xref: /linux/drivers/iommu/amd/iommu.c (revision df561f6688fef775baa341a0f5d960becd248b11)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/dma-contiguous.h>
32 #include <linux/irqdomain.h>
33 #include <linux/percpu.h>
34 #include <linux/iova.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
37 #include <asm/apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/msidef.h>
40 #include <asm/proto.h>
41 #include <asm/iommu.h>
42 #include <asm/gart.h>
43 #include <asm/dma.h>
44 
45 #include "amd_iommu.h"
46 #include "../irq_remapping.h"
47 
48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
49 
50 #define LOOP_TIMEOUT	100000
51 
52 /* IO virtual address start page frame number */
53 #define IOVA_START_PFN		(1)
54 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
55 
56 /* Reserved IOVA ranges */
57 #define MSI_RANGE_START		(0xfee00000)
58 #define MSI_RANGE_END		(0xfeefffff)
59 #define HT_RANGE_START		(0xfd00000000ULL)
60 #define HT_RANGE_END		(0xffffffffffULL)
61 
62 /*
63  * This bitmap is used to advertise the page sizes our hardware support
64  * to the IOMMU core, which will then use this information to split
65  * physically contiguous memory regions it is mapping into page sizes
66  * that we support.
67  *
68  * 512GB Pages are not supported due to a hardware bug
69  */
70 #define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
71 
72 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
73 
74 static DEFINE_SPINLOCK(pd_bitmap_lock);
75 
76 /* List of all available dev_data structures */
77 static LLIST_HEAD(dev_data_list);
78 
79 LIST_HEAD(ioapic_map);
80 LIST_HEAD(hpet_map);
81 LIST_HEAD(acpihid_map);
82 
83 /*
84  * Domain for untranslated devices - only allocated
85  * if iommu=pt passed on kernel cmd line.
86  */
87 const struct iommu_ops amd_iommu_ops;
88 
89 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
90 int amd_iommu_max_glx_val = -1;
91 
92 /*
93  * general struct to manage commands send to an IOMMU
94  */
95 struct iommu_cmd {
96 	u32 data[4];
97 };
98 
99 struct kmem_cache *amd_iommu_irq_cache;
100 
101 static void update_domain(struct protection_domain *domain);
102 static void detach_device(struct device *dev);
103 static void update_and_flush_device_table(struct protection_domain *domain,
104 					  struct domain_pgtable *pgtable);
105 
106 /****************************************************************************
107  *
108  * Helper functions
109  *
110  ****************************************************************************/
111 
112 static inline u16 get_pci_device_id(struct device *dev)
113 {
114 	struct pci_dev *pdev = to_pci_dev(dev);
115 
116 	return pci_dev_id(pdev);
117 }
118 
119 static inline int get_acpihid_device_id(struct device *dev,
120 					struct acpihid_map_entry **entry)
121 {
122 	struct acpi_device *adev = ACPI_COMPANION(dev);
123 	struct acpihid_map_entry *p;
124 
125 	if (!adev)
126 		return -ENODEV;
127 
128 	list_for_each_entry(p, &acpihid_map, list) {
129 		if (acpi_dev_hid_uid_match(adev, p->hid,
130 					   p->uid[0] ? p->uid : NULL)) {
131 			if (entry)
132 				*entry = p;
133 			return p->devid;
134 		}
135 	}
136 	return -EINVAL;
137 }
138 
139 static inline int get_device_id(struct device *dev)
140 {
141 	int devid;
142 
143 	if (dev_is_pci(dev))
144 		devid = get_pci_device_id(dev);
145 	else
146 		devid = get_acpihid_device_id(dev, NULL);
147 
148 	return devid;
149 }
150 
151 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
152 {
153 	return container_of(dom, struct protection_domain, domain);
154 }
155 
156 static void amd_iommu_domain_get_pgtable(struct protection_domain *domain,
157 					 struct domain_pgtable *pgtable)
158 {
159 	u64 pt_root = atomic64_read(&domain->pt_root);
160 
161 	pgtable->root = (u64 *)(pt_root & PAGE_MASK);
162 	pgtable->mode = pt_root & 7; /* lowest 3 bits encode pgtable mode */
163 }
164 
165 static void amd_iommu_domain_set_pt_root(struct protection_domain *domain, u64 root)
166 {
167 	atomic64_set(&domain->pt_root, root);
168 }
169 
170 static void amd_iommu_domain_clr_pt_root(struct protection_domain *domain)
171 {
172 	amd_iommu_domain_set_pt_root(domain, 0);
173 }
174 
175 static void amd_iommu_domain_set_pgtable(struct protection_domain *domain,
176 					 u64 *root, int mode)
177 {
178 	u64 pt_root;
179 
180 	/* lowest 3 bits encode pgtable mode */
181 	pt_root = mode & 7;
182 	pt_root |= (u64)root;
183 
184 	amd_iommu_domain_set_pt_root(domain, pt_root);
185 }
186 
187 static struct iommu_dev_data *alloc_dev_data(u16 devid)
188 {
189 	struct iommu_dev_data *dev_data;
190 
191 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
192 	if (!dev_data)
193 		return NULL;
194 
195 	spin_lock_init(&dev_data->lock);
196 	dev_data->devid = devid;
197 	ratelimit_default_init(&dev_data->rs);
198 
199 	llist_add(&dev_data->dev_data_list, &dev_data_list);
200 	return dev_data;
201 }
202 
203 static struct iommu_dev_data *search_dev_data(u16 devid)
204 {
205 	struct iommu_dev_data *dev_data;
206 	struct llist_node *node;
207 
208 	if (llist_empty(&dev_data_list))
209 		return NULL;
210 
211 	node = dev_data_list.first;
212 	llist_for_each_entry(dev_data, node, dev_data_list) {
213 		if (dev_data->devid == devid)
214 			return dev_data;
215 	}
216 
217 	return NULL;
218 }
219 
220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
221 {
222 	u16 devid = pci_dev_id(pdev);
223 
224 	if (devid == alias)
225 		return 0;
226 
227 	amd_iommu_rlookup_table[alias] =
228 		amd_iommu_rlookup_table[devid];
229 	memcpy(amd_iommu_dev_table[alias].data,
230 	       amd_iommu_dev_table[devid].data,
231 	       sizeof(amd_iommu_dev_table[alias].data));
232 
233 	return 0;
234 }
235 
236 static void clone_aliases(struct pci_dev *pdev)
237 {
238 	if (!pdev)
239 		return;
240 
241 	/*
242 	 * The IVRS alias stored in the alias table may not be
243 	 * part of the PCI DMA aliases if it's bus differs
244 	 * from the original device.
245 	 */
246 	clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
247 
248 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
249 }
250 
251 static struct pci_dev *setup_aliases(struct device *dev)
252 {
253 	struct pci_dev *pdev = to_pci_dev(dev);
254 	u16 ivrs_alias;
255 
256 	/* For ACPI HID devices, there are no aliases */
257 	if (!dev_is_pci(dev))
258 		return NULL;
259 
260 	/*
261 	 * Add the IVRS alias to the pci aliases if it is on the same
262 	 * bus. The IVRS table may know about a quirk that we don't.
263 	 */
264 	ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
265 	if (ivrs_alias != pci_dev_id(pdev) &&
266 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
267 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
268 
269 	clone_aliases(pdev);
270 
271 	return pdev;
272 }
273 
274 static struct iommu_dev_data *find_dev_data(u16 devid)
275 {
276 	struct iommu_dev_data *dev_data;
277 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
278 
279 	dev_data = search_dev_data(devid);
280 
281 	if (dev_data == NULL) {
282 		dev_data = alloc_dev_data(devid);
283 		if (!dev_data)
284 			return NULL;
285 
286 		if (translation_pre_enabled(iommu))
287 			dev_data->defer_attach = true;
288 	}
289 
290 	return dev_data;
291 }
292 
293 /*
294 * Find or create an IOMMU group for a acpihid device.
295 */
296 static struct iommu_group *acpihid_device_group(struct device *dev)
297 {
298 	struct acpihid_map_entry *p, *entry = NULL;
299 	int devid;
300 
301 	devid = get_acpihid_device_id(dev, &entry);
302 	if (devid < 0)
303 		return ERR_PTR(devid);
304 
305 	list_for_each_entry(p, &acpihid_map, list) {
306 		if ((devid == p->devid) && p->group)
307 			entry->group = p->group;
308 	}
309 
310 	if (!entry->group)
311 		entry->group = generic_device_group(dev);
312 	else
313 		iommu_group_ref_get(entry->group);
314 
315 	return entry->group;
316 }
317 
318 static bool pci_iommuv2_capable(struct pci_dev *pdev)
319 {
320 	static const int caps[] = {
321 		PCI_EXT_CAP_ID_PRI,
322 		PCI_EXT_CAP_ID_PASID,
323 	};
324 	int i, pos;
325 
326 	if (!pci_ats_supported(pdev))
327 		return false;
328 
329 	for (i = 0; i < 2; ++i) {
330 		pos = pci_find_ext_capability(pdev, caps[i]);
331 		if (pos == 0)
332 			return false;
333 	}
334 
335 	return true;
336 }
337 
338 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
339 {
340 	struct iommu_dev_data *dev_data;
341 
342 	dev_data = dev_iommu_priv_get(&pdev->dev);
343 
344 	return dev_data->errata & (1 << erratum) ? true : false;
345 }
346 
347 /*
348  * This function checks if the driver got a valid device from the caller to
349  * avoid dereferencing invalid pointers.
350  */
351 static bool check_device(struct device *dev)
352 {
353 	int devid;
354 
355 	if (!dev)
356 		return false;
357 
358 	devid = get_device_id(dev);
359 	if (devid < 0)
360 		return false;
361 
362 	/* Out of our scope? */
363 	if (devid > amd_iommu_last_bdf)
364 		return false;
365 
366 	if (amd_iommu_rlookup_table[devid] == NULL)
367 		return false;
368 
369 	return true;
370 }
371 
372 static int iommu_init_device(struct device *dev)
373 {
374 	struct iommu_dev_data *dev_data;
375 	int devid;
376 
377 	if (dev_iommu_priv_get(dev))
378 		return 0;
379 
380 	devid = get_device_id(dev);
381 	if (devid < 0)
382 		return devid;
383 
384 	dev_data = find_dev_data(devid);
385 	if (!dev_data)
386 		return -ENOMEM;
387 
388 	dev_data->pdev = setup_aliases(dev);
389 
390 	/*
391 	 * By default we use passthrough mode for IOMMUv2 capable device.
392 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
393 	 * invalid address), we ignore the capability for the device so
394 	 * it'll be forced to go into translation mode.
395 	 */
396 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
397 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
398 		struct amd_iommu *iommu;
399 
400 		iommu = amd_iommu_rlookup_table[dev_data->devid];
401 		dev_data->iommu_v2 = iommu->is_iommu_v2;
402 	}
403 
404 	dev_iommu_priv_set(dev, dev_data);
405 
406 	return 0;
407 }
408 
409 static void iommu_ignore_device(struct device *dev)
410 {
411 	int devid;
412 
413 	devid = get_device_id(dev);
414 	if (devid < 0)
415 		return;
416 
417 	amd_iommu_rlookup_table[devid] = NULL;
418 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
419 
420 	setup_aliases(dev);
421 }
422 
423 static void amd_iommu_uninit_device(struct device *dev)
424 {
425 	struct iommu_dev_data *dev_data;
426 
427 	dev_data = dev_iommu_priv_get(dev);
428 	if (!dev_data)
429 		return;
430 
431 	if (dev_data->domain)
432 		detach_device(dev);
433 
434 	dev_iommu_priv_set(dev, NULL);
435 
436 	/*
437 	 * We keep dev_data around for unplugged devices and reuse it when the
438 	 * device is re-plugged - not doing so would introduce a ton of races.
439 	 */
440 }
441 
442 /*
443  * Helper function to get the first pte of a large mapping
444  */
445 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
446 			 unsigned long *count)
447 {
448 	unsigned long pte_mask, pg_size, cnt;
449 	u64 *fpte;
450 
451 	pg_size  = PTE_PAGE_SIZE(*pte);
452 	cnt      = PAGE_SIZE_PTE_COUNT(pg_size);
453 	pte_mask = ~((cnt << 3) - 1);
454 	fpte     = (u64 *)(((unsigned long)pte) & pte_mask);
455 
456 	if (page_size)
457 		*page_size = pg_size;
458 
459 	if (count)
460 		*count = cnt;
461 
462 	return fpte;
463 }
464 
465 /****************************************************************************
466  *
467  * Interrupt handling functions
468  *
469  ****************************************************************************/
470 
471 static void dump_dte_entry(u16 devid)
472 {
473 	int i;
474 
475 	for (i = 0; i < 4; ++i)
476 		pr_err("DTE[%d]: %016llx\n", i,
477 			amd_iommu_dev_table[devid].data[i]);
478 }
479 
480 static void dump_command(unsigned long phys_addr)
481 {
482 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
483 	int i;
484 
485 	for (i = 0; i < 4; ++i)
486 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
487 }
488 
489 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
490 					u64 address, int flags)
491 {
492 	struct iommu_dev_data *dev_data = NULL;
493 	struct pci_dev *pdev;
494 
495 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
496 					   devid & 0xff);
497 	if (pdev)
498 		dev_data = dev_iommu_priv_get(&pdev->dev);
499 
500 	if (dev_data && __ratelimit(&dev_data->rs)) {
501 		pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
502 			domain_id, address, flags);
503 	} else if (printk_ratelimit()) {
504 		pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
505 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
506 			domain_id, address, flags);
507 	}
508 
509 	if (pdev)
510 		pci_dev_put(pdev);
511 }
512 
513 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
514 {
515 	struct device *dev = iommu->iommu.dev;
516 	int type, devid, pasid, flags, tag;
517 	volatile u32 *event = __evt;
518 	int count = 0;
519 	u64 address;
520 
521 retry:
522 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
523 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
524 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
525 		  (event[1] & EVENT_DOMID_MASK_LO);
526 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
527 	address = (u64)(((u64)event[3]) << 32) | event[2];
528 
529 	if (type == 0) {
530 		/* Did we hit the erratum? */
531 		if (++count == LOOP_TIMEOUT) {
532 			pr_err("No event written to event log\n");
533 			return;
534 		}
535 		udelay(1);
536 		goto retry;
537 	}
538 
539 	if (type == EVENT_TYPE_IO_FAULT) {
540 		amd_iommu_report_page_fault(devid, pasid, address, flags);
541 		return;
542 	}
543 
544 	switch (type) {
545 	case EVENT_TYPE_ILL_DEV:
546 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
547 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
548 			pasid, address, flags);
549 		dump_dte_entry(devid);
550 		break;
551 	case EVENT_TYPE_DEV_TAB_ERR:
552 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
553 			"address=0x%llx flags=0x%04x]\n",
554 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
555 			address, flags);
556 		break;
557 	case EVENT_TYPE_PAGE_TAB_ERR:
558 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
559 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
560 			pasid, address, flags);
561 		break;
562 	case EVENT_TYPE_ILL_CMD:
563 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
564 		dump_command(address);
565 		break;
566 	case EVENT_TYPE_CMD_HARD_ERR:
567 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
568 			address, flags);
569 		break;
570 	case EVENT_TYPE_IOTLB_INV_TO:
571 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
572 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
573 			address);
574 		break;
575 	case EVENT_TYPE_INV_DEV_REQ:
576 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
577 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
578 			pasid, address, flags);
579 		break;
580 	case EVENT_TYPE_INV_PPR_REQ:
581 		pasid = PPR_PASID(*((u64 *)__evt));
582 		tag = event[1] & 0x03FF;
583 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
584 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585 			pasid, address, flags, tag);
586 		break;
587 	default:
588 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
589 			event[0], event[1], event[2], event[3]);
590 	}
591 
592 	memset(__evt, 0, 4 * sizeof(u32));
593 }
594 
595 static void iommu_poll_events(struct amd_iommu *iommu)
596 {
597 	u32 head, tail;
598 
599 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
600 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
601 
602 	while (head != tail) {
603 		iommu_print_event(iommu, iommu->evt_buf + head);
604 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
605 	}
606 
607 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
608 }
609 
610 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
611 {
612 	struct amd_iommu_fault fault;
613 
614 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
615 		pr_err_ratelimited("Unknown PPR request received\n");
616 		return;
617 	}
618 
619 	fault.address   = raw[1];
620 	fault.pasid     = PPR_PASID(raw[0]);
621 	fault.device_id = PPR_DEVID(raw[0]);
622 	fault.tag       = PPR_TAG(raw[0]);
623 	fault.flags     = PPR_FLAGS(raw[0]);
624 
625 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
626 }
627 
628 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
629 {
630 	u32 head, tail;
631 
632 	if (iommu->ppr_log == NULL)
633 		return;
634 
635 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
636 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
637 
638 	while (head != tail) {
639 		volatile u64 *raw;
640 		u64 entry[2];
641 		int i;
642 
643 		raw = (u64 *)(iommu->ppr_log + head);
644 
645 		/*
646 		 * Hardware bug: Interrupt may arrive before the entry is
647 		 * written to memory. If this happens we need to wait for the
648 		 * entry to arrive.
