1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/amba/bus.h> 15 #include <linux/platform_device.h> 16 #include <linux/pci-ats.h> 17 #include <linux/bitmap.h> 18 #include <linux/slab.h> 19 #include <linux/debugfs.h> 20 #include <linux/scatterlist.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-direct.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/iommu-helper.h> 25 #include <linux/delay.h> 26 #include <linux/amd-iommu.h> 27 #include <linux/notifier.h> 28 #include <linux/export.h> 29 #include <linux/irq.h> 30 #include <linux/msi.h> 31 #include <linux/dma-contiguous.h> 32 #include <linux/irqdomain.h> 33 #include <linux/percpu.h> 34 #include <linux/iova.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/io_apic.h> 37 #include <asm/apic.h> 38 #include <asm/hw_irq.h> 39 #include <asm/msidef.h> 40 #include <asm/proto.h> 41 #include <asm/iommu.h> 42 #include <asm/gart.h> 43 #include <asm/dma.h> 44 45 #include "amd_iommu.h" 46 #include "../irq_remapping.h" 47 48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 49 50 #define LOOP_TIMEOUT 100000 51 52 /* IO virtual address start page frame number */ 53 #define IOVA_START_PFN (1) 54 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 55 56 /* Reserved IOVA ranges */ 57 #define MSI_RANGE_START (0xfee00000) 58 #define MSI_RANGE_END (0xfeefffff) 59 #define HT_RANGE_START (0xfd00000000ULL) 60 #define HT_RANGE_END (0xffffffffffULL) 61 62 /* 63 * This bitmap is used to advertise the page sizes our hardware support 64 * to the IOMMU core, which will then use this information to split 65 * physically contiguous memory regions it is mapping into page sizes 66 * that we support. 67 * 68 * 512GB Pages are not supported due to a hardware bug 69 */ 70 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38)) 71 72 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL 73 74 static DEFINE_SPINLOCK(pd_bitmap_lock); 75 76 /* List of all available dev_data structures */ 77 static LLIST_HEAD(dev_data_list); 78 79 LIST_HEAD(ioapic_map); 80 LIST_HEAD(hpet_map); 81 LIST_HEAD(acpihid_map); 82 83 /* 84 * Domain for untranslated devices - only allocated 85 * if iommu=pt passed on kernel cmd line. 86 */ 87 const struct iommu_ops amd_iommu_ops; 88 89 static ATOMIC_NOTIFIER_HEAD(ppr_notifier); 90 int amd_iommu_max_glx_val = -1; 91 92 /* 93 * general struct to manage commands send to an IOMMU 94 */ 95 struct iommu_cmd { 96 u32 data[4]; 97 }; 98 99 struct kmem_cache *amd_iommu_irq_cache; 100 101 static void update_domain(struct protection_domain *domain); 102 static void detach_device(struct device *dev); 103 static void update_and_flush_device_table(struct protection_domain *domain, 104 struct domain_pgtable *pgtable); 105 106 /**************************************************************************** 107 * 108 * Helper functions 109 * 110 ****************************************************************************/ 111 112 static inline u16 get_pci_device_id(struct device *dev) 113 { 114 struct pci_dev *pdev = to_pci_dev(dev); 115 116 return pci_dev_id(pdev); 117 } 118 119 static inline int get_acpihid_device_id(struct device *dev, 120 struct acpihid_map_entry **entry) 121 { 122 struct acpi_device *adev = ACPI_COMPANION(dev); 123 struct acpihid_map_entry *p; 124 125 if (!adev) 126 return -ENODEV; 127 128 list_for_each_entry(p, &acpihid_map, list) { 129 if (acpi_dev_hid_uid_match(adev, p->hid, 130 p->uid[0] ? p->uid : NULL)) { 131 if (entry) 132 *entry = p; 133 return p->devid; 134 } 135 } 136 return -EINVAL; 137 } 138 139 static inline int get_device_id(struct device *dev) 140 { 141 int devid; 142 143 if (dev_is_pci(dev)) 144 devid = get_pci_device_id(dev); 145 else 146 devid = get_acpihid_device_id(dev, NULL); 147 148 return devid; 149 } 150 151 static struct protection_domain *to_pdomain(struct iommu_domain *dom) 152 { 153 return container_of(dom, struct protection_domain, domain); 154 } 155 156 static void amd_iommu_domain_get_pgtable(struct protection_domain *domain, 157 struct domain_pgtable *pgtable) 158 { 159 u64 pt_root = atomic64_read(&domain->pt_root); 160 161 pgtable->root = (u64 *)(pt_root & PAGE_MASK); 162 pgtable->mode = pt_root & 7; /* lowest 3 bits encode pgtable mode */ 163 } 164 165 static void amd_iommu_domain_set_pt_root(struct protection_domain *domain, u64 root) 166 { 167 atomic64_set(&domain->pt_root, root); 168 } 169 170 static void amd_iommu_domain_clr_pt_root(struct protection_domain *domain) 171 { 172 amd_iommu_domain_set_pt_root(domain, 0); 173 } 174 175 static void amd_iommu_domain_set_pgtable(struct protection_domain *domain, 176 u64 *root, int mode) 177 { 178 u64 pt_root; 179 180 /* lowest 3 bits encode pgtable mode */ 181 pt_root = mode & 7; 182 pt_root |= (u64)root; 183 184 amd_iommu_domain_set_pt_root(domain, pt_root); 185 } 186 187 static struct iommu_dev_data *alloc_dev_data(u16 devid) 188 { 189 struct iommu_dev_data *dev_data; 190 191 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 192 if (!dev_data) 193 return NULL; 194 195 spin_lock_init(&dev_data->lock); 196 dev_data->devid = devid; 197 ratelimit_default_init(&dev_data->rs); 198 199 llist_add(&dev_data->dev_data_list, &dev_data_list); 200 return dev_data; 201 } 202 203 static struct iommu_dev_data *search_dev_data(u16 devid) 204 { 205 struct iommu_dev_data *dev_data; 206 struct llist_node *node; 207 208 if (llist_empty(&dev_data_list)) 209 return NULL; 210 211 node = dev_data_list.first; 212 llist_for_each_entry(dev_data, node, dev_data_list) { 213 if (dev_data->devid == devid) 214 return dev_data; 215 } 216 217 return NULL; 218 } 219 220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 221 { 222 u16 devid = pci_dev_id(pdev); 223 224 if (devid == alias) 225 return 0; 226 227 amd_iommu_rlookup_table[alias] = 228 amd_iommu_rlookup_table[devid]; 229 memcpy(amd_iommu_dev_table[alias].data, 230 amd_iommu_dev_table[devid].data, 231 sizeof(amd_iommu_dev_table[alias].data)); 232 233 return 0; 234 } 235 236 static void clone_aliases(struct pci_dev *pdev) 237 { 238 if (!pdev) 239 return; 240 241 /* 242 * The IVRS alias stored in the alias table may not be 243 * part of the PCI DMA aliases if it's bus differs 244 * from the original device. 245 */ 246 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL); 247 248 pci_for_each_dma_alias(pdev, clone_alias, NULL); 249 } 250 251 static struct pci_dev *setup_aliases(struct device *dev) 252 { 253 struct pci_dev *pdev = to_pci_dev(dev); 254 u16 ivrs_alias; 255 256 /* For ACPI HID devices, there are no aliases */ 257 if (!dev_is_pci(dev)) 258 return NULL; 259 260 /* 261 * Add the IVRS alias to the pci aliases if it is on the same 262 * bus. The IVRS table may know about a quirk that we don't. 263 */ 264 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)]; 265 if (ivrs_alias != pci_dev_id(pdev) && 266 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 267 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 268 269 clone_aliases(pdev); 270 271 return pdev; 272 } 273 274 static struct iommu_dev_data *find_dev_data(u16 devid) 275 { 276 struct iommu_dev_data *dev_data; 277 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 278 279 dev_data = search_dev_data(devid); 280 281 if (dev_data == NULL) { 282 dev_data = alloc_dev_data(devid); 283 if (!dev_data) 284 return NULL; 285 286 if (translation_pre_enabled(iommu)) 287 dev_data->defer_attach = true; 288 } 289 290 return dev_data; 291 } 292 293 /* 294 * Find or create an IOMMU group for a acpihid device. 295 */ 296 static struct iommu_group *acpihid_device_group(struct device *dev) 297 { 298 struct acpihid_map_entry *p, *entry = NULL; 299 int devid; 300 301 devid = get_acpihid_device_id(dev, &entry); 302 if (devid < 0) 303 return ERR_PTR(devid); 304 305 list_for_each_entry(p, &acpihid_map, list) { 306 if ((devid == p->devid) && p->group) 307 entry->group = p->group; 308 } 309 310 if (!entry->group) 311 entry->group = generic_device_group(dev); 312 else 313 iommu_group_ref_get(entry->group); 314 315 return entry->group; 316 } 317 318 static bool pci_iommuv2_capable(struct pci_dev *pdev) 319 { 320 static const int caps[] = { 321 PCI_EXT_CAP_ID_PRI, 322 PCI_EXT_CAP_ID_PASID, 323 }; 324 int i, pos; 325 326 if (!pci_ats_supported(pdev)) 327 return false; 328 329 for (i = 0; i < 2; ++i) { 330 pos = pci_find_ext_capability(pdev, caps[i]); 331 if (pos == 0) 332 return false; 333 } 334 335 return true; 336 } 337 338 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum) 339 { 340 struct iommu_dev_data *dev_data; 341 342 dev_data = dev_iommu_priv_get(&pdev->dev); 343 344 return dev_data->errata & (1 << erratum) ? true : false; 345 } 346 347 /* 348 * This function checks if the driver got a valid device from the caller to 349 * avoid dereferencing invalid pointers. 350 */ 351 static bool check_device(struct device *dev) 352 { 353 int devid; 354 355 if (!dev) 356 return false; 357 358 devid = get_device_id(dev); 359 if (devid < 0) 360 return false; 361 362 /* Out of our scope? */ 363 if (devid > amd_iommu_last_bdf) 364 return false; 365 366 if (amd_iommu_rlookup_table[devid] == NULL) 367 return false; 368 369 return true; 370 } 371 372 static int iommu_init_device(struct device *dev) 373 { 374 struct iommu_dev_data *dev_data; 375 int devid; 376 377 if (dev_iommu_priv_get(dev)) 378 return 0; 379 380 devid = get_device_id(dev); 381 if (devid < 0) 382 return devid; 383 384 dev_data = find_dev_data(devid); 385 if (!dev_data) 386 return -ENOMEM; 387 388 dev_data->pdev = setup_aliases(dev); 389 390 /* 391 * By default we use passthrough mode for IOMMUv2 capable device. 392 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 393 * invalid address), we ignore the capability for the device so 394 * it'll be forced to go into translation mode. 395 */ 396 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 397 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { 398 struct amd_iommu *iommu; 399 400 iommu = amd_iommu_rlookup_table[dev_data->devid]; 401 dev_data->iommu_v2 = iommu->is_iommu_v2; 402 } 403 404 dev_iommu_priv_set(dev, dev_data); 405 406 return 0; 407 } 408 409 static void iommu_ignore_device(struct device *dev) 410 { 411 int devid; 412 413 devid = get_device_id(dev); 414 if (devid < 0) 415 return; 416 417 amd_iommu_rlookup_table[devid] = NULL; 418 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); 419 420 setup_aliases(dev); 421 } 422 423 static void amd_iommu_uninit_device(struct device *dev) 424 { 425 struct iommu_dev_data *dev_data; 426 427 dev_data = dev_iommu_priv_get(dev); 428 if (!dev_data) 429 return; 430 431 if (dev_data->domain) 432 detach_device(dev); 433 434 dev_iommu_priv_set(dev, NULL); 435 436 /* 437 * We keep dev_data around for unplugged devices and reuse it when the 438 * device is re-plugged - not doing so would introduce a ton of races. 439 */ 440 } 441 442 /* 443 * Helper function to get the first pte of a large mapping 444 */ 445 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size, 446 unsigned long *count) 447 { 448 unsigned long pte_mask, pg_size, cnt; 449 u64 *fpte; 450 451 pg_size = PTE_PAGE_SIZE(*pte); 452 cnt = PAGE_SIZE_PTE_COUNT(pg_size); 453 pte_mask = ~((cnt << 3) - 1); 454 fpte = (u64 *)(((unsigned long)pte) & pte_mask); 455 456 if (page_size) 457 *page_size = pg_size; 458 459 if (count) 460 *count = cnt; 461 462 return fpte; 463 } 464 465 /**************************************************************************** 466 * 467 * Interrupt handling functions 468 * 469 ****************************************************************************/ 470 471 static void dump_dte_entry(u16 devid) 472 { 473 int i; 474 475 for (i = 0; i < 4; ++i) 476 pr_err("DTE[%d]: %016llx\n", i, 477 amd_iommu_dev_table[devid].data[i]); 478 } 479 480 static void dump_command(unsigned long phys_addr) 481 { 482 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 483 int i; 484 485 for (i = 0; i < 4; ++i) 486 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 487 } 488 489 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id, 490 u64 address, int flags) 491 { 492 struct iommu_dev_data *dev_data = NULL; 493 struct pci_dev *pdev; 494 495 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), 496 devid & 0xff); 497 if (pdev) 498 dev_data = dev_iommu_priv_get(&pdev->dev); 499 500 if (dev_data && __ratelimit(&dev_data->rs)) { 501 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 502 domain_id, address, flags); 503 } else if (printk_ratelimit()) { 504 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 505 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 506 domain_id, address, flags); 507 } 508 509 if (pdev) 510 pci_dev_put(pdev); 511 } 512 513 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 514 { 515 struct device *dev = iommu->iommu.dev; 516 int type, devid, flags, tag; 517 volatile u32 *event = __evt; 518 int count = 0; 519 u64 address; 520 u32 pasid; 521 522 retry: 523 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 524 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 525 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 526 (event[1] & EVENT_DOMID_MASK_LO); 527 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 528 address = (u64)(((u64)event[3]) << 32) | event[2]; 529 530 if (type == 0) { 531 /* Did we hit the erratum? */ 532 if (++count == LOOP_TIMEOUT) { 533 pr_err("No event written to event log\n"); 534 return; 535 } 536 udelay(1); 537 goto retry; 538 } 539 540 if (type == EVENT_TYPE_IO_FAULT) { 541 amd_iommu_report_page_fault(devid, pasid, address, flags); 542 return; 543 } 544 545 switch (type) { 546 case EVENT_TYPE_ILL_DEV: 547 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 