xref: /linux/drivers/iommu/amd/iommu.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/dma-contiguous.h>
32 #include <linux/irqdomain.h>
33 #include <linux/percpu.h>
34 #include <linux/iova.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
37 #include <asm/apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/msidef.h>
40 #include <asm/proto.h>
41 #include <asm/iommu.h>
42 #include <asm/gart.h>
43 #include <asm/dma.h>
44 
45 #include "amd_iommu.h"
46 #include "../irq_remapping.h"
47 
48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
49 
50 #define LOOP_TIMEOUT	100000
51 
52 /* IO virtual address start page frame number */
53 #define IOVA_START_PFN		(1)
54 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
55 
56 /* Reserved IOVA ranges */
57 #define MSI_RANGE_START		(0xfee00000)
58 #define MSI_RANGE_END		(0xfeefffff)
59 #define HT_RANGE_START		(0xfd00000000ULL)
60 #define HT_RANGE_END		(0xffffffffffULL)
61 
62 /*
63  * This bitmap is used to advertise the page sizes our hardware support
64  * to the IOMMU core, which will then use this information to split
65  * physically contiguous memory regions it is mapping into page sizes
66  * that we support.
67  *
68  * 512GB Pages are not supported due to a hardware bug
69  */
70 #define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
71 
72 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
73 
74 static DEFINE_SPINLOCK(pd_bitmap_lock);
75 
76 /* List of all available dev_data structures */
77 static LLIST_HEAD(dev_data_list);
78 
79 LIST_HEAD(ioapic_map);
80 LIST_HEAD(hpet_map);
81 LIST_HEAD(acpihid_map);
82 
83 /*
84  * Domain for untranslated devices - only allocated
85  * if iommu=pt passed on kernel cmd line.
86  */
87 const struct iommu_ops amd_iommu_ops;
88 
89 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
90 int amd_iommu_max_glx_val = -1;
91 
92 /*
93  * general struct to manage commands send to an IOMMU
94  */
95 struct iommu_cmd {
96 	u32 data[4];
97 };
98 
99 struct kmem_cache *amd_iommu_irq_cache;
100 
101 static void update_domain(struct protection_domain *domain);
102 static void detach_device(struct device *dev);
103 static void update_and_flush_device_table(struct protection_domain *domain,
104 					  struct domain_pgtable *pgtable);
105 
106 /****************************************************************************
107  *
108  * Helper functions
109  *
110  ****************************************************************************/
111 
112 static inline u16 get_pci_device_id(struct device *dev)
113 {
114 	struct pci_dev *pdev = to_pci_dev(dev);
115 
116 	return pci_dev_id(pdev);
117 }
118 
119 static inline int get_acpihid_device_id(struct device *dev,
120 					struct acpihid_map_entry **entry)
121 {
122 	struct acpi_device *adev = ACPI_COMPANION(dev);
123 	struct acpihid_map_entry *p;
124 
125 	if (!adev)
126 		return -ENODEV;
127 
128 	list_for_each_entry(p, &acpihid_map, list) {
129 		if (acpi_dev_hid_uid_match(adev, p->hid,
130 					   p->uid[0] ? p->uid : NULL)) {
131 			if (entry)
132 				*entry = p;
133 			return p->devid;
134 		}
135 	}
136 	return -EINVAL;
137 }
138 
139 static inline int get_device_id(struct device *dev)
140 {
141 	int devid;
142 
143 	if (dev_is_pci(dev))
144 		devid = get_pci_device_id(dev);
145 	else
146 		devid = get_acpihid_device_id(dev, NULL);
147 
148 	return devid;
149 }
150 
151 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
152 {
153 	return container_of(dom, struct protection_domain, domain);
154 }
155 
156 static void amd_iommu_domain_get_pgtable(struct protection_domain *domain,
157 					 struct domain_pgtable *pgtable)
158 {
159 	u64 pt_root = atomic64_read(&domain->pt_root);
160 
161 	pgtable->root = (u64 *)(pt_root & PAGE_MASK);
162 	pgtable->mode = pt_root & 7; /* lowest 3 bits encode pgtable mode */
163 }
164 
165 static void amd_iommu_domain_set_pt_root(struct protection_domain *domain, u64 root)
166 {
167 	atomic64_set(&domain->pt_root, root);
168 }
169 
170 static void amd_iommu_domain_clr_pt_root(struct protection_domain *domain)
171 {
172 	amd_iommu_domain_set_pt_root(domain, 0);
173 }
174 
175 static void amd_iommu_domain_set_pgtable(struct protection_domain *domain,
176 					 u64 *root, int mode)
177 {
178 	u64 pt_root;
179 
180 	/* lowest 3 bits encode pgtable mode */
181 	pt_root = mode & 7;
182 	pt_root |= (u64)root;
183 
184 	amd_iommu_domain_set_pt_root(domain, pt_root);
185 }
186 
187 static struct iommu_dev_data *alloc_dev_data(u16 devid)
188 {
189 	struct iommu_dev_data *dev_data;
190 
191 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
192 	if (!dev_data)
193 		return NULL;
194 
195 	spin_lock_init(&dev_data->lock);
196 	dev_data->devid = devid;
197 	ratelimit_default_init(&dev_data->rs);
198 
199 	llist_add(&dev_data->dev_data_list, &dev_data_list);
200 	return dev_data;
201 }
202 
203 static struct iommu_dev_data *search_dev_data(u16 devid)
204 {
205 	struct iommu_dev_data *dev_data;
206 	struct llist_node *node;
207 
208 	if (llist_empty(&dev_data_list))
209 		return NULL;
210 
211 	node = dev_data_list.first;
212 	llist_for_each_entry(dev_data, node, dev_data_list) {
213 		if (dev_data->devid == devid)
214 			return dev_data;
215 	}
216 
217 	return NULL;
218 }
219 
220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
221 {
222 	u16 devid = pci_dev_id(pdev);
223 
224 	if (devid == alias)
225 		return 0;
226 
227 	amd_iommu_rlookup_table[alias] =
228 		amd_iommu_rlookup_table[devid];
229 	memcpy(amd_iommu_dev_table[alias].data,
230 	       amd_iommu_dev_table[devid].data,
231 	       sizeof(amd_iommu_dev_table[alias].data));
232 
233 	return 0;
234 }
235 
236 static void clone_aliases(struct pci_dev *pdev)
237 {
238 	if (!pdev)
239 		return;
240 
241 	/*
242 	 * The IVRS alias stored in the alias table may not be
243 	 * part of the PCI DMA aliases if it's bus differs
244 	 * from the original device.
245 	 */
246 	clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
247 
248 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
249 }
250 
251 static struct pci_dev *setup_aliases(struct device *dev)
252 {
253 	struct pci_dev *pdev = to_pci_dev(dev);
254 	u16 ivrs_alias;
255 
256 	/* For ACPI HID devices, there are no aliases */
257 	if (!dev_is_pci(dev))
258 		return NULL;
259 
260 	/*
261 	 * Add the IVRS alias to the pci aliases if it is on the same
262 	 * bus. The IVRS table may know about a quirk that we don't.
263 	 */
264 	ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
265 	if (ivrs_alias != pci_dev_id(pdev) &&
266 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
267 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
268 
269 	clone_aliases(pdev);
270 
271 	return pdev;
272 }
273 
274 static struct iommu_dev_data *find_dev_data(u16 devid)
275 {
276 	struct iommu_dev_data *dev_data;
277 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
278 
279 	dev_data = search_dev_data(devid);
280 
281 	if (dev_data == NULL) {
282 		dev_data = alloc_dev_data(devid);
283 		if (!dev_data)
284 			return NULL;
285 
286 		if (translation_pre_enabled(iommu))
287 			dev_data->defer_attach = true;
288 	}
289 
290 	return dev_data;
291 }
292 
293 /*
294 * Find or create an IOMMU group for a acpihid device.
295 */
296 static struct iommu_group *acpihid_device_group(struct device *dev)
297 {
298 	struct acpihid_map_entry *p, *entry = NULL;
299 	int devid;
300 
301 	devid = get_acpihid_device_id(dev, &entry);
302 	if (devid < 0)
303 		return ERR_PTR(devid);
304 
305 	list_for_each_entry(p, &acpihid_map, list) {
306 		if ((devid == p->devid) && p->group)
307 			entry->group = p->group;
308 	}
309 
310 	if (!entry->group)
311 		entry->group = generic_device_group(dev);
312 	else
313 		iommu_group_ref_get(entry->group);
314 
315 	return entry->group;
316 }
317 
318 static bool pci_iommuv2_capable(struct pci_dev *pdev)
319 {
320 	static const int caps[] = {
321 		PCI_EXT_CAP_ID_PRI,
322 		PCI_EXT_CAP_ID_PASID,
323 	};
324 	int i, pos;
325 
326 	if (!pci_ats_supported(pdev))
327 		return false;
328 
329 	for (i = 0; i < 2; ++i) {
330 		pos = pci_find_ext_capability(pdev, caps[i]);
331 		if (pos == 0)
332 			return false;
333 	}
334 
335 	return true;
336 }
337 
338 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
339 {
340 	struct iommu_dev_data *dev_data;
341 
342 	dev_data = dev_iommu_priv_get(&pdev->dev);
343 
344 	return dev_data->errata & (1 << erratum) ? true : false;
345 }
346 
347 /*
348  * This function checks if the driver got a valid device from the caller to
349  * avoid dereferencing invalid pointers.
350  */
351 static bool check_device(struct device *dev)
352 {
353 	int devid;
354 
355 	if (!dev)
356 		return false;
357 
358 	devid = get_device_id(dev);
359 	if (devid < 0)
360 		return false;
361 
362 	/* Out of our scope? */
363 	if (devid > amd_iommu_last_bdf)
364 		return false;
365 
366 	if (amd_iommu_rlookup_table[devid] == NULL)
367 		return false;
368 
369 	return true;
370 }
371 
372 static int iommu_init_device(struct device *dev)
373 {
374 	struct iommu_dev_data *dev_data;
375 	int devid;
376 
377 	if (dev_iommu_priv_get(dev))
378 		return 0;
379 
380 	devid = get_device_id(dev);
381 	if (devid < 0)
382 		return devid;
383 
384 	dev_data = find_dev_data(devid);
385 	if (!dev_data)
386 		return -ENOMEM;
387 
388 	dev_data->pdev = setup_aliases(dev);
389 
390 	/*
391 	 * By default we use passthrough mode for IOMMUv2 capable device.
