 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3730 	/*
3731 	 * After this point, all the interrupts will start arriving
3732 	 * at the new destination. So, time to cleanup the previous
3733 	 * vector allocation.
3734 	 */
3735 	vector_schedule_cleanup(cfg);
3736 
3737 	return IRQ_SET_MASK_OK_DONE;
3738 }
3739 
3740 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3741 {
3742 	struct amd_ir_data *ir_data = irq_data->chip_data;
3743 
3744 	*msg = ir_data->msi_entry;
3745 }
3746 
3747 static struct irq_chip amd_ir_chip = {
3748 	.name			= "AMD-IR",
3749 	.irq_ack		= apic_ack_irq,
3750 	.irq_set_affinity	= amd_ir_set_affinity,
3751 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3752 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3753 };
3754 
3755 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3756 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
3757 				  MSI_FLAG_MULTI_PCI_MSI |
3758 				  MSI_FLAG_PCI_IMS,
3759 	.prefix			= "IR-",
3760 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3761 };
3762 
3763 static const struct msi_parent_ops virt_amdvi_msi_parent_ops = {
3764 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
3765 				  MSI_FLAG_MULTI_PCI_MSI,
3766 	.prefix			= "vIR-",
3767 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3768 };
3769 
3770 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3771 {
3772 	struct fwnode_handle *fn;
3773 
3774 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3775 	if (!fn)
3776 		return -ENOMEM;
3777 	iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3778 						       fn, &amd_ir_domain_ops, iommu);
3779 	if (!iommu->ir_domain) {
3780 		irq_domain_free_fwnode(fn);
3781 		return -ENOMEM;
3782 	}
3783 
3784 	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_AMDVI);
3785 	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3786 				   IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3787 
3788 	if (amd_iommu_np_cache)
3789 		iommu->ir_domain->msi_parent_ops = &virt_amdvi_msi_parent_ops;
3790 	else
3791 		iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3792 
3793 	return 0;
3794 }
3795 
3796 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3797 {
3798 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3799 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3800 
3801 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3802 	    !entry || !entry->lo.fields_vapic.guest_mode)
3803 		return 0;
3804 
3805 	if (!ir_data->iommu)
3806 		return -ENODEV;
3807 
3808 	if (cpu >= 0) {
3809 		entry->lo.fields_vapic.destination =
3810 					APICID_TO_IRTE_DEST_LO(cpu);
3811 		entry->hi.fields.destination =
3812 					APICID_TO_IRTE_DEST_HI(cpu);
3813 	}
3814 	entry->lo.fields_vapic.is_run = is_run;
3815 
3816 	return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3817 				ir_data->irq_2_irte.index, entry);
3818 }
3819 EXPORT_SYMBOL(amd_iommu_update_ga);
3820 #endif
3821