548 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 549 pasid, address, flags); 550 dump_dte_entry(devid); 551 break; 552 case EVENT_TYPE_DEV_TAB_ERR: 553 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " 554 "address=0x%llx flags=0x%04x]\n", 555 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 556 address, flags); 557 break; 558 case EVENT_TYPE_PAGE_TAB_ERR: 559 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 560 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 561 pasid, address, flags); 562 break; 563 case EVENT_TYPE_ILL_CMD: 564 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 565 dump_command(address); 566 break; 567 case EVENT_TYPE_CMD_HARD_ERR: 568 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 569 address, flags); 570 break; 571 case EVENT_TYPE_IOTLB_INV_TO: 572 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n", 573 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 574 address); 575 break; 576 case EVENT_TYPE_INV_DEV_REQ: 577 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 578 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 579 pasid, address, flags); 580 break; 581 case EVENT_TYPE_INV_PPR_REQ: 582 pasid = PPR_PASID(*((u64 *)__evt)); 583 tag = event[1] & 0x03FF; 584 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 585 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 586 pasid, address, flags, tag); 587 break; 588 default: 589 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 590 event[0], event[1], event[2], event[3]); 591 } 592 593 memset(__evt, 0, 4 * sizeof(u32)); 594 } 595 596 static void iommu_poll_events(struct amd_iommu *iommu) 597 { 598 u32 head, tail; 599 600 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 601 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 602 603 while (head != tail) { 604 iommu_print_event(iommu, iommu->evt_buf + head); 605 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 606 } 607 608 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 609 } 610 611 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) 612 { 613 struct amd_iommu_fault fault; 614 615 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { 616 pr_err_ratelimited("Unknown PPR request received\n"); 617 return; 618 } 619 620 fault.address = raw[1]; 621 fault.pasid = PPR_PASID(raw[0]); 622 fault.device_id = PPR_DEVID(raw[0]); 623 fault.tag = PPR_TAG(raw[0]); 624 fault.flags = PPR_FLAGS(raw[0]); 625 626 atomic_notifier_call_chain(&ppr_notifier, 0, &fault); 627 } 628 629 static void iommu_poll_ppr_log(struct amd_iommu *iommu) 630 { 631 u32 head, tail; 632 633 if (iommu->ppr_log == NULL) 634 return; 635 636 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 637 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 638 639 while (head != tail) { 640 volatile u64 *raw; 641 u64 entry[2]; 642 int i; 643 644 raw = (u64 *)(iommu->ppr_log + head); 645 646 /* 647 * Hardware bug: Interrupt may arrive before the entry is 648 * written to memory. If this happens we need to wait for the 649 * entry to arrive. 650 */ 651 for (i = 0; i < LOOP_TIMEOUT; ++i) { 652 if (PPR_REQ_TYPE(raw[0]) != 0) 653 break; 654 udelay(1); 655 } 656 657 /* Avoid memcpy function-call overhead */ 658 entry[0] = raw[0]; 659 entry[1] = raw[1]; 660 661 /* 662 * To detect the hardware bug we need to clear the entry 663 * back to zero. 664 */ 665 raw[0] = raw[1] = 0UL; 666 667 /* Update head pointer of hardware ring-buffer */ 668 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; 669 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 670 671 /* Handle PPR entry */ 672 iommu_handle_ppr_entry(iommu, entry); 673 674 /* Refresh ring-buffer information */ 675 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 676 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 677 } 678 } 679 680 #ifdef CONFIG_IRQ_REMAP 681 static int (*iommu_ga_log_notifier)(u32); 682 683 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 684 { 685 iommu_ga_log_notifier = notifier; 686 687 return 0; 688 } 689 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 690 691 static void iommu_poll_ga_log(struct amd_iommu *iommu) 692 { 693 u32 head, tail, cnt = 0; 694 695 if (iommu->ga_log == NULL) 696 return; 697 698 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 699 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 700 701 while (head != tail) { 702 volatile u64 *raw; 703 u64 log_entry; 704 705 raw = (u64 *)(iommu->ga_log + head); 706 cnt++; 707 708 /* Avoid memcpy function-call overhead */ 709 log_entry = *raw; 710 711 /* Update head pointer of hardware ring-buffer */ 712 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 713 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 714 715 /* Handle GA entry */ 716 switch (GA_REQ_TYPE(log_entry)) { 717 case GA_GUEST_NR: 718 if (!iommu_ga_log_notifier) 719 break; 720 721 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 722 __func__, GA_DEVID(log_entry), 723 GA_TAG(log_entry)); 724 725 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 726 pr_err("GA log notifier failed.\n"); 727 break; 728 default: 729 break; 730 } 731 } 732 } 733 734 static void 735 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 736 { 737 if (!irq_remapping_enabled || !dev_is_pci(dev) || 738 pci_dev_has_special_msi_domain(to_pci_dev(dev))) 739 return; 740 741 dev_set_msi_domain(dev, iommu->msi_domain); 742 } 743 744 #else /* CONFIG_IRQ_REMAP */ 745 static inline void 746 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 747 #endif /* !CONFIG_IRQ_REMAP */ 748 749 #define AMD_IOMMU_INT_MASK \ 750 (MMIO_STATUS_EVT_INT_MASK | \ 751 MMIO_STATUS_PPR_INT_MASK | \ 752 MMIO_STATUS_GALOG_INT_MASK) 753 754 irqreturn_t amd_iommu_int_thread(int irq, void *data) 755 { 756 struct amd_iommu *iommu = (struct amd_iommu *) data; 757 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 758 759 while (status & AMD_IOMMU_INT_MASK) { 760 /* Enable EVT and PPR and GA interrupts again */ 761 writel(AMD_IOMMU_INT_MASK, 762 iommu->mmio_base + MMIO_STATUS_OFFSET); 763 764 if (status & MMIO_STATUS_EVT_INT_MASK) { 765 pr_devel("Processing IOMMU Event Log\n"); 766 iommu_poll_events(iommu); 767 } 768 769 if (status & MMIO_STATUS_PPR_INT_MASK) { 770 pr_devel("Processing IOMMU PPR Log\n"); 771 iommu_poll_ppr_log(iommu); 772 } 773 774 #ifdef CONFIG_IRQ_REMAP 775 if (status & MMIO_STATUS_GALOG_INT_MASK) { 776 pr_devel("Processing IOMMU GA Log\n"); 777 iommu_poll_ga_log(iommu); 778 } 779 #endif 780 781 /* 782 * Hardware bug: ERBT1312 783 * When re-enabling interrupt (by writing 1 784 * to clear the bit), the hardware might also try to set 785 * the interrupt bit in the event status register. 786 * In this scenario, the bit will be set, and disable 787 * subsequent interrupts. 788 * 789 * Workaround: The IOMMU driver should read back the 790 * status register and check if the interrupt bits are cleared. 791 * If not, driver will need to go through the interrupt handler 792 * again and re-clear the bits 793 */ 794 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 795 } 796 return IRQ_HANDLED; 797 } 798 799 irqreturn_t amd_iommu_int_handler(int irq, void *data) 800 { 801 return IRQ_WAKE_THREAD; 802 } 803 804 /**************************************************************************** 805 * 806 * IOMMU command queuing functions 807 * 808 ****************************************************************************/ 809 810 static int wait_on_sem(volatile u64 *sem) 811 { 812 int i = 0; 813 814 while (*sem == 0 && i < LOOP_TIMEOUT) { 815 udelay(1); 816 i += 1; 817 } 818 819 if (i == LOOP_TIMEOUT) { 820 pr_alert("Completion-Wait loop timed out\n"); 821 return -EIO; 822 } 823 824 return 0; 825 } 826 827 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 828 struct iommu_cmd *cmd) 829 { 830 u8 *target; 831 u32 tail; 832 833 /* Copy command to buffer */ 834 tail = iommu->cmd_buf_tail; 835 target = iommu->cmd_buf + tail; 836 memcpy(target, cmd, sizeof(*cmd)); 837 838 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 839 iommu->cmd_buf_tail = tail; 840 841 /* Tell the IOMMU about it */ 842 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 843 } 844 845 static void build_completion_wait(struct iommu_cmd *cmd, u64 address) 846 { 847 u64 paddr = iommu_virt_to_phys((void *)address); 848 849 WARN_ON(address & 0x7ULL); 850 851 memset(cmd, 0, sizeof(*cmd)); 852 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 853 cmd->data[1] = upper_32_bits(paddr); 854 cmd->data[2] = 1; 855 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 856 } 857 858 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 859 { 860 memset(cmd, 0, sizeof(*cmd)); 861 cmd->data[0] = devid; 862 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 863 } 864 865 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 866 size_t size, u16 domid, int pde) 867 { 868 u64 pages; 869 bool s; 870 871 pages = iommu_num_pages(address, size, PAGE_SIZE); 872 s = false; 873 874 if (pages > 1) { 875 /* 876 * If we have to flush more than one page, flush all 877 * TLB entries for this domain 878 */ 879 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 880 s = true; 881 } 882 883 address &= PAGE_MASK; 884 885 memset(cmd, 0, sizeof(*cmd)); 886 cmd->data[1] |= domid; 887 cmd->data[2] = lower_32_bits(address); 888 cmd->data[3] = upper_32_bits(address); 889 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 890 if (s) /* size bit - we flush more than one 4kb page */ 891 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 892 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ 893 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 894 } 895 896 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 897 u64 address, size_t size) 898 { 899 u64 pages; 900 bool s; 901 902 pages = iommu_num_pages(address, size, PAGE_SIZE); 903 s = false; 904 905 if (pages > 1) { 906 /* 907 * If we have to flush more than one page, flush all 908 * TLB entries for this domain 909 */ 910 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 911 s = true; 912 } 913 914 address &= PAGE_MASK; 915 916 memset(cmd, 0, sizeof(*cmd)); 917 cmd->data[0] = devid; 918 cmd->data[0] |= (qdep & 0xff) << 24; 919 cmd->data[1] = devid; 920 cmd->data[2] = lower_32_bits(address); 921 cmd->data[3] = upper_32_bits(address); 922 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 923 if (s) 924 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 925 } 926 927 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid, 928 u64 address, bool size) 929 { 930 memset(cmd, 0, sizeof(*cmd)); 931 932 address &= ~(0xfffULL); 933 934 cmd->data[0] = pasid; 935 cmd->data[1] = domid; 936 cmd->data[2] = lower_32_bits(address); 937 cmd->data[3] = upper_32_bits(address); 938 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 939 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 940 if (size) 941 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 942 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 943 } 944 945 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid, 946 int qdep, u64 address, bool size) 947 { 948 memset(cmd, 0, sizeof(*cmd)); 949 950 address &= ~(0xfffULL); 951 952 cmd->data[0] = devid; 953 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 954 cmd->data[0] |= (qdep & 0xff) << 24; 955 cmd->data[1] = devid; 956 cmd->data[1] |= (pasid & 0xff) << 16; 957 cmd->data[2] = lower_32_bits(address); 958 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 959 cmd->data[3] = upper_32_bits(address); 960 if (size) 961 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 962 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 963 } 964 965 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 966 int status, int tag, bool gn) 967 { 968 memset(cmd, 0, sizeof(*cmd)); 969 970 cmd->data[0] = devid; 971 if (gn) { 972 cmd->data[1] = pasid; 973 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 974 } 975 cmd->data[3] = tag & 0x1ff; 976 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 977 978 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 979 } 980 981 static void build_inv_all(struct iommu_cmd *cmd) 982 { 983 memset(cmd, 0, sizeof(*cmd)); 984 CMD_SET_TYPE(cmd, CMD_INV_ALL); 985 } 986 987 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 988 { 989 memset(cmd, 0, sizeof(*cmd)); 990 cmd->data[0] = devid; 991 CMD_SET_TYPE(cmd, CMD_INV_IRT); 992 } 993 994 /* 995 * Writes the command to the IOMMUs command buffer and informs the 996 * hardware about the new command. 