392 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
393 	 * invalid address), we ignore the capability for the device so
394 	 * it'll be forced to go into translation mode.
395 	 */
396 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
397 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
398 		struct amd_iommu *iommu;
399 
400 		iommu = amd_iommu_rlookup_table[dev_data->devid];
401 		dev_data->iommu_v2 = iommu->is_iommu_v2;
402 	}
403 
404 	dev_iommu_priv_set(dev, dev_data);
405 
406 	return 0;
407 }
408 
409 static void iommu_ignore_device(struct device *dev)
410 {
411 	int devid;
412 
413 	devid = get_device_id(dev);
414 	if (devid < 0)
415 		return;
416 
417 	amd_iommu_rlookup_table[devid] = NULL;
418 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
419 
420 	setup_aliases(dev);
421 }
422 
423 static void amd_iommu_uninit_device(struct device *dev)
424 {
425 	struct iommu_dev_data *dev_data;
426 
427 	dev_data = dev_iommu_priv_get(dev);
428 	if (!dev_data)
429 		return;
430 
431 	if (dev_data->domain)
432 		detach_device(dev);
433 
434 	dev_iommu_priv_set(dev, NULL);
435 
436 	/*
437 	 * We keep dev_data around for unplugged devices and reuse it when the
438 	 * device is re-plugged - not doing so would introduce a ton of races.
439 	 */
440 }
441 
442 /*
443  * Helper function to get the first pte of a large mapping
444  */
445 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
446 			 unsigned long *count)
447 {
448 	unsigned long pte_mask, pg_size, cnt;
449 	u64 *fpte;
450 
451 	pg_size  = PTE_PAGE_SIZE(*pte);
452 	cnt      = PAGE_SIZE_PTE_COUNT(pg_size);
453 	pte_mask = ~((cnt << 3) - 1);
454 	fpte     = (u64 *)(((unsigned long)pte) & pte_mask);
455 
456 	if (page_size)
457 		*page_size = pg_size;
458 
459 	if (count)
460 		*count = cnt;
461 
462 	return fpte;
463 }
464 
465 /****************************************************************************
466  *
467  * Interrupt handling functions
468  *
469  ****************************************************************************/
470 
471 static void dump_dte_entry(u16 devid)
472 {
473 	int i;
474 
475 	for (i = 0; i < 4; ++i)
476 		pr_err("DTE[%d]: %016llx\n", i,
477 			amd_iommu_dev_table[devid].data[i]);
478 }
479 
480 static void dump_command(unsigned long phys_addr)
481 {
482 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
483 	int i;
484 
485 	for (i = 0; i < 4; ++i)
486 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
487 }
488 
489 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
490 					u64 address, int flags)
491 {
492 	struct iommu_dev_data *dev_data = NULL;
493 	struct pci_dev *pdev;
494 
495 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
496 					   devid & 0xff);
497 	if (pdev)
498 		dev_data = dev_iommu_priv_get(&pdev->dev);
499 
500 	if (dev_data && __ratelimit(&dev_data->rs)) {
501 		pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
502 			domain_id, address, flags);
503 	} else if (printk_ratelimit()) {
504 		pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
505 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
506 			domain_id, address, flags);
507 	}
508 
509 	if (pdev)
510 		pci_dev_put(pdev);
511 }
512 
513 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
514 {
515 	struct device *dev = iommu->iommu.dev;
516 	int type, devid, flags, tag;
517 	volatile u32 *event = __evt;
518 	int count = 0;
519 	u64 address;
520 	u32 pasid;
521 
522 retry:
523 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
524 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
525 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
526 		  (event[1] & EVENT_DOMID_MASK_LO);
527 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
528 	address = (u64)(((u64)event[3]) << 32) | event[2];
529 
530 	if (type == 0) {
531 		/* Did we hit the erratum? */
532 		if (++count == LOOP_TIMEOUT) {
533 			pr_err("No event written to event log\n");
534 			return;
535 		}
536 		udelay(1);
537 		goto retry;
538 	}
539 
540 	if (type == EVENT_TYPE_IO_FAULT) {
541 		amd_iommu_report_page_fault(devid, pasid, address, flags);
542 		return;
543 	}
544 
545 	switch (type) {
546 	case EVENT_TYPE_ILL_DEV:
547 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
548 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
549 			pasid, address, flags);
550 		dump_dte_entry(devid);
551 		break;
552 	case EVENT_TYPE_DEV_TAB_ERR:
553 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
554 			"address=0x%llx flags=0x%04x]\n",
555 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
556 			address, flags);
557 		break;
558 	case EVENT_TYPE_PAGE_TAB_ERR:
559 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
560 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
561 			pasid, address, flags);
562 		break;
563 	case EVENT_TYPE_ILL_CMD:
564 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
565 		dump_command(address);
566 		break;
567 	case EVENT_TYPE_CMD_HARD_ERR:
568 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
569 			address, flags);
570 		break;
571 	case EVENT_TYPE_IOTLB_INV_TO:
572 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
573 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
574 			address);
575 		break;
576 	case EVENT_TYPE_INV_DEV_REQ:
577 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
578 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
579 			pasid, address, flags);
580 		break;
581 	case EVENT_TYPE_INV_PPR_REQ:
582 		pasid = PPR_PASID(*((u64 *)__evt));
583 		tag = event[1] & 0x03FF;
584 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
585 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
586 			pasid, address, flags, tag);
587 		break;
588 	default:
589 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
590 			event[0], event[1], event[2], event[3]);
591 	}
592 
593 	memset(__evt, 0, 4 * sizeof(u32));
594 }
595 
596 static void iommu_poll_events(struct amd_iommu *iommu)
597 {
598 	u32 head, tail;
599 
600 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
601 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
602 
603 	while (head != tail) {
604 		iommu_print_event(iommu, iommu->evt_buf + head);
605 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
606 	}
607 
608 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
609 }
610 
611 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
612 {
613 	struct amd_iommu_fault fault;
614 
615 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
616 		pr_err_ratelimited("Unknown PPR request received\n");
617 		return;
618 	}
619 
620 	fault.address   = raw[1];
621 	fault.pasid     = PPR_PASID(raw[0]);
622 	fault.device_id = PPR_DEVID(raw[0]);
623 	fault.tag       = PPR_TAG(raw[0]);
624 	fault.flags     = PPR_FLAGS(raw[0]);
625 
626 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
627 }
628 
629 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
630 {
631 	u32 head, tail;
632 
633 	if (iommu->ppr_log == NULL)
634 		return;
635 
636 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
637 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
638 
639 	while (head != tail) {
640 		volatile u64 *raw;
641 		u64 entry[2];
642 		int i;
643 
644 		raw = (u64 *)(iommu->ppr_log + head);
645 
646 		/*
647 		 * Hardware bug: Interrupt may arrive before the entry is
648 		 * written to memory. If this happens we need to wait for the
649 		 * entry to arrive.
650 		 */
651 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
652 			if (PPR_REQ_TYPE(raw[0]) != 0)
653 				break;
654 			udelay(1);
655 		}
656 
657 		/* Avoid memcpy function-call overhead */
658 		entry[0] = raw[0];
659 		entry[1] = raw[1];
660 
661 		/*
662 		 * To detect the hardware bug we need to clear the entry
663 		 * back to zero.
664 		 */
665 		raw[0] = raw[1] = 0UL;
666 
667 		/* Update head pointer of hardware ring-buffer */
668 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
669 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
670 
671 		/* Handle PPR entry */
672 		iommu_handle_ppr_entry(iommu, entry);
673 
674 		/* Refresh ring-buffer information */
675 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
676 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
677 	}
678 }
679 
680 #ifdef CONFIG_IRQ_REMAP
681 static int (*iommu_ga_log_notifier)(u32);
682 
683 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
684 {
685 	iommu_ga_log_notifier = notifier;
686 
687 	return 0;
688 }
689 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
690 
691 static void iommu_poll_ga_log(struct amd_iommu *iommu)
692 {
693 	u32 head, tail, cnt = 0;
694 
695 	if (iommu->ga_log == NULL)
696 		return;
697 
698 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
699 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
700 
701 	while (head != tail) {
702 		volatile u64 *raw;
703 		u64 log_entry;
704 
705 		raw = (u64 *)(iommu->ga_log + head);
706 		cnt++;
707 
708 		/* Avoid memcpy function-call overhead */
709 		log_entry = *raw;
710 
711 		/* Update head pointer of hardware ring-buffer */
712 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
713 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
714 
715 		/* Handle GA entry */
716 		switch (GA_REQ_TYPE(log_entry)) {
717 		case GA_GUEST_NR:
718 			if (!iommu_ga_log_notifier)
719 				break;
720 
721 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
722 				 __func__, GA_DEVID(log_entry),
723 				 GA_TAG(log_entry));
724 
725 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
726 				pr_err("GA log notifier failed.\n");
727 			break;
728 		default:
729 			break;
730 		}
731 	}
732 }
733 
734 static void
735 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
736 {
737 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
738 	    pci_dev_has_special_msi_domain(to_pci_dev(dev)))
739 		return;
740 
741 	dev_set_msi_domain(dev, iommu->msi_domain);
742 }
743 
744 #else /* CONFIG_IRQ_REMAP */
745 static inline void
746 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
747 #endif /* !CONFIG_IRQ_REMAP */
748 
749 #define AMD_IOMMU_INT_MASK	\
750 	(MMIO_STATUS_EVT_INT_MASK | \
751 	 MMIO_STATUS_PPR_INT_MASK | \
752 	 MMIO_STATUS_GALOG_INT_MASK)
753 
754 irqreturn_t amd_iommu_int_thread(int irq, void *data)
755 {
756 	struct amd_iommu *iommu = (struct amd_iommu *) data;
757 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
758 
759 	while (status & AMD_IOMMU_INT_MASK) {
760 		/* Enable EVT and PPR and GA interrupts again */
761 		writel(AMD_IOMMU_INT_MASK,
762 			iommu->mmio_base + MMIO_STATUS_OFFSET);
763 
764 		if (status & MMIO_STATUS_EVT_INT_MASK) {
765 			pr_devel("Processing IOMMU Event Log\n");
766 			iommu_poll_events(iommu);
767 		}
768 
769 		if (status & MMIO_STATUS_PPR_INT_MASK) {
770 			pr_devel("Processing IOMMU PPR Log\n");
771 			iommu_poll_ppr_log(iommu);
772 		}
773 
774 #ifdef CONFIG_IRQ_REMAP
775 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
776 			pr_devel("Processing IOMMU GA Log\n");
777 			iommu_poll_ga_log(iommu);
778 		}
779 #endif
780 
781 		/*
782 		 * Hardware bug: ERBT1312
783 		 * When re-enabling interrupt (by writing 1
784 		 * to clear the bit), the hardware might also try to set
785 		 * the interrupt bit in the event status register.