649 		 */
650 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
651 			if (PPR_REQ_TYPE(raw[0]) != 0)
652 				break;
653 			udelay(1);
654 		}
655 
656 		/* Avoid memcpy function-call overhead */
657 		entry[0] = raw[0];
658 		entry[1] = raw[1];
659 
660 		/*
661 		 * To detect the hardware bug we need to clear the entry
662 		 * back to zero.
663 		 */
664 		raw[0] = raw[1] = 0UL;
665 
666 		/* Update head pointer of hardware ring-buffer */
667 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
668 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
669 
670 		/* Handle PPR entry */
671 		iommu_handle_ppr_entry(iommu, entry);
672 
673 		/* Refresh ring-buffer information */
674 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
675 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
676 	}
677 }
678 
679 #ifdef CONFIG_IRQ_REMAP
680 static int (*iommu_ga_log_notifier)(u32);
681 
682 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
683 {
684 	iommu_ga_log_notifier = notifier;
685 
686 	return 0;
687 }
688 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
689 
690 static void iommu_poll_ga_log(struct amd_iommu *iommu)
691 {
692 	u32 head, tail, cnt = 0;
693 
694 	if (iommu->ga_log == NULL)
695 		return;
696 
697 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
698 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
699 
700 	while (head != tail) {
701 		volatile u64 *raw;
702 		u64 log_entry;
703 
704 		raw = (u64 *)(iommu->ga_log + head);
705 		cnt++;
706 
707 		/* Avoid memcpy function-call overhead */
708 		log_entry = *raw;
709 
710 		/* Update head pointer of hardware ring-buffer */
711 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
712 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
713 
714 		/* Handle GA entry */
715 		switch (GA_REQ_TYPE(log_entry)) {
716 		case GA_GUEST_NR:
717 			if (!iommu_ga_log_notifier)
718 				break;
719 
720 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
721 				 __func__, GA_DEVID(log_entry),
722 				 GA_TAG(log_entry));
723 
724 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
725 				pr_err("GA log notifier failed.\n");
726 			break;
727 		default:
728 			break;
729 		}
730 	}
731 }
732 #endif /* CONFIG_IRQ_REMAP */
733 
734 #define AMD_IOMMU_INT_MASK	\
735 	(MMIO_STATUS_EVT_INT_MASK | \
736 	 MMIO_STATUS_PPR_INT_MASK | \
737 	 MMIO_STATUS_GALOG_INT_MASK)
738 
739 irqreturn_t amd_iommu_int_thread(int irq, void *data)
740 {
741 	struct amd_iommu *iommu = (struct amd_iommu *) data;
742 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
743 
744 	while (status & AMD_IOMMU_INT_MASK) {
745 		/* Enable EVT and PPR and GA interrupts again */
746 		writel(AMD_IOMMU_INT_MASK,
747 			iommu->mmio_base + MMIO_STATUS_OFFSET);
748 
749 		if (status & MMIO_STATUS_EVT_INT_MASK) {
750 			pr_devel("Processing IOMMU Event Log\n");
751 			iommu_poll_events(iommu);
752 		}
753 
754 		if (status & MMIO_STATUS_PPR_INT_MASK) {
755 			pr_devel("Processing IOMMU PPR Log\n");
756 			iommu_poll_ppr_log(iommu);
757 		}
758 
759 #ifdef CONFIG_IRQ_REMAP
760 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
761 			pr_devel("Processing IOMMU GA Log\n");
762 			iommu_poll_ga_log(iommu);
763 		}
764 #endif
765 
766 		/*
767 		 * Hardware bug: ERBT1312
768 		 * When re-enabling interrupt (by writing 1
769 		 * to clear the bit), the hardware might also try to set
770 		 * the interrupt bit in the event status register.
771 		 * In this scenario, the bit will be set, and disable
772 		 * subsequent interrupts.
773 		 *
774 		 * Workaround: The IOMMU driver should read back the
775 		 * status register and check if the interrupt bits are cleared.
776 		 * If not, driver will need to go through the interrupt handler
777 		 * again and re-clear the bits
778 		 */
779 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
780 	}
781 	return IRQ_HANDLED;
782 }
783 
784 irqreturn_t amd_iommu_int_handler(int irq, void *data)
785 {
786 	return IRQ_WAKE_THREAD;
787 }
788 
789 /****************************************************************************
790  *
791  * IOMMU command queuing functions
792  *
793  ****************************************************************************/
794 
795 static int wait_on_sem(volatile u64 *sem)
796 {
797 	int i = 0;
798 
799 	while (*sem == 0 && i < LOOP_TIMEOUT) {
800 		udelay(1);
801 		i += 1;
802 	}
803 
804 	if (i == LOOP_TIMEOUT) {
805 		pr_alert("Completion-Wait loop timed out\n");
806 		return -EIO;
807 	}
808 
809 	return 0;
810 }
811 
812 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
813 			       struct iommu_cmd *cmd)
814 {
815 	u8 *target;
816 	u32 tail;
817 
818 	/* Copy command to buffer */
819 	tail = iommu->cmd_buf_tail;
820 	target = iommu->cmd_buf + tail;
821 	memcpy(target, cmd, sizeof(*cmd));
822 
823 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
824 	iommu->cmd_buf_tail = tail;
825 
826 	/* Tell the IOMMU about it */
827 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
828 }
829 
830 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
831 {
832 	u64 paddr = iommu_virt_to_phys((void *)address);
833 
834 	WARN_ON(address & 0x7ULL);
835 
836 	memset(cmd, 0, sizeof(*cmd));
837 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
838 	cmd->data[1] = upper_32_bits(paddr);
839 	cmd->data[2] = 1;
840 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
841 }
842 
843 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
844 {
845 	memset(cmd, 0, sizeof(*cmd));
846 	cmd->data[0] = devid;
847 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
848 }
849 
850 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
851 				  size_t size, u16 domid, int pde)
852 {
853 	u64 pages;
854 	bool s;
855 
856 	pages = iommu_num_pages(address, size, PAGE_SIZE);
857 	s     = false;
858 
859 	if (pages > 1) {
860 		/*
861 		 * If we have to flush more than one page, flush all
862 		 * TLB entries for this domain
863 		 */
864 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
865 		s = true;
866 	}
867 
868 	address &= PAGE_MASK;
869 
870 	memset(cmd, 0, sizeof(*cmd));
871 	cmd->data[1] |= domid;
872 	cmd->data[2]  = lower_32_bits(address);
873 	cmd->data[3]  = upper_32_bits(address);
874 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
875 	if (s) /* size bit - we flush more than one 4kb page */
876 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
877 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
878 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
879 }
880 
881 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
882 				  u64 address, size_t size)
883 {
884 	u64 pages;
885 	bool s;
886 
887 	pages = iommu_num_pages(address, size, PAGE_SIZE);
888 	s     = false;
889 
890 	if (pages > 1) {
891 		/*
892 		 * If we have to flush more than one page, flush all
893 		 * TLB entries for this domain
894 		 */
895 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
896 		s = true;
897 	}
898 
899 	address &= PAGE_MASK;
900 
901 	memset(cmd, 0, sizeof(*cmd));
902 	cmd->data[0]  = devid;
903 	cmd->data[0] |= (qdep & 0xff) << 24;
904 	cmd->data[1]  = devid;
905 	cmd->data[2]  = lower_32_bits(address);
906 	cmd->data[3]  = upper_32_bits(address);
907 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
908 	if (s)
909 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
910 }
911 
912 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
913 				  u64 address, bool size)
914 {
915 	memset(cmd, 0, sizeof(*cmd));
916 
917 	address &= ~(0xfffULL);
918 
919 	cmd->data[0]  = pasid;
920 	cmd->data[1]  = domid;
921 	cmd->data[2]  = lower_32_bits(address);
922 	cmd->data[3]  = upper_32_bits(address);
923 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
924 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
925 	if (size)
926 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
927 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
928 }
929 
930 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
931 				  int qdep, u64 address, bool size)
932 {
933 	memset(cmd, 0, sizeof(*cmd));
934 
935 	address &= ~(0xfffULL);
936 
937 	cmd->data[0]  = devid;
938 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
939 	cmd->data[0] |= (qdep  & 0xff) << 24;
940 	cmd->data[1]  = devid;
941 	cmd->data[1] |= (pasid & 0xff) << 16;
942 	cmd->data[2]  = lower_32_bits(address);
943 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
944 	cmd->data[3]  = upper_32_bits(address);
945 	if (size)
946 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
947 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
948 }
949 
950 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
951 			       int status, int tag, bool gn)
952 {
953 	memset(cmd, 0, sizeof(*cmd));
954 
955 	cmd->data[0]  = devid;
956 	if (gn) {
957 		cmd->data[1]  = pasid;
958 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
959 	}
960 	cmd->data[3]  = tag & 0x1ff;
961 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
962 
963 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
964 }
965 
966 static void build_inv_all(struct iommu_cmd *cmd)
967 {
968 	memset(cmd, 0, sizeof(*cmd));
969 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
970 }
971 
972 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
973 {
974 	memset(cmd, 0, sizeof(*cmd));
975 	cmd->data[0] = devid;
976 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
977 }
978 
979 /*
980  * Writes the command to the IOMMUs command buffer and informs the
981  * hardware about the new command.
982  */
983 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
984 				      struct iommu_cmd *cmd,
985 				      bool sync)
986 {
987 	unsigned int count = 0;
988 	u32 left, next_tail;
989 
990 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
991 again:
992 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
993 
994 	if (left <= 0x20) {
995 		/* Skip udelay() the first time around */
996 		if (count++) {
997 			if (count == LOOP_TIMEOUT) {
998 				pr_err("Command buffer timeout\n");
999 				return -EIO;
1000 			}
1001 
1002 			udelay(1);
1003 		}
1004 
1005 		/* Update head and recheck remaining space */
1006 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1007 					    MMIO_CMD_HEAD_OFFSET);
1008 
1009 		goto again;
1010 	}
1011 
1012 	copy_cmd_to_buffer(iommu, cmd);
1013 
1014 	/* Do we need to make sure all commands are processed? */
1015 	iommu->need_sync = sync;
1016 
1017 	return 0;
1018 }
1019 
1020 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1021 				    struct iommu_cmd *cmd,
1022 				    bool sync)
1023 {
1024 	unsigned long flags;
1025 	int ret;
1026 
1027 	raw_spin_lock_irqsave(&iommu->lock, flags);
1028 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1029 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1030 
1031 	return ret;
1032 }
1033 
1034 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1035 {
1036 	return iommu_queue_command_sync(iommu, cmd, true);
1037 }
1038 
1039 /*
1040  * This function queues a completion wait command into the command
1041  * buffer of an IOMMU
1042  */
1043 static int iommu_completion_wait(struct amd_iommu *iommu)
1044 {
1045 	struct iommu_cmd cmd;
1046 	unsigned long flags;
1047 	int ret;
1048 
1049 	if (!iommu->need_sync)
1050 		return 0;
1051 
1052 
1053 	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1054 
1055 	raw_spin_lock_irqsave(&iommu->lock, flags);
1056 
1057 	iommu->cmd_sem = 0;
1058 
1059 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1060 	if (ret)
1061 		goto out_unlock;
1062 
1063 	ret = wait_on_sem(&iommu->cmd_sem);
1064 
1065 out_unlock:
1066 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1067 
1068 	return ret;
1069 }
1070 
1071 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1072 {
1073 	struct iommu_cmd cmd;
1074 
1075 	build_inv_dte(&cmd, devid);
1076 
1077 	return iommu_queue_command(iommu, &cmd);
1078 }
1079 
1080 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1081 {
1082 	u32 devid;
1083 
1084 	for (devid = 0; devid <= 0xffff; ++devid)
1085 		iommu_flush_dte(iommu, devid);
1086 
1087 	iommu_completion_wait(iommu);
1088 }
1089 
1090 /*
1091  * This function uses heavy locking and may disable irqs for some time. But
1092  * this is no issue because it is only called during resume.