997 */ 998 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 999 struct iommu_cmd *cmd, 1000 bool sync) 1001 { 1002 unsigned int count = 0; 1003 u32 left, next_tail; 1004 1005 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1006 again: 1007 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1008 1009 if (left <= 0x20) { 1010 /* Skip udelay() the first time around */ 1011 if (count++) { 1012 if (count == LOOP_TIMEOUT) { 1013 pr_err("Command buffer timeout\n"); 1014 return -EIO; 1015 } 1016 1017 udelay(1); 1018 } 1019 1020 /* Update head and recheck remaining space */ 1021 iommu->cmd_buf_head = readl(iommu->mmio_base + 1022 MMIO_CMD_HEAD_OFFSET); 1023 1024 goto again; 1025 } 1026 1027 copy_cmd_to_buffer(iommu, cmd); 1028 1029 /* Do we need to make sure all commands are processed? */ 1030 iommu->need_sync = sync; 1031 1032 return 0; 1033 } 1034 1035 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1036 struct iommu_cmd *cmd, 1037 bool sync) 1038 { 1039 unsigned long flags; 1040 int ret; 1041 1042 raw_spin_lock_irqsave(&iommu->lock, flags); 1043 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1044 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1045 1046 return ret; 1047 } 1048 1049 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1050 { 1051 return iommu_queue_command_sync(iommu, cmd, true); 1052 } 1053 1054 /* 1055 * This function queues a completion wait command into the command 1056 * buffer of an IOMMU 1057 */ 1058 static int iommu_completion_wait(struct amd_iommu *iommu) 1059 { 1060 struct iommu_cmd cmd; 1061 unsigned long flags; 1062 int ret; 1063 1064 if (!iommu->need_sync) 1065 return 0; 1066 1067 1068 build_completion_wait(&cmd, (u64)&iommu->cmd_sem); 1069 1070 raw_spin_lock_irqsave(&iommu->lock, flags); 1071 1072 iommu->cmd_sem = 0; 1073 1074 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1075 if (ret) 1076 goto out_unlock; 1077 1078 ret = wait_on_sem(&iommu->cmd_sem); 1079 1080 out_unlock: 1081 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1082 1083 return ret; 1084 } 1085 1086 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1087 { 1088 struct iommu_cmd cmd; 1089 1090 build_inv_dte(&cmd, devid); 1091 1092 return iommu_queue_command(iommu, &cmd); 1093 } 1094 1095 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1096 { 1097 u32 devid; 1098 1099 for (devid = 0; devid <= 0xffff; ++devid) 1100 iommu_flush_dte(iommu, devid); 1101 1102 iommu_completion_wait(iommu); 1103 } 1104 1105 /* 1106 * This function uses heavy locking and may disable irqs for some time. But 1107 * this is no issue because it is only called during resume. 1108 */ 1109 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1110 { 1111 u32 dom_id; 1112 1113 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { 1114 struct iommu_cmd cmd; 1115 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1116 dom_id, 1); 1117 iommu_queue_command(iommu, &cmd); 1118 } 1119 1120 iommu_completion_wait(iommu); 1121 } 1122 1123 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1124 { 1125 struct iommu_cmd cmd; 1126 1127 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1128 dom_id, 1); 1129 iommu_queue_command(iommu, &cmd); 1130 1131 iommu_completion_wait(iommu); 1132 } 1133 1134 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1135 { 1136 struct iommu_cmd cmd; 1137 1138 build_inv_all(&cmd); 1139 1140 iommu_queue_command(iommu, &cmd); 1141 iommu_completion_wait(iommu); 1142 } 1143 1144 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1145 { 1146 struct iommu_cmd cmd; 1147 1148 build_inv_irt(&cmd, devid); 1149 1150 iommu_queue_command(iommu, &cmd); 1151 } 1152 1153 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1154 { 1155 u32 devid; 1156 1157 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++) 1158 iommu_flush_irt(iommu, devid); 1159 1160 iommu_completion_wait(iommu); 1161 } 1162 1163 void iommu_flush_all_caches(struct amd_iommu *iommu) 1164 { 1165 if (iommu_feature(iommu, FEATURE_IA)) { 1166 amd_iommu_flush_all(iommu); 1167 } else { 1168 amd_iommu_flush_dte_all(iommu); 1169 amd_iommu_flush_irt_all(iommu); 1170 amd_iommu_flush_tlb_all(iommu); 1171 } 1172 } 1173 1174 /* 1175 * Command send function for flushing on-device TLB 1176 */ 1177 static int device_flush_iotlb(struct iommu_dev_data *dev_data, 1178 u64 address, size_t size) 1179 { 1180 struct amd_iommu *iommu; 1181 struct iommu_cmd cmd; 1182 int qdep; 1183 1184 qdep = dev_data->ats.qdep; 1185 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1186 1187 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); 1188 1189 return iommu_queue_command(iommu, &cmd); 1190 } 1191 1192 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1193 { 1194 struct amd_iommu *iommu = data; 1195 1196 return iommu_flush_dte(iommu, alias); 1197 } 1198 1199 /* 1200 * Command send function for invalidating a device table entry 1201 */ 1202 static int device_flush_dte(struct iommu_dev_data *dev_data) 1203 { 1204 struct amd_iommu *iommu; 1205 u16 alias; 1206 int ret; 1207 1208 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1209 1210 if (dev_data->pdev) 1211 ret = pci_for_each_dma_alias(dev_data->pdev, 1212 device_flush_dte_alias, iommu); 1213 else 1214 ret = iommu_flush_dte(iommu, dev_data->devid); 1215 if (ret) 1216 return ret; 1217 1218 alias = amd_iommu_alias_table[dev_data->devid]; 1219 if (alias != dev_data->devid) { 1220 ret = iommu_flush_dte(iommu, alias); 1221 if (ret) 1222 return ret; 1223 } 1224 1225 if (dev_data->ats.enabled) 1226 ret = device_flush_iotlb(dev_data, 0, ~0UL); 1227 1228 return ret; 1229 } 1230 1231 /* 1232 * TLB invalidation function which is called from the mapping functions. 1233 * It invalidates a single PTE if the range to flush is within a single 1234 * page. Otherwise it flushes the whole TLB of the IOMMU. 1235 */ 1236 static void __domain_flush_pages(struct protection_domain *domain, 1237 u64 address, size_t size, int pde) 1238 { 1239 struct iommu_dev_data *dev_data; 1240 struct iommu_cmd cmd; 1241 int ret = 0, i; 1242 1243 build_inv_iommu_pages(&cmd, address, size, domain->id, pde); 1244 1245 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1246 if (!domain->dev_iommu[i]) 1247 continue; 1248 1249 /* 1250 * Devices of this domain are behind this IOMMU 1251 * We need a TLB flush 1252 */ 1253 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1254 } 1255 1256 list_for_each_entry(dev_data, &domain->dev_list, list) { 1257 1258 if (!dev_data->ats.enabled) 1259 continue; 1260 1261 ret |= device_flush_iotlb(dev_data, address, size); 1262 } 1263 1264 WARN_ON(ret); 1265 } 1266 1267 static void domain_flush_pages(struct protection_domain *domain, 1268 u64 address, size_t size) 1269 { 1270 __domain_flush_pages(domain, address, size, 0); 1271 } 1272 1273 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1274 static void domain_flush_tlb_pde(struct protection_domain *domain) 1275 { 1276 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); 1277 } 1278 1279 static void domain_flush_complete(struct protection_domain *domain) 1280 { 1281 int i; 1282 1283 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1284 if (domain && !domain->dev_iommu[i]) 1285 continue; 1286 1287 /* 1288 * Devices of this domain are behind this IOMMU 1289 * We need to wait for completion of all commands. 1290 */ 1291 iommu_completion_wait(amd_iommus[i]); 1292 } 1293 } 1294 1295 /* Flush the not present cache if it exists */ 1296 static void domain_flush_np_cache(struct protection_domain *domain, 1297 dma_addr_t iova, size_t size) 1298 { 1299 if (unlikely(amd_iommu_np_cache)) { 1300 unsigned long flags; 1301 1302 spin_lock_irqsave(&domain->lock, flags); 1303 domain_flush_pages(domain, iova, size); 1304 domain_flush_complete(domain); 1305 spin_unlock_irqrestore(&domain->lock, flags); 1306 } 1307 } 1308 1309 1310 /* 1311 * This function flushes the DTEs for all devices in domain 1312 */ 1313 static void domain_flush_devices(struct protection_domain *domain) 1314 { 1315 struct iommu_dev_data *dev_data; 1316 1317 list_for_each_entry(dev_data, &domain->dev_list, list) 1318 device_flush_dte(dev_data); 1319 } 1320 1321 /**************************************************************************** 1322 * 1323 * The functions below are used the create the page table mappings for 1324 * unity mapped regions. 1325 * 1326 ****************************************************************************/ 1327 1328 static void free_page_list(struct page *freelist) 1329 { 1330 while (freelist != NULL) { 1331 unsigned long p = (unsigned long)page_address(freelist); 1332 freelist = freelist->freelist; 1333 free_page(p); 1334 } 1335 } 1336 1337 static struct page *free_pt_page(unsigned long pt, struct page *freelist) 1338 { 1339 struct page *p = virt_to_page((void *)pt); 1340 1341 p->freelist = freelist; 1342 1343 return p; 1344 } 1345 1346 #define DEFINE_FREE_PT_FN(LVL, FN) \ 1347 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \ 1348 { \ 1349 unsigned long p; \ 1350 u64 *pt; \ 1351 int i; \ 1352 \ 1353 pt = (u64 *)__pt; \ 1354 \ 1355 for (i = 0; i < 512; ++i) { \ 1356 /* PTE present? */ \ 1357 if (!IOMMU_PTE_PRESENT(pt[i])) \ 1358 continue; \ 1359 \ 1360 /* Large PTE? */ \ 1361 if (PM_PTE_LEVEL(pt[i]) == 0 || \ 1362 PM_PTE_LEVEL(pt[i]) == 7) \ 1363 continue; \ 1364 \ 1365 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \ 1366 freelist = FN(p, freelist); \ 1367 } \ 1368 \ 1369 return free_pt_page((unsigned long)pt, freelist); \ 1370 } 1371 1372 DEFINE_FREE_PT_FN(l2, free_pt_page) 1373 DEFINE_FREE_PT_FN(l3, free_pt_l2) 1374 DEFINE_FREE_PT_FN(l4, free_pt_l3) 1375 DEFINE_FREE_PT_FN(l5, free_pt_l4) 1376 DEFINE_FREE_PT_FN(l6, free_pt_l5) 1377 1378 static struct page *free_sub_pt(unsigned long root, int mode, 1379 struct page *freelist) 1380 { 1381 switch (mode) { 1382 case PAGE_MODE_NONE: 1383 case PAGE_MODE_7_LEVEL: 1384 break; 1385 case PAGE_MODE_1_LEVEL: 1386 freelist = free_pt_page(root, freelist); 1387 break; 1388 case PAGE_MODE_2_LEVEL: 1389 freelist = free_pt_l2(root, freelist); 1390 break; 1391 case PAGE_MODE_3_LEVEL: 1392 freelist = free_pt_l3(root, freelist); 1393 break; 1394 case PAGE_MODE_4_LEVEL: 1395 freelist = free_pt_l4(root, freelist); 1396 break; 1397 case PAGE_MODE_5_LEVEL: 1398 freelist = free_pt_l5(root, freelist); 1399 break; 1400 case PAGE_MODE_6_LEVEL: 1401 freelist = free_pt_l6(root, freelist); 1402 break; 1403 default: 1404 BUG(); 1405 } 1406 1407 return freelist; 1408 } 1409 1410 static void free_pagetable(struct domain_pgtable *pgtable) 1411 { 1412 struct page *freelist = NULL; 1413 unsigned long root; 1414 1415 if (pgtable->mode == PAGE_MODE_NONE) 1416 return; 1417 1418 BUG_ON(pgtable->mode < PAGE_MODE_NONE || 1419 pgtable->mode > PAGE_MODE_6_LEVEL); 1420 1421 root = (unsigned long)pgtable->root; 1422 freelist = free_sub_pt(root, pgtable->mode, freelist); 1423 1424 free_page_list(freelist); 1425 } 1426 1427 /* 1428 * This function is used to add another level to an IO page table. Adding 1429 * another level increases the size of the address space by 9 bits to a size up 1430 * to 64 bits. 1431 */ 1432 static bool increase_address_space(struct protection_domain *domain, 1433 unsigned long address, 1434 gfp_t gfp) 1435 { 1436 struct domain_pgtable pgtable; 1437 unsigned long flags; 1438 bool ret = true; 1439 u64 *pte; 1440 1441 spin_lock_irqsave(&domain->lock, flags); 1442 1443 amd_iommu_domain_get_pgtable(domain, &pgtable); 1444 1445 if (address <= PM_LEVEL_SIZE(pgtable.mode)) 1446 goto out; 1447 1448 ret = false; 1449 if (WARN_ON_ONCE(pgtable.mode == PAGE_MODE_6_LEVEL)) 1450 goto out; 1451 1452 pte = (void *)get_zeroed_page(gfp); 1453 if (!pte) 1454 goto out; 1455 1456 *pte = PM_LEVEL_PDE(pgtable.mode, iommu_virt_to_phys(pgtable.root)); 1457 1458 pgtable.root = pte; 1459 pgtable.mode += 1; 1460 update_and_flush_device_table(domain, &pgtable); 1461 domain_flush_complete(domain); 1462 1463 /* 1464 * Device Table needs to be updated and flushed before the new root can 1465 * be published. 1466 */ 1467 amd_iommu_domain_set_pgtable(domain, pte, pgtable.mode); 1468 1469 ret = true; 1470 1471 out: 1472 spin_unlock_irqrestore(&domain->lock, flags); 1473 1474 return ret; 1475 } 1476 1477 static u64 *alloc_pte(struct protection_domain *domain, 1478 unsigned long address, 1479 unsigned long page_size, 1480 u64 **pte_page, 1481 gfp_t gfp, 1482 bool *updated) 1483 { 1484 struct domain_pgtable pgtable; 1485 int level, end_lvl; 1486 u64 *pte, *page; 1487 1488 BUG_ON(!is_power_of_2(page_size)); 1489 1490 amd_iommu_domain_get_pgtable(domain, &pgtable); 1491 1492 while (address > PM_LEVEL_SIZE(pgtable.mode)) { 1493 /* 1494 * Return an error if there is no memory to update the 1495 * page-table. 1496 */ 1497 if (!increase_address_space(domain, address, gfp)) 1498 return NULL; 1499 1500 /* Read new values to check if update was successful */ 1501 amd_iommu_domain_get_pgtable(domain, &pgtable); 1502 } 1503 1504 1505 level = pgtable.mode - 1; 1506 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)]; 1507 address = PAGE_SIZE_ALIGN(address, page_size); 1508 end_lvl = PAGE_SIZE_LEVEL(page_size); 1509 1510 while (level > end_lvl) { 1511 u64 __pte, __npte; 1512 int pte_level; 1513 1514 __pte = *pte; 1515 pte_level = PM_PTE_LEVEL(__pte); 1516 1517 /* 1518 * If we replace a series of large PTEs, we need 1519 * to tear down all of them. 1520 */ 1521 if (IOMMU_PTE_PRESENT(__pte) && 1522 pte_level == PAGE_MODE_7_LEVEL) { 1523 unsigned long count, i; 1524 u64 *lpte; 1525 1526 lpte = first_pte_l7(pte, NULL, &count); 1527 1528 /* 1529 * Unmap the replicated PTEs that still match the 1530 * original large mapping 1531 */ 1532 for (i = 0; i < count; ++i) 1533 cmpxchg64(&lpte[i], __pte, 0ULL); 1534 1535 *updated = true; 1536 continue; 1537 } 1538 1539 if (!IOMMU_PTE_PRESENT(__pte) || 1540 pte_level == PAGE_MODE_NONE) { 1541 page = (u64 *)get_zeroed_page(gfp); 1542 1543 if (!page) 1544 return NULL; 1545 1546 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page)); 1547 1548 /* pte could have been changed somewhere. */ 1549 if (cmpxchg64(pte, __pte, __npte) != __pte) 1550 free_page((unsigned long)page); 1551 else if (IOMMU_PTE_PRESENT(__pte)) 1552 *updated = true; 1553 1554 continue; 1555 } 1556 1557 /* No level skipping support yet */ 1558 if (pte_level != level) 1559 return NULL; 1560 1561 level -= 1; 1562 1563 pte = IOMMU_PTE_PAGE(__pte); 1564 1565 if (pte_page && level == end_lvl) 1566 *pte_page = pte; 1567 1568 pte = &pte[PM_LEVEL_INDEX(level, address)]; 1569 } 1570 1571 return pte; 1572 } 1573 1574 /* 1575 * This function checks if there is a PTE for a given dma address. If 1576 * there is one, it returns the pointer to it. 1577 */ 1578 static u64 *fetch_pte(struct protection_domain *domain, 1579 unsigned long address, 1580 unsigned long *page_size) 1581 { 1582 struct domain_pgtable pgtable; 1583 int level; 1584 u64 *pte; 1585 1586 *page_size = 0; 1587 1588 amd_iommu_domain_get_pgtable(domain, &pgtable); 1589 1590 if (address > PM_LEVEL_SIZE(pgtable.mode)) 1591 return NULL; 1592 1593 level = pgtable.mode - 1; 1594 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)]; 1595 *page_size = PTE_LEVEL_PAGE_SIZE(level); 1596 1597 while (level > 0) { 1598 1599 /* Not Present */ 1600 if (!IOMMU_PTE_PRESENT(*pte)) 1601 return NULL; 1602 1603 /* Large PTE */ 1604 if (PM_PTE_LEVEL(*pte) == 7 || 1605 PM_PTE_LEVEL(*pte) == 0) 1606 break; 1607 1608 /* No level skipping support yet */ 1609 if (PM_PTE_LEVEL(*pte) != level) 1610 return NULL; 1611 1612 level -= 1; 1613 1614 /* Walk to the next level */ 1615 pte = IOMMU_PTE_PAGE(*pte); 1616 pte = &pte[PM_LEVEL_INDEX(level, address)]; 1617 *page_size = PTE_LEVEL_PAGE_SIZE(level); 1618 } 1619 1620 /* 1621 * If we have a series of large PTEs, make 1622 * sure to return a pointer to the first one. 1623 */ 1624 if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL) 1625 pte = first_pte_l7(pte, page_size, NULL); 1626 1627 return pte; 1628 } 1629 1630 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist) 1631 { 1632 unsigned long pt; 1633 int mode; 1634 1635 while (cmpxchg64(pte, pteval, 0) != pteval) { 1636 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n"); 1637 pteval = *pte; 1638 } 1639 1640 if (!IOMMU_PTE_PRESENT(pteval)) 1641 return freelist; 1642 1643 pt = (unsigned long)IOMMU_PTE_PAGE(pteval); 1644 mode = IOMMU_PTE_MODE(pteval); 1645 1646 return free_sub_pt(pt, mode, freelist); 1647 } 1648 1649 /* 1650 * Generic mapping functions. It maps a physical address into a DMA 1651 * address space. It allocates the page table pages if necessary. 