786 		 * In this scenario, the bit will be set, and disable
787 		 * subsequent interrupts.
788 		 *
789 		 * Workaround: The IOMMU driver should read back the
790 		 * status register and check if the interrupt bits are cleared.
791 		 * If not, driver will need to go through the interrupt handler
792 		 * again and re-clear the bits
793 		 */
794 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
795 	}
796 	return IRQ_HANDLED;
797 }
798 
799 irqreturn_t amd_iommu_int_handler(int irq, void *data)
800 {
801 	return IRQ_WAKE_THREAD;
802 }
803 
804 /****************************************************************************
805  *
806  * IOMMU command queuing functions
807  *
808  ****************************************************************************/
809 
810 static int wait_on_sem(volatile u64 *sem)
811 {
812 	int i = 0;
813 
814 	while (*sem == 0 && i < LOOP_TIMEOUT) {
815 		udelay(1);
816 		i += 1;
817 	}
818 
819 	if (i == LOOP_TIMEOUT) {
820 		pr_alert("Completion-Wait loop timed out\n");
821 		return -EIO;
822 	}
823 
824 	return 0;
825 }
826 
827 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
828 			       struct iommu_cmd *cmd)
829 {
830 	u8 *target;
831 	u32 tail;
832 
833 	/* Copy command to buffer */
834 	tail = iommu->cmd_buf_tail;
835 	target = iommu->cmd_buf + tail;
836 	memcpy(target, cmd, sizeof(*cmd));
837 
838 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
839 	iommu->cmd_buf_tail = tail;
840 
841 	/* Tell the IOMMU about it */
842 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
843 }
844 
845 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
846 {
847 	u64 paddr = iommu_virt_to_phys((void *)address);
848 
849 	WARN_ON(address & 0x7ULL);
850 
851 	memset(cmd, 0, sizeof(*cmd));
852 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
853 	cmd->data[1] = upper_32_bits(paddr);
854 	cmd->data[2] = 1;
855 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
856 }
857 
858 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
859 {
860 	memset(cmd, 0, sizeof(*cmd));
861 	cmd->data[0] = devid;
862 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
863 }
864 
865 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
866 				  size_t size, u16 domid, int pde)
867 {
868 	u64 pages;
869 	bool s;
870 
871 	pages = iommu_num_pages(address, size, PAGE_SIZE);
872 	s     = false;
873 
874 	if (pages > 1) {
875 		/*
876 		 * If we have to flush more than one page, flush all
877 		 * TLB entries for this domain
878 		 */
879 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
880 		s = true;
881 	}
882 
883 	address &= PAGE_MASK;
884 
885 	memset(cmd, 0, sizeof(*cmd));
886 	cmd->data[1] |= domid;
887 	cmd->data[2]  = lower_32_bits(address);
888 	cmd->data[3]  = upper_32_bits(address);
889 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
890 	if (s) /* size bit - we flush more than one 4kb page */
891 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
892 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
893 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
894 }
895 
896 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
897 				  u64 address, size_t size)
898 {
899 	u64 pages;
900 	bool s;
901 
902 	pages = iommu_num_pages(address, size, PAGE_SIZE);
903 	s     = false;
904 
905 	if (pages > 1) {
906 		/*
907 		 * If we have to flush more than one page, flush all
908 		 * TLB entries for this domain
909 		 */
910 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
911 		s = true;
912 	}
913 
914 	address &= PAGE_MASK;
915 
916 	memset(cmd, 0, sizeof(*cmd));
917 	cmd->data[0]  = devid;
918 	cmd->data[0] |= (qdep & 0xff) << 24;
919 	cmd->data[1]  = devid;
920 	cmd->data[2]  = lower_32_bits(address);
921 	cmd->data[3]  = upper_32_bits(address);
922 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
923 	if (s)
924 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
925 }
926 
927 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
928 				  u64 address, bool size)
929 {
930 	memset(cmd, 0, sizeof(*cmd));
931 
932 	address &= ~(0xfffULL);
933 
934 	cmd->data[0]  = pasid;
935 	cmd->data[1]  = domid;
936 	cmd->data[2]  = lower_32_bits(address);
937 	cmd->data[3]  = upper_32_bits(address);
938 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
939 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
940 	if (size)
941 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
942 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
943 }
944 
945 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
946 				  int qdep, u64 address, bool size)
947 {
948 	memset(cmd, 0, sizeof(*cmd));
949 
950 	address &= ~(0xfffULL);
951 
952 	cmd->data[0]  = devid;
953 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
954 	cmd->data[0] |= (qdep  & 0xff) << 24;
955 	cmd->data[1]  = devid;
956 	cmd->data[1] |= (pasid & 0xff) << 16;
957 	cmd->data[2]  = lower_32_bits(address);
958 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
959 	cmd->data[3]  = upper_32_bits(address);
960 	if (size)
961 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
962 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
963 }
964 
965 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
966 			       int status, int tag, bool gn)
967 {
968 	memset(cmd, 0, sizeof(*cmd));
969 
970 	cmd->data[0]  = devid;
971 	if (gn) {
972 		cmd->data[1]  = pasid;
973 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
974 	}
975 	cmd->data[3]  = tag & 0x1ff;
976 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
977 
978 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
979 }
980 
981 static void build_inv_all(struct iommu_cmd *cmd)
982 {
983 	memset(cmd, 0, sizeof(*cmd));
984 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
985 }
986 
987 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
988 {
989 	memset(cmd, 0, sizeof(*cmd));
990 	cmd->data[0] = devid;
991 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
992 }
993 
994 /*
995  * Writes the command to the IOMMUs command buffer and informs the
996  * hardware about the new command.
997  */
998 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
999 				      struct iommu_cmd *cmd,
1000 				      bool sync)
1001 {
1002 	unsigned int count = 0;
1003 	u32 left, next_tail;
1004 
1005 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1006 again:
1007 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1008 
1009 	if (left <= 0x20) {
1010 		/* Skip udelay() the first time around */
1011 		if (count++) {
1012 			if (count == LOOP_TIMEOUT) {
1013 				pr_err("Command buffer timeout\n");
1014 				return -EIO;
1015 			}
1016 
1017 			udelay(1);
1018 		}
1019 
1020 		/* Update head and recheck remaining space */
1021 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1022 					    MMIO_CMD_HEAD_OFFSET);
1023 
1024 		goto again;
1025 	}
1026 
1027 	copy_cmd_to_buffer(iommu, cmd);
1028 
1029 	/* Do we need to make sure all commands are processed? */
1030 	iommu->need_sync = sync;
1031 
1032 	return 0;
1033 }
1034 
1035 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1036 				    struct iommu_cmd *cmd,
1037 				    bool sync)
1038 {
1039 	unsigned long flags;
1040 	int ret;
1041 
1042 	raw_spin_lock_irqsave(&iommu->lock, flags);
1043 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1044 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1045 
1046 	return ret;
1047 }
1048 
1049 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1050 {
1051 	return iommu_queue_command_sync(iommu, cmd, true);
1052 }
1053 
1054 /*
1055  * This function queues a completion wait command into the command
1056  * buffer of an IOMMU
1057  */
1058 static int iommu_completion_wait(struct amd_iommu *iommu)
1059 {
1060 	struct iommu_cmd cmd;
1061 	unsigned long flags;
1062 	int ret;
1063 
1064 	if (!iommu->need_sync)
1065 		return 0;
1066 
1067 
1068 	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1069 
1070 	raw_spin_lock_irqsave(&iommu->lock, flags);
1071 
1072 	iommu->cmd_sem = 0;
1073 
1074 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1075 	if (ret)
1076 		goto out_unlock;
1077 
1078 	ret = wait_on_sem(&iommu->cmd_sem);
1079 
1080 out_unlock:
1081 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1082 
1083 	return ret;
1084 }
1085 
1086 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1087 {
1088 	struct iommu_cmd cmd;
1089 
1090 	build_inv_dte(&cmd, devid);
1091 
1092 	return iommu_queue_command(iommu, &cmd);
1093 }
1094 
1095 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1096 {
1097 	u32 devid;
1098 
1099 	for (devid = 0; devid <= 0xffff; ++devid)
1100 		iommu_flush_dte(iommu, devid);
1101 
1102 	iommu_completion_wait(iommu);
1103 }
1104 
1105 /*
1106  * This function uses heavy locking and may disable irqs for some time. But
1107  * this is no issue because it is only called during resume.