1093  */
1094 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1095 {
1096 	u32 dom_id;
1097 
1098 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1099 		struct iommu_cmd cmd;
1100 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1101 				      dom_id, 1);
1102 		iommu_queue_command(iommu, &cmd);
1103 	}
1104 
1105 	iommu_completion_wait(iommu);
1106 }
1107 
1108 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1109 {
1110 	struct iommu_cmd cmd;
1111 
1112 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1113 			      dom_id, 1);
1114 	iommu_queue_command(iommu, &cmd);
1115 
1116 	iommu_completion_wait(iommu);
1117 }
1118 
1119 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1120 {
1121 	struct iommu_cmd cmd;
1122 
1123 	build_inv_all(&cmd);
1124 
1125 	iommu_queue_command(iommu, &cmd);
1126 	iommu_completion_wait(iommu);
1127 }
1128 
1129 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1130 {
1131 	struct iommu_cmd cmd;
1132 
1133 	build_inv_irt(&cmd, devid);
1134 
1135 	iommu_queue_command(iommu, &cmd);
1136 }
1137 
1138 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1139 {
1140 	u32 devid;
1141 
1142 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1143 		iommu_flush_irt(iommu, devid);
1144 
1145 	iommu_completion_wait(iommu);
1146 }
1147 
1148 void iommu_flush_all_caches(struct amd_iommu *iommu)
1149 {
1150 	if (iommu_feature(iommu, FEATURE_IA)) {
1151 		amd_iommu_flush_all(iommu);
1152 	} else {
1153 		amd_iommu_flush_dte_all(iommu);
1154 		amd_iommu_flush_irt_all(iommu);
1155 		amd_iommu_flush_tlb_all(iommu);
1156 	}
1157 }
1158 
1159 /*
1160  * Command send function for flushing on-device TLB
1161  */
1162 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1163 			      u64 address, size_t size)
1164 {
1165 	struct amd_iommu *iommu;
1166 	struct iommu_cmd cmd;
1167 	int qdep;
1168 
1169 	qdep     = dev_data->ats.qdep;
1170 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1171 
1172 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1173 
1174 	return iommu_queue_command(iommu, &cmd);
1175 }
1176 
1177 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1178 {
1179 	struct amd_iommu *iommu = data;
1180 
1181 	return iommu_flush_dte(iommu, alias);
1182 }
1183 
1184 /*
1185  * Command send function for invalidating a device table entry
1186  */
1187 static int device_flush_dte(struct iommu_dev_data *dev_data)
1188 {
1189 	struct amd_iommu *iommu;
1190 	u16 alias;
1191 	int ret;
1192 
1193 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1194 
1195 	if (dev_data->pdev)
1196 		ret = pci_for_each_dma_alias(dev_data->pdev,
1197 					     device_flush_dte_alias, iommu);
1198 	else
1199 		ret = iommu_flush_dte(iommu, dev_data->devid);
1200 	if (ret)
1201 		return ret;
1202 
1203 	alias = amd_iommu_alias_table[dev_data->devid];
1204 	if (alias != dev_data->devid) {
1205 		ret = iommu_flush_dte(iommu, alias);
1206 		if (ret)
1207 			return ret;
1208 	}
1209 
1210 	if (dev_data->ats.enabled)
1211 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1212 
1213 	return ret;
1214 }
1215 
1216 /*
1217  * TLB invalidation function which is called from the mapping functions.
1218  * It invalidates a single PTE if the range to flush is within a single
1219  * page. Otherwise it flushes the whole TLB of the IOMMU.
1220  */
1221 static void __domain_flush_pages(struct protection_domain *domain,
1222 				 u64 address, size_t size, int pde)
1223 {
1224 	struct iommu_dev_data *dev_data;
1225 	struct iommu_cmd cmd;
1226 	int ret = 0, i;
1227 
1228 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1229 
1230 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1231 		if (!domain->dev_iommu[i])
1232 			continue;
1233 
1234 		/*
1235 		 * Devices of this domain are behind this IOMMU
1236 		 * We need a TLB flush
1237 		 */
1238 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1239 	}
1240 
1241 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1242 
1243 		if (!dev_data->ats.enabled)
1244 			continue;
1245 
1246 		ret |= device_flush_iotlb(dev_data, address, size);
1247 	}
1248 
1249 	WARN_ON(ret);
1250 }
1251 
1252 static void domain_flush_pages(struct protection_domain *domain,
1253 			       u64 address, size_t size)
1254 {
1255 	__domain_flush_pages(domain, address, size, 0);
1256 }
1257 
1258 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1259 static void domain_flush_tlb_pde(struct protection_domain *domain)
1260 {
1261 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1262 }
1263 
1264 static void domain_flush_complete(struct protection_domain *domain)
1265 {
1266 	int i;
1267 
1268 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1269 		if (domain && !domain->dev_iommu[i])
1270 			continue;
1271 
1272 		/*
1273 		 * Devices of this domain are behind this IOMMU
1274 		 * We need to wait for completion of all commands.
1275 		 */
1276 		iommu_completion_wait(amd_iommus[i]);
1277 	}
1278 }
1279 
1280 /* Flush the not present cache if it exists */
1281 static void domain_flush_np_cache(struct protection_domain *domain,
1282 		dma_addr_t iova, size_t size)
1283 {
1284 	if (unlikely(amd_iommu_np_cache)) {
1285 		unsigned long flags;
1286 
1287 		spin_lock_irqsave(&domain->lock, flags);
1288 		domain_flush_pages(domain, iova, size);
1289 		domain_flush_complete(domain);
1290 		spin_unlock_irqrestore(&domain->lock, flags);
1291 	}
1292 }
1293 
1294 
1295 /*
1296  * This function flushes the DTEs for all devices in domain
1297  */
1298 static void domain_flush_devices(struct protection_domain *domain)
1299 {
1300 	struct iommu_dev_data *dev_data;
1301 
1302 	list_for_each_entry(dev_data, &domain->dev_list, list)
1303 		device_flush_dte(dev_data);
1304 }
1305 
1306 /****************************************************************************
1307  *
1308  * The functions below are used the create the page table mappings for
1309  * unity mapped regions.
1310  *
1311  ****************************************************************************/
1312 
1313 static void free_page_list(struct page *freelist)
1314 {
1315 	while (freelist != NULL) {
1316 		unsigned long p = (unsigned long)page_address(freelist);
1317 		freelist = freelist->freelist;
1318 		free_page(p);
1319 	}
1320 }
1321 
1322 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1323 {
1324 	struct page *p = virt_to_page((void *)pt);
1325 
1326 	p->freelist = freelist;
1327 
1328 	return p;
1329 }
1330 
1331 #define DEFINE_FREE_PT_FN(LVL, FN)						\
1332 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)	\
1333 {										\
1334 	unsigned long p;							\
1335 	u64 *pt;								\
1336 	int i;									\
1337 										\
1338 	pt = (u64 *)__pt;							\
1339 										\
1340 	for (i = 0; i < 512; ++i) {						\
1341 		/* PTE present? */						\
1342 		if (!IOMMU_PTE_PRESENT(pt[i]))					\
1343 			continue;						\
1344 										\
1345 		/* Large PTE? */						\
1346 		if (PM_PTE_LEVEL(pt[i]) == 0 ||					\
1347 		    PM_PTE_LEVEL(pt[i]) == 7)					\
1348 			continue;						\
1349 										\
1350 		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);			\
1351 		freelist = FN(p, freelist);					\
1352 	}									\
1353 										\
1354 	return free_pt_page((unsigned long)pt, freelist);			\
1355 }
1356 
1357 DEFINE_FREE_PT_FN(l2, free_pt_page)
1358 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1359 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1360 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1361 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1362 
1363 static struct page *free_sub_pt(unsigned long root, int mode,
1364 				struct page *freelist)
1365 {
1366 	switch (mode) {
1367 	case PAGE_MODE_NONE:
1368 	case PAGE_MODE_7_LEVEL:
1369 		break;
1370 	case PAGE_MODE_1_LEVEL:
1371 		freelist = free_pt_page(root, freelist);
1372 		break;
1373 	case PAGE_MODE_2_LEVEL:
1374 		freelist = free_pt_l2(root, freelist);
1375 		break;
1376 	case PAGE_MODE_3_LEVEL:
1377 		freelist = free_pt_l3(root, freelist);
1378 		break;
1379 	case PAGE_MODE_4_LEVEL:
1380 		freelist = free_pt_l4(root, freelist);
1381 		break;
1382 	case PAGE_MODE_5_LEVEL:
1383 		freelist = free_pt_l5(root, freelist);
1384 		break;
1385 	case PAGE_MODE_6_LEVEL:
1386 		freelist = free_pt_l6(root, freelist);
1387 		break;
1388 	default:
1389 		BUG();
1390 	}
1391 
1392 	return freelist;
1393 }
1394 
1395 static void free_pagetable(struct domain_pgtable *pgtable)
1396 {
1397 	struct page *freelist = NULL;
1398 	unsigned long root;
1399 
1400 	if (pgtable->mode == PAGE_MODE_NONE)
1401 		return;
1402 
1403 	BUG_ON(pgtable->mode < PAGE_MODE_NONE ||
1404 	       pgtable->mode > PAGE_MODE_6_LEVEL);
1405 
1406 	root = (unsigned long)pgtable->root;
1407 	freelist = free_sub_pt(root, pgtable->mode, freelist);
1408 
1409 	free_page_list(freelist);
1410 }
1411 
1412 /*
1413  * This function is used to add another level to an IO page table. Adding
1414  * another level increases the size of the address space by 9 bits to a size up
1415  * to 64 bits.
1416  */
1417 static bool increase_address_space(struct protection_domain *domain,
1418 				   unsigned long address,
1419 				   gfp_t gfp)
1420 {
1421 	struct domain_pgtable pgtable;
1422 	unsigned long flags;
1423 	bool ret = true;
1424 	u64 *pte;
1425 
1426 	spin_lock_irqsave(&domain->lock, flags);
1427 
1428 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1429 
1430 	if (address <= PM_LEVEL_SIZE(pgtable.mode))
1431 		goto out;
1432 
1433 	ret = false;
1434 	if (WARN_ON_ONCE(pgtable.mode == PAGE_MODE_6_LEVEL))
1435 		goto out;
1436 
1437 	pte = (void *)get_zeroed_page(gfp);
1438 	if (!pte)
1439 		goto out;
1440 
1441 	*pte = PM_LEVEL_PDE(pgtable.mode, iommu_virt_to_phys(pgtable.root));
1442 
1443 	pgtable.root  = pte;
1444 	pgtable.mode += 1;
1445 	update_and_flush_device_table(domain, &pgtable);
1446 	domain_flush_complete(domain);
1447 
1448 	/*
1449 	 * Device Table needs to be updated and flushed before the new root can
1450 	 * be published.
1451 	 */
1452 	amd_iommu_domain_set_pgtable(domain, pte, pgtable.mode);
1453 
1454 	ret = true;
1455 
1456 out:
1457 	spin_unlock_irqrestore(&domain->lock, flags);
1458 
1459 	return ret;
1460 }
1461 
1462 static u64 *alloc_pte(struct protection_domain *domain,
1463 		      unsigned long address,
1464 		      unsigned long page_size,
1465 		      u64 **pte_page,
1466 		      gfp_t gfp,
1467 		      bool *updated)
1468 {
1469 	struct domain_pgtable pgtable;
1470 	int level, end_lvl;
1471 	u64 *pte, *page;
1472 
1473 	BUG_ON(!is_power_of_2(page_size));
1474 
1475 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1476 
1477 	while (address > PM_LEVEL_SIZE(pgtable.mode)) {
1478 		/*
1479 		 * Return an error if there is no memory to update the
1480 		 * page-table.
1481 		 */
1482 		if (!increase_address_space(domain, address, gfp))
1483 			return NULL;
1484 
1485 		/* Read new values to check if update was successful */
1486 		amd_iommu_domain_get_pgtable(domain, &pgtable);
1487 	}
1488 
1489 
1490 	level   = pgtable.mode - 1;
1491 	pte     = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1492 	address = PAGE_SIZE_ALIGN(address, page_size);
1493 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1494 
1495 	while (level > end_lvl) {
1496 		u64 __pte, __npte;
1497 		int pte_level;
1498 
1499 		__pte     = *pte;
1500 		pte_level = PM_PTE_LEVEL(__pte);
1501 
1502 		/*
1503 		 * If we replace a series of large PTEs, we need
1504 		 * to tear down all of them.
1505 		 */
1506 		if (IOMMU_PTE_PRESENT(__pte) &&
1507 		    pte_level == PAGE_MODE_7_LEVEL) {
1508 			unsigned long count, i;
1509 			u64 *lpte;
1510 
1511 			lpte = first_pte_l7(pte, NULL, &count);
1512 
1513 			/*
1514 			 * Unmap the replicated PTEs that still match the
1515 			 * original large mapping
1516 			 */
1517 			for (i = 0; i < count; ++i)
1518 				cmpxchg64(&lpte[i], __pte, 0ULL);
1519 
1520 			*updated = true;
1521 			continue;
1522 		}
1523 
1524 		if (!IOMMU_PTE_PRESENT(__pte) ||
1525 		    pte_level == PAGE_MODE_NONE) {
1526 			page = (u64 *)get_zeroed_page(gfp);
1527 
1528 			if (!page)
1529 				return NULL;
1530 
1531 			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1532 
1533 			/* pte could have been changed somewhere. */
1534 			if (cmpxchg64(pte, __pte, __npte) != __pte)
1535 				free_page((unsigned long)page);
1536 			else if (IOMMU_PTE_PRESENT(__pte))
1537 				*updated = true;
1538 
1539 			continue;
1540 		}
1541 
1542 		/* No level skipping support yet */
1543 		if (pte_level != level)
1544 			return NULL;
1545 
1546 		level -= 1;
1547 
1548 		pte = IOMMU_PTE_PAGE(__pte);
1549 
1550 		if (pte_page && level == end_lvl)
1551 			*pte_page = pte;
1552 
1553 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1554 	}
1555 
1556 	return pte;
1557 }
1558 
1559 /*
1560  * This function checks if there is a PTE for a given dma address. If
1561  * there is one, it returns the pointer to it.
1562  */
1563 static u64 *fetch_pte(struct protection_domain *domain,
1564 		      unsigned long address,
1565 		      unsigned long *page_size)
1566 {
1567 	struct domain_pgtable pgtable;
1568 	int level;
1569 	u64 *pte;
1570 
1571 	*page_size = 0;
1572 
1573 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1574 
1575 	if (address > PM_LEVEL_SIZE(pgtable.mode))
1576 		return NULL;
1577 
1578 	level	   =  pgtable.mode - 1;
1579 	pte	   = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1580 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1581 
1582 	while (level > 0) {
1583 
1584 		/* Not Present */
1585 		if (!IOMMU_PTE_PRESENT(*pte))
1586 			return NULL;
1587 
1588 		/* Large PTE */
1589 		if (PM_PTE_LEVEL(*pte) == 7 ||
1590 		    PM_PTE_LEVEL(*pte) == 0)
1591 			break;
1592 
1593 		/* No level skipping support yet */
1594 		if (PM_PTE_LEVEL(*pte) != level)
1595 			return NULL;
1596 
1597 		level -= 1;
1598 
1599 		/* Walk to the next level */
1600 		pte	   = IOMMU_PTE_PAGE(*pte);
1601 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
1602 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
1603 	}
1604 
1605 	/*
1606 	 * If we have a series of large PTEs, make
1607 	 * sure to return a pointer to the first one.