1652 * In the future it can be extended to a generic mapping function 1653 * supporting all features of AMD IOMMU page tables like level skipping 1654 * and full 64 bit address spaces. 1655 */ 1656 static int iommu_map_page(struct protection_domain *dom, 1657 unsigned long bus_addr, 1658 unsigned long phys_addr, 1659 unsigned long page_size, 1660 int prot, 1661 gfp_t gfp) 1662 { 1663 struct page *freelist = NULL; 1664 bool updated = false; 1665 u64 __pte, *pte; 1666 int ret, i, count; 1667 1668 BUG_ON(!IS_ALIGNED(bus_addr, page_size)); 1669 BUG_ON(!IS_ALIGNED(phys_addr, page_size)); 1670 1671 ret = -EINVAL; 1672 if (!(prot & IOMMU_PROT_MASK)) 1673 goto out; 1674 1675 count = PAGE_SIZE_PTE_COUNT(page_size); 1676 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated); 1677 1678 ret = -ENOMEM; 1679 if (!pte) 1680 goto out; 1681 1682 for (i = 0; i < count; ++i) 1683 freelist = free_clear_pte(&pte[i], pte[i], freelist); 1684 1685 if (freelist != NULL) 1686 updated = true; 1687 1688 if (count > 1) { 1689 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size); 1690 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC; 1691 } else 1692 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC; 1693 1694 if (prot & IOMMU_PROT_IR) 1695 __pte |= IOMMU_PTE_IR; 1696 if (prot & IOMMU_PROT_IW) 1697 __pte |= IOMMU_PTE_IW; 1698 1699 for (i = 0; i < count; ++i) 1700 pte[i] = __pte; 1701 1702 ret = 0; 1703 1704 out: 1705 if (updated) { 1706 unsigned long flags; 1707 1708 spin_lock_irqsave(&dom->lock, flags); 1709 /* 1710 * Flush domain TLB(s) and wait for completion. Any Device-Table 1711 * Updates and flushing already happened in 1712 * increase_address_space(). 1713 */ 1714 domain_flush_tlb_pde(dom); 1715 domain_flush_complete(dom); 1716 spin_unlock_irqrestore(&dom->lock, flags); 1717 } 1718 1719 /* Everything flushed out, free pages now */ 1720 free_page_list(freelist); 1721 1722 return ret; 1723 } 1724 1725 static unsigned long iommu_unmap_page(struct protection_domain *dom, 1726 unsigned long bus_addr, 1727 unsigned long page_size) 1728 { 1729 unsigned long long unmapped; 1730 unsigned long unmap_size; 1731 u64 *pte; 1732 1733 BUG_ON(!is_power_of_2(page_size)); 1734 1735 unmapped = 0; 1736 1737 while (unmapped < page_size) { 1738 1739 pte = fetch_pte(dom, bus_addr, &unmap_size); 1740 1741 if (pte) { 1742 int i, count; 1743 1744 count = PAGE_SIZE_PTE_COUNT(unmap_size); 1745 for (i = 0; i < count; i++) 1746 pte[i] = 0ULL; 1747 } 1748 1749 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size; 1750 unmapped += unmap_size; 1751 } 1752 1753 BUG_ON(unmapped && !is_power_of_2(unmapped)); 1754 1755 return unmapped; 1756 } 1757 1758 /**************************************************************************** 1759 * 1760 * The next functions belong to the domain allocation. A domain is 1761 * allocated for every IOMMU as the default domain. If device isolation 1762 * is enabled, every device get its own domain. The most important thing 1763 * about domains is the page table mapping the DMA address space they 1764 * contain. 1765 * 1766 ****************************************************************************/ 1767 1768 static u16 domain_id_alloc(void) 1769 { 1770 int id; 1771 1772 spin_lock(&pd_bitmap_lock); 1773 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1774 BUG_ON(id == 0); 1775 if (id > 0 && id < MAX_DOMAIN_ID) 1776 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1777 else 1778 id = 0; 1779 spin_unlock(&pd_bitmap_lock); 1780 1781 return id; 1782 } 1783 1784 static void domain_id_free(int id) 1785 { 1786 spin_lock(&pd_bitmap_lock); 1787 if (id > 0 && id < MAX_DOMAIN_ID) 1788 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1789 spin_unlock(&pd_bitmap_lock); 1790 } 1791 1792 static void free_gcr3_tbl_level1(u64 *tbl) 1793 { 1794 u64 *ptr; 1795 int i; 1796 1797 for (i = 0; i < 512; ++i) { 1798 if (!(tbl[i] & GCR3_VALID)) 1799 continue; 1800 1801 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1802 1803 free_page((unsigned long)ptr); 1804 } 1805 } 1806 1807 static void free_gcr3_tbl_level2(u64 *tbl) 1808 { 1809 u64 *ptr; 1810 int i; 1811 1812 for (i = 0; i < 512; ++i) { 1813 if (!(tbl[i] & GCR3_VALID)) 1814 continue; 1815 1816 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1817 1818 free_gcr3_tbl_level1(ptr); 1819 } 1820 } 1821 1822 static void free_gcr3_table(struct protection_domain *domain) 1823 { 1824 if (domain->glx == 2) 1825 free_gcr3_tbl_level2(domain->gcr3_tbl); 1826 else if (domain->glx == 1) 1827 free_gcr3_tbl_level1(domain->gcr3_tbl); 1828 else 1829 BUG_ON(domain->glx != 0); 1830 1831 free_page((unsigned long)domain->gcr3_tbl); 1832 } 1833 1834 static void set_dte_entry(u16 devid, struct protection_domain *domain, 1835 struct domain_pgtable *pgtable, 1836 bool ats, bool ppr) 1837 { 1838 u64 pte_root = 0; 1839 u64 flags = 0; 1840 u32 old_domid; 1841 1842 if (pgtable->mode != PAGE_MODE_NONE) 1843 pte_root = iommu_virt_to_phys(pgtable->root); 1844 1845 pte_root |= (pgtable->mode & DEV_ENTRY_MODE_MASK) 1846 << DEV_ENTRY_MODE_SHIFT; 1847 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV; 1848 1849 flags = amd_iommu_dev_table[devid].data[1]; 1850 1851 if (ats) 1852 flags |= DTE_FLAG_IOTLB; 1853 1854 if (ppr) { 1855 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 1856 1857 if (iommu_feature(iommu, FEATURE_EPHSUP)) 1858 pte_root |= 1ULL << DEV_ENTRY_PPR; 1859 } 1860 1861 if (domain->flags & PD_IOMMUV2_MASK) { 1862 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); 1863 u64 glx = domain->glx; 1864 u64 tmp; 1865 1866 pte_root |= DTE_FLAG_GV; 1867 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1868 1869 /* First mask out possible old values for GCR3 table */ 1870 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1871 flags &= ~tmp; 1872 1873 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1874 flags &= ~tmp; 1875 1876 /* Encode GCR3 table into DTE */ 1877 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1878 pte_root |= tmp; 1879 1880 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1881 flags |= tmp; 1882 1883 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1884 flags |= tmp; 1885 } 1886 1887 flags &= ~DEV_DOMID_MASK; 1888 flags |= domain->id; 1889 1890 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK; 1891 amd_iommu_dev_table[devid].data[1] = flags; 1892 amd_iommu_dev_table[devid].data[0] = pte_root; 1893 1894 /* 1895 * A kdump kernel might be replacing a domain ID that was copied from 1896 * the previous kernel--if so, it needs to flush the translation cache 1897 * entries for the old domain ID that is being overwritten 1898 */ 1899 if (old_domid) { 1900 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 1901 1902 amd_iommu_flush_tlb_domid(iommu, old_domid); 1903 } 1904 } 1905 1906 static void clear_dte_entry(u16 devid) 1907 { 1908 /* remove entry from the device table seen by the hardware */ 1909 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV; 1910 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK; 1911 1912 amd_iommu_apply_erratum_63(devid); 1913 } 1914 1915 static void do_attach(struct iommu_dev_data *dev_data, 1916 struct protection_domain *domain) 1917 { 1918 struct domain_pgtable pgtable; 1919 struct amd_iommu *iommu; 1920 bool ats; 1921 1922 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1923 ats = dev_data->ats.enabled; 1924 1925 /* Update data structures */ 1926 dev_data->domain = domain; 1927 list_add(&dev_data->list, &domain->dev_list); 1928 1929 /* Do reference counting */ 1930 domain->dev_iommu[iommu->index] += 1; 1931 domain->dev_cnt += 1; 1932 1933 /* Update device table */ 1934 amd_iommu_domain_get_pgtable(domain, &pgtable); 1935 set_dte_entry(dev_data->devid, domain, &pgtable, 1936 ats, dev_data->iommu_v2); 1937 clone_aliases(dev_data->pdev); 1938 1939 device_flush_dte(dev_data); 1940 } 1941 1942 static void do_detach(struct iommu_dev_data *dev_data) 1943 { 1944 struct protection_domain *domain = dev_data->domain; 1945 struct amd_iommu *iommu; 1946 1947 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1948 1949 /* Update data structures */ 1950 dev_data->domain = NULL; 1951 list_del(&dev_data->list); 1952 clear_dte_entry(dev_data->devid); 1953 clone_aliases(dev_data->pdev); 1954 1955 /* Flush the DTE entry */ 1956 device_flush_dte(dev_data); 1957 1958 /* Flush IOTLB */ 1959 domain_flush_tlb_pde(domain); 1960 1961 /* Wait for the flushes to finish */ 1962 domain_flush_complete(domain); 1963 1964 /* decrease reference counters - needs to happen after the flushes */ 1965 domain->dev_iommu[iommu->index] -= 1; 1966 domain->dev_cnt -= 1; 1967 } 1968 1969 static void pdev_iommuv2_disable(struct pci_dev *pdev) 1970 { 1971 pci_disable_ats(pdev); 1972 pci_disable_pri(pdev); 1973 pci_disable_pasid(pdev); 1974 } 1975 1976 /* FIXME: Change generic reset-function to do the same */ 1977 static int pri_reset_while_enabled(struct pci_dev *pdev) 1978 { 1979 u16 control; 1980 int pos; 1981 1982 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 1983 if (!pos) 1984 return -EINVAL; 1985 1986 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control); 1987 control |= PCI_PRI_CTRL_RESET; 1988 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control); 1989 1990 return 0; 1991 } 1992 1993 static int pdev_iommuv2_enable(struct pci_dev *pdev) 1994 { 1995 bool reset_enable; 1996 int reqs, ret; 1997 1998 /* FIXME: Hardcode number of outstanding requests for now */ 1999 reqs = 32; 2000 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE)) 2001 reqs = 1; 2002 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET); 2003 2004 /* Only allow access to user-accessible pages */ 2005 ret = pci_enable_pasid(pdev, 0); 2006 if (ret) 2007 goto out_err; 2008 2009 /* First reset the PRI state of the device */ 2010 ret = pci_reset_pri(pdev); 2011 if (ret) 2012 goto out_err; 2013 2014 /* Enable PRI */ 2015 ret = pci_enable_pri(pdev, reqs); 2016 if (ret) 2017 goto out_err; 2018 2019 if (reset_enable) { 2020 ret = pri_reset_while_enabled(pdev); 2021 if (ret) 2022 goto out_err; 2023 } 2024 2025 ret = pci_enable_ats(pdev, PAGE_SHIFT); 2026 if (ret) 2027 goto out_err; 2028 2029 return 0; 2030 2031 out_err: 2032 pci_disable_pri(pdev); 2033 pci_disable_pasid(pdev); 2034 2035 return ret; 2036 } 2037 2038 /* 2039 * If a device is not yet associated with a domain, this function makes the 2040 * device visible in the domain 2041 */ 2042 static int attach_device(struct device *dev, 2043 struct protection_domain *domain) 2044 { 2045 struct iommu_dev_data *dev_data; 2046 struct pci_dev *pdev; 2047 unsigned long flags; 2048 int ret; 2049 2050 spin_lock_irqsave(&domain->lock, flags); 2051 2052 dev_data = dev_iommu_priv_get(dev); 2053 2054 spin_lock(&dev_data->lock); 2055 2056 ret = -EBUSY; 2057 if (dev_data->domain != NULL) 2058 goto out; 2059 2060 if (!dev_is_pci(dev)) 2061 goto skip_ats_check; 2062 2063 pdev = to_pci_dev(dev); 2064 if (domain->flags & PD_IOMMUV2_MASK) { 2065 struct iommu_domain *def_domain = iommu_get_dma_domain(dev); 2066 2067 ret = -EINVAL; 2068 if (def_domain->type != IOMMU_DOMAIN_IDENTITY) 2069 goto out; 2070 2071 if (dev_data->iommu_v2) { 2072 if (pdev_iommuv2_enable(pdev) != 0) 2073 goto out; 2074 2075 dev_data->ats.enabled = true; 2076 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 2077 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 2078 } 2079 } else if (amd_iommu_iotlb_sup && 2080 pci_enable_ats(pdev, PAGE_SHIFT) == 0) { 2081 dev_data->ats.enabled = true; 2082 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 2083 } 2084 2085 skip_ats_check: 2086 ret = 0; 2087 2088 do_attach(dev_data, domain); 2089 2090 /* 2091 * We might boot into a crash-kernel here. The crashed kernel 2092 * left the caches in the IOMMU dirty. So we have to flush 2093 * here to evict all dirty stuff. 