1108  */
1109 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1110 {
1111 	u32 dom_id;
1112 
1113 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1114 		struct iommu_cmd cmd;
1115 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1116 				      dom_id, 1);
1117 		iommu_queue_command(iommu, &cmd);
1118 	}
1119 
1120 	iommu_completion_wait(iommu);
1121 }
1122 
1123 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1124 {
1125 	struct iommu_cmd cmd;
1126 
1127 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1128 			      dom_id, 1);
1129 	iommu_queue_command(iommu, &cmd);
1130 
1131 	iommu_completion_wait(iommu);
1132 }
1133 
1134 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1135 {
1136 	struct iommu_cmd cmd;
1137 
1138 	build_inv_all(&cmd);
1139 
1140 	iommu_queue_command(iommu, &cmd);
1141 	iommu_completion_wait(iommu);
1142 }
1143 
1144 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1145 {
1146 	struct iommu_cmd cmd;
1147 
1148 	build_inv_irt(&cmd, devid);
1149 
1150 	iommu_queue_command(iommu, &cmd);
1151 }
1152 
1153 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1154 {
1155 	u32 devid;
1156 
1157 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1158 		iommu_flush_irt(iommu, devid);
1159 
1160 	iommu_completion_wait(iommu);
1161 }
1162 
1163 void iommu_flush_all_caches(struct amd_iommu *iommu)
1164 {
1165 	if (iommu_feature(iommu, FEATURE_IA)) {
1166 		amd_iommu_flush_all(iommu);
1167 	} else {
1168 		amd_iommu_flush_dte_all(iommu);
1169 		amd_iommu_flush_irt_all(iommu);
1170 		amd_iommu_flush_tlb_all(iommu);
1171 	}
1172 }
1173 
1174 /*
1175  * Command send function for flushing on-device TLB
1176  */
1177 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1178 			      u64 address, size_t size)
1179 {
1180 	struct amd_iommu *iommu;
1181 	struct iommu_cmd cmd;
1182 	int qdep;
1183 
1184 	qdep     = dev_data->ats.qdep;
1185 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1186 
1187 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1188 
1189 	return iommu_queue_command(iommu, &cmd);
1190 }
1191 
1192 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1193 {
1194 	struct amd_iommu *iommu = data;
1195 
1196 	return iommu_flush_dte(iommu, alias);
1197 }
1198 
1199 /*
1200  * Command send function for invalidating a device table entry
1201  */
1202 static int device_flush_dte(struct iommu_dev_data *dev_data)
1203 {
1204 	struct amd_iommu *iommu;
1205 	u16 alias;
1206 	int ret;
1207 
1208 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1209 
1210 	if (dev_data->pdev)
1211 		ret = pci_for_each_dma_alias(dev_data->pdev,
1212 					     device_flush_dte_alias, iommu);
1213 	else
1214 		ret = iommu_flush_dte(iommu, dev_data->devid);
1215 	if (ret)
1216 		return ret;
1217 
1218 	alias = amd_iommu_alias_table[dev_data->devid];
1219 	if (alias != dev_data->devid) {
1220 		ret = iommu_flush_dte(iommu, alias);
1221 		if (ret)
1222 			return ret;
1223 	}
1224 
1225 	if (dev_data->ats.enabled)
1226 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1227 
1228 	return ret;
1229 }
1230 
1231 /*
1232  * TLB invalidation function which is called from the mapping functions.
1233  * It invalidates a single PTE if the range to flush is within a single
1234  * page. Otherwise it flushes the whole TLB of the IOMMU.
1235  */
1236 static void __domain_flush_pages(struct protection_domain *domain,
1237 				 u64 address, size_t size, int pde)
1238 {
1239 	struct iommu_dev_data *dev_data;
1240 	struct iommu_cmd cmd;
1241 	int ret = 0, i;
1242 
1243 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1244 
1245 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1246 		if (!domain->dev_iommu[i])
1247 			continue;
1248 
1249 		/*
1250 		 * Devices of this domain are behind this IOMMU
1251 		 * We need a TLB flush
1252 		 */
1253 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1254 	}
1255 
1256 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1257 
1258 		if (!dev_data->ats.enabled)
1259 			continue;
1260 
1261 		ret |= device_flush_iotlb(dev_data, address, size);
1262 	}
1263 
1264 	WARN_ON(ret);
1265 }
1266 
1267 static void domain_flush_pages(struct protection_domain *domain,
1268 			       u64 address, size_t size)
1269 {
1270 	__domain_flush_pages(domain, address, size, 0);
1271 }
1272 
1273 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1274 static void domain_flush_tlb_pde(struct protection_domain *domain)
1275 {
1276 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1277 }
1278 
1279 static void domain_flush_complete(struct protection_domain *domain)
1280 {
1281 	int i;
1282 
1283 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1284 		if (domain && !domain->dev_iommu[i])
1285 			continue;
1286 
1287 		/*
1288 		 * Devices of this domain are behind this IOMMU
1289 		 * We need to wait for completion of all commands.
1290 		 */
1291 		iommu_completion_wait(amd_iommus[i]);
1292 	}
1293 }
1294 
1295 /* Flush the not present cache if it exists */
1296 static void domain_flush_np_cache(struct protection_domain *domain,
1297 		dma_addr_t iova, size_t size)
1298 {
1299 	if (unlikely(amd_iommu_np_cache)) {
1300 		unsigned long flags;
1301 
1302 		spin_lock_irqsave(&domain->lock, flags);
1303 		domain_flush_pages(domain, iova, size);
1304 		domain_flush_complete(domain);
1305 		spin_unlock_irqrestore(&domain->lock, flags);
1306 	}
1307 }
1308 
1309 
1310 /*
1311  * This function flushes the DTEs for all devices in domain
1312  */
1313 static void domain_flush_devices(struct protection_domain *domain)
1314 {
1315 	struct iommu_dev_data *dev_data;
1316 
1317 	list_for_each_entry(dev_data, &domain->dev_list, list)
1318 		device_flush_dte(dev_data);
1319 }
1320 
1321 /****************************************************************************
1322  *
1323  * The functions below are used the create the page table mappings for
1324  * unity mapped regions.
1325  *
1326  ****************************************************************************/
1327 
1328 static void free_page_list(struct page *freelist)
1329 {
1330 	while (freelist != NULL) {
1331 		unsigned long p = (unsigned long)page_address(freelist);
1332 		freelist = freelist->freelist;
1333 		free_page(p);
1334 	}
1335 }
1336 
1337 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1338 {
1339 	struct page *p = virt_to_page((void *)pt);
1340 
1341 	p->freelist = freelist;
1342 
1343 	return p;
1344 }
1345 
1346 #define DEFINE_FREE_PT_FN(LVL, FN)						\
1347 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)	\
1348 {										\
1349 	unsigned long p;							\
1350 	u64 *pt;								\
1351 	int i;									\
1352 										\
1353 	pt = (u64 *)__pt;							\
1354 										\
1355 	for (i = 0; i < 512; ++i) {						\
1356 		/* PTE present? */						\
1357 		if (!IOMMU_PTE_PRESENT(pt[i]))					\
1358 			continue;						\
1359 										\
1360 		/* Large PTE? */						\
1361 		if (PM_PTE_LEVEL(pt[i]) == 0 ||					\
1362 		    PM_PTE_LEVEL(pt[i]) == 7)					\
1363 			continue;						\
1364 										\
1365 		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);			\
1366 		freelist = FN(p, freelist);					\
1367 	}									\
1368 										\
1369 	return free_pt_page((unsigned long)pt, freelist);			\
1370 }
1371 
1372 DEFINE_FREE_PT_FN(l2, free_pt_page)
1373 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1374 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1375 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1376 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1377 
1378 static struct page *free_sub_pt(unsigned long root, int mode,
1379 				struct page *freelist)
1380 {
1381 	switch (mode) {
1382 	case PAGE_MODE_NONE:
1383 	case PAGE_MODE_7_LEVEL:
1384 		break;
1385 	case PAGE_MODE_1_LEVEL:
1386 		freelist = free_pt_page(root, freelist);
1387 		break;
1388 	case PAGE_MODE_2_LEVEL:
1389 		freelist = free_pt_l2(root, freelist);
1390 		break;
1391 	case PAGE_MODE_3_LEVEL:
1392 		freelist = free_pt_l3(root, freelist);
1393 		break;
1394 	case PAGE_MODE_4_LEVEL:
1395 		freelist = free_pt_l4(root, freelist);
1396 		break;
1397 	case PAGE_MODE_5_LEVEL:
1398 		freelist = free_pt_l5(root, freelist);
1399 		break;
1400 	case PAGE_MODE_6_LEVEL:
1401 		freelist = free_pt_l6(root, freelist);
1402 		break;
1403 	default:
1404 		BUG();
1405 	}
1406 
1407 	return freelist;
1408 }
1409 
1410 static void free_pagetable(struct domain_pgtable *pgtable)
1411 {
1412 	struct page *freelist = NULL;
1413 	unsigned long root;
1414 
1415 	if (pgtable->mode == PAGE_MODE_NONE)
1416 		return;
1417 
1418 	BUG_ON(pgtable->mode < PAGE_MODE_NONE ||
1419 	       pgtable->mode > PAGE_MODE_6_LEVEL);
1420 
1421 	root = (unsigned long)pgtable->root;
1422 	freelist = free_sub_pt(root, pgtable->mode, freelist);
1423 
1424 	free_page_list(freelist);
1425 }
1426 
1427 /*
1428  * This function is used to add another level to an IO page table. Adding
1429  * another level increases the size of the address space by 9 bits to a size up
1430  * to 64 bits.
1431  */
1432 static bool increase_address_space(struct protection_domain *domain,
1433 				   unsigned long address,
1434 				   gfp_t gfp)
1435 {
1436 	struct domain_pgtable pgtable;
1437 	unsigned long flags;
1438 	bool ret = true;
1439 	u64 *pte;
1440 
1441 	spin_lock_irqsave(&domain->lock, flags);
1442 
1443 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1444 
1445 	if (address <= PM_LEVEL_SIZE(pgtable.mode))
1446 		goto out;
1447 
1448 	ret = false;
1449 	if (WARN_ON_ONCE(pgtable.mode == PAGE_MODE_6_LEVEL))
1450 		goto out;
1451 
1452 	pte = (void *)get_zeroed_page(gfp);
1453 	if (!pte)
1454 		goto out;
1455 
1456 	*pte = PM_LEVEL_PDE(pgtable.mode, iommu_virt_to_phys(pgtable.root));
1457 
1458 	pgtable.root  = pte;
1459 	pgtable.mode += 1;
1460 	update_and_flush_device_table(domain, &pgtable);
1461 	domain_flush_complete(domain);
1462 
1463 	/*
1464 	 * Device Table needs to be updated and flushed before the new root can
1465 	 * be published.