1608 	 */
1609 	if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1610 		pte = first_pte_l7(pte, page_size, NULL);
1611 
1612 	return pte;
1613 }
1614 
1615 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1616 {
1617 	unsigned long pt;
1618 	int mode;
1619 
1620 	while (cmpxchg64(pte, pteval, 0) != pteval) {
1621 		pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1622 		pteval = *pte;
1623 	}
1624 
1625 	if (!IOMMU_PTE_PRESENT(pteval))
1626 		return freelist;
1627 
1628 	pt   = (unsigned long)IOMMU_PTE_PAGE(pteval);
1629 	mode = IOMMU_PTE_MODE(pteval);
1630 
1631 	return free_sub_pt(pt, mode, freelist);
1632 }
1633 
1634 /*
1635  * Generic mapping functions. It maps a physical address into a DMA
1636  * address space. It allocates the page table pages if necessary.
1637  * In the future it can be extended to a generic mapping function
1638  * supporting all features of AMD IOMMU page tables like level skipping
1639  * and full 64 bit address spaces.
1640  */
1641 static int iommu_map_page(struct protection_domain *dom,
1642 			  unsigned long bus_addr,
1643 			  unsigned long phys_addr,
1644 			  unsigned long page_size,
1645 			  int prot,
1646 			  gfp_t gfp)
1647 {
1648 	struct page *freelist = NULL;
1649 	bool updated = false;
1650 	u64 __pte, *pte;
1651 	int ret, i, count;
1652 
1653 	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1654 	BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1655 
1656 	ret = -EINVAL;
1657 	if (!(prot & IOMMU_PROT_MASK))
1658 		goto out;
1659 
1660 	count = PAGE_SIZE_PTE_COUNT(page_size);
1661 	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1662 
1663 	ret = -ENOMEM;
1664 	if (!pte)
1665 		goto out;
1666 
1667 	for (i = 0; i < count; ++i)
1668 		freelist = free_clear_pte(&pte[i], pte[i], freelist);
1669 
1670 	if (freelist != NULL)
1671 		updated = true;
1672 
1673 	if (count > 1) {
1674 		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1675 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1676 	} else
1677 		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1678 
1679 	if (prot & IOMMU_PROT_IR)
1680 		__pte |= IOMMU_PTE_IR;
1681 	if (prot & IOMMU_PROT_IW)
1682 		__pte |= IOMMU_PTE_IW;
1683 
1684 	for (i = 0; i < count; ++i)
1685 		pte[i] = __pte;
1686 
1687 	ret = 0;
1688 
1689 out:
1690 	if (updated) {
1691 		unsigned long flags;
1692 
1693 		spin_lock_irqsave(&dom->lock, flags);
1694 		/*
1695 		 * Flush domain TLB(s) and wait for completion. Any Device-Table
1696 		 * Updates and flushing already happened in
1697 		 * increase_address_space().
1698 		 */
1699 		domain_flush_tlb_pde(dom);
1700 		domain_flush_complete(dom);
1701 		spin_unlock_irqrestore(&dom->lock, flags);
1702 	}
1703 
1704 	/* Everything flushed out, free pages now */
1705 	free_page_list(freelist);
1706 
1707 	return ret;
1708 }
1709 
1710 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1711 				      unsigned long bus_addr,
1712 				      unsigned long page_size)
1713 {
1714 	unsigned long long unmapped;
1715 	unsigned long unmap_size;
1716 	u64 *pte;
1717 
1718 	BUG_ON(!is_power_of_2(page_size));
1719 
1720 	unmapped = 0;
1721 
1722 	while (unmapped < page_size) {
1723 
1724 		pte = fetch_pte(dom, bus_addr, &unmap_size);
1725 
1726 		if (pte) {
1727 			int i, count;
1728 
1729 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1730 			for (i = 0; i < count; i++)
1731 				pte[i] = 0ULL;
1732 		}
1733 
1734 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1735 		unmapped += unmap_size;
1736 	}
1737 
1738 	BUG_ON(unmapped && !is_power_of_2(unmapped));
1739 
1740 	return unmapped;
1741 }
1742 
1743 /****************************************************************************
1744  *
1745  * The next functions belong to the domain allocation. A domain is
1746  * allocated for every IOMMU as the default domain. If device isolation
1747  * is enabled, every device get its own domain. The most important thing
1748  * about domains is the page table mapping the DMA address space they
1749  * contain.
1750  *
1751  ****************************************************************************/
1752 
1753 static u16 domain_id_alloc(void)
1754 {
1755 	int id;
1756 
1757 	spin_lock(&pd_bitmap_lock);
1758 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1759 	BUG_ON(id == 0);
1760 	if (id > 0 && id < MAX_DOMAIN_ID)
1761 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1762 	else
1763 		id = 0;
1764 	spin_unlock(&pd_bitmap_lock);
1765 
1766 	return id;
1767 }
1768 
1769 static void domain_id_free(int id)
1770 {
1771 	spin_lock(&pd_bitmap_lock);
1772 	if (id > 0 && id < MAX_DOMAIN_ID)
1773 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1774 	spin_unlock(&pd_bitmap_lock);
1775 }
1776 
1777 static void free_gcr3_tbl_level1(u64 *tbl)
1778 {
1779 	u64 *ptr;
1780 	int i;
1781 
1782 	for (i = 0; i < 512; ++i) {
1783 		if (!(tbl[i] & GCR3_VALID))
1784 			continue;
1785 
1786 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1787 
1788 		free_page((unsigned long)ptr);
1789 	}
1790 }
1791 
1792 static void free_gcr3_tbl_level2(u64 *tbl)
1793 {
1794 	u64 *ptr;
1795 	int i;
1796 
1797 	for (i = 0; i < 512; ++i) {
1798 		if (!(tbl[i] & GCR3_VALID))
1799 			continue;
1800 
1801 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1802 
1803 		free_gcr3_tbl_level1(ptr);
1804 	}
1805 }
1806 
1807 static void free_gcr3_table(struct protection_domain *domain)
1808 {
1809 	if (domain->glx == 2)
1810 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1811 	else if (domain->glx == 1)
1812 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1813 	else
1814 		BUG_ON(domain->glx != 0);
1815 
1816 	free_page((unsigned long)domain->gcr3_tbl);
1817 }
1818 
1819 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1820 			  struct domain_pgtable *pgtable,
1821 			  bool ats, bool ppr)
1822 {
1823 	u64 pte_root = 0;
1824 	u64 flags = 0;
1825 	u32 old_domid;
1826 
1827 	if (pgtable->mode != PAGE_MODE_NONE)
1828 		pte_root = iommu_virt_to_phys(pgtable->root);
1829 
1830 	pte_root |= (pgtable->mode & DEV_ENTRY_MODE_MASK)
1831 		    << DEV_ENTRY_MODE_SHIFT;
1832 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1833 
1834 	flags = amd_iommu_dev_table[devid].data[1];
1835 
1836 	if (ats)
1837 		flags |= DTE_FLAG_IOTLB;
1838 
1839 	if (ppr) {
1840 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1841 
1842 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1843 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1844 	}
1845 
1846 	if (domain->flags & PD_IOMMUV2_MASK) {
1847 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1848 		u64 glx  = domain->glx;
1849 		u64 tmp;
1850 
1851 		pte_root |= DTE_FLAG_GV;
1852 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1853 
1854 		/* First mask out possible old values for GCR3 table */
1855 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1856 		flags    &= ~tmp;
1857 
1858 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1859 		flags    &= ~tmp;
1860 
1861 		/* Encode GCR3 table into DTE */
1862 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1863 		pte_root |= tmp;
1864 
1865 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1866 		flags    |= tmp;
1867 
1868 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1869 		flags    |= tmp;
1870 	}
1871 
1872 	flags &= ~DEV_DOMID_MASK;
1873 	flags |= domain->id;
1874 
1875 	old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1876 	amd_iommu_dev_table[devid].data[1]  = flags;
1877 	amd_iommu_dev_table[devid].data[0]  = pte_root;
1878 
1879 	/*
1880 	 * A kdump kernel might be replacing a domain ID that was copied from
1881 	 * the previous kernel--if so, it needs to flush the translation cache
1882 	 * entries for the old domain ID that is being overwritten
1883 	 */
1884 	if (old_domid) {
1885 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1886 
1887 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1888 	}
1889 }
1890 
1891 static void clear_dte_entry(u16 devid)
1892 {
1893 	/* remove entry from the device table seen by the hardware */
1894 	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1895 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1896 
1897 	amd_iommu_apply_erratum_63(devid);
1898 }
1899 
1900 static void do_attach(struct iommu_dev_data *dev_data,
1901 		      struct protection_domain *domain)
1902 {
1903 	struct domain_pgtable pgtable;
1904 	struct amd_iommu *iommu;
1905 	bool ats;
1906 
1907 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1908 	ats   = dev_data->ats.enabled;
1909 
1910 	/* Update data structures */
1911 	dev_data->domain = domain;
1912 	list_add(&dev_data->list, &domain->dev_list);
1913 
1914 	/* Do reference counting */
1915 	domain->dev_iommu[iommu->index] += 1;
1916 	domain->dev_cnt                 += 1;
1917 
1918 	/* Update device table */
1919 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1920 	set_dte_entry(dev_data->devid, domain, &pgtable,
1921 		      ats, dev_data->iommu_v2);
1922 	clone_aliases(dev_data->pdev);
1923 
1924 	device_flush_dte(dev_data);
1925 }
1926 
1927 static void do_detach(struct iommu_dev_data *dev_data)
1928 {
1929 	struct protection_domain *domain = dev_data->domain;
1930 	struct amd_iommu *iommu;
1931 
1932 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1933 
1934 	/* Update data structures */
1935 	dev_data->domain = NULL;
1936 	list_del(&dev_data->list);
1937 	clear_dte_entry(dev_data->devid);
1938 	clone_aliases(dev_data->pdev);
1939 
1940 	/* Flush the DTE entry */
1941 	device_flush_dte(dev_data);
1942 
1943 	/* Flush IOTLB */
1944 	domain_flush_tlb_pde(domain);
1945 
1946 	/* Wait for the flushes to finish */
1947 	domain_flush_complete(domain);
1948 
1949 	/* decrease reference counters - needs to happen after the flushes */
1950 	domain->dev_iommu[iommu->index] -= 1;
1951 	domain->dev_cnt                 -= 1;
1952 }
1953 
1954 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1955 {
1956 	pci_disable_ats(pdev);
1957 	pci_disable_pri(pdev);
1958 	pci_disable_pasid(pdev);
1959 }
1960 
1961 /* FIXME: Change generic reset-function to do the same */
1962 static int pri_reset_while_enabled(struct pci_dev *pdev)
1963 {
1964 	u16 control;
1965 	int pos;
1966 
1967 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1968 	if (!pos)
1969 		return -EINVAL;
1970 
1971 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1972 	control |= PCI_PRI_CTRL_RESET;
1973 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1974 
1975 	return 0;
1976 }
1977 
1978 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1979 {
1980 	bool reset_enable;
1981 	int reqs, ret;
1982 
1983 	/* FIXME: Hardcode number of outstanding requests for now */
1984 	reqs = 32;
1985 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
1986 		reqs = 1;
1987 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
1988 
1989 	/* Only allow access to user-accessible pages */
1990 	ret = pci_enable_pasid(pdev, 0);
1991 	if (ret)
1992 		goto out_err;
1993 
1994 	/* First reset the PRI state of the device */
1995 	ret = pci_reset_pri(pdev);
1996 	if (ret)
1997 		goto out_err;
1998 
1999 	/* Enable PRI */
2000 	ret = pci_enable_pri(pdev, reqs);
2001 	if (ret)
2002 		goto out_err;
2003 
2004 	if (reset_enable) {
2005 		ret = pri_reset_while_enabled(pdev);
2006 		if (ret)
2007 			goto out_err;
2008 	}
2009 
2010 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2011 	if (ret)
2012 		goto out_err;
2013 
2014 	return 0;
2015 
2016 out_err:
2017 	pci_disable_pri(pdev);
2018 	pci_disable_pasid(pdev);
2019 
2020 	return ret;
2021 }
2022 
2023 /*
2024  * If a device is not yet associated with a domain, this function makes the
2025  * device visible in the domain
2026  */
2027 static int attach_device(struct device *dev,
2028 			 struct protection_domain *domain)
2029 {
2030 	struct iommu_dev_data *dev_data;
2031 	struct pci_dev *pdev;
2032 	unsigned long flags;
2033 	int ret;
2034 
2035 	spin_lock_irqsave(&domain->lock, flags);
2036 
2037 	dev_data = dev_iommu_priv_get(dev);
2038 
2039 	spin_lock(&dev_data->lock);
2040 
2041 	ret = -EBUSY;
2042 	if (dev_data->domain != NULL)
2043 		goto out;
2044 
2045 	if (!dev_is_pci(dev))
2046 		goto skip_ats_check;
2047 
2048 	pdev = to_pci_dev(dev);
2049 	if (domain->flags & PD_IOMMUV2_MASK) {
2050 		struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
2051 
2052 		ret = -EINVAL;
2053 		if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
2054 			goto out;
2055 
2056 		if (dev_data->iommu_v2) {
2057 			if (pdev_iommuv2_enable(pdev) != 0)
2058 				goto out;
2059 
2060 			dev_data->ats.enabled = true;
2061 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2062 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
2063 		}
2064 	} else if (amd_iommu_iotlb_sup &&
2065 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2066 		dev_data->ats.enabled = true;
2067 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2068 	}
2069 
2070 skip_ats_check:
2071 	ret = 0;
2072 
2073 	do_attach(dev_data, domain);
2074 
2075 	/*
2076 	 * We might boot into a crash-kernel here. The crashed kernel
2077 	 * left the caches in the IOMMU dirty. So we have to flush
2078 	 * here to evict all dirty stuff.
2079 	 */
2080 	domain_flush_tlb_pde(domain);
2081 
2082 	domain_flush_complete(domain);
2083 
2084 out:
2085 	spin_unlock(&dev_data->lock);
2086 
2087 	spin_unlock_irqrestore(&domain->lock, flags);
2088 
2089 	return ret;
2090 }
2091 
2092 /*
2093  * Removes a device from a protection domain (with devtable_lock held)
2094  */
2095 static void detach_device(struct device *dev)
2096 {
2097 	struct protection_domain *domain;
2098 	struct iommu_dev_data *dev_data;
2099 	unsigned long flags;
2100 
2101 	dev_data = dev_iommu_priv_get(dev);
2102 	domain   = dev_data->domain;
2103 
2104 	spin_lock_irqsave(&domain->lock, flags);
2105 
2106 	spin_lock(&dev_data->lock);
2107 
2108 	/*
2109 	 * First check if the device is still attached. It might already
2110 	 * be detached from its domain because the generic
2111 	 * iommu_detach_group code detached it and we try again here in
2112 	 * our alias handling.