2094 */ 2095 domain_flush_tlb_pde(domain); 2096 2097 domain_flush_complete(domain); 2098 2099 out: 2100 spin_unlock(&dev_data->lock); 2101 2102 spin_unlock_irqrestore(&domain->lock, flags); 2103 2104 return ret; 2105 } 2106 2107 /* 2108 * Removes a device from a protection domain (with devtable_lock held) 2109 */ 2110 static void detach_device(struct device *dev) 2111 { 2112 struct protection_domain *domain; 2113 struct iommu_dev_data *dev_data; 2114 unsigned long flags; 2115 2116 dev_data = dev_iommu_priv_get(dev); 2117 domain = dev_data->domain; 2118 2119 spin_lock_irqsave(&domain->lock, flags); 2120 2121 spin_lock(&dev_data->lock); 2122 2123 /* 2124 * First check if the device is still attached. It might already 2125 * be detached from its domain because the generic 2126 * iommu_detach_group code detached it and we try again here in 2127 * our alias handling. 2128 */ 2129 if (WARN_ON(!dev_data->domain)) 2130 goto out; 2131 2132 do_detach(dev_data); 2133 2134 if (!dev_is_pci(dev)) 2135 goto out; 2136 2137 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) 2138 pdev_iommuv2_disable(to_pci_dev(dev)); 2139 else if (dev_data->ats.enabled) 2140 pci_disable_ats(to_pci_dev(dev)); 2141 2142 dev_data->ats.enabled = false; 2143 2144 out: 2145 spin_unlock(&dev_data->lock); 2146 2147 spin_unlock_irqrestore(&domain->lock, flags); 2148 } 2149 2150 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 2151 { 2152 struct iommu_device *iommu_dev; 2153 struct amd_iommu *iommu; 2154 int ret, devid; 2155 2156 if (!check_device(dev)) 2157 return ERR_PTR(-ENODEV); 2158 2159 devid = get_device_id(dev); 2160 if (devid < 0) 2161 return ERR_PTR(devid); 2162 2163 iommu = amd_iommu_rlookup_table[devid]; 2164 2165 if (dev_iommu_priv_get(dev)) 2166 return &iommu->iommu; 2167 2168 ret = iommu_init_device(dev); 2169 if (ret) { 2170 if (ret != -ENOTSUPP) 2171 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 2172 iommu_dev = ERR_PTR(ret); 2173 iommu_ignore_device(dev); 2174 } else { 2175 amd_iommu_set_pci_msi_domain(dev, iommu); 2176 iommu_dev = &iommu->iommu; 2177 } 2178 2179 iommu_completion_wait(iommu); 2180 2181 return iommu_dev; 2182 } 2183 2184 static void amd_iommu_probe_finalize(struct device *dev) 2185 { 2186 struct iommu_domain *domain; 2187 2188 /* Domains are initialized for this device - have a look what we ended up with */ 2189 domain = iommu_get_domain_for_dev(dev); 2190 if (domain->type == IOMMU_DOMAIN_DMA) 2191 iommu_setup_dma_ops(dev, IOVA_START_PFN << PAGE_SHIFT, 0); 2192 } 2193 2194 static void amd_iommu_release_device(struct device *dev) 2195 { 2196 int devid = get_device_id(dev); 2197 struct amd_iommu *iommu; 2198 2199 if (!check_device(dev)) 2200 return; 2201 2202 iommu = amd_iommu_rlookup_table[devid]; 2203 2204 amd_iommu_uninit_device(dev); 2205 iommu_completion_wait(iommu); 2206 } 2207 2208 static struct iommu_group *amd_iommu_device_group(struct device *dev) 2209 { 2210 if (dev_is_pci(dev)) 2211 return pci_device_group(dev); 2212 2213 return acpihid_device_group(dev); 2214 } 2215 2216 static int amd_iommu_domain_get_attr(struct iommu_domain *domain, 2217 enum iommu_attr attr, void *data) 2218 { 2219 switch (domain->type) { 2220 case IOMMU_DOMAIN_UNMANAGED: 2221 return -ENODEV; 2222 case IOMMU_DOMAIN_DMA: 2223 switch (attr) { 2224 case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE: 2225 *(int *)data = !amd_iommu_unmap_flush; 2226 return 0; 2227 default: 2228 return -ENODEV; 2229 } 2230 break; 2231 default: 2232 return -EINVAL; 2233 } 2234 } 2235 2236 /***************************************************************************** 2237 * 2238 * The next functions belong to the dma_ops mapping/unmapping code. 2239 * 2240 *****************************************************************************/ 2241 2242 static void update_device_table(struct protection_domain *domain, 2243 struct domain_pgtable *pgtable) 2244 { 2245 struct iommu_dev_data *dev_data; 2246 2247 list_for_each_entry(dev_data, &domain->dev_list, list) { 2248 set_dte_entry(dev_data->devid, domain, pgtable, 2249 dev_data->ats.enabled, dev_data->iommu_v2); 2250 clone_aliases(dev_data->pdev); 2251 } 2252 } 2253 2254 static void update_and_flush_device_table(struct protection_domain *domain, 2255 struct domain_pgtable *pgtable) 2256 { 2257 update_device_table(domain, pgtable); 2258 domain_flush_devices(domain); 2259 } 2260 2261 static void update_domain(struct protection_domain *domain) 2262 { 2263 struct domain_pgtable pgtable; 2264 2265 /* Update device table */ 2266 amd_iommu_domain_get_pgtable(domain, &pgtable); 2267 update_and_flush_device_table(domain, &pgtable); 2268 2269 /* Flush domain TLB(s) and wait for completion */ 2270 domain_flush_tlb_pde(domain); 2271 domain_flush_complete(domain); 2272 } 2273 2274 int __init amd_iommu_init_api(void) 2275 { 2276 int ret, err = 0; 2277 2278 ret = iova_cache_get(); 2279 if (ret) 2280 return ret; 2281 2282 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops); 2283 if (err) 2284 return err; 2285 #ifdef CONFIG_ARM_AMBA 2286 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops); 2287 if (err) 2288 return err; 2289 #endif 2290 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops); 2291 if (err) 2292 return err; 2293 2294 return 0; 2295 } 2296 2297 int __init amd_iommu_init_dma_ops(void) 2298 { 2299 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0; 2300 2301 if (amd_iommu_unmap_flush) 2302 pr_info("IO/TLB flush on unmap enabled\n"); 2303 else 2304 pr_info("Lazy IO/TLB flushing enabled\n"); 2305 2306 return 0; 2307 2308 } 2309 2310 /***************************************************************************** 2311 * 2312 * The following functions belong to the exported interface of AMD IOMMU 2313 * 2314 * This interface allows access to lower level functions of the IOMMU 2315 * like protection domain handling and assignement of devices to domains 2316 * which is not possible with the dma_ops interface. 2317 * 2318 *****************************************************************************/ 2319 2320 static void cleanup_domain(struct protection_domain *domain) 2321 { 2322 struct iommu_dev_data *entry; 2323 unsigned long flags; 2324 2325 spin_lock_irqsave(&domain->lock, flags); 2326 2327 while (!list_empty(&domain->dev_list)) { 2328 entry = list_first_entry(&domain->dev_list, 2329 struct iommu_dev_data, list); 2330 BUG_ON(!entry->domain); 2331 do_detach(entry); 2332 } 2333 2334 spin_unlock_irqrestore(&domain->lock, flags); 2335 } 2336 2337 static void protection_domain_free(struct protection_domain *domain) 2338 { 2339 struct domain_pgtable pgtable; 2340 2341 if (!domain) 2342 return; 2343 2344 if (domain->id) 2345 domain_id_free(domain->id); 2346 2347 amd_iommu_domain_get_pgtable(domain, &pgtable); 2348 amd_iommu_domain_clr_pt_root(domain); 2349 free_pagetable(&pgtable); 2350 2351 kfree(domain); 2352 } 2353 2354 static int protection_domain_init(struct protection_domain *domain, int mode) 2355 { 2356 u64 *pt_root = NULL; 2357 2358 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); 2359 2360 spin_lock_init(&domain->lock); 2361 domain->id = domain_id_alloc(); 2362 if (!domain->id) 2363 return -ENOMEM; 2364 INIT_LIST_HEAD(&domain->dev_list); 2365 2366 if (mode != PAGE_MODE_NONE) { 2367 pt_root = (void *)get_zeroed_page(GFP_KERNEL); 2368 if (!pt_root) 2369 return -ENOMEM; 2370 } 2371 2372 amd_iommu_domain_set_pgtable(domain, pt_root, mode); 2373 2374 return 0; 2375 } 2376 2377 static struct protection_domain *protection_domain_alloc(int mode) 2378 { 2379 struct protection_domain *domain; 2380 2381 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2382 if (!domain) 2383 return NULL; 2384 2385 if (protection_domain_init(domain, mode)) 2386 goto out_err; 2387 2388 return domain; 2389 2390 out_err: 2391 kfree(domain); 2392 2393 return NULL; 2394 } 2395 2396 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) 2397 { 2398 struct protection_domain *domain; 2399 int mode = DEFAULT_PGTABLE_LEVEL; 2400 2401 if (type == IOMMU_DOMAIN_IDENTITY) 2402 mode = PAGE_MODE_NONE; 2403 2404 domain = protection_domain_alloc(mode); 2405 if (!domain) 2406 return NULL; 2407 2408 domain->domain.geometry.aperture_start = 0; 2409 domain->domain.geometry.aperture_end = ~0ULL; 2410 domain->domain.geometry.force_aperture = true; 2411 2412 if (type == IOMMU_DOMAIN_DMA && 2413 iommu_get_dma_cookie(&domain->domain) == -ENOMEM) 2414 goto free_domain; 2415 2416 return &domain->domain; 2417 2418 free_domain: 2419 protection_domain_free(domain); 2420 2421 return NULL; 2422 } 2423 2424 static void amd_iommu_domain_free(struct iommu_domain *dom) 2425 { 2426 struct protection_domain *domain; 2427 2428 domain = to_pdomain(dom); 2429 2430 if (domain->dev_cnt > 0) 2431 cleanup_domain(domain); 2432 2433 BUG_ON(domain->dev_cnt != 0); 2434 2435 if (!dom) 2436 return; 2437 2438 if (dom->type == IOMMU_DOMAIN_DMA) 2439 iommu_put_dma_cookie(&domain->domain); 2440 2441 if (domain->flags & PD_IOMMUV2_MASK) 2442 free_gcr3_table(domain); 2443 2444 protection_domain_free(domain); 2445 } 2446 2447 static void amd_iommu_detach_device(struct iommu_domain *dom, 2448 struct device *dev) 2449 { 2450 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2451 struct amd_iommu *iommu; 2452 int devid; 2453 2454 if (!check_device(dev)) 2455 return; 2456 2457 devid = get_device_id(dev); 2458 if (devid < 0) 2459 return; 2460 2461 if (dev_data->domain != NULL) 2462 detach_device(dev); 2463 2464 iommu = amd_iommu_rlookup_table[devid]; 2465 if (!iommu) 2466 return; 2467 2468 #ifdef CONFIG_IRQ_REMAP 2469 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && 2470 (dom->type == IOMMU_DOMAIN_UNMANAGED)) 2471 dev_data->use_vapic = 0; 2472 #endif 2473 2474 iommu_completion_wait(iommu); 2475 } 2476 2477 static int amd_iommu_attach_device(struct iommu_domain *dom, 2478 struct device *dev) 2479 { 2480 struct protection_domain *domain = to_pdomain(dom); 2481 struct iommu_dev_data *dev_data; 2482 struct amd_iommu *iommu; 2483 int ret; 2484 2485 if (!check_device(dev)) 2486 return -EINVAL; 2487 2488 dev_data = dev_iommu_priv_get(dev); 2489 dev_data->defer_attach = false; 2490 2491 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2492 if (!iommu) 2493 return -EINVAL; 2494 2495 if (dev_data->domain) 2496 detach_device(dev); 2497 2498 ret = attach_device(dev, domain); 2499 2500 #ifdef CONFIG_IRQ_REMAP 2501 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2502 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2503 dev_data->use_vapic = 1; 2504 else 2505 dev_data->use_vapic = 0; 2506 } 2507 #endif 2508 2509 iommu_completion_wait(iommu); 2510 2511 return ret; 2512 } 2513 2514 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, 2515 phys_addr_t paddr, size_t page_size, int iommu_prot, 2516 gfp_t gfp) 2517 { 2518 struct protection_domain *domain = to_pdomain(dom); 2519 struct domain_pgtable pgtable; 2520 int prot = 0; 2521 int ret; 2522 2523 amd_iommu_domain_get_pgtable(domain, &pgtable); 2524 if (pgtable.mode == PAGE_MODE_NONE) 2525 return -EINVAL; 2526 2527 if (iommu_prot & IOMMU_READ) 2528 prot |= IOMMU_PROT_IR; 2529 if (iommu_prot & IOMMU_WRITE) 2530 prot |= IOMMU_PROT_IW; 2531 2532 ret = iommu_map_page(domain, iova, paddr, page_size, prot, gfp); 2533 2534 domain_flush_np_cache(domain, iova, page_size); 2535 2536 return ret; 2537 } 2538 2539 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, 2540 size_t page_size, 2541 struct iommu_iotlb_gather *gather) 2542 { 2543 struct protection_domain *domain = to_pdomain(dom); 2544 struct domain_pgtable pgtable; 2545 2546 amd_iommu_domain_get_pgtable(domain, &pgtable); 2547 if (pgtable.mode == PAGE_MODE_NONE) 2548 return 0; 2549 2550 return iommu_unmap_page(domain, iova, page_size); 2551 } 2552 2553 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2554 dma_addr_t iova) 2555 { 2556 struct protection_domain *domain = to_pdomain(dom); 2557 unsigned long offset_mask, pte_pgsize; 2558 struct domain_pgtable pgtable; 2559 u64 *pte, __pte; 2560 2561 amd_iommu_domain_get_pgtable(domain, &pgtable); 2562 if (pgtable.mode == PAGE_MODE_NONE) 2563 return iova; 2564 2565 pte = fetch_pte(domain, iova, &pte_pgsize); 2566 2567 if (!pte || !IOMMU_PTE_PRESENT(*pte)) 2568 return 0; 2569 2570 offset_mask = pte_pgsize - 1; 2571 __pte = __sme_clr(*pte & PM_ADDR_MASK); 2572 2573 return (__pte & ~offset_mask) | (iova & offset_mask); 2574 } 2575 2576 static bool amd_iommu_capable(enum iommu_cap cap) 2577 { 2578 switch (cap) { 2579 case IOMMU_CAP_CACHE_COHERENCY: 2580 return true; 2581 case IOMMU_CAP_INTR_REMAP: 2582 return (irq_remapping_enabled == 1); 2583 case IOMMU_CAP_NOEXEC: 2584 return false; 2585 default: 2586 break; 2587 } 2588 2589 return false; 2590 } 2591 2592 static void amd_iommu_get_resv_regions(struct device *dev, 2593 struct list_head *head) 2594 { 2595 struct iommu_resv_region *region; 2596 struct unity_map_entry *entry; 2597 int devid; 2598 2599 devid = get_device_id(dev); 2600 if (devid < 0) 2601 return; 2602 2603 list_for_each_entry(entry, &amd_iommu_unity_map, list) { 2604 int type, prot = 0; 2605 size_t length; 2606 2607 if (devid < entry->devid_start || devid > entry->devid_end) 2608 continue; 2609 2610 type = IOMMU_RESV_DIRECT; 2611 length = entry->address_end - entry->address_start; 2612 if (entry->prot & IOMMU_PROT_IR) 2613 prot |= IOMMU_READ; 2614 if (entry->prot & IOMMU_PROT_IW) 2615 prot |= IOMMU_WRITE; 2616 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2617 /* Exclusion range */ 2618 type = IOMMU_RESV_RESERVED; 2619 2620 region = iommu_alloc_resv_region(entry->address_start, 2621 length, prot, type); 2622 if (!region) { 2623 dev_err(dev, "Out of memory allocating dm-regions\n"); 2624 return; 2625 } 2626 list_add_tail(®ion->list, head); 2627 } 2628 2629 region = iommu_alloc_resv_region(MSI_RANGE_START, 2630 MSI_RANGE_END - MSI_RANGE_START + 1, 2631 0, IOMMU_RESV_MSI); 2632 if (!region) 2633 return; 2634 list_add_tail(®ion->list, head); 2635 2636 region = iommu_alloc_resv_region(HT_RANGE_START, 2637 HT_RANGE_END - HT_RANGE_START + 1, 2638 0, IOMMU_RESV_RESERVED); 2639 if (!region) 2640 return; 2641 list_add_tail(®ion->list, head); 2642 } 2643 2644 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain, 2645 struct device *dev) 2646 { 2647 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2648 2649 return dev_data->defer_attach; 2650 } 2651 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); 2652 2653 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2654 { 2655 struct protection_domain *dom = to_pdomain(domain); 2656 unsigned long flags; 2657 2658 spin_lock_irqsave(&dom->lock, flags); 2659 domain_flush_tlb_pde(dom); 2660 domain_flush_complete(dom); 2661 spin_unlock_irqrestore(&dom->lock, flags); 2662 } 2663 2664 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2665 struct iommu_iotlb_gather *gather) 2666 { 2667 amd_iommu_flush_iotlb_all(domain); 2668 } 2669 2670 static int amd_iommu_def_domain_type(struct device *dev) 2671 { 2672 struct iommu_dev_data *dev_data; 2673 2674 dev_data = dev_iommu_priv_get(dev); 2675 if (!dev_data) 2676 return 0; 2677 2678 /* 2679 * Do not identity map IOMMUv2 capable devices when memory encryption is 2680 * active, because some of those devices (AMD GPUs) don't have the 2681 * encryption bit in their DMA-mask and require remapping. 