1466 	 */
1467 	amd_iommu_domain_set_pgtable(domain, pte, pgtable.mode);
1468 
1469 	ret = true;
1470 
1471 out:
1472 	spin_unlock_irqrestore(&domain->lock, flags);
1473 
1474 	return ret;
1475 }
1476 
1477 static u64 *alloc_pte(struct protection_domain *domain,
1478 		      unsigned long address,
1479 		      unsigned long page_size,
1480 		      u64 **pte_page,
1481 		      gfp_t gfp,
1482 		      bool *updated)
1483 {
1484 	struct domain_pgtable pgtable;
1485 	int level, end_lvl;
1486 	u64 *pte, *page;
1487 
1488 	BUG_ON(!is_power_of_2(page_size));
1489 
1490 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1491 
1492 	while (address > PM_LEVEL_SIZE(pgtable.mode)) {
1493 		/*
1494 		 * Return an error if there is no memory to update the
1495 		 * page-table.
1496 		 */
1497 		if (!increase_address_space(domain, address, gfp))
1498 			return NULL;
1499 
1500 		/* Read new values to check if update was successful */
1501 		amd_iommu_domain_get_pgtable(domain, &pgtable);
1502 	}
1503 
1504 
1505 	level   = pgtable.mode - 1;
1506 	pte     = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1507 	address = PAGE_SIZE_ALIGN(address, page_size);
1508 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1509 
1510 	while (level > end_lvl) {
1511 		u64 __pte, __npte;
1512 		int pte_level;
1513 
1514 		__pte     = *pte;
1515 		pte_level = PM_PTE_LEVEL(__pte);
1516 
1517 		/*
1518 		 * If we replace a series of large PTEs, we need
1519 		 * to tear down all of them.
1520 		 */
1521 		if (IOMMU_PTE_PRESENT(__pte) &&
1522 		    pte_level == PAGE_MODE_7_LEVEL) {
1523 			unsigned long count, i;
1524 			u64 *lpte;
1525 
1526 			lpte = first_pte_l7(pte, NULL, &count);
1527 
1528 			/*
1529 			 * Unmap the replicated PTEs that still match the
1530 			 * original large mapping
1531 			 */
1532 			for (i = 0; i < count; ++i)
1533 				cmpxchg64(&lpte[i], __pte, 0ULL);
1534 
1535 			*updated = true;
1536 			continue;
1537 		}
1538 
1539 		if (!IOMMU_PTE_PRESENT(__pte) ||
1540 		    pte_level == PAGE_MODE_NONE) {
1541 			page = (u64 *)get_zeroed_page(gfp);
1542 
1543 			if (!page)
1544 				return NULL;
1545 
1546 			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1547 
1548 			/* pte could have been changed somewhere. */
1549 			if (cmpxchg64(pte, __pte, __npte) != __pte)
1550 				free_page((unsigned long)page);
1551 			else if (IOMMU_PTE_PRESENT(__pte))
1552 				*updated = true;
1553 
1554 			continue;
1555 		}
1556 
1557 		/* No level skipping support yet */
1558 		if (pte_level != level)
1559 			return NULL;
1560 
1561 		level -= 1;
1562 
1563 		pte = IOMMU_PTE_PAGE(__pte);
1564 
1565 		if (pte_page && level == end_lvl)
1566 			*pte_page = pte;
1567 
1568 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1569 	}
1570 
1571 	return pte;
1572 }
1573 
1574 /*
1575  * This function checks if there is a PTE for a given dma address. If
1576  * there is one, it returns the pointer to it.
1577  */
1578 static u64 *fetch_pte(struct protection_domain *domain,
1579 		      unsigned long address,
1580 		      unsigned long *page_size)
1581 {
1582 	struct domain_pgtable pgtable;
1583 	int level;
1584 	u64 *pte;
1585 
1586 	*page_size = 0;
1587 
1588 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1589 
1590 	if (address > PM_LEVEL_SIZE(pgtable.mode))
1591 		return NULL;
1592 
1593 	level	   =  pgtable.mode - 1;
1594 	pte	   = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1595 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1596 
1597 	while (level > 0) {
1598 
1599 		/* Not Present */
1600 		if (!IOMMU_PTE_PRESENT(*pte))
1601 			return NULL;
1602 
1603 		/* Large PTE */
1604 		if (PM_PTE_LEVEL(*pte) == 7 ||
1605 		    PM_PTE_LEVEL(*pte) == 0)
1606 			break;
1607 
1608 		/* No level skipping support yet */
1609 		if (PM_PTE_LEVEL(*pte) != level)
1610 			return NULL;
1611 
1612 		level -= 1;
1613 
1614 		/* Walk to the next level */
1615 		pte	   = IOMMU_PTE_PAGE(*pte);
1616 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
1617 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
1618 	}
1619 
1620 	/*
1621 	 * If we have a series of large PTEs, make
1622 	 * sure to return a pointer to the first one.
1623 	 */
1624 	if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1625 		pte = first_pte_l7(pte, page_size, NULL);
1626 
1627 	return pte;
1628 }
1629 
1630 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1631 {
1632 	unsigned long pt;
1633 	int mode;
1634 
1635 	while (cmpxchg64(pte, pteval, 0) != pteval) {
1636 		pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1637 		pteval = *pte;
1638 	}
1639 
1640 	if (!IOMMU_PTE_PRESENT(pteval))
1641 		return freelist;
1642 
1643 	pt   = (unsigned long)IOMMU_PTE_PAGE(pteval);
1644 	mode = IOMMU_PTE_MODE(pteval);
1645 
1646 	return free_sub_pt(pt, mode, freelist);
1647 }
1648 
1649 /*
1650  * Generic mapping functions. It maps a physical address into a DMA
1651  * address space. It allocates the page table pages if necessary.
1652  * In the future it can be extended to a generic mapping function
1653  * supporting all features of AMD IOMMU page tables like level skipping
1654  * and full 64 bit address spaces.
1655  */
1656 static int iommu_map_page(struct protection_domain *dom,
1657 			  unsigned long bus_addr,
1658 			  unsigned long phys_addr,
1659 			  unsigned long page_size,
1660 			  int prot,
1661 			  gfp_t gfp)
1662 {
1663 	struct page *freelist = NULL;
1664 	bool updated = false;
1665 	u64 __pte, *pte;
1666 	int ret, i, count;
1667 
1668 	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1669 	BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1670 
1671 	ret = -EINVAL;
1672 	if (!(prot & IOMMU_PROT_MASK))
1673 		goto out;
1674 
1675 	count = PAGE_SIZE_PTE_COUNT(page_size);
1676 	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1677 
1678 	ret = -ENOMEM;
1679 	if (!pte)
1680 		goto out;
1681 
1682 	for (i = 0; i < count; ++i)
1683 		freelist = free_clear_pte(&pte[i], pte[i], freelist);
1684 
1685 	if (freelist != NULL)
1686 		updated = true;
1687 
1688 	if (count > 1) {
1689 		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1690 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1691 	} else
1692 		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1693 
1694 	if (prot & IOMMU_PROT_IR)
1695 		__pte |= IOMMU_PTE_IR;
1696 	if (prot & IOMMU_PROT_IW)
1697 		__pte |= IOMMU_PTE_IW;
1698 
1699 	for (i = 0; i < count; ++i)
1700 		pte[i] = __pte;
1701 
1702 	ret = 0;
1703 
1704 out:
1705 	if (updated) {
1706 		unsigned long flags;
1707 
1708 		spin_lock_irqsave(&dom->lock, flags);
1709 		/*
1710 		 * Flush domain TLB(s) and wait for completion. Any Device-Table
1711 		 * Updates and flushing already happened in
1712 		 * increase_address_space().
1713 		 */
1714 		domain_flush_tlb_pde(dom);
1715 		domain_flush_complete(dom);
1716 		spin_unlock_irqrestore(&dom->lock, flags);
1717 	}
1718 
1719 	/* Everything flushed out, free pages now */
1720 	free_page_list(freelist);
1721 
1722 	return ret;
1723 }
1724 
1725 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1726 				      unsigned long bus_addr,
1727 				      unsigned long page_size)
1728 {
1729 	unsigned long long unmapped;
1730 	unsigned long unmap_size;
1731 	u64 *pte;
1732 
1733 	BUG_ON(!is_power_of_2(page_size));
1734 
1735 	unmapped = 0;
1736 
1737 	while (unmapped < page_size) {
1738 
1739 		pte = fetch_pte(dom, bus_addr, &unmap_size);
1740 
1741 		if (pte) {
1742 			int i, count;
1743 
1744 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1745 			for (i = 0; i < count; i++)
1746 				pte[i] = 0ULL;
1747 		}
1748 
1749 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1750 		unmapped += unmap_size;
1751 	}
1752 
1753 	BUG_ON(unmapped && !is_power_of_2(unmapped));
1754 
1755 	return unmapped;
1756 }
1757 
1758 /****************************************************************************
1759  *
1760  * The next functions belong to the domain allocation. A domain is
1761  * allocated for every IOMMU as the default domain. If device isolation
1762  * is enabled, every device get its own domain. The most important thing
1763  * about domains is the page table mapping the DMA address space they
1764  * contain.