2113 	 */
2114 	if (WARN_ON(!dev_data->domain))
2115 		goto out;
2116 
2117 	do_detach(dev_data);
2118 
2119 	if (!dev_is_pci(dev))
2120 		goto out;
2121 
2122 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2123 		pdev_iommuv2_disable(to_pci_dev(dev));
2124 	else if (dev_data->ats.enabled)
2125 		pci_disable_ats(to_pci_dev(dev));
2126 
2127 	dev_data->ats.enabled = false;
2128 
2129 out:
2130 	spin_unlock(&dev_data->lock);
2131 
2132 	spin_unlock_irqrestore(&domain->lock, flags);
2133 }
2134 
2135 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2136 {
2137 	struct iommu_device *iommu_dev;
2138 	struct amd_iommu *iommu;
2139 	int ret, devid;
2140 
2141 	if (!check_device(dev))
2142 		return ERR_PTR(-ENODEV);
2143 
2144 	devid = get_device_id(dev);
2145 	if (devid < 0)
2146 		return ERR_PTR(devid);
2147 
2148 	iommu = amd_iommu_rlookup_table[devid];
2149 
2150 	if (dev_iommu_priv_get(dev))
2151 		return &iommu->iommu;
2152 
2153 	ret = iommu_init_device(dev);
2154 	if (ret) {
2155 		if (ret != -ENOTSUPP)
2156 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2157 		iommu_dev = ERR_PTR(ret);
2158 		iommu_ignore_device(dev);
2159 	} else {
2160 		iommu_dev = &iommu->iommu;
2161 	}
2162 
2163 	iommu_completion_wait(iommu);
2164 
2165 	return iommu_dev;
2166 }
2167 
2168 static void amd_iommu_probe_finalize(struct device *dev)
2169 {
2170 	struct iommu_domain *domain;
2171 
2172 	/* Domains are initialized for this device - have a look what we ended up with */
2173 	domain = iommu_get_domain_for_dev(dev);
2174 	if (domain->type == IOMMU_DOMAIN_DMA)
2175 		iommu_setup_dma_ops(dev, IOVA_START_PFN << PAGE_SHIFT, 0);
2176 }
2177 
2178 static void amd_iommu_release_device(struct device *dev)
2179 {
2180 	int devid = get_device_id(dev);
2181 	struct amd_iommu *iommu;
2182 
2183 	if (!check_device(dev))
2184 		return;
2185 
2186 	iommu = amd_iommu_rlookup_table[devid];
2187 
2188 	amd_iommu_uninit_device(dev);
2189 	iommu_completion_wait(iommu);
2190 }
2191 
2192 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2193 {
2194 	if (dev_is_pci(dev))
2195 		return pci_device_group(dev);
2196 
2197 	return acpihid_device_group(dev);
2198 }
2199 
2200 static int amd_iommu_domain_get_attr(struct iommu_domain *domain,
2201 		enum iommu_attr attr, void *data)
2202 {
2203 	switch (domain->type) {
2204 	case IOMMU_DOMAIN_UNMANAGED:
2205 		return -ENODEV;
2206 	case IOMMU_DOMAIN_DMA:
2207 		switch (attr) {
2208 		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
2209 			*(int *)data = !amd_iommu_unmap_flush;
2210 			return 0;
2211 		default:
2212 			return -ENODEV;
2213 		}
2214 		break;
2215 	default:
2216 		return -EINVAL;
2217 	}
2218 }
2219 
2220 /*****************************************************************************
2221  *
2222  * The next functions belong to the dma_ops mapping/unmapping code.
2223  *
2224  *****************************************************************************/
2225 
2226 static void update_device_table(struct protection_domain *domain,
2227 				struct domain_pgtable *pgtable)
2228 {
2229 	struct iommu_dev_data *dev_data;
2230 
2231 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2232 		set_dte_entry(dev_data->devid, domain, pgtable,
2233 			      dev_data->ats.enabled, dev_data->iommu_v2);
2234 		clone_aliases(dev_data->pdev);
2235 	}
2236 }
2237 
2238 static void update_and_flush_device_table(struct protection_domain *domain,
2239 					  struct domain_pgtable *pgtable)
2240 {
2241 	update_device_table(domain, pgtable);
2242 	domain_flush_devices(domain);
2243 }
2244 
2245 static void update_domain(struct protection_domain *domain)
2246 {
2247 	struct domain_pgtable pgtable;
2248 
2249 	/* Update device table */
2250 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2251 	update_and_flush_device_table(domain, &pgtable);
2252 
2253 	/* Flush domain TLB(s) and wait for completion */
2254 	domain_flush_tlb_pde(domain);
2255 	domain_flush_complete(domain);
2256 }
2257 
2258 int __init amd_iommu_init_api(void)
2259 {
2260 	int ret, err = 0;
2261 
2262 	ret = iova_cache_get();
2263 	if (ret)
2264 		return ret;
2265 
2266 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2267 	if (err)
2268 		return err;
2269 #ifdef CONFIG_ARM_AMBA
2270 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2271 	if (err)
2272 		return err;
2273 #endif
2274 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2275 	if (err)
2276 		return err;
2277 
2278 	return 0;
2279 }
2280 
2281 int __init amd_iommu_init_dma_ops(void)
2282 {
2283 	swiotlb        = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
2284 
2285 	if (amd_iommu_unmap_flush)
2286 		pr_info("IO/TLB flush on unmap enabled\n");
2287 	else
2288 		pr_info("Lazy IO/TLB flushing enabled\n");
2289 
2290 	return 0;
2291 
2292 }
2293 
2294 /*****************************************************************************
2295  *
2296  * The following functions belong to the exported interface of AMD IOMMU
2297  *
2298  * This interface allows access to lower level functions of the IOMMU
2299  * like protection domain handling and assignement of devices to domains
2300  * which is not possible with the dma_ops interface.
2301  *
2302  *****************************************************************************/
2303 
2304 static void cleanup_domain(struct protection_domain *domain)
2305 {
2306 	struct iommu_dev_data *entry;
2307 	unsigned long flags;
2308 
2309 	spin_lock_irqsave(&domain->lock, flags);
2310 
2311 	while (!list_empty(&domain->dev_list)) {
2312 		entry = list_first_entry(&domain->dev_list,
2313 					 struct iommu_dev_data, list);
2314 		BUG_ON(!entry->domain);
2315 		do_detach(entry);
2316 	}
2317 
2318 	spin_unlock_irqrestore(&domain->lock, flags);
2319 }
2320 
2321 static void protection_domain_free(struct protection_domain *domain)
2322 {
2323 	struct domain_pgtable pgtable;
2324 
2325 	if (!domain)
2326 		return;
2327 
2328 	if (domain->id)
2329 		domain_id_free(domain->id);
2330 
2331 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2332 	amd_iommu_domain_clr_pt_root(domain);
2333 	free_pagetable(&pgtable);
2334 
2335 	kfree(domain);
2336 }
2337 
2338 static int protection_domain_init(struct protection_domain *domain, int mode)
2339 {
2340 	u64 *pt_root = NULL;
2341 
2342 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2343 
2344 	spin_lock_init(&domain->lock);
2345 	domain->id = domain_id_alloc();
2346 	if (!domain->id)
2347 		return -ENOMEM;
2348 	INIT_LIST_HEAD(&domain->dev_list);
2349 
2350 	if (mode != PAGE_MODE_NONE) {
2351 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2352 		if (!pt_root)
2353 			return -ENOMEM;
2354 	}
2355 
2356 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2357 
2358 	return 0;
2359 }
2360 
2361 static struct protection_domain *protection_domain_alloc(int mode)
2362 {
2363 	struct protection_domain *domain;
2364 
2365 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2366 	if (!domain)
2367 		return NULL;
2368 
2369 	if (protection_domain_init(domain, mode))
2370 		goto out_err;
2371 
2372 	return domain;
2373 
2374 out_err:
2375 	kfree(domain);
2376 
2377 	return NULL;
2378 }
2379 
2380 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2381 {
2382 	struct protection_domain *domain;
2383 	int mode = DEFAULT_PGTABLE_LEVEL;
2384 
2385 	if (type == IOMMU_DOMAIN_IDENTITY)
2386 		mode = PAGE_MODE_NONE;
2387 
2388 	domain = protection_domain_alloc(mode);
2389 	if (!domain)
2390 		return NULL;
2391 
2392 	domain->domain.geometry.aperture_start = 0;
2393 	domain->domain.geometry.aperture_end   = ~0ULL;
2394 	domain->domain.geometry.force_aperture = true;
2395 
2396 	if (type == IOMMU_DOMAIN_DMA &&
2397 	    iommu_get_dma_cookie(&domain->domain) == -ENOMEM)
2398 		goto free_domain;
2399 
2400 	return &domain->domain;
2401 
2402 free_domain:
2403 	protection_domain_free(domain);
2404 
2405 	return NULL;
2406 }
2407 
2408 static void amd_iommu_domain_free(struct iommu_domain *dom)
2409 {
2410 	struct protection_domain *domain;
2411 
2412 	domain = to_pdomain(dom);
2413 
2414 	if (domain->dev_cnt > 0)
2415 		cleanup_domain(domain);
2416 
2417 	BUG_ON(domain->dev_cnt != 0);
2418 
2419 	if (!dom)
2420 		return;
2421 
2422 	if (dom->type == IOMMU_DOMAIN_DMA)
2423 		iommu_put_dma_cookie(&domain->domain);
2424 
2425 	if (domain->flags & PD_IOMMUV2_MASK)
2426 		free_gcr3_table(domain);
2427 
2428 	protection_domain_free(domain);
2429 }
2430 
2431 static void amd_iommu_detach_device(struct iommu_domain *dom,
2432 				    struct device *dev)
2433 {
2434 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2435 	struct amd_iommu *iommu;
2436 	int devid;
2437 
2438 	if (!check_device(dev))
2439 		return;
2440 
2441 	devid = get_device_id(dev);
2442 	if (devid < 0)
2443 		return;
2444 
2445 	if (dev_data->domain != NULL)
2446 		detach_device(dev);
2447 
2448 	iommu = amd_iommu_rlookup_table[devid];
2449 	if (!iommu)
2450 		return;
2451 
2452 #ifdef CONFIG_IRQ_REMAP
2453 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2454 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
2455 		dev_data->use_vapic = 0;
2456 #endif
2457 
2458 	iommu_completion_wait(iommu);
2459 }
2460 
2461 static int amd_iommu_attach_device(struct iommu_domain *dom,
2462 				   struct device *dev)
2463 {
2464 	struct protection_domain *domain = to_pdomain(dom);
2465 	struct iommu_dev_data *dev_data;
2466 	struct amd_iommu *iommu;
2467 	int ret;
2468 
2469 	if (!check_device(dev))
2470 		return -EINVAL;
2471 
2472 	dev_data = dev_iommu_priv_get(dev);
2473 	dev_data->defer_attach = false;
2474 
2475 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2476 	if (!iommu)
2477 		return -EINVAL;
2478 
2479 	if (dev_data->domain)
2480 		detach_device(dev);
2481 
2482 	ret = attach_device(dev, domain);
2483 
2484 #ifdef CONFIG_IRQ_REMAP
2485 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2486 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2487 			dev_data->use_vapic = 1;
2488 		else
2489 			dev_data->use_vapic = 0;
2490 	}
2491 #endif
2492 
2493 	iommu_completion_wait(iommu);
2494 
2495 	return ret;
2496 }
2497 
2498 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2499 			 phys_addr_t paddr, size_t page_size, int iommu_prot,
2500 			 gfp_t gfp)
2501 {
2502 	struct protection_domain *domain = to_pdomain(dom);
2503 	struct domain_pgtable pgtable;
2504 	int prot = 0;
2505 	int ret;
2506 
2507 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2508 	if (pgtable.mode == PAGE_MODE_NONE)
2509 		return -EINVAL;
2510 
2511 	if (iommu_prot & IOMMU_READ)
2512 		prot |= IOMMU_PROT_IR;
2513 	if (iommu_prot & IOMMU_WRITE)
2514 		prot |= IOMMU_PROT_IW;
2515 
2516 	ret = iommu_map_page(domain, iova, paddr, page_size, prot, gfp);
2517 
2518 	domain_flush_np_cache(domain, iova, page_size);
2519 
2520 	return ret;
2521 }
2522 
2523 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2524 			      size_t page_size,
2525 			      struct iommu_iotlb_gather *gather)
2526 {
2527 	struct protection_domain *domain = to_pdomain(dom);
2528 	struct domain_pgtable pgtable;
2529 
2530 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2531 	if (pgtable.mode == PAGE_MODE_NONE)
2532 		return 0;
2533 
2534 	return iommu_unmap_page(domain, iova, page_size);
2535 }
2536 
2537 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2538 					  dma_addr_t iova)
2539 {
2540 	struct protection_domain *domain = to_pdomain(dom);
2541 	unsigned long offset_mask, pte_pgsize;
2542 	struct domain_pgtable pgtable;
2543 	u64 *pte, __pte;
2544 
2545 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2546 	if (pgtable.mode == PAGE_MODE_NONE)
2547 		return iova;
2548 
2549 	pte = fetch_pte(domain, iova, &pte_pgsize);
2550 
2551 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2552 		return 0;
2553 
2554 	offset_mask = pte_pgsize - 1;
2555 	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
2556 
2557 	return (__pte & ~offset_mask) | (iova & offset_mask);
2558 }
2559 
2560 static bool amd_iommu_capable(enum iommu_cap cap)
2561 {
2562 	switch (cap) {
2563 	case IOMMU_CAP_CACHE_COHERENCY:
2564 		return true;
2565 	case IOMMU_CAP_INTR_REMAP:
2566 		return (irq_remapping_enabled == 1);
2567 	case IOMMU_CAP_NOEXEC:
2568 		return false;
2569 	default:
2570 		break;
2571 	}
2572 
2573 	return false;
2574 }
2575 
2576 static void amd_iommu_get_resv_regions(struct device *dev,
2577 				       struct list_head *head)
2578 {
2579 	struct iommu_resv_region *region;
2580 	struct unity_map_entry *entry;
2581 	int devid;
2582 
2583 	devid = get_device_id(dev);
2584 	if (devid < 0)
2585 		return;
2586 
2587 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
2588 		int type, prot = 0;
2589 		size_t length;
2590 
2591 		if (devid < entry->devid_start || devid > entry->devid_end)
2592 			continue;
2593 
2594 		type   = IOMMU_RESV_DIRECT;
2595 		length = entry->address_end - entry->address_start;
2596 		if (entry->prot & IOMMU_PROT_IR)
2597 			prot |= IOMMU_READ;
2598 		if (entry->prot & IOMMU_PROT_IW)
2599 			prot |= IOMMU_WRITE;
2600 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2601 			/* Exclusion range */
2602 			type = IOMMU_RESV_RESERVED;
2603 
2604 		region = iommu_alloc_resv_region(entry->address_start,
2605 						 length, prot, type);
2606 		if (!region) {
2607 			dev_err(dev, "Out of memory allocating dm-regions\n");
2608 			return;
2609 		}
2610 		list_add_tail(&region->list, head);
2611 	}
2612 
2613 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2614 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2615 					 0, IOMMU_RESV_MSI);
2616 	if (!region)
2617 		return;
2618 	list_add_tail(&region->list, head);
2619 
2620 	region = iommu_alloc_resv_region(HT_RANGE_START,
2621 					 HT_RANGE_END - HT_RANGE_START + 1,
2622 					 0, IOMMU_RESV_RESERVED);
2623 	if (!region)
2624 		return;
2625 	list_add_tail(&region->list, head);
2626 }
2627 
2628 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
2629 				  struct device *dev)
2630 {
2631 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2632 
2633 	return dev_data->defer_attach;
2634 }
2635 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2636 
2637 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2638 {
2639 	struct protection_domain *dom = to_pdomain(domain);
2640 	unsigned long flags;
2641 
2642 	spin_lock_irqsave(&dom->lock, flags);
2643 	domain_flush_tlb_pde(dom);
2644 	domain_flush_complete(dom);
2645 	spin_unlock_irqrestore(&dom->lock, flags);
2646 }
2647 
2648 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2649 				 struct iommu_iotlb_gather *gather)
2650 {
2651 	amd_iommu_flush_iotlb_all(domain);
2652 }
2653 
2654 static int amd_iommu_def_domain_type(struct device *dev)
2655 {
2656 	struct iommu_dev_data *dev_data;
2657 
2658 	dev_data = dev_iommu_priv_get(dev);
2659 	if (!dev_data)
2660 		return 0;
2661 
2662 	if (dev_data->iommu_v2)
2663 		return IOMMU_DOMAIN_IDENTITY;
2664 
2665 	return 0;
2666 }
2667 
2668 const struct iommu_ops amd_iommu_ops = {
2669 	.capable = amd_iommu_capable,
2670 	.domain_alloc = amd_iommu_domain_alloc,
2671 	.domain_free  = amd_iommu_domain_free,
2672 	.attach_dev = amd_iommu_attach_device,
2673 	.detach_dev = amd_iommu_detach_device,
2674 	.map = amd_iommu_map,
2675 	.unmap = amd_iommu_unmap,
2676 	.iova_to_phys = amd_iommu_iova_to_phys,
2677 	.probe_device = amd_iommu_probe_device,
2678 	.release_device = amd_iommu_release_device,
2679 	.probe_finalize = amd_iommu_probe_finalize,
2680 	.device_group = amd_iommu_device_group,
2681 	.domain_get_attr = amd_iommu_domain_get_attr,
2682 	.get_resv_regions = amd_iommu_get_resv_regions,
2683 	.put_resv_regions = generic_iommu_put_resv_regions,
2684 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2685 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2686 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2687 	.iotlb_sync = amd_iommu_iotlb_sync,
2688 	.def_domain_type = amd_iommu_def_domain_type,
2689 };
2690 
2691 /*****************************************************************************
2692  *
2693  * The next functions do a basic initialization of IOMMU for pass through
2694  * mode
2695  *
2696  * In passthrough mode the IOMMU is initialized and enabled but not used for
2697  * DMA-API translation.