2682 */ 2683 if (!mem_encrypt_active() && dev_data->iommu_v2) 2684 return IOMMU_DOMAIN_IDENTITY; 2685 2686 return 0; 2687 } 2688 2689 const struct iommu_ops amd_iommu_ops = { 2690 .capable = amd_iommu_capable, 2691 .domain_alloc = amd_iommu_domain_alloc, 2692 .domain_free = amd_iommu_domain_free, 2693 .attach_dev = amd_iommu_attach_device, 2694 .detach_dev = amd_iommu_detach_device, 2695 .map = amd_iommu_map, 2696 .unmap = amd_iommu_unmap, 2697 .iova_to_phys = amd_iommu_iova_to_phys, 2698 .probe_device = amd_iommu_probe_device, 2699 .release_device = amd_iommu_release_device, 2700 .probe_finalize = amd_iommu_probe_finalize, 2701 .device_group = amd_iommu_device_group, 2702 .domain_get_attr = amd_iommu_domain_get_attr, 2703 .get_resv_regions = amd_iommu_get_resv_regions, 2704 .put_resv_regions = generic_iommu_put_resv_regions, 2705 .is_attach_deferred = amd_iommu_is_attach_deferred, 2706 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 2707 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2708 .iotlb_sync = amd_iommu_iotlb_sync, 2709 .def_domain_type = amd_iommu_def_domain_type, 2710 }; 2711 2712 /***************************************************************************** 2713 * 2714 * The next functions do a basic initialization of IOMMU for pass through 2715 * mode 2716 * 2717 * In passthrough mode the IOMMU is initialized and enabled but not used for 2718 * DMA-API translation. 2719 * 2720 *****************************************************************************/ 2721 2722 /* IOMMUv2 specific functions */ 2723 int amd_iommu_register_ppr_notifier(struct notifier_block *nb) 2724 { 2725 return atomic_notifier_chain_register(&ppr_notifier, nb); 2726 } 2727 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); 2728 2729 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) 2730 { 2731 return atomic_notifier_chain_unregister(&ppr_notifier, nb); 2732 } 2733 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); 2734 2735 void amd_iommu_domain_direct_map(struct iommu_domain *dom) 2736 { 2737 struct protection_domain *domain = to_pdomain(dom); 2738 struct domain_pgtable pgtable; 2739 unsigned long flags; 2740 2741 spin_lock_irqsave(&domain->lock, flags); 2742 2743 /* First save pgtable configuration*/ 2744 amd_iommu_domain_get_pgtable(domain, &pgtable); 2745 2746 /* Remove page-table from domain */ 2747 amd_iommu_domain_clr_pt_root(domain); 2748 2749 /* Make changes visible to IOMMUs */ 2750 update_domain(domain); 2751 2752 /* Page-table is not visible to IOMMU anymore, so free it */ 2753 free_pagetable(&pgtable); 2754 2755 spin_unlock_irqrestore(&domain->lock, flags); 2756 } 2757 EXPORT_SYMBOL(amd_iommu_domain_direct_map); 2758 2759 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) 2760 { 2761 struct protection_domain *domain = to_pdomain(dom); 2762 unsigned long flags; 2763 int levels, ret; 2764 2765 if (pasids <= 0 || pasids > (PASID_MASK + 1)) 2766 return -EINVAL; 2767 2768 /* Number of GCR3 table levels required */ 2769 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) 2770 levels += 1; 2771 2772 if (levels > amd_iommu_max_glx_val) 2773 return -EINVAL; 2774 2775 spin_lock_irqsave(&domain->lock, flags); 2776 2777 /* 2778 * Save us all sanity checks whether devices already in the 2779 * domain support IOMMUv2. Just force that the domain has no 2780 * devices attached when it is switched into IOMMUv2 mode. 2781 */ 2782 ret = -EBUSY; 2783 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) 2784 goto out; 2785 2786 ret = -ENOMEM; 2787 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); 2788 if (domain->gcr3_tbl == NULL) 2789 goto out; 2790 2791 domain->glx = levels; 2792 domain->flags |= PD_IOMMUV2_MASK; 2793 2794 update_domain(domain); 2795 2796 ret = 0; 2797 2798 out: 2799 spin_unlock_irqrestore(&domain->lock, flags); 2800 2801 return ret; 2802 } 2803 EXPORT_SYMBOL(amd_iommu_domain_enable_v2); 2804 2805 static int __flush_pasid(struct protection_domain *domain, u32 pasid, 2806 u64 address, bool size) 2807 { 2808 struct iommu_dev_data *dev_data; 2809 struct iommu_cmd cmd; 2810 int i, ret; 2811 2812 if (!(domain->flags & PD_IOMMUV2_MASK)) 2813 return -EINVAL; 2814 2815 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); 2816 2817 /* 2818 * IOMMU TLB needs to be flushed before Device TLB to 2819 * prevent device TLB refill from IOMMU TLB 2820 */ 2821 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 2822 if (domain->dev_iommu[i] == 0) 2823 continue; 2824 2825 ret = iommu_queue_command(amd_iommus[i], &cmd); 2826 if (ret != 0) 2827 goto out; 2828 } 2829 2830 /* Wait until IOMMU TLB flushes are complete */ 2831 domain_flush_complete(domain); 2832 2833 /* Now flush device TLBs */ 2834 list_for_each_entry(dev_data, &domain->dev_list, list) { 2835 struct amd_iommu *iommu; 2836 int qdep; 2837 2838 /* 2839 There might be non-IOMMUv2 capable devices in an IOMMUv2 2840 * domain. 2841 */ 2842 if (!dev_data->ats.enabled) 2843 continue; 2844 2845 qdep = dev_data->ats.qdep; 2846 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2847 2848 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, 2849 qdep, address, size); 2850 2851 ret = iommu_queue_command(iommu, &cmd); 2852 if (ret != 0) 2853 goto out; 2854 } 2855 2856 /* Wait until all device TLBs are flushed */ 2857 domain_flush_complete(domain); 2858 2859 ret = 0; 2860 2861 out: 2862 2863 return ret; 2864 } 2865 2866 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid, 2867 u64 address) 2868 { 2869 return __flush_pasid(domain, pasid, address, false); 2870 } 2871 2872 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid, 2873 u64 address) 2874 { 2875 struct protection_domain *domain = to_pdomain(dom); 2876 unsigned long flags; 2877 int ret; 2878 2879 spin_lock_irqsave(&domain->lock, flags); 2880 ret = __amd_iommu_flush_page(domain, pasid, address); 2881 spin_unlock_irqrestore(&domain->lock, flags); 2882 2883 return ret; 2884 } 2885 EXPORT_SYMBOL(amd_iommu_flush_page); 2886 2887 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid) 2888 { 2889 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 2890 true); 2891 } 2892 2893 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid) 2894 { 2895 struct protection_domain *domain = to_pdomain(dom); 2896 unsigned long flags; 2897 int ret; 2898 2899 spin_lock_irqsave(&domain->lock, flags); 2900 ret = __amd_iommu_flush_tlb(domain, pasid); 2901 spin_unlock_irqrestore(&domain->lock, flags); 2902 2903 return ret; 2904 } 2905 EXPORT_SYMBOL(amd_iommu_flush_tlb); 2906 2907 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc) 2908 { 2909 int index; 2910 u64 *pte; 2911 2912 while (true) { 2913 2914 index = (pasid >> (9 * level)) & 0x1ff; 2915 pte = &root[index]; 2916 2917 if (level == 0) 2918 break; 2919 2920 if (!(*pte & GCR3_VALID)) { 2921 if (!alloc) 2922 return NULL; 2923 2924 root = (void *)get_zeroed_page(GFP_ATOMIC); 2925 if (root == NULL) 2926 return NULL; 2927 2928 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 2929 } 2930 2931 root = iommu_phys_to_virt(*pte & PAGE_MASK); 2932 2933 level -= 1; 2934 } 2935 2936 return pte; 2937 } 2938 2939 static int __set_gcr3(struct protection_domain *domain, u32 pasid, 2940 unsigned long cr3) 2941 { 2942 struct domain_pgtable pgtable; 2943 u64 *pte; 2944 2945 amd_iommu_domain_get_pgtable(domain, &pgtable); 2946 if (pgtable.mode != PAGE_MODE_NONE) 2947 return -EINVAL; 2948 2949 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); 2950 if (pte == NULL) 2951 return -ENOMEM; 2952 2953 *pte = (cr3 & PAGE_MASK) | GCR3_VALID; 2954 2955 return __amd_iommu_flush_tlb(domain, pasid); 2956 } 2957 2958 static int __clear_gcr3(struct protection_domain *domain, u32 pasid) 2959 { 2960 struct domain_pgtable pgtable; 2961 u64 *pte; 2962 2963 amd_iommu_domain_get_pgtable(domain, &pgtable); 2964 if (pgtable.mode != PAGE_MODE_NONE) 2965 return -EINVAL; 2966 2967 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); 2968 if (pte == NULL) 2969 return 0; 2970 2971 *pte = 0; 2972 2973 return __amd_iommu_flush_tlb(domain, pasid); 2974 } 2975 2976 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid, 2977 unsigned long cr3) 2978 { 2979 struct protection_domain *domain = to_pdomain(dom); 2980 unsigned long flags; 2981 int ret; 2982 2983 spin_lock_irqsave(&domain->lock, flags); 2984 ret = __set_gcr3(domain, pasid, cr3); 2985 spin_unlock_irqrestore(&domain->lock, flags); 2986 2987 return ret; 2988 } 2989 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); 2990 2991 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid) 2992 { 2993 struct protection_domain *domain = to_pdomain(dom); 2994 unsigned long flags; 2995 int ret; 2996 2997 spin_lock_irqsave(&domain->lock, flags); 2998 ret = __clear_gcr3(domain, pasid); 2999 spin_unlock_irqrestore(&domain->lock, flags); 3000 3001 return ret; 3002 } 3003 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); 3004 3005 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid, 3006 int status, int tag) 3007 { 3008 struct iommu_dev_data *dev_data; 3009 struct amd_iommu *iommu; 3010 struct iommu_cmd cmd; 3011 3012 dev_data = dev_iommu_priv_get(&pdev->dev); 3013 iommu = amd_iommu_rlookup_table[dev_data->devid]; 3014 3015 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 3016 tag, dev_data->pri_tlp); 3017 3018 return iommu_queue_command(iommu, &cmd); 3019 } 3020 EXPORT_SYMBOL(amd_iommu_complete_ppr); 3021 3022 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev) 3023 { 3024 struct protection_domain *pdomain; 3025 struct iommu_dev_data *dev_data; 3026 struct device *dev = &pdev->dev; 3027 struct iommu_domain *io_domain; 3028 3029 if (!check_device(dev)) 3030 return NULL; 3031 3032 dev_data = dev_iommu_priv_get(&pdev->dev); 3033 pdomain = dev_data->domain; 3034 io_domain = iommu_get_domain_for_dev(dev); 3035 3036 if (pdomain == NULL && dev_data->defer_attach) { 3037 dev_data->defer_attach = false; 3038 pdomain = to_pdomain(io_domain); 3039 attach_device(dev, pdomain); 3040 } 3041 3042 if (pdomain == NULL) 3043 return NULL; 3044 3045 if (io_domain->type != IOMMU_DOMAIN_DMA) 3046 return NULL; 3047 3048 /* Only return IOMMUv2 domains */ 3049 if (!