1765  *
1766  ****************************************************************************/
1767 
1768 static u16 domain_id_alloc(void)
1769 {
1770 	int id;
1771 
1772 	spin_lock(&pd_bitmap_lock);
1773 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1774 	BUG_ON(id == 0);
1775 	if (id > 0 && id < MAX_DOMAIN_ID)
1776 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1777 	else
1778 		id = 0;
1779 	spin_unlock(&pd_bitmap_lock);
1780 
1781 	return id;
1782 }
1783 
1784 static void domain_id_free(int id)
1785 {
1786 	spin_lock(&pd_bitmap_lock);
1787 	if (id > 0 && id < MAX_DOMAIN_ID)
1788 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1789 	spin_unlock(&pd_bitmap_lock);
1790 }
1791 
1792 static void free_gcr3_tbl_level1(u64 *tbl)
1793 {
1794 	u64 *ptr;
1795 	int i;
1796 
1797 	for (i = 0; i < 512; ++i) {
1798 		if (!(tbl[i] & GCR3_VALID))
1799 			continue;
1800 
1801 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1802 
1803 		free_page((unsigned long)ptr);
1804 	}
1805 }
1806 
1807 static void free_gcr3_tbl_level2(u64 *tbl)
1808 {
1809 	u64 *ptr;
1810 	int i;
1811 
1812 	for (i = 0; i < 512; ++i) {
1813 		if (!(tbl[i] & GCR3_VALID))
1814 			continue;
1815 
1816 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1817 
1818 		free_gcr3_tbl_level1(ptr);
1819 	}
1820 }
1821 
1822 static void free_gcr3_table(struct protection_domain *domain)
1823 {
1824 	if (domain->glx == 2)
1825 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1826 	else if (domain->glx == 1)
1827 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1828 	else
1829 		BUG_ON(domain->glx != 0);
1830 
1831 	free_page((unsigned long)domain->gcr3_tbl);
1832 }
1833 
1834 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1835 			  struct domain_pgtable *pgtable,
1836 			  bool ats, bool ppr)
1837 {
1838 	u64 pte_root = 0;
1839 	u64 flags = 0;
1840 	u32 old_domid;
1841 
1842 	if (pgtable->mode != PAGE_MODE_NONE)
1843 		pte_root = iommu_virt_to_phys(pgtable->root);
1844 
1845 	pte_root |= (pgtable->mode & DEV_ENTRY_MODE_MASK)
1846 		    << DEV_ENTRY_MODE_SHIFT;
1847 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1848 
1849 	flags = amd_iommu_dev_table[devid].data[1];
1850 
1851 	if (ats)
1852 		flags |= DTE_FLAG_IOTLB;
1853 
1854 	if (ppr) {
1855 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1856 
1857 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1858 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1859 	}
1860 
1861 	if (domain->flags & PD_IOMMUV2_MASK) {
1862 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1863 		u64 glx  = domain->glx;
1864 		u64 tmp;
1865 
1866 		pte_root |= DTE_FLAG_GV;
1867 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1868 
1869 		/* First mask out possible old values for GCR3 table */
1870 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1871 		flags    &= ~tmp;
1872 
1873 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1874 		flags    &= ~tmp;
1875 
1876 		/* Encode GCR3 table into DTE */
1877 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1878 		pte_root |= tmp;
1879 
1880 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1881 		flags    |= tmp;
1882 
1883 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1884 		flags    |= tmp;
1885 	}
1886 
1887 	flags &= ~DEV_DOMID_MASK;
1888 	flags |= domain->id;
1889 
1890 	old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1891 	amd_iommu_dev_table[devid].data[1]  = flags;
1892 	amd_iommu_dev_table[devid].data[0]  = pte_root;
1893 
1894 	/*
1895 	 * A kdump kernel might be replacing a domain ID that was copied from
1896 	 * the previous kernel--if so, it needs to flush the translation cache
1897 	 * entries for the old domain ID that is being overwritten
1898 	 */
1899 	if (old_domid) {
1900 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1901 
1902 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1903 	}
1904 }
1905 
1906 static void clear_dte_entry(u16 devid)
1907 {
1908 	/* remove entry from the device table seen by the hardware */
1909 	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1910 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1911 
1912 	amd_iommu_apply_erratum_63(devid);
1913 }
1914 
1915 static void do_attach(struct iommu_dev_data *dev_data,
1916 		      struct protection_domain *domain)
1917 {
1918 	struct domain_pgtable pgtable;
1919 	struct amd_iommu *iommu;
1920 	bool ats;
1921 
1922 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1923 	ats   = dev_data->ats.enabled;
1924 
1925 	/* Update data structures */
1926 	dev_data->domain = domain;
1927 	list_add(&dev_data->list, &domain->dev_list);
1928 
1929 	/* Do reference counting */
1930 	domain->dev_iommu[iommu->index] += 1;
1931 	domain->dev_cnt                 += 1;
1932 
1933 	/* Update device table */
1934 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1935 	set_dte_entry(dev_data->devid, domain, &pgtable,
1936 		      ats, dev_data->iommu_v2);
1937 	clone_aliases(dev_data->pdev);
1938 
1939 	device_flush_dte(dev_data);
1940 }
1941 
1942 static void do_detach(struct iommu_dev_data *dev_data)
1943 {
1944 	struct protection_domain *domain = dev_data->domain;
1945 	struct amd_iommu *iommu;
1946 
1947 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1948 
1949 	/* Update data structures */
1950 	dev_data->domain = NULL;
1951 	list_del(&dev_data->list);
1952 	clear_dte_entry(dev_data->devid);
1953 	clone_aliases(dev_data->pdev);
1954 
1955 	/* Flush the DTE entry */
1956 	device_flush_dte(dev_data);
1957 
1958 	/* Flush IOTLB */
1959 	domain_flush_tlb_pde(domain);
1960 
1961 	/* Wait for the flushes to finish */
1962 	domain_flush_complete(domain);
1963 
1964 	/* decrease reference counters - needs to happen after the flushes */
1965 	domain->dev_iommu[iommu->index] -= 1;
1966 	domain->dev_cnt                 -= 1;
1967 }
1968 
1969 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1970 {
1971 	pci_disable_ats(pdev);
1972 	pci_disable_pri(pdev);
1973 	pci_disable_pasid(pdev);
1974 }
1975 
1976 /* FIXME: Change generic reset-function to do the same */
1977 static int pri_reset_while_enabled(struct pci_dev *pdev)
1978 {
1979 	u16 control;
1980 	int pos;
1981 
1982 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1983 	if (!pos)
1984 		return -EINVAL;
1985 
1986 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1987 	control |= PCI_PRI_CTRL_RESET;
1988 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1989 
1990 	return 0;
1991 }
1992 
1993 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1994 {
1995 	bool reset_enable;
1996 	int reqs, ret;
1997 
1998 	/* FIXME: Hardcode number of outstanding requests for now */
1999 	reqs = 32;
2000 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2001 		reqs = 1;
2002 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2003 
2004 	/* Only allow access to user-accessible pages */
2005 	ret = pci_enable_pasid(pdev, 0);
2006 	if (ret)
2007 		goto out_err;
2008 
2009 	/* First reset the PRI state of the device */
2010 	ret = pci_reset_pri(pdev);
2011 	if (ret)
2012 		goto out_err;
2013 
2014 	/* Enable PRI */
2015 	ret = pci_enable_pri(pdev, reqs);
2016 	if (ret)
2017 		goto out_err;
2018 
2019 	if (reset_enable) {
2020 		ret = pri_reset_while_enabled(pdev);
2021 		if (ret)
2022 			goto out_err;
2023 	}
2024 
2025 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2026 	if (ret)
2027 		goto out_err;
2028 
2029 	return 0;
2030 
2031 out_err:
2032 	pci_disable_pri(pdev);
2033 	pci_disable_pasid(pdev);
2034 
2035 	return ret;
2036 }
2037 
2038 /*
2039  * If a device is not yet associated with a domain, this function makes the
2040  * device visible in the domain
2041  */
2042 static int attach_device(struct device *dev,
2043 			 struct protection_domain *domain)
2044 {
2045 	struct iommu_dev_data *dev_data;
2046 	struct pci_dev *pdev;
2047 	unsigned long flags;
2048 	int ret;
2049 
2050 	spin_lock_irqsave(&domain->lock, flags);
2051 
2052 	dev_data = dev_iommu_priv_get(dev);
2053 
2054 	spin_lock(&dev_data->lock);
2055 
2056 	ret = -EBUSY;
2057 	if (dev_data->domain != NULL)
2058 		goto out;
2059 
2060 	if (!dev_is_pci(dev))
2061 		goto skip_ats_check;
2062 
2063 	pdev = to_pci_dev(dev);
2064 	if (domain->flags & PD_IOMMUV2_MASK) {
2065 		struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
2066 
2067 		ret = -EINVAL;
2068 		if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
2069 			goto out;
2070 
2071 		if (dev_data->iommu_v2) {
2072 			if (pdev_iommuv2_enable(pdev) != 0)
2073 				goto out;
2074 
2075 			dev_data->ats.enabled = true;
2076 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2077 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
2078 		}
2079 	} else if (amd_iommu_iotlb_sup &&
2080 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2081 		dev_data->ats.enabled = true;
2082 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2083 	}
2084 
2085 skip_ats_check:
2086 	ret = 0;
2087 
2088 	do_attach(dev_data, domain);
2089 
2090 	/*
2091 	 * We might boot into a crash-kernel here. The crashed kernel
2092 	 * left the caches in the IOMMU dirty. So we have to flush
2093 	 * here to evict all dirty stuff.
2094 	 */
2095 	domain_flush_tlb_pde(domain);
2096 
2097 	domain_flush_complete(domain);
2098 
2099 out:
2100 	spin_unlock(&dev_data->lock);
2101 
2102 	spin_unlock_irqrestore(&domain->lock, flags);
2103 
2104 	return ret;
2105 }
2106 
2107 /*
2108  * Removes a device from a protection domain (with devtable_lock held)
2109  */
2110 static void detach_device(struct device *dev)
2111 {
2112 	struct protection_domain *domain;
2113 	struct iommu_dev_data *dev_data;
2114 	unsigned long flags;
2115 
2116 	dev_data = dev_iommu_priv_get(dev);
2117 	domain   = dev_data->domain;
2118 
2119 	spin_lock_irqsave(&domain->lock, flags);
2120 
2121 	spin_lock(&dev_data->lock);
2122 
2123 	/*
2124 	 * First check if the device is still attached. It might already
2125 	 * be detached from its domain because the generic
2126 	 * iommu_detach_group code detached it and we try again here in
2127 	 * our alias handling.