2698  *
2699  *****************************************************************************/
2700 
2701 /* IOMMUv2 specific functions */
2702 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2703 {
2704 	return atomic_notifier_chain_register(&ppr_notifier, nb);
2705 }
2706 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2707 
2708 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2709 {
2710 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2711 }
2712 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2713 
2714 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2715 {
2716 	struct protection_domain *domain = to_pdomain(dom);
2717 	struct domain_pgtable pgtable;
2718 	unsigned long flags;
2719 
2720 	spin_lock_irqsave(&domain->lock, flags);
2721 
2722 	/* First save pgtable configuration*/
2723 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2724 
2725 	/* Remove page-table from domain */
2726 	amd_iommu_domain_clr_pt_root(domain);
2727 
2728 	/* Make changes visible to IOMMUs */
2729 	update_domain(domain);
2730 
2731 	/* Page-table is not visible to IOMMU anymore, so free it */
2732 	free_pagetable(&pgtable);
2733 
2734 	spin_unlock_irqrestore(&domain->lock, flags);
2735 }
2736 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2737 
2738 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2739 {
2740 	struct protection_domain *domain = to_pdomain(dom);
2741 	unsigned long flags;
2742 	int levels, ret;
2743 
2744 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
2745 		return -EINVAL;
2746 
2747 	/* Number of GCR3 table levels required */
2748 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2749 		levels += 1;
2750 
2751 	if (levels > amd_iommu_max_glx_val)
2752 		return -EINVAL;
2753 
2754 	spin_lock_irqsave(&domain->lock, flags);
2755 
2756 	/*
2757 	 * Save us all sanity checks whether devices already in the
2758 	 * domain support IOMMUv2. Just force that the domain has no
2759 	 * devices attached when it is switched into IOMMUv2 mode.
2760 	 */
2761 	ret = -EBUSY;
2762 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2763 		goto out;
2764 
2765 	ret = -ENOMEM;
2766 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2767 	if (domain->gcr3_tbl == NULL)
2768 		goto out;
2769 
2770 	domain->glx      = levels;
2771 	domain->flags   |= PD_IOMMUV2_MASK;
2772 
2773 	update_domain(domain);
2774 
2775 	ret = 0;
2776 
2777 out:
2778 	spin_unlock_irqrestore(&domain->lock, flags);
2779 
2780 	return ret;
2781 }
2782 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2783 
2784 static int __flush_pasid(struct protection_domain *domain, int pasid,
2785 			 u64 address, bool size)
2786 {
2787 	struct iommu_dev_data *dev_data;
2788 	struct iommu_cmd cmd;
2789 	int i, ret;
2790 
2791 	if (!(domain->flags & PD_IOMMUV2_MASK))
2792 		return -EINVAL;
2793 
2794 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2795 
2796 	/*
2797 	 * IOMMU TLB needs to be flushed before Device TLB to
2798 	 * prevent device TLB refill from IOMMU TLB
2799 	 */
2800 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2801 		if (domain->dev_iommu[i] == 0)
2802 			continue;
2803 
2804 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2805 		if (ret != 0)
2806 			goto out;
2807 	}
2808 
2809 	/* Wait until IOMMU TLB flushes are complete */
2810 	domain_flush_complete(domain);
2811 
2812 	/* Now flush device TLBs */
2813 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2814 		struct amd_iommu *iommu;
2815 		int qdep;
2816 
2817 		/*
2818 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2819 		 * domain.
2820 		 */
2821 		if (!dev_data->ats.enabled)
2822 			continue;
2823 
2824 		qdep  = dev_data->ats.qdep;
2825 		iommu = amd_iommu_rlookup_table[dev_data->devid];
2826 
2827 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2828 				      qdep, address, size);
2829 
2830 		ret = iommu_queue_command(iommu, &cmd);
2831 		if (ret != 0)
2832 			goto out;
2833 	}
2834 
2835 	/* Wait until all device TLBs are flushed */
2836 	domain_flush_complete(domain);
2837 
2838 	ret = 0;
2839 
2840 out:
2841 
2842 	return ret;
2843 }
2844 
2845 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
2846 				  u64 address)
2847 {
2848 	return __flush_pasid(domain, pasid, address, false);
2849 }
2850 
2851 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
2852 			 u64 address)
2853 {
2854 	struct protection_domain *domain = to_pdomain(dom);
2855 	unsigned long flags;
2856 	int ret;
2857 
2858 	spin_lock_irqsave(&domain->lock, flags);
2859 	ret = __amd_iommu_flush_page(domain, pasid, address);
2860 	spin_unlock_irqrestore(&domain->lock, flags);
2861 
2862 	return ret;
2863 }
2864 EXPORT_SYMBOL(amd_iommu_flush_page);
2865 
2866 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
2867 {
2868 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2869 			     true);
2870 }
2871 
2872 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
2873 {
2874 	struct protection_domain *domain = to_pdomain(dom);
2875 	unsigned long flags;
2876 	int ret;
2877 
2878 	spin_lock_irqsave(&domain->lock, flags);
2879 	ret = __amd_iommu_flush_tlb(domain, pasid);
2880 	spin_unlock_irqrestore(&domain->lock, flags);
2881 
2882 	return ret;
2883 }
2884 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2885 
2886 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
2887 {
2888 	int index;
2889 	u64 *pte;
2890 
2891 	while (true) {
2892 
2893 		index = (pasid >> (9 * level)) & 0x1ff;
2894 		pte   = &root[index];
2895 
2896 		if (level == 0)
2897 			break;
2898 
2899 		if (!(*pte & GCR3_VALID)) {
2900 			if (!alloc)
2901 				return NULL;
2902 
2903 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2904 			if (root == NULL)
2905 				return NULL;
2906 
2907 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2908 		}
2909 
2910 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2911 
2912 		level -= 1;
2913 	}
2914 
2915 	return pte;
2916 }
2917 
2918 static int __set_gcr3(struct protection_domain *domain, int pasid,
2919 		      unsigned long cr3)
2920 {
2921 	struct domain_pgtable pgtable;
2922 	u64 *pte;
2923 
2924 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2925 	if (pgtable.mode != PAGE_MODE_NONE)
2926 		return -EINVAL;
2927 
2928 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2929 	if (pte == NULL)
2930 		return -ENOMEM;
2931 
2932 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2933 
2934 	return __amd_iommu_flush_tlb(domain, pasid);
2935 }
2936 
2937 static int __clear_gcr3(struct protection_domain *domain, int pasid)
2938 {
2939 	struct domain_pgtable pgtable;
2940 	u64 *pte;
2941 
2942 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2943 	if (pgtable.mode != PAGE_MODE_NONE)
2944 		return -EINVAL;
2945 
2946 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2947 	if (pte == NULL)
2948 		return 0;
2949 
2950 	*pte = 0;
2951 
2952 	return __amd_iommu_flush_tlb(domain, pasid);
2953 }
2954 
2955 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
2956 			      unsigned long cr3)
2957 {
2958 	struct protection_domain *domain = to_pdomain(dom);
2959 	unsigned long flags;
2960 	int ret;
2961 
2962 	spin_lock_irqsave(&domain->lock, flags);
2963 	ret = __set_gcr3(domain, pasid, cr3);
2964 	spin_unlock_irqrestore(&domain->lock, flags);
2965 
2966 	return ret;
2967 }
2968 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2969 
2970 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
2971 {
2972 	struct protection_domain *domain = to_pdomain(dom);
2973 	unsigned long flags;
2974 	int ret;
2975 
2976 	spin_lock_irqsave(&domain->lock, flags);
2977 	ret = __clear_gcr3(domain, pasid);
2978 	spin_unlock_irqrestore(&domain->lock, flags);
2979 
2980 	return ret;
2981 }
2982 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2983 
2984 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
2985 			   int status, int tag)
2986 {
2987 	struct iommu_dev_data *dev_data;
2988 	struct amd_iommu *iommu;
2989 	struct iommu_cmd cmd;
2990 
2991 	dev_data = dev_iommu_priv_get(&pdev->dev);
2992 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
2993 
2994 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2995 			   tag, dev_data->pri_tlp);
2996 
2997 	return iommu_queue_command(iommu, &cmd);
2998 }
2999 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3000 
3001 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3002 {
3003 	struct protection_domain *pdomain;
3004 	struct iommu_dev_data *dev_data;
3005 	struct device *dev = &pdev->dev;
3006 	struct iommu_domain *io_domain;
3007 
3008 	if (!check_device(dev))
3009 		return NULL;
3010 
3011 	dev_data  = dev_iommu_priv_get(&pdev->dev);
3012 	pdomain   = dev_data->domain;
3013 	io_domain = iommu_get_domain_for_dev(dev);
3014 
3015 	if (pdomain == NULL && dev_data->defer_attach) {
3016 		dev_data->defer_attach = false;
3017 		pdomain = to_pdomain(io_domain);
3018 		attach_device(dev, pdomain);
3019 	}
3020 
3021 	if (pdomain == NULL)
3022 		return NULL;
3023 
3024 	if (io_domain->type != IOMMU_DOMAIN_DMA)
3025 		return NULL;
3026 
3027 	/* Only return IOMMUv2 domains */
3028 	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3029 		return NULL;
3030 
3031 	return &pdomain->domain;
3032 }
3033 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3034 
3035 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3036 {
3037 	struct iommu_dev_data *dev_data;
3038 
3039 	if (!amd_iommu_v2_supported())
3040 		return;
3041 
3042 	dev_data = dev_iommu_priv_get(&pdev->dev);
3043 	dev_data->errata |= (1 << erratum);
3044 }
3045 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3046 
3047 int amd_iommu_device_info(struct pci_dev *pdev,
3048                           struct amd_iommu_device_info *info)
3049 {
3050 	int max_pasids;
3051 	int pos;
3052 
3053 	if (pdev == NULL || info == NULL)
3054 		return -EINVAL;
3055 
3056 	if (!amd_iommu_v2_supported())
3057 		return -EINVAL;
3058 
3059 	memset(info, 0, sizeof(*info));
3060 
3061 	if (pci_ats_supported(pdev))
3062 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3063 
3064 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3065 	if (pos)
3066 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3067 
3068 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3069 	if (pos) {
3070 		int features;
3071 
3072 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3073 		max_pasids = min(max_pasids, (1 << 20));
3074 
3075 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3076 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3077 
3078 		features = pci_pasid_features(pdev);
3079 		if (features & PCI_PASID_CAP_EXEC)
3080 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3081 		if (features & PCI_PASID_CAP_PRIV)
3082 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3083 	}
3084 
3085 	return 0;
3086 }
3087 EXPORT_SYMBOL(amd_iommu_device_info);
3088 
3089 #ifdef CONFIG_IRQ_REMAP
3090 
3091 /*****************************************************************************
3092  *
3093  * Interrupt Remapping Implementation
3094  *
3095  *****************************************************************************/
3096 
3097 static struct irq_chip amd_ir_chip;
3098 static DEFINE_SPINLOCK(iommu_table_lock);
3099 
3100 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3101 {
3102 	u64 dte;
3103 
3104 	dte	= amd_iommu_dev_table[devid].data[2];
3105 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3106 	dte	|= iommu_virt_to_phys(table->table);
3107 	dte	|= DTE_IRQ_REMAP_INTCTL;
3108 	dte	|= DTE_IRQ_TABLE_LEN;
3109 	dte	|= DTE_IRQ_REMAP_ENABLE;
3110 
3111 	amd_iommu_dev_table[devid].data[2] = dte;
3112 }
3113 
3114 static struct irq_remap_table *get_irq_table(u16 devid)
3115 {
3116 	struct irq_remap_table *table;
3117 
3118 	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3119 		      "%s: no iommu for devid %x\n", __func__, devid))
3120 		return NULL;
3121 
3122 	table = irq_lookup_table[devid];
3123 	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3124 		return NULL;
3125 
3126 	return table;
3127 }
3128 
3129 static struct irq_remap_table *__alloc_irq_table(void)
3130 {
3131 	struct irq_remap_table *table;
3132 
3133 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3134 	if (!table)
3135 		return NULL;
3136 
3137 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3138 	if (!table->table) {
3139 		kfree(table);
3140 		return NULL;
3141 	}
3142 	raw_spin_lock_init(&table->lock);
3143 
3144 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3145 		memset(table->table, 0,
3146 		       MAX_IRQS_PER_TABLE * sizeof(u32));
3147 	else
3148 		memset(table->table, 0,
3149 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3150 	return table;
3151 }
3152 
3153 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3154 				  struct irq_remap_table *table)
3155 {
3156 	irq_lookup_table[devid] = table;
3157 	set_dte_irq_entry(devid, table);
3158 	iommu_flush_dte(iommu, devid);
3159 }
3160 
3161 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3162 				       void *data)
3163 {
3164 	struct irq_remap_table *table = data;
3165 
3166 	irq_lookup_table[alias] = table;
3167 	set_dte_irq_entry(alias, table);
3168 
3169 	iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
3170 
3171 	return 0;
3172 }
3173 
3174 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
3175 {
3176 	struct irq_remap_table *table = NULL;
3177 	struct irq_remap_table *new_table = NULL;
3178 	struct amd_iommu *iommu;
3179 	unsigned long flags;
3180 	u16 alias;
3181 