(pdomain->flags & PD_IOMMUV2_MASK)) 3050 return NULL; 3051 3052 return &pdomain->domain; 3053 } 3054 EXPORT_SYMBOL(amd_iommu_get_v2_domain); 3055 3056 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum) 3057 { 3058 struct iommu_dev_data *dev_data; 3059 3060 if (!amd_iommu_v2_supported()) 3061 return; 3062 3063 dev_data = dev_iommu_priv_get(&pdev->dev); 3064 dev_data->errata |= (1 << erratum); 3065 } 3066 EXPORT_SYMBOL(amd_iommu_enable_device_erratum); 3067 3068 int amd_iommu_device_info(struct pci_dev *pdev, 3069 struct amd_iommu_device_info *info) 3070 { 3071 int max_pasids; 3072 int pos; 3073 3074 if (pdev == NULL || info == NULL) 3075 return -EINVAL; 3076 3077 if (!amd_iommu_v2_supported()) 3078 return -EINVAL; 3079 3080 memset(info, 0, sizeof(*info)); 3081 3082 if (pci_ats_supported(pdev)) 3083 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 3084 3085 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 3086 if (pos) 3087 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 3088 3089 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); 3090 if (pos) { 3091 int features; 3092 3093 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); 3094 max_pasids = min(max_pasids, (1 << 20)); 3095 3096 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 3097 info->max_pasids = min(pci_max_pasids(pdev), max_pasids); 3098 3099 features = pci_pasid_features(pdev); 3100 if (features & PCI_PASID_CAP_EXEC) 3101 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 3102 if (features & PCI_PASID_CAP_PRIV) 3103 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 3104 } 3105 3106 return 0; 3107 } 3108 EXPORT_SYMBOL(amd_iommu_device_info); 3109 3110 #ifdef CONFIG_IRQ_REMAP 3111 3112 /***************************************************************************** 3113 * 3114 * Interrupt Remapping Implementation 3115 * 3116 *****************************************************************************/ 3117 3118 static struct irq_chip amd_ir_chip; 3119 static DEFINE_SPINLOCK(iommu_table_lock); 3120 3121 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table) 3122 { 3123 u64 dte; 3124 3125 dte = amd_iommu_dev_table[devid].data[2]; 3126 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 3127 dte |= iommu_virt_to_phys(table->table); 3128 dte |= DTE_IRQ_REMAP_INTCTL; 3129 dte |= DTE_IRQ_TABLE_LEN; 3130 dte |= DTE_IRQ_REMAP_ENABLE; 3131 3132 amd_iommu_dev_table[devid].data[2] = dte; 3133 } 3134 3135 static struct irq_remap_table *get_irq_table(u16 devid) 3136 { 3137 struct irq_remap_table *table; 3138 3139 if (WARN_ONCE(!amd_iommu_rlookup_table[devid], 3140 "%s: no iommu for devid %x\n", __func__, devid)) 3141 return NULL; 3142 3143 table = irq_lookup_table[devid]; 3144 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid)) 3145 return NULL; 3146 3147 return table; 3148 } 3149 3150 static struct irq_remap_table *__alloc_irq_table(void) 3151 { 3152 struct irq_remap_table *table; 3153 3154 table = kzalloc(sizeof(*table), GFP_KERNEL); 3155 if (!table) 3156 return NULL; 3157 3158 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 3159 if (!table->table) { 3160 kfree(table); 3161 return NULL; 3162 } 3163 raw_spin_lock_init(&table->lock); 3164 3165 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3166 memset(table->table, 0, 3167 MAX_IRQS_PER_TABLE * sizeof(u32)); 3168 else 3169 memset(table->table, 0, 3170 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 3171 return table; 3172 } 3173 3174 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 3175 struct irq_remap_table *table) 3176 { 3177 irq_lookup_table[devid] = table; 3178 set_dte_irq_entry(devid, table); 3179 iommu_flush_dte(iommu, devid); 3180 } 3181 3182 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 3183 void *data) 3184 { 3185 struct irq_remap_table *table = data; 3186 3187 irq_lookup_table[alias] = table; 3188 set_dte_irq_entry(alias, table); 3189 3190 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias); 3191 3192 return 0; 3193 } 3194 3195 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev) 3196 { 3197 struct irq_remap_table *table = NULL; 3198 struct irq_remap_table *new_table = NULL; 3199 struct amd_iommu *iommu; 3200 unsigned long flags; 3201 u16 alias; 3202 3203 spin_lock_irqsave(&iommu_table_lock, flags); 3204 3205 iommu = amd_iommu_rlookup_table[devid]; 3206 if (!iommu) 3207 goto out_unlock; 3208 3209 table = irq_lookup_table[devid]; 3210 if (table) 3211 goto out_unlock; 3212 3213 alias = amd_iommu_alias_table[devid]; 3214 table = irq_lookup_table[alias]; 3215 if (table) { 3216 set_remap_table_entry(iommu, devid, table); 3217 goto out_wait; 3218 } 3219 spin_unlock_irqrestore(&iommu_table_lock, flags); 3220 3221 /* Nothing there yet, allocate new irq remapping table */ 3222 new_table = __alloc_irq_table(); 3223 if (!new_table) 3224 return NULL; 3225 3226 spin_lock_irqsave(&iommu_table_lock, flags); 3227 3228 table = irq_lookup_table[devid]; 3229 if (table) 3230 goto out_unlock; 3231 3232 table = irq_lookup_table[alias]; 3233 if (table) { 3234 set_remap_table_entry(iommu, devid, table); 3235 goto out_wait; 3236 } 3237 3238 table = new_table; 3239 new_table = NULL; 3240 3241 if (pdev) 3242 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 3243 table); 3244 else 3245 set_remap_table_entry(iommu, devid, table); 3246 3247 if (devid != alias) 3248 set_remap_table_entry(iommu, alias, table); 3249 3250 out_wait: 3251 iommu_completion_wait(iommu); 3252 3253 out_unlock: 3254 spin_unlock_irqrestore(&iommu_table_lock, flags); 3255 3256 if (new_table) { 3257 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 3258 kfree(new_table); 3259 } 3260 return table; 3261 } 3262 3263 static int alloc_irq_index(u16 devid, int count, bool align, 3264 struct pci_dev *pdev) 3265 { 3266 struct irq_remap_table *table; 3267 int index, c, alignment = 1; 3268 unsigned long flags; 3269 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 3270 3271 if (!iommu) 3272 return -ENODEV; 3273 3274 table = alloc_irq_table(devid, pdev); 3275 if (!table) 3276 return -ENODEV; 3277 3278 if (align) 3279 alignment = roundup_pow_of_two(count); 3280 3281 raw_spin_lock_irqsave(&table->lock, flags); 3282 3283 /* Scan table for free entries */ 3284 for (index = ALIGN(table->min_index, alignment), c = 0; 3285 index < MAX_IRQS_PER_TABLE;) { 3286 if (!iommu->irte_ops->is_allocated(table, index)) { 3287 c += 1; 3288 } else { 3289 c = 0; 3290 index = ALIGN(index + 1, alignment); 3291 continue; 3292 } 3293 3294 if (c == count) { 3295 for (; c != 0; --c) 3296 iommu->irte_ops->set_allocated(table, index - c + 1); 3297 3298 index -= count - 1; 3299 goto out; 3300 } 3301 3302 index++; 3303 } 3304 3305 index = -ENOSPC; 3306 3307 out: 3308 raw_spin_unlock_irqrestore(&table->lock, flags); 3309 3310 return index; 3311 } 3312 3313 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte, 3314 struct amd_ir_data *data) 3315 { 3316 bool ret; 3317 struct irq_remap_table *table; 3318 struct amd_iommu *iommu; 3319 unsigned long flags; 3320 struct irte_ga *entry; 3321 3322 iommu = amd_iommu_rlookup_table[devid]; 3323 if (iommu == NULL) 3324 return -EINVAL; 3325 3326 table = get_irq_table(devid); 3327 if (!table) 3328 return -ENOMEM; 3329 3330 raw_spin_lock_irqsave(&table->lock, flags); 3331 3332 entry = (struct irte_ga *)table->table; 3333 entry = &entry[index]; 3334 3335 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val, 3336 entry->lo.val, entry->hi.val, 3337 irte->lo.val, irte->hi.val); 3338 /* 3339 * We use cmpxchg16 to atomically update the 128-bit IRTE, 3340 * and it cannot be updated by the hardware or other processors 3341 * behind us, so the return value of cmpxchg16 should be the 3342 * same as the old value. 3343 */ 3344 WARN_ON(!ret); 3345 3346 if (data) 3347 data->ref = entry; 3348 3349 raw_spin_unlock_irqrestore(&table->lock, flags); 3350 3351 iommu_flush_irt(iommu, devid); 3352 iommu_completion_wait(iommu); 3353 3354 return 0; 3355 } 3356 3357 static int modify_irte(u16 devid, int index, union irte *irte) 3358 { 3359 struct irq_remap_table *table; 3360 struct amd_iommu *iommu; 3361 unsigned long flags; 3362 3363 iommu = amd_iommu_rlookup_table[devid]; 3364 if (iommu == NULL) 3365 return -EINVAL; 3366 3367 table = get_irq_table(devid); 3368 if (!table) 3369 return -ENOMEM; 3370 3371 raw_spin_lock_irqsave(&table->lock, flags); 3372 table->table[index] = irte->val; 3373 raw_spin_unlock_irqrestore(&table->lock, flags); 3374 3375 iommu_flush_irt(iommu, devid); 3376 iommu_completion_wait(iommu); 3377 3378 return 0; 3379 } 3380 3381 static void free_irte(u16 devid, int index) 3382 { 3383 struct irq_remap_table *table; 3384 struct amd_iommu *iommu; 3385 unsigned long flags; 3386 3387 iommu = amd_iommu_rlookup_table[devid]; 3388 if (iommu == NULL) 3389 return; 3390 3391 table = get_irq_table(devid); 3392 if (!table) 3393 return; 3394 3395 raw_spin_lock_irqsave(&table->lock, flags); 3396 iommu->irte_ops->clear_allocated(table, index); 3397 raw_spin_unlock_irqrestore(&table->lock, flags); 3398 3399 iommu_flush_irt(iommu, devid); 3400 iommu_completion_wait(iommu); 3401 } 3402 3403 static void irte_prepare(void *entry, 3404 u32 delivery_mode, u32 dest_mode, 3405 u8 vector, u32 dest_apicid, int devid) 3406 { 3407 union irte *irte = (union irte *) entry; 3408 3409 irte->val = 0; 3410 irte->fields.vector = vector; 3411 irte->fields.int_type = delivery_mode; 3412 irte->fields.destination = dest_apicid; 3413 irte->fields.dm = dest_mode; 3414 irte->fields.valid = 1; 3415 } 3416 3417 static void irte_ga_prepare(void *entry, 3418 u32 delivery_mode, u32 dest_mode, 3419 u8 vector, u32 dest_apicid, int devid) 3420 { 3421 struct irte_ga *irte = (struct irte_ga *) entry; 3422 3423 irte->lo.val = 0; 3424 irte->hi.val = 0; 3425 irte->lo.fields_remap.int_type = delivery_mode; 3426 irte->lo.fields_remap.dm = dest_mode; 3427 irte->hi.fields.vector = vector; 3428 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3429 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3430 irte->lo.fields_remap.valid = 1; 3431 } 3432 3433 static void irte_activate(void *entry, u16 devid, u16 index) 3434 { 3435 union irte *irte = (union irte *) entry; 3436 3437 irte->fields.valid = 1; 3438 modify_irte(devid, index, irte); 3439 } 3440 3441 static void irte_ga_activate(void *entry, u16 devid, u16 index) 3442 { 3443 struct irte_ga *irte = (struct irte_ga *) entry; 3444 3445 irte->lo.fields_remap.valid = 1; 3446 modify_irte_ga(devid, index, irte, NULL); 3447 } 3448 3449 static void irte_deactivate(void *entry, u16 devid, u16 index) 3450 { 3451 union irte *irte = (union irte *) entry; 3452 3453 irte->fields.valid = 0; 3454 modify_irte(devid, index, irte); 3455 } 3456 3457 static void irte_ga_deactivate(void *entry, u16 devid, u16 index) 3458 { 3459 struct irte_ga *irte = (struct irte_ga *) entry; 3460 3461 irte->lo.fields_remap.valid = 0; 3462 modify_irte_ga(devid, index, irte, NULL); 3463 } 3464 3465 static void irte_set_affinity(void *entry, u16 devid, u16 index, 3466 u8 vector, u32 dest_apicid) 3467 { 3468 union irte *irte = (union irte *) entry; 3469 3470 irte->fields.vector = vector; 3471 irte->fields.destination = dest_apicid; 3472 modify_irte(devid, index, irte); 3473 } 3474 3475 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index, 3476 u8 vector, u32 dest_apicid) 3477 { 3478 struct irte_ga *irte = (struct irte_ga *) entry; 3479 3480 if (!irte->lo.fields_remap.guest_mode) { 3481 irte->hi.fields.vector = vector; 3482 irte->lo.fields_remap.destination = 3483 APICID_TO_IRTE_DEST_LO(dest_apicid); 3484 irte->hi.fields.destination = 3485 APICID_TO_IRTE_DEST_HI(dest_apicid); 3486 modify_irte_ga(devid, index, irte, NULL); 3487 } 3488 } 3489 3490 #define IRTE_ALLOCATED (~1U) 3491 static void irte_set_allocated(struct irq_remap_table *table, int index) 3492 { 3493 table->table[index] = IRTE_ALLOCATED; 3494 } 3495 3496 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3497 { 3498 struct irte_ga *ptr = (struct irte_ga *)table->table; 3499 struct irte_ga *irte = &ptr[index]; 3500 3501 memset(&irte->lo.val, 0, sizeof(u64)); 3502 memset(&irte->hi.val, 0, sizeof(u64)); 3503 irte->hi.fields.vector = 0xff; 3504 } 3505 3506 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3507 { 3508 union irte *ptr = (union irte *)table->table; 3509 union irte *irte = &ptr[index]; 3510 3511 return irte->val != 0; 3512 } 3513 3514 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3515 { 3516 struct irte_ga *ptr = (struct irte_ga *)table->table; 3517 struct irte_ga *irte = &ptr[index]; 3518 3519 return irte->hi.fields.vector != 0; 3520 } 3521 3522 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3523 { 3524 table->table[index] = 0; 3525 } 3526 3527 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3528 { 3529 struct irte_ga *ptr = (struct irte_ga *)table->table; 3530 struct irte_ga *irte = &ptr[index]; 3531 3532 memset(&irte->lo.val, 0, sizeof(u64)); 3533 memset(&irte->hi.val, 0, sizeof(u64)); 3534 } 3535 3536 static int get_devid(struct irq_alloc_info *info) 3537 { 3538 switch (info->type) { 3539 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3540 case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT: 3541 return get_ioapic_devid(info->devid); 3542 case X86_IRQ_ALLOC_TYPE_HPET: 3543 case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT: 3544 return get_hpet_devid(info->devid); 3545 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3546 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3547 return get_device_id(msi_desc_to_dev(info->desc)); 3548 default: 3549 WARN_ON_ONCE(1); 3550 return -1; 3551 } 3552 } 3553 3554 static struct irq_domain *get_irq_domain_for_devid(struct irq_alloc_info *info, 3555 int devid) 3556 { 3557 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 3558 3559 if (!iommu) 3560 return NULL; 3561 3562 switch (info->type) { 3563 case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT: 3564 case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT: 3565 return iommu->ir_domain; 3566 default: 3567 WARN_ON_ONCE(1); 3568 return NULL; 3569 } 3570 } 3571 3572 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info) 3573 { 3574 int devid; 3575 3576 if (!info) 3577 return NULL; 3578 3579 devid = get_devid(info); 3580 if (devid < 0) 3581 return NULL; 3582 return get_irq_domain_for_devid(info, devid); 3583 } 3584 3585 struct irq_remap_ops amd_iommu_irq_ops = { 3586 .prepare = amd_iommu_prepare, 3587 .enable = amd_iommu_enable, 3588 .disable = amd_iommu_disable, 3589 .reenable = amd_iommu_reenable, 3590 .enable_faulting = amd_iommu_enable_faulting, 3591 .get_irq_domain = get_irq_domain, 3592 }; 3593 3594 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3595 struct irq_cfg *irq_cfg, 3596 struct irq_alloc_info *info, 3597 int devid, int index, int sub_handle) 3598 { 3599 struct irq_2_irte *irte_info = &data->irq_2_irte; 3600 struct msi_msg *msg = &data->msi_entry; 3601 struct IO_APIC_route_entry *entry; 3602 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 3603 3604 if (!iommu) 3605 return; 3606 3607 data->irq_2_irte.devid = devid; 3608 data->irq_2_irte.index = index + sub_handle; 3609 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode, 3610 apic->irq_dest_mode, irq_cfg->vector, 3611 irq_cfg->dest_apicid, devid); 3612 3613 switch (info->type) { 3614 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3615 /* Setup IOAPIC entry */ 3616 entry = info->ioapic.entry; 3617 info->ioapic.entry = NULL; 3618 memset(entry, 0, sizeof(*entry)); 3619 entry->vector = index; 3620 entry->mask = 0; 3621 entry->trigger = info->ioapic.trigger; 3622 entry->polarity = info->ioapic.polarity; 3623 /* Mask level triggered irqs. */ 3624 if (info->ioapic.trigger) 3625 entry->mask = 1; 3626 break; 3627 3628 case X86_IRQ_ALLOC_TYPE_HPET: 3629 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3630 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3631 msg->address_hi = MSI_ADDR_BASE_HI; 3632 msg->address_lo = MSI_ADDR_BASE_LO; 3633 msg->data = irte_info->index; 3634 break; 3635 3636 default: 3637 BUG_ON(1); 3638 break; 3639 } 3640 } 3641 3642 struct amd_irte_ops irte_32_ops = { 3643 .prepare = irte_prepare, 3644 .activate = irte_activate, 3645 .deactivate = irte_deactivate, 3646 .set_affinity = irte_set_affinity, 3647 .set_allocated = irte_set_allocated, 3648 .is_allocated = irte_is_allocated, 3649 .clear_allocated = irte_clear_allocated, 3650 }; 3651 3652 struct amd_irte_ops irte_128_ops = { 3653 .prepare = irte_ga_prepare, 3654 .activate = irte_ga_activate, 3655 .deactivate = irte_ga_deactivate, 3656 .set_affinity = irte_ga_set_affinity, 3657 .set_allocated = irte_ga_set_allocated, 3658 .is_allocated = irte_ga_is_allocated, 3659 .clear_allocated = irte_ga_clear_allocated, 3660 }; 3661 3662 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3663 unsigned int nr_irqs, void *arg) 3664 { 3665 struct irq_alloc_info *info = arg; 3666 struct irq_data *irq_data; 3667 struct amd_ir_data *data = NULL; 3668 struct irq_cfg *cfg; 3669 int i, ret, devid; 3670 int index; 3671 3672 if (!info) 3673 return -EINVAL; 3674 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && 3675 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) 3676 return -EINVAL; 3677 3678 /* 3679 * With IRQ remapping enabled, don't need contiguous CPU vectors 3680 * to support multiple MSI interrupts. 