2128 	 */
2129 	if (WARN_ON(!dev_data->domain))
2130 		goto out;
2131 
2132 	do_detach(dev_data);
2133 
2134 	if (!dev_is_pci(dev))
2135 		goto out;
2136 
2137 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2138 		pdev_iommuv2_disable(to_pci_dev(dev));
2139 	else if (dev_data->ats.enabled)
2140 		pci_disable_ats(to_pci_dev(dev));
2141 
2142 	dev_data->ats.enabled = false;
2143 
2144 out:
2145 	spin_unlock(&dev_data->lock);
2146 
2147 	spin_unlock_irqrestore(&domain->lock, flags);
2148 }
2149 
2150 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2151 {
2152 	struct iommu_device *iommu_dev;
2153 	struct amd_iommu *iommu;
2154 	int ret, devid;
2155 
2156 	if (!check_device(dev))
2157 		return ERR_PTR(-ENODEV);
2158 
2159 	devid = get_device_id(dev);
2160 	if (devid < 0)
2161 		return ERR_PTR(devid);
2162 
2163 	iommu = amd_iommu_rlookup_table[devid];
2164 
2165 	if (dev_iommu_priv_get(dev))
2166 		return &iommu->iommu;
2167 
2168 	ret = iommu_init_device(dev);
2169 	if (ret) {
2170 		if (ret != -ENOTSUPP)
2171 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2172 		iommu_dev = ERR_PTR(ret);
2173 		iommu_ignore_device(dev);
2174 	} else {
2175 		amd_iommu_set_pci_msi_domain(dev, iommu);
2176 		iommu_dev = &iommu->iommu;
2177 	}
2178 
2179 	iommu_completion_wait(iommu);
2180 
2181 	return iommu_dev;
2182 }
2183 
2184 static void amd_iommu_probe_finalize(struct device *dev)
2185 {
2186 	struct iommu_domain *domain;
2187 
2188 	/* Domains are initialized for this device - have a look what we ended up with */
2189 	domain = iommu_get_domain_for_dev(dev);
2190 	if (domain->type == IOMMU_DOMAIN_DMA)
2191 		iommu_setup_dma_ops(dev, IOVA_START_PFN << PAGE_SHIFT, 0);
2192 }
2193 
2194 static void amd_iommu_release_device(struct device *dev)
2195 {
2196 	int devid = get_device_id(dev);
2197 	struct amd_iommu *iommu;
2198 
2199 	if (!check_device(dev))
2200 		return;
2201 
2202 	iommu = amd_iommu_rlookup_table[devid];
2203 
2204 	amd_iommu_uninit_device(dev);
2205 	iommu_completion_wait(iommu);
2206 }
2207 
2208 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2209 {
2210 	if (dev_is_pci(dev))
2211 		return pci_device_group(dev);
2212 
2213 	return acpihid_device_group(dev);
2214 }
2215 
2216 static int amd_iommu_domain_get_attr(struct iommu_domain *domain,
2217 		enum iommu_attr attr, void *data)
2218 {
2219 	switch (domain->type) {
2220 	case IOMMU_DOMAIN_UNMANAGED:
2221 		return -ENODEV;
2222 	case IOMMU_DOMAIN_DMA:
2223 		switch (attr) {
2224 		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
2225 			*(int *)data = !amd_iommu_unmap_flush;
2226 			return 0;
2227 		default:
2228 			return -ENODEV;
2229 		}
2230 		break;
2231 	default:
2232 		return -EINVAL;
2233 	}
2234 }
2235 
2236 /*****************************************************************************
2237  *
2238  * The next functions belong to the dma_ops mapping/unmapping code.
2239  *
2240  *****************************************************************************/
2241 
2242 static void update_device_table(struct protection_domain *domain,
2243 				struct domain_pgtable *pgtable)
2244 {
2245 	struct iommu_dev_data *dev_data;
2246 
2247 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2248 		set_dte_entry(dev_data->devid, domain, pgtable,
2249 			      dev_data->ats.enabled, dev_data->iommu_v2);
2250 		clone_aliases(dev_data->pdev);
2251 	}
2252 }
2253 
2254 static void update_and_flush_device_table(struct protection_domain *domain,
2255 					  struct domain_pgtable *pgtable)
2256 {
2257 	update_device_table(domain, pgtable);
2258 	domain_flush_devices(domain);
2259 }
2260 
2261 static void update_domain(struct protection_domain *domain)
2262 {
2263 	struct domain_pgtable pgtable;
2264 
2265 	/* Update device table */
2266 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2267 	update_and_flush_device_table(domain, &pgtable);
2268 
2269 	/* Flush domain TLB(s) and wait for completion */
2270 	domain_flush_tlb_pde(domain);
2271 	domain_flush_complete(domain);
2272 }
2273 
2274 int __init amd_iommu_init_api(void)
2275 {
2276 	int ret, err = 0;
2277 
2278 	ret = iova_cache_get();
2279 	if (ret)
2280 		return ret;
2281 
2282 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2283 	if (err)
2284 		return err;
2285 #ifdef CONFIG_ARM_AMBA
2286 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2287 	if (err)
2288 		return err;
2289 #endif
2290 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2291 	if (err)
2292 		return err;
2293 
2294 	return 0;
2295 }
2296 
2297 int __init amd_iommu_init_dma_ops(void)
2298 {
2299 	swiotlb        = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
2300 
2301 	if (amd_iommu_unmap_flush)
2302 		pr_info("IO/TLB flush on unmap enabled\n");
2303 	else
2304 		pr_info("Lazy IO/TLB flushing enabled\n");
2305 
2306 	return 0;
2307 
2308 }
2309 
2310 /*****************************************************************************
2311  *
2312  * The following functions belong to the exported interface of AMD IOMMU
2313  *
2314  * This interface allows access to lower level functions of the IOMMU
2315  * like protection domain handling and assignement of devices to domains
2316  * which is not possible with the dma_ops interface.
2317  *
2318  *****************************************************************************/
2319 
2320 static void cleanup_domain(struct protection_domain *domain)
2321 {
2322 	struct iommu_dev_data *entry;
2323 	unsigned long flags;
2324 
2325 	spin_lock_irqsave(&domain->lock, flags);
2326 
2327 	while (!list_empty(&domain->dev_list)) {
2328 		entry = list_first_entry(&domain->dev_list,
2329 					 struct iommu_dev_data, list);
2330 		BUG_ON(!entry->domain);
2331 		do_detach(entry);
2332 	}
2333 
2334 	spin_unlock_irqrestore(&domain->lock, flags);
2335 }
2336 
2337 static void protection_domain_free(struct protection_domain *domain)
2338 {
2339 	struct domain_pgtable pgtable;
2340 
2341 	if (!domain)
2342 		return;
2343 
2344 	if (domain->id)
2345 		domain_id_free(domain->id);
2346 
2347 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2348 	amd_iommu_domain_clr_pt_root(domain);
2349 	free_pagetable(&pgtable);
2350 
2351 	kfree(domain);
2352 }
2353 
2354 static int protection_domain_init(struct protection_domain *domain, int mode)
2355 {
2356 	u64 *pt_root = NULL;
2357 
2358 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2359 
2360 	spin_lock_init(&domain->lock);
2361 	domain->id = domain_id_alloc();
2362 	if (!domain->id)
2363 		return -ENOMEM;
2364 	INIT_LIST_HEAD(&domain->dev_list);
2365 
2366 	if (mode != PAGE_MODE_NONE) {
2367 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2368 		if (!pt_root)
2369 			return -ENOMEM;
2370 	}
2371 
2372 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2373 
2374 	return 0;
2375 }
2376 
2377 static struct protection_domain *protection_domain_alloc(int mode)
2378 {
2379 	struct protection_domain *domain;
2380 
2381 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2382 	if (!domain)
2383 		return NULL;
2384 
2385 	if (protection_domain_init(domain, mode))
2386 		goto out_err;
2387 
2388 	return domain;
2389 
2390 out_err:
2391 	kfree(domain);
2392 
2393 	return NULL;
2394 }
2395 
2396 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2397 {
2398 	struct protection_domain *domain;
2399 	int mode = DEFAULT_PGTABLE_LEVEL;
2400 
2401 	if (type == IOMMU_DOMAIN_IDENTITY)
2402 		mode = PAGE_MODE_NONE;
2403 
2404 	domain = protection_domain_alloc(mode);
2405 	if (!domain)
2406 		return NULL;
2407 
2408 	domain->domain.geometry.aperture_start = 0;
2409 	domain->domain.geometry.aperture_end   = ~0ULL;
2410 	domain->domain.geometry.force_aperture = true;
2411 
2412 	if (type == IOMMU_DOMAIN_DMA &&
2413 	    iommu_get_dma_cookie(&domain->domain) == -ENOMEM)
2414 		goto free_domain;
2415 
2416 	return &domain->domain;
2417 
2418 free_domain:
2419 	protection_domain_free(domain);
2420 
2421 	return NULL;
2422 }
2423 
2424 static void amd_iommu_domain_free(struct iommu_domain *dom)
2425 {
2426 	struct protection_domain *domain;
2427 
2428 	domain = to_pdomain(dom);
2429 
2430 	if (domain->dev_cnt > 0)
2431 		cleanup_domain(domain);
2432 
2433 	BUG_ON(domain->dev_cnt != 0);
2434 
2435 	if (!dom)
2436 		return;
2437 
2438 	if (dom->type == IOMMU_DOMAIN_DMA)
2439 		iommu_put_dma_cookie(&domain->domain);
2440 
2441 	if (domain->flags & PD_IOMMUV2_MASK)
2442 		free_gcr3_table(domain);
2443 
2444 	protection_domain_free(domain);
2445 }
2446 
2447 static void amd_iommu_detach_device(struct iommu_domain *dom,
2448 				    struct device *dev)
2449 {
2450 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2451 	struct amd_iommu *iommu;
2452 	int devid;
2453 
2454 	if (!check_device(dev))
2455 		return;
2456 
2457 	devid = get_device_id(dev);
2458 	if (devid < 0)
2459 		return;
2460 
2461 	if (dev_data->domain != NULL)
2462 		detach_device(dev);
2463 
2464 	iommu = amd_iommu_rlookup_table[devid];
2465 	if (!iommu)
2466 		return;
2467 
2468 #ifdef CONFIG_IRQ_REMAP
2469 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2470 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
2471 		dev_data->use_vapic = 0;
2472 #endif
2473 
2474 	iommu_completion_wait(iommu);
2475 }
2476 
2477 static int amd_iommu_attach_device(struct iommu_domain *dom,
2478 				   struct device *dev)
2479 {
2480 	struct protection_domain *domain = to_pdomain(dom);
2481 	struct iommu_dev_data *dev_data;
2482 	struct amd_iommu *iommu;
2483 	int ret;
2484 
2485 	if (!check_device(dev))
2486 		return -EINVAL;
2487 
2488 	dev_data = dev_iommu_priv_get(dev);
2489 	dev_data->defer_attach = false;
2490 
2491 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2492 	if (!iommu)
2493 		return -EINVAL;
2494 