3182 	spin_lock_irqsave(&iommu_table_lock, flags);
3183 
3184 	iommu = amd_iommu_rlookup_table[devid];
3185 	if (!iommu)
3186 		goto out_unlock;
3187 
3188 	table = irq_lookup_table[devid];
3189 	if (table)
3190 		goto out_unlock;
3191 
3192 	alias = amd_iommu_alias_table[devid];
3193 	table = irq_lookup_table[alias];
3194 	if (table) {
3195 		set_remap_table_entry(iommu, devid, table);
3196 		goto out_wait;
3197 	}
3198 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3199 
3200 	/* Nothing there yet, allocate new irq remapping table */
3201 	new_table = __alloc_irq_table();
3202 	if (!new_table)
3203 		return NULL;
3204 
3205 	spin_lock_irqsave(&iommu_table_lock, flags);
3206 
3207 	table = irq_lookup_table[devid];
3208 	if (table)
3209 		goto out_unlock;
3210 
3211 	table = irq_lookup_table[alias];
3212 	if (table) {
3213 		set_remap_table_entry(iommu, devid, table);
3214 		goto out_wait;
3215 	}
3216 
3217 	table = new_table;
3218 	new_table = NULL;
3219 
3220 	if (pdev)
3221 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3222 				       table);
3223 	else
3224 		set_remap_table_entry(iommu, devid, table);
3225 
3226 	if (devid != alias)
3227 		set_remap_table_entry(iommu, alias, table);
3228 
3229 out_wait:
3230 	iommu_completion_wait(iommu);
3231 
3232 out_unlock:
3233 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3234 
3235 	if (new_table) {
3236 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3237 		kfree(new_table);
3238 	}
3239 	return table;
3240 }
3241 
3242 static int alloc_irq_index(u16 devid, int count, bool align,
3243 			   struct pci_dev *pdev)
3244 {
3245 	struct irq_remap_table *table;
3246 	int index, c, alignment = 1;
3247 	unsigned long flags;
3248 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3249 
3250 	if (!iommu)
3251 		return -ENODEV;
3252 
3253 	table = alloc_irq_table(devid, pdev);
3254 	if (!table)
3255 		return -ENODEV;
3256 
3257 	if (align)
3258 		alignment = roundup_pow_of_two(count);
3259 
3260 	raw_spin_lock_irqsave(&table->lock, flags);
3261 
3262 	/* Scan table for free entries */
3263 	for (index = ALIGN(table->min_index, alignment), c = 0;
3264 	     index < MAX_IRQS_PER_TABLE;) {
3265 		if (!iommu->irte_ops->is_allocated(table, index)) {
3266 			c += 1;
3267 		} else {
3268 			c     = 0;
3269 			index = ALIGN(index + 1, alignment);
3270 			continue;
3271 		}
3272 
3273 		if (c == count)	{
3274 			for (; c != 0; --c)
3275 				iommu->irte_ops->set_allocated(table, index - c + 1);
3276 
3277 			index -= count - 1;
3278 			goto out;
3279 		}
3280 
3281 		index++;
3282 	}
3283 
3284 	index = -ENOSPC;
3285 
3286 out:
3287 	raw_spin_unlock_irqrestore(&table->lock, flags);
3288 
3289 	return index;
3290 }
3291 
3292 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3293 			  struct amd_ir_data *data)
3294 {
3295 	struct irq_remap_table *table;
3296 	struct amd_iommu *iommu;
3297 	unsigned long flags;
3298 	struct irte_ga *entry;
3299 
3300 	iommu = amd_iommu_rlookup_table[devid];
3301 	if (iommu == NULL)
3302 		return -EINVAL;
3303 
3304 	table = get_irq_table(devid);
3305 	if (!table)
3306 		return -ENOMEM;
3307 
3308 	raw_spin_lock_irqsave(&table->lock, flags);
3309 
3310 	entry = (struct irte_ga *)table->table;
3311 	entry = &entry[index];
3312 	entry->lo.fields_remap.valid = 0;
3313 	entry->hi.val = irte->hi.val;
3314 	entry->lo.val = irte->lo.val;
3315 	entry->lo.fields_remap.valid = 1;
3316 	if (data)
3317 		data->ref = entry;
3318 
3319 	raw_spin_unlock_irqrestore(&table->lock, flags);
3320 
3321 	iommu_flush_irt(iommu, devid);
3322 	iommu_completion_wait(iommu);
3323 
3324 	return 0;
3325 }
3326 
3327 static int modify_irte(u16 devid, int index, union irte *irte)
3328 {
3329 	struct irq_remap_table *table;
3330 	struct amd_iommu *iommu;
3331 	unsigned long flags;
3332 
3333 	iommu = amd_iommu_rlookup_table[devid];
3334 	if (iommu == NULL)
3335 		return -EINVAL;
3336 
3337 	table = get_irq_table(devid);
3338 	if (!table)
3339 		return -ENOMEM;
3340 
3341 	raw_spin_lock_irqsave(&table->lock, flags);
3342 	table->table[index] = irte->val;
3343 	raw_spin_unlock_irqrestore(&table->lock, flags);
3344 
3345 	iommu_flush_irt(iommu, devid);
3346 	iommu_completion_wait(iommu);
3347 
3348 	return 0;
3349 }
3350 
3351 static void free_irte(u16 devid, int index)
3352 {
3353 	struct irq_remap_table *table;
3354 	struct amd_iommu *iommu;
3355 	unsigned long flags;
3356 
3357 	iommu = amd_iommu_rlookup_table[devid];
3358 	if (iommu == NULL)
3359 		return;
3360 
3361 	table = get_irq_table(devid);
3362 	if (!table)
3363 		return;
3364 
3365 	raw_spin_lock_irqsave(&table->lock, flags);
3366 	iommu->irte_ops->clear_allocated(table, index);
3367 	raw_spin_unlock_irqrestore(&table->lock, flags);
3368 
3369 	iommu_flush_irt(iommu, devid);
3370 	iommu_completion_wait(iommu);
3371 }
3372 
3373 static void irte_prepare(void *entry,
3374 			 u32 delivery_mode, u32 dest_mode,
3375 			 u8 vector, u32 dest_apicid, int devid)
3376 {
3377 	union irte *irte = (union irte *) entry;
3378 
3379 	irte->val                = 0;
3380 	irte->fields.vector      = vector;
3381 	irte->fields.int_type    = delivery_mode;
3382 	irte->fields.destination = dest_apicid;
3383 	irte->fields.dm          = dest_mode;
3384 	irte->fields.valid       = 1;
3385 }
3386 
3387 static void irte_ga_prepare(void *entry,
3388 			    u32 delivery_mode, u32 dest_mode,
3389 			    u8 vector, u32 dest_apicid, int devid)
3390 {
3391 	struct irte_ga *irte = (struct irte_ga *) entry;
3392 
3393 	irte->lo.val                      = 0;
3394 	irte->hi.val                      = 0;
3395 	irte->lo.fields_remap.int_type    = delivery_mode;
3396 	irte->lo.fields_remap.dm          = dest_mode;
3397 	irte->hi.fields.vector            = vector;
3398 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3399 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3400 	irte->lo.fields_remap.valid       = 1;
3401 }
3402 
3403 static void irte_activate(void *entry, u16 devid, u16 index)
3404 {
3405 	union irte *irte = (union irte *) entry;
3406 
3407 	irte->fields.valid = 1;
3408 	modify_irte(devid, index, irte);
3409 }
3410 
3411 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3412 {
3413 	struct irte_ga *irte = (struct irte_ga *) entry;
3414 
3415 	irte->lo.fields_remap.valid = 1;
3416 	modify_irte_ga(devid, index, irte, NULL);
3417 }
3418 
3419 static void irte_deactivate(void *entry, u16 devid, u16 index)
3420 {
3421 	union irte *irte = (union irte *) entry;
3422 
3423 	irte->fields.valid = 0;
3424 	modify_irte(devid, index, irte);
3425 }
3426 
3427 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3428 {
3429 	struct irte_ga *irte = (struct irte_ga *) entry;
3430 
3431 	irte->lo.fields_remap.valid = 0;
3432 	modify_irte_ga(devid, index, irte, NULL);
3433 }
3434 
3435 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3436 			      u8 vector, u32 dest_apicid)
3437 {
3438 	union irte *irte = (union irte *) entry;
3439 
3440 	irte->fields.vector = vector;
3441 	irte->fields.destination = dest_apicid;
3442 	modify_irte(devid, index, irte);
3443 }
3444 
3445 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3446 				 u8 vector, u32 dest_apicid)
3447 {
3448 	struct irte_ga *irte = (struct irte_ga *) entry;
3449 
3450 	if (!irte->lo.fields_remap.guest_mode) {
3451 		irte->hi.fields.vector = vector;
3452 		irte->lo.fields_remap.destination =
3453 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3454 		irte->hi.fields.destination =
3455 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3456 		modify_irte_ga(devid, index, irte, NULL);
3457 	}
3458 }
3459 
3460 #define IRTE_ALLOCATED (~1U)
3461 static void irte_set_allocated(struct irq_remap_table *table, int index)
3462 {
3463 	table->table[index] = IRTE_ALLOCATED;
3464 }
3465 
3466 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3467 {
3468 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3469 	struct irte_ga *irte = &ptr[index];
3470 
3471 	memset(&irte->lo.val, 0, sizeof(u64));
3472 	memset(&irte->hi.val, 0, sizeof(u64));
3473 	irte->hi.fields.vector = 0xff;
3474 }
3475 
3476 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3477 {
3478 	union irte *ptr = (union irte *)table->table;
3479 	union irte *irte = &ptr[index];
3480 
3481 	return irte->val != 0;
3482 }
3483 
3484 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3485 {
3486 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3487 	struct irte_ga *irte = &ptr[index];
3488 
3489 	return irte->hi.fields.vector != 0;
3490 }
3491 
3492 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3493 {
3494 	table->table[index] = 0;
3495 }
3496 
3497 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3498 {
3499 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3500 	struct irte_ga *irte = &ptr[index];
3501 
3502 	memset(&irte->lo.val, 0, sizeof(u64));
3503 	memset(&irte->hi.val, 0, sizeof(u64));
3504 }
3505 
3506 static int get_devid(struct irq_alloc_info *info)
3507 {
3508 	int devid = -1;
3509 
3510 	switch (info->type) {
3511 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3512 		devid     = get_ioapic_devid(info->ioapic_id);
3513 		break;
3514 	case X86_IRQ_ALLOC_TYPE_HPET:
3515 		devid     = get_hpet_devid(info->hpet_id);
3516 		break;
3517 	case X86_IRQ_ALLOC_TYPE_MSI:
3518 	case X86_IRQ_ALLOC_TYPE_MSIX:
3519 		devid = get_device_id(&info->msi_dev->dev);
3520 		break;
3521 	default:
3522 		BUG_ON(1);
3523 		break;
3524 	}
3525 
3526 	return devid;
3527 }
3528 
3529 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3530 {
3531 	struct amd_iommu *iommu;
3532 	int devid;
3533 
3534 	if (!info)
3535 		return NULL;
3536 
3537 	devid = get_devid(info);
3538 	if (devid >= 0) {
3539 		iommu = amd_iommu_rlookup_table[devid];
3540 		if (iommu)
3541 			return iommu->ir_domain;
3542 	}
3543 
3544 	return NULL;
3545 }
3546 
3547 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3548 {
3549 	struct amd_iommu *iommu;
3550 	int devid;
3551 
3552 	if (!info)
3553 		return NULL;
3554 
3555 	switch (info->type) {
3556 	case X86_IRQ_ALLOC_TYPE_MSI:
3557 	case X86_IRQ_ALLOC_TYPE_MSIX:
3558 		devid = get_device_id(&info->msi_dev->dev);
3559 		if (devid < 0)
3560 			return NULL;
3561 
3562 		iommu = amd_iommu_rlookup_table[devid];
3563 		if (iommu)
3564 			return iommu->msi_domain;
3565 		break;
3566 	default:
3567 		break;
3568 	}
3569 
3570 	return NULL;
3571 }
3572 
3573 struct irq_remap_ops amd_iommu_irq_ops = {
3574 	.prepare		= amd_iommu_prepare,
3575 	.enable			= amd_iommu_enable,
3576 	.disable		= amd_iommu_disable,
3577 	.reenable		= amd_iommu_reenable,
3578 	.enable_faulting	= amd_iommu_enable_faulting,
3579 	.get_ir_irq_domain	= get_ir_irq_domain,
3580 	.get_irq_domain		= get_irq_domain,
3581 };
3582 
3583 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3584 				       struct irq_cfg *irq_cfg,
3585 				       struct irq_alloc_info *info,
3586 				       int devid, int index, int sub_handle)
3587 {
3588 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3589 	struct msi_msg *msg = &data->msi_entry;
3590 	struct IO_APIC_route_entry *entry;
3591 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3592 
3593 	if (!iommu)
3594 		return;
3595 
3596 	data->irq_2_irte.devid = devid;
3597 	data->irq_2_irte.index = index + sub_handle;
3598 	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
3599 				 apic->irq_dest_mode, irq_cfg->vector,
3600 				 irq_cfg->dest_apicid, devid);
3601 
3602 	switch (info->type) {
3603 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3604 		/* Setup IOAPIC entry */
3605 		entry = info->ioapic_entry;
3606 		info->ioapic_entry = NULL;
3607 		memset(entry, 0, sizeof(*entry));
3608 		entry->vector        = index;
3609 		entry->mask          = 0;
3610 		entry->trigger       = info->ioapic_trigger;
3611 		entry->polarity      = info->ioapic_polarity;
3612 		/* Mask level triggered irqs. */
3613 		if (info->ioapic_trigger)
3614 			entry->mask = 1;
3615 		break;
3616 
3617 	case X86_IRQ_ALLOC_TYPE_HPET:
3618 	case X86_IRQ_ALLOC_TYPE_MSI:
3619 	case X86_IRQ_ALLOC_TYPE_MSIX:
3620 		msg->address_hi = MSI_ADDR_BASE_HI;
3621 		msg->address_lo = MSI_ADDR_BASE_LO;
3622 		msg->data = irte_info->index;
3623 		break;
3624 
3625 	default:
3626 		BUG_ON(1);
3627 		break;
3628 	}
3629 }
3630 
3631 struct amd_irte_ops irte_32_ops = {
3632 	.prepare = irte_prepare,
3633 	.activate = irte_activate,
3634 	.deactivate = irte_deactivate,
3635 	.set_affinity = irte_set_affinity,
3636 	.set_allocated = irte_set_allocated,
3637 	.is_allocated = irte_is_allocated,
3638 	.clear_allocated = irte_clear_allocated,
3639 };
3640 
3641 struct amd_irte_ops irte_128_ops = {
3642 	.prepare = irte_ga_prepare,
3643 	.activate = irte_ga_activate,
3644 	.deactivate = irte_ga_deactivate,
3645 	.set_affinity = irte_ga_set_affinity,
3646 	.set_allocated = irte_ga_set_allocated,
3647 	.is_allocated = irte_ga_is_allocated,
3648 	.clear_allocated = irte_ga_clear_allocated,
3649 };
3650 
3651 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3652 			       unsigned int nr_irqs, void *arg)
3653 {
3654 	struct irq_alloc_info *info = arg;
3655 	struct irq_data *irq_data;
3656 	struct amd_ir_data *data = NULL;
3657 	struct irq_cfg *cfg;
3658 	int i, ret, devid;
3659 	int index;
3660 
3661 	if (!info)
3662 		return -EINVAL;
3663 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
3664 	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3665 		return -EINVAL;
3666 
3667 	/*
3668 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
3669 	 * to support multiple MSI interrupts.