3681 */ 3682 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) 3683 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 3684 3685 devid = get_devid(info); 3686 if (devid < 0) 3687 return -EINVAL; 3688 3689 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3690 if (ret < 0) 3691 return ret; 3692 3693 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3694 struct irq_remap_table *table; 3695 struct amd_iommu *iommu; 3696 3697 table = alloc_irq_table(devid, NULL); 3698 if (table) { 3699 if (!table->min_index) { 3700 /* 3701 * Keep the first 32 indexes free for IOAPIC 3702 * interrupts. 3703 */ 3704 table->min_index = 32; 3705 iommu = amd_iommu_rlookup_table[devid]; 3706 for (i = 0; i < 32; ++i) 3707 iommu->irte_ops->set_allocated(table, i); 3708 } 3709 WARN_ON(table->min_index != 32); 3710 index = info->ioapic.pin; 3711 } else { 3712 index = -ENOMEM; 3713 } 3714 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3715 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3716 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3717 3718 index = alloc_irq_index(devid, nr_irqs, align, 3719 msi_desc_to_pci_dev(info->desc)); 3720 } else { 3721 index = alloc_irq_index(devid, nr_irqs, false, NULL); 3722 } 3723 3724 if (index < 0) { 3725 pr_warn("Failed to allocate IRTE\n"); 3726 ret = index; 3727 goto out_free_parent; 3728 } 3729 3730 for (i = 0; i < nr_irqs; i++) { 3731 irq_data = irq_domain_get_irq_data(domain, virq + i); 3732 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3733 if (!cfg) { 3734 ret = -EINVAL; 3735 goto out_free_data; 3736 } 3737 3738 ret = -ENOMEM; 3739 data = kzalloc(sizeof(*data), GFP_KERNEL); 3740 if (!data) 3741 goto out_free_data; 3742 3743 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3744 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3745 else 3746 data->entry = kzalloc(sizeof(struct irte_ga), 3747 GFP_KERNEL); 3748 if (!data->entry) { 3749 kfree(data); 3750 goto out_free_data; 3751 } 3752 3753 irq_data->hwirq = (devid << 16) + i; 3754 irq_data->chip_data = data; 3755 irq_data->chip = &amd_ir_chip; 3756 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3757 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3758 } 3759 3760 return 0; 3761 3762 out_free_data: 3763 for (i--; i >= 0; i--) { 3764 irq_data = irq_domain_get_irq_data(domain, virq + i); 3765 if (irq_data) 3766 kfree(irq_data->chip_data); 3767 } 3768 for (i = 0; i < nr_irqs; i++) 3769 free_irte(devid, index + i); 3770 out_free_parent: 3771 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3772 return ret; 3773 } 3774 3775 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3776 unsigned int nr_irqs) 3777 { 3778 struct irq_2_irte *irte_info; 3779 struct irq_data *irq_data; 3780 struct amd_ir_data *data; 3781 int i; 3782 3783 for (i = 0; i < nr_irqs; i++) { 3784 irq_data = irq_domain_get_irq_data(domain, virq + i); 3785 if (irq_data && irq_data->chip_data) { 3786 data = irq_data->chip_data; 3787 irte_info = &data->irq_2_irte; 3788 free_irte(irte_info->devid, irte_info->index); 3789 kfree(data->entry); 3790 kfree(data); 3791 } 3792 } 3793 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3794 } 3795 3796 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3797 struct amd_ir_data *ir_data, 3798 struct irq_2_irte *irte_info, 3799 struct irq_cfg *cfg); 3800 3801 static int irq_remapping_activate(struct irq_domain *domain, 3802 struct irq_data *irq_data, bool reserve) 3803 { 3804 struct amd_ir_data *data = irq_data->chip_data; 3805 struct irq_2_irte *irte_info = &data->irq_2_irte; 3806 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3807 struct irq_cfg *cfg = irqd_cfg(irq_data); 3808 3809 if (!iommu) 3810 return 0; 3811 3812 iommu->irte_ops->activate(data->entry, irte_info->devid, 3813 irte_info->index); 3814 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3815 return 0; 3816 } 3817 3818 static void irq_remapping_deactivate(struct irq_domain *domain, 3819 struct irq_data *irq_data) 3820 { 3821 struct amd_ir_data *data = irq_data->chip_data; 3822 struct irq_2_irte *irte_info = &data->irq_2_irte; 3823 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3824 3825 if (iommu) 3826 iommu->irte_ops->deactivate(data->entry, irte_info->devid, 3827 irte_info->index); 3828 } 3829 3830 static const struct irq_domain_ops amd_ir_domain_ops = { 3831 .alloc = irq_remapping_alloc, 3832 .free = irq_remapping_free, 3833 .activate = irq_remapping_activate, 3834 .deactivate = irq_remapping_deactivate, 3835 }; 3836 3837 int amd_iommu_activate_guest_mode(void *data) 3838 { 3839 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3840 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3841 u64 valid; 3842 3843 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3844 !entry || entry->lo.fields_vapic.guest_mode) 3845 return 0; 3846 3847 valid = entry->lo.fields_vapic.valid; 3848 3849 entry->lo.val = 0; 3850 entry->hi.val = 0; 3851 3852 entry->lo.fields_vapic.valid = valid; 3853 entry->lo.fields_vapic.guest_mode = 1; 3854 entry->lo.fields_vapic.ga_log_intr = 1; 3855 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3856 entry->hi.fields.vector = ir_data->ga_vector; 3857 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3858 3859 return modify_irte_ga(ir_data->irq_2_irte.devid, 3860 ir_data->irq_2_irte.index, entry, ir_data); 3861 } 3862 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3863 3864 int amd_iommu_deactivate_guest_mode(void *data) 3865 { 3866 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3867 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3868 struct irq_cfg *cfg = ir_data->cfg; 3869 u64 valid; 3870 3871 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3872 !entry || !entry->lo.fields_vapic.guest_mode) 3873 return 0; 3874 3875 valid = entry->lo.fields_remap.valid; 3876 3877 entry->lo.val = 0; 3878 entry->hi.val = 0; 3879 3880 entry->lo.fields_remap.valid = valid; 3881 entry->lo.fields_remap.dm = apic->irq_dest_mode; 3882 entry->lo.fields_remap.int_type = apic->irq_delivery_mode; 3883 entry->hi.fields.vector = cfg->vector; 3884 entry->lo.fields_remap.destination = 3885 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3886 entry->hi.fields.destination = 3887 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3888 3889 return modify_irte_ga(ir_data->irq_2_irte.devid, 3890 ir_data->irq_2_irte.index, entry, ir_data); 3891 } 3892 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3893 3894 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3895 { 3896 int ret; 3897 struct amd_iommu *iommu; 3898 struct amd_iommu_pi_data *pi_data = vcpu_info; 3899 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3900 struct amd_ir_data *ir_data = data->chip_data; 3901 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3902 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid); 3903 3904 /* Note: 3905 * This device has never been set up for guest mode. 3906 * we should not modify the IRTE 3907 */ 3908 if (!dev_data || !dev_data->use_vapic) 3909 return 0; 3910 3911 ir_data->cfg = irqd_cfg(data); 3912 pi_data->ir_data = ir_data; 3913 3914 /* Note: 3915 * SVM tries to set up for VAPIC mode, but we are in 3916 * legacy mode. So, we force legacy mode instead. 3917 */ 3918 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3919 pr_debug("%s: Fall back to using intr legacy remap\n", 3920 __func__); 3921 pi_data->is_guest_mode = false; 3922 } 3923 3924 iommu = amd_iommu_rlookup_table[irte_info->devid]; 3925 if (iommu == NULL) 3926 return -EINVAL; 3927 3928 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3929 if (pi_data->is_guest_mode) { 3930 ir_data->ga_root_ptr = (pi_data->base >> 12); 3931 ir_data->ga_vector = vcpu_pi_info->vector; 3932 ir_data->ga_tag = pi_data->ga_tag; 3933 ret = amd_iommu_activate_guest_mode(ir_data); 3934 if (!ret) 3935 ir_data->cached_ga_tag = pi_data->ga_tag; 3936 } else { 3937 ret = amd_iommu_deactivate_guest_mode(ir_data); 3938 3939 /* 3940 * This communicates the ga_tag back to the caller 3941 * so that it can do all the necessary clean up. 3942 */ 3943 if (!ret) 3944 ir_data->cached_ga_tag = 0; 3945 } 3946 3947 return ret; 3948 } 3949 3950 3951 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3952 struct amd_ir_data *ir_data, 3953 struct irq_2_irte *irte_info, 3954 struct irq_cfg *cfg) 3955 { 3956 3957 /* 3958 * Atomically updates the IRTE with the new destination, vector 3959 * and flushes the interrupt entry cache. 3960 */ 3961 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid, 3962 irte_info->index, cfg->vector, 3963 cfg->dest_apicid); 3964 } 3965 3966 static int amd_ir_set_affinity(struct irq_data *data, 3967 const struct cpumask *mask, bool force) 3968 { 3969 struct amd_ir_data *ir_data = data->chip_data; 3970 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3971 struct irq_cfg *cfg = irqd_cfg(data); 3972 struct irq_data *parent = data->parent_data; 3973 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3974 int ret; 3975 3976 if (!iommu) 3977 return -ENODEV; 3978 3979 ret = parent->chip->irq_set_affinity(parent, mask, force); 3980 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3981 return ret; 3982 3983 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3984 /* 3985 * After this point, all the interrupts will start arriving 3986 * at the new destination. So, time to cleanup the previous 3987 * vector allocation. 3988 */ 3989 send_cleanup_vector(cfg); 3990 3991 return IRQ_SET_MASK_OK_DONE; 3992 } 3993 3994 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3995 { 3996 struct amd_ir_data *ir_data = irq_data->chip_data; 3997 3998 *msg = ir_data->msi_entry; 3999 } 4000 4001 static struct irq_chip amd_ir_chip = { 4002 .name = "AMD-IR", 4003 .irq_ack = apic_ack_irq, 4004 .irq_set_affinity = amd_ir_set_affinity, 4005 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 4006 .irq_compose_msi_msg = ir_compose_msi_msg, 4007 }; 4008 4009 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 4010 { 4011 struct fwnode_handle *fn; 4012 4013 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 4014 if (!fn) 4015 return -ENOMEM; 4016 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu); 4017 if (!iommu->ir_domain) { 4018 irq_domain_free_fwnode(fn); 4019 return -ENOMEM; 4020 } 4021 4022 iommu->ir_domain->parent = arch_get_ir_parent_domain(); 4023 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, 4024 "AMD-IR-MSI", 4025 iommu->index); 4026 return 0; 4027 } 4028 4029 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 4030 { 4031 unsigned long flags; 4032 struct amd_iommu *iommu; 4033 struct irq_remap_table *table; 4034 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 4035 int devid = ir_data->irq_2_irte.devid; 4036 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 4037 struct irte_ga *ref = (struct irte_ga *) ir_data->ref; 4038 4039 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 4040 !ref || !entry || !entry->lo.fields_vapic.guest_mode) 4041 return 0; 4042 4043 iommu = amd_iommu_rlookup_table[devid]; 4044 if (!iommu) 4045 return -ENODEV; 4046 4047 table = get_irq_table(devid); 4048 if (!table) 4049 return -ENODEV; 4050 4051 raw_spin_lock_irqsave(&table->lock, flags); 4052 4053 if (ref->lo.fields_vapic.guest_mode) { 4054 if (cpu >= 0) { 4055 ref->lo.fields_vapic.destination = 4056 APICID_TO_IRTE_DEST_LO(cpu); 4057 ref->hi.fields.destination = 4058 APICID_TO_IRTE_DEST_HI(cpu); 4059 } 4060 ref->lo.fields_vapic.is_run = is_run; 4061 barrier(); 4062 } 4063 4064 raw_spin_unlock_irqrestore(&table->lock, flags); 4065 4066 iommu_flush_irt(iommu, devid); 4067 iommu_completion_wait(iommu); 4068 return 0; 4069 } 4070 EXPORT_SYMBOL(amd_iommu_update_ga); 4071 #endif 4072