3670 	 */
3671 	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
3672 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3673 
3674 	devid = get_devid(info);
3675 	if (devid < 0)
3676 		return -EINVAL;
3677 
3678 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3679 	if (ret < 0)
3680 		return ret;
3681 
3682 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3683 		struct irq_remap_table *table;
3684 		struct amd_iommu *iommu;
3685 
3686 		table = alloc_irq_table(devid, NULL);
3687 		if (table) {
3688 			if (!table->min_index) {
3689 				/*
3690 				 * Keep the first 32 indexes free for IOAPIC
3691 				 * interrupts.
3692 				 */
3693 				table->min_index = 32;
3694 				iommu = amd_iommu_rlookup_table[devid];
3695 				for (i = 0; i < 32; ++i)
3696 					iommu->irte_ops->set_allocated(table, i);
3697 			}
3698 			WARN_ON(table->min_index != 32);
3699 			index = info->ioapic_pin;
3700 		} else {
3701 			index = -ENOMEM;
3702 		}
3703 	} else if (info->type == X86_IRQ_ALLOC_TYPE_MSI ||
3704 		   info->type == X86_IRQ_ALLOC_TYPE_MSIX) {
3705 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
3706 
3707 		index = alloc_irq_index(devid, nr_irqs, align, info->msi_dev);
3708 	} else {
3709 		index = alloc_irq_index(devid, nr_irqs, false, NULL);
3710 	}
3711 
3712 	if (index < 0) {
3713 		pr_warn("Failed to allocate IRTE\n");
3714 		ret = index;
3715 		goto out_free_parent;
3716 	}
3717 
3718 	for (i = 0; i < nr_irqs; i++) {
3719 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3720 		cfg = irqd_cfg(irq_data);
3721 		if (!irq_data || !cfg) {
3722 			ret = -EINVAL;
3723 			goto out_free_data;
3724 		}
3725 
3726 		ret = -ENOMEM;
3727 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3728 		if (!data)
3729 			goto out_free_data;
3730 
3731 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3732 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3733 		else
3734 			data->entry = kzalloc(sizeof(struct irte_ga),
3735 						     GFP_KERNEL);
3736 		if (!data->entry) {
3737 			kfree(data);
3738 			goto out_free_data;
3739 		}
3740 
3741 		irq_data->hwirq = (devid << 16) + i;
3742 		irq_data->chip_data = data;
3743 		irq_data->chip = &amd_ir_chip;
3744 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3745 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3746 	}
3747 
3748 	return 0;
3749 
3750 out_free_data:
3751 	for (i--; i >= 0; i--) {
3752 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3753 		if (irq_data)
3754 			kfree(irq_data->chip_data);
3755 	}
3756 	for (i = 0; i < nr_irqs; i++)
3757 		free_irte(devid, index + i);
3758 out_free_parent:
3759 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3760 	return ret;
3761 }
3762 
3763 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3764 			       unsigned int nr_irqs)
3765 {
3766 	struct irq_2_irte *irte_info;
3767 	struct irq_data *irq_data;
3768 	struct amd_ir_data *data;
3769 	int i;
3770 
3771 	for (i = 0; i < nr_irqs; i++) {
3772 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3773 		if (irq_data && irq_data->chip_data) {
3774 			data = irq_data->chip_data;
3775 			irte_info = &data->irq_2_irte;
3776 			free_irte(irte_info->devid, irte_info->index);
3777 			kfree(data->entry);
3778 			kfree(data);
3779 		}
3780 	}
3781 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3782 }
3783 
3784 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3785 			       struct amd_ir_data *ir_data,
3786 			       struct irq_2_irte *irte_info,
3787 			       struct irq_cfg *cfg);
3788 
3789 static int irq_remapping_activate(struct irq_domain *domain,
3790 				  struct irq_data *irq_data, bool reserve)
3791 {
3792 	struct amd_ir_data *data = irq_data->chip_data;
3793 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3794 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3795 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3796 
3797 	if (!iommu)
3798 		return 0;
3799 
3800 	iommu->irte_ops->activate(data->entry, irte_info->devid,
3801 				  irte_info->index);
3802 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3803 	return 0;
3804 }
3805 
3806 static void irq_remapping_deactivate(struct irq_domain *domain,
3807 				     struct irq_data *irq_data)
3808 {
3809 	struct amd_ir_data *data = irq_data->chip_data;
3810 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3811 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3812 
3813 	if (iommu)
3814 		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
3815 					    irte_info->index);
3816 }
3817 
3818 static const struct irq_domain_ops amd_ir_domain_ops = {
3819 	.alloc = irq_remapping_alloc,
3820 	.free = irq_remapping_free,
3821 	.activate = irq_remapping_activate,
3822 	.deactivate = irq_remapping_deactivate,
3823 };
3824 
3825 int amd_iommu_activate_guest_mode(void *data)
3826 {
3827 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3828 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3829 
3830 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3831 	    !entry || entry->lo.fields_vapic.guest_mode)
3832 		return 0;
3833 
3834 	entry->lo.val = 0;
3835 	entry->hi.val = 0;
3836 
3837 	entry->lo.fields_vapic.guest_mode  = 1;
3838 	entry->lo.fields_vapic.ga_log_intr = 1;
3839 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3840 	entry->hi.fields.vector            = ir_data->ga_vector;
3841 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3842 
3843 	return modify_irte_ga(ir_data->irq_2_irte.devid,
3844 			      ir_data->irq_2_irte.index, entry, ir_data);
3845 }
3846 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3847 
3848 int amd_iommu_deactivate_guest_mode(void *data)
3849 {
3850 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3851 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3852 	struct irq_cfg *cfg = ir_data->cfg;
3853 
3854 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3855 	    !entry || !entry->lo.fields_vapic.guest_mode)
3856 		return 0;
3857 
3858 	entry->lo.val = 0;
3859 	entry->hi.val = 0;
3860 
3861 	entry->lo.fields_remap.dm          = apic->irq_dest_mode;
3862 	entry->lo.fields_remap.int_type    = apic->irq_delivery_mode;
3863 	entry->hi.fields.vector            = cfg->vector;
3864 	entry->lo.fields_remap.destination =
3865 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3866 	entry->hi.fields.destination =
3867 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3868 
3869 	return modify_irte_ga(ir_data->irq_2_irte.devid,
3870 			      ir_data->irq_2_irte.index, entry, ir_data);
3871 }
3872 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3873 
3874 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3875 {
3876 	int ret;
3877 	struct amd_iommu *iommu;
3878 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3879 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3880 	struct amd_ir_data *ir_data = data->chip_data;
3881 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3882 	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
3883 
3884 	/* Note:
3885 	 * This device has never been set up for guest mode.
3886 	 * we should not modify the IRTE
3887 	 */
3888 	if (!dev_data || !dev_data->use_vapic)
3889 		return 0;
3890 
3891 	ir_data->cfg = irqd_cfg(data);
3892 	pi_data->ir_data = ir_data;
3893 
3894 	/* Note:
3895 	 * SVM tries to set up for VAPIC mode, but we are in
3896 	 * legacy mode. So, we force legacy mode instead.
3897 	 */
3898 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3899 		pr_debug("%s: Fall back to using intr legacy remap\n",
3900 			 __func__);
3901 		pi_data->is_guest_mode = false;
3902 	}
3903 
3904 	iommu = amd_iommu_rlookup_table[irte_info->devid];
3905 	if (iommu == NULL)
3906 		return -EINVAL;
3907 
3908 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3909 	if (pi_data->is_guest_mode) {
3910 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3911 		ir_data->ga_vector = vcpu_pi_info->vector;
3912 		ir_data->ga_tag = pi_data->ga_tag;
3913 		ret = amd_iommu_activate_guest_mode(ir_data);
3914 		if (!ret)
3915 			ir_data->cached_ga_tag = pi_data->ga_tag;
3916 	} else {
3917 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3918 
3919 		/*
3920 		 * This communicates the ga_tag back to the caller
3921 		 * so that it can do all the necessary clean up.
3922 		 */
3923 		if (!ret)
3924 			ir_data->cached_ga_tag = 0;
3925 	}
3926 
3927 	return ret;
3928 }
3929 
3930 
3931 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3932 			       struct amd_ir_data *ir_data,
3933 			       struct irq_2_irte *irte_info,
3934 			       struct irq_cfg *cfg)
3935 {
3936 
3937 	/*
3938 	 * Atomically updates the IRTE with the new destination, vector
3939 	 * and flushes the interrupt entry cache.
3940 	 */
3941 	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
3942 				      irte_info->index, cfg->vector,
3943 				      cfg->dest_apicid);
3944 }
3945 
3946 static int amd_ir_set_affinity(struct irq_data *data,
3947 			       const struct cpumask *mask, bool force)
3948 {
3949 	struct amd_ir_data *ir_data = data->chip_data;
3950 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3951 	struct irq_cfg *cfg = irqd_cfg(data);
3952 	struct irq_data *parent = data->parent_data;
3953 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3954 	int ret;
3955 
3956 	if (!iommu)
3957 		return -ENODEV;
3958 
3959 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3960 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3961 		return ret;
3962 
3963 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3964 	/*
3965 	 * After this point, all the interrupts will start arriving
3966 	 * at the new destination. So, time to cleanup the previous
3967 	 * vector allocation.
3968 	 */
3969 	send_cleanup_vector(cfg);
3970 
3971 	return IRQ_SET_MASK_OK_DONE;
3972 }
3973 
3974 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3975 {
3976 	struct amd_ir_data *ir_data = irq_data->chip_data;
3977 
3978 	*msg = ir_data->msi_entry;
3979 }
3980 
3981 static struct irq_chip amd_ir_chip = {
3982 	.name			= "AMD-IR",
3983 	.irq_ack		= apic_ack_irq,
3984 	.irq_set_affinity	= amd_ir_set_affinity,
3985 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3986 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3987 };
3988 
3989 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3990 {
3991 	struct fwnode_handle *fn;
3992 
3993 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3994 	if (!fn)
3995 		return -ENOMEM;
3996 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
3997 	if (!iommu->ir_domain) {
3998 		irq_domain_free_fwnode(fn);
3999 		return -ENOMEM;
4000 	}
4001 
4002 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4003 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4004 							     "AMD-IR-MSI",
4005 							     iommu->index);
4006 	return 0;
4007 }
4008 
4009 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4010 {
4011 	unsigned long flags;
4012 	struct amd_iommu *iommu;
4013 	struct irq_remap_table *table;
4014 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4015 	int devid = ir_data->irq_2_irte.devid;
4016 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4017 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4018 
4019 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4020 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4021 		return 0;
4022 
4023 	iommu = amd_iommu_rlookup_table[devid];
4024 	if (!iommu)
4025 		return -ENODEV;
4026 
4027 	table = get_irq_table(devid);
4028 	if (!table)
4029 		return -ENODEV;
4030 
4031 	raw_spin_lock_irqsave(&table->lock, flags);
4032 
4033 	if (ref->lo.fields_vapic.guest_mode) {
4034 		if (cpu >= 0) {
4035 			ref->lo.fields_vapic.destination =
4036 						APICID_TO_IRTE_DEST_LO(cpu);
4037 			ref->hi.fields.destination =
4038 						APICID_TO_IRTE_DEST_HI(cpu);
4039 		}
4040 		ref->lo.fields_vapic.is_run = is_run;
4041 		barrier();
4042 	}
4043 
4044 	raw_spin_unlock_irqrestore(&table->lock, flags);
4045 
4046 	iommu_flush_irt(iommu, devid);
4047 	iommu_completion_wait(iommu);
4048 	return 0;
4049 }
4050 EXPORT_SYMBOL(amd_iommu_update_ga);
4051 #endif
4052