2495 	if (dev_data->domain)
2496 		detach_device(dev);
2497 
2498 	ret = attach_device(dev, domain);
2499 
2500 #ifdef CONFIG_IRQ_REMAP
2501 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2502 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2503 			dev_data->use_vapic = 1;
2504 		else
2505 			dev_data->use_vapic = 0;
2506 	}
2507 #endif
2508 
2509 	iommu_completion_wait(iommu);
2510 
2511 	return ret;
2512 }
2513 
2514 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2515 			 phys_addr_t paddr, size_t page_size, int iommu_prot,
2516 			 gfp_t gfp)
2517 {
2518 	struct protection_domain *domain = to_pdomain(dom);
2519 	struct domain_pgtable pgtable;
2520 	int prot = 0;
2521 	int ret;
2522 
2523 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2524 	if (pgtable.mode == PAGE_MODE_NONE)
2525 		return -EINVAL;
2526 
2527 	if (iommu_prot & IOMMU_READ)
2528 		prot |= IOMMU_PROT_IR;
2529 	if (iommu_prot & IOMMU_WRITE)
2530 		prot |= IOMMU_PROT_IW;
2531 
2532 	ret = iommu_map_page(domain, iova, paddr, page_size, prot, gfp);
2533 
2534 	domain_flush_np_cache(domain, iova, page_size);
2535 
2536 	return ret;
2537 }
2538 
2539 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2540 			      size_t page_size,
2541 			      struct iommu_iotlb_gather *gather)
2542 {
2543 	struct protection_domain *domain = to_pdomain(dom);
2544 	struct domain_pgtable pgtable;
2545 
2546 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2547 	if (pgtable.mode == PAGE_MODE_NONE)
2548 		return 0;
2549 
2550 	return iommu_unmap_page(domain, iova, page_size);
2551 }
2552 
2553 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2554 					  dma_addr_t iova)
2555 {
2556 	struct protection_domain *domain = to_pdomain(dom);
2557 	unsigned long offset_mask, pte_pgsize;
2558 	struct domain_pgtable pgtable;
2559 	u64 *pte, __pte;
2560 
2561 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2562 	if (pgtable.mode == PAGE_MODE_NONE)
2563 		return iova;
2564 
2565 	pte = fetch_pte(domain, iova, &pte_pgsize);
2566 
2567 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2568 		return 0;
2569 
2570 	offset_mask = pte_pgsize - 1;
2571 	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
2572 
2573 	return (__pte & ~offset_mask) | (iova & offset_mask);
2574 }
2575 
2576 static bool amd_iommu_capable(enum iommu_cap cap)
2577 {
2578 	switch (cap) {
2579 	case IOMMU_CAP_CACHE_COHERENCY:
2580 		return true;
2581 	case IOMMU_CAP_INTR_REMAP:
2582 		return (irq_remapping_enabled == 1);
2583 	case IOMMU_CAP_NOEXEC:
2584 		return false;
2585 	default:
2586 		break;
2587 	}
2588 
2589 	return false;
2590 }
2591 
2592 static void amd_iommu_get_resv_regions(struct device *dev,
2593 				       struct list_head *head)
2594 {
2595 	struct iommu_resv_region *region;
2596 	struct unity_map_entry *entry;
2597 	int devid;
2598 
2599 	devid = get_device_id(dev);
2600 	if (devid < 0)
2601 		return;
2602 
2603 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
2604 		int type, prot = 0;
2605 		size_t length;
2606 
2607 		if (devid < entry->devid_start || devid > entry->devid_end)
2608 			continue;
2609 
2610 		type   = IOMMU_RESV_DIRECT;
2611 		length = entry->address_end - entry->address_start;
2612 		if (entry->prot & IOMMU_PROT_IR)
2613 			prot |= IOMMU_READ;
2614 		if (entry->prot & IOMMU_PROT_IW)
2615 			prot |= IOMMU_WRITE;
2616 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2617 			/* Exclusion range */
2618 			type = IOMMU_RESV_RESERVED;
2619 
2620 		region = iommu_alloc_resv_region(entry->address_start,
2621 						 length, prot, type);
2622 		if (!region) {
2623 			dev_err(dev, "Out of memory allocating dm-regions\n");
2624 			return;
2625 		}
2626 		list_add_tail(&region->list, head);
2627 	}
2628 
2629 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2630 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2631 					 0, IOMMU_RESV_MSI);
2632 	if (!region)
2633 		return;
2634 	list_add_tail(&region->list, head);
2635 
2636 	region = iommu_alloc_resv_region(HT_RANGE_START,
2637 					 HT_RANGE_END - HT_RANGE_START + 1,
2638 					 0, IOMMU_RESV_RESERVED);
2639 	if (!region)
2640 		return;
2641 	list_add_tail(&region->list, head);
2642 }
2643 
2644 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
2645 				  struct device *dev)
2646 {
2647 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2648 
2649 	return dev_data->defer_attach;
2650 }
2651 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2652 
2653 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2654 {
2655 	struct protection_domain *dom = to_pdomain(domain);
2656 	unsigned long flags;
2657 
2658 	spin_lock_irqsave(&dom->lock, flags);
2659 	domain_flush_tlb_pde(dom);
2660 	domain_flush_complete(dom);
2661 	spin_unlock_irqrestore(&dom->lock, flags);
2662 }
2663 
2664 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2665 				 struct iommu_iotlb_gather *gather)
2666 {
2667 	amd_iommu_flush_iotlb_all(domain);
2668 }
2669 
2670 static int amd_iommu_def_domain_type(struct device *dev)
2671 {
2672 	struct iommu_dev_data *dev_data;
2673 
2674 	dev_data = dev_iommu_priv_get(dev);
2675 	if (!dev_data)
2676 		return 0;
2677 
2678 	/*
2679 	 * Do not identity map IOMMUv2 capable devices when memory encryption is
2680 	 * active, because some of those devices (AMD GPUs) don't have the
2681 	 * encryption bit in their DMA-mask and require remapping.
2682 	 */
2683 	if (!mem_encrypt_active() && dev_data->iommu_v2)
2684 		return IOMMU_DOMAIN_IDENTITY;
2685 
2686 	return 0;
2687 }
2688 
2689 const struct iommu_ops amd_iommu_ops = {
2690 	.capable = amd_iommu_capable,
2691 	.domain_alloc = amd_iommu_domain_alloc,
2692 	.domain_free  = amd_iommu_domain_free,
2693 	.attach_dev = amd_iommu_attach_device,
2694 	.detach_dev = amd_iommu_detach_device,
2695 	.map = amd_iommu_map,
2696 	.unmap = amd_iommu_unmap,
2697 	.iova_to_phys = amd_iommu_iova_to_phys,
2698 	.probe_device = amd_iommu_probe_device,
2699 	.release_device = amd_iommu_release_device,
2700 	.probe_finalize = amd_iommu_probe_finalize,
2701 	.device_group = amd_iommu_device_group,
2702 	.domain_get_attr = amd_iommu_domain_get_attr,
2703 	.get_resv_regions = amd_iommu_get_resv_regions,
2704 	.put_resv_regions = generic_iommu_put_resv_regions,
2705 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2706 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2707 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2708 	.iotlb_sync = amd_iommu_iotlb_sync,
2709 	.def_domain_type = amd_iommu_def_domain_type,
2710 };
2711 
2712 /*****************************************************************************
2713  *
2714  * The next functions do a basic initialization of IOMMU for pass through
2715  * mode
2716  *
2717  * In passthrough mode the IOMMU is initialized and enabled but not used for
2718  * DMA-API translation.
2719  *
2720  *****************************************************************************/
2721 
2722 /* IOMMUv2 specific functions */
2723 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2724 {
2725 	return atomic_notifier_chain_register(&ppr_notifier, nb);
2726 }
2727 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2728 
2729 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2730 {
2731 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2732 }
2733 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2734 
2735 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2736 {
2737 	struct protection_domain *domain = to_pdomain(dom);
2738 	struct domain_pgtable pgtable;
2739 	unsigned long flags;
2740 
2741 	spin_lock_irqsave(&domain->lock, flags);
2742 
2743 	/* First save pgtable configuration*/
2744 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2745 
2746 	/* Remove page-table from domain */
2747 	amd_iommu_domain_clr_pt_root(domain);
2748 
2749 	/* Make changes visible to IOMMUs */
2750 	update_domain(domain);
2751 
2752 	/* Page-table is not visible to IOMMU anymore, so free it */
2753 	free_pagetable(&pgtable);
2754 
2755 	spin_unlock_irqrestore(&domain->lock, flags);
2756 }
2757 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2758 
2759 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2760 {
2761 	struct protection_domain *domain = to_pdomain(dom);
2762 	unsigned long flags;
2763 	int levels, ret;
2764 
2765 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
2766 		return -EINVAL;
2767 
2768 	/* Number of GCR3 table levels required */
2769 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2770 		levels += 1;
2771 
2772 	if (levels > amd_iommu_max_glx_val)
2773 		return -EINVAL;
2774 
2775 	spin_lock_irqsave(&domain->lock, flags);
2776 
2777 	/*
2778 	 * Save us all sanity checks whether devices already in the
2779 	 * domain support IOMMUv2. Just force that the domain has no
2780 	 * devices attached when it is switched into IOMMUv2 mode.
2781 	 */
2782 	ret = -EBUSY;
2783 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2784 		goto out;
2785 
2786 	ret = -ENOMEM;
2787 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2788 	if (domain->gcr3_tbl == NULL)
2789 		goto out;
2790 
2791 	domain->glx      = levels;
2792 	domain->flags   |= PD_IOMMUV2_MASK;
2793 
2794 	update_domain(domain);
2795 
2796 	ret = 0;
2797 
2798 out:
2799 	spin_unlock_irqrestore(&domain->lock, flags);
2800 
2801 	return ret;
2802 }
2803 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2804 
2805 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2806 			 u64 address, bool size)
2807 {
2808 	struct iommu_dev_data *dev_data;
2809 	struct iommu_cmd cmd;
2810 	int i, ret;
2811 
2812 	if (!(domain->flags & PD_IOMMUV2_MASK))
2813 		return -EINVAL;
2814 
2815 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2816 
2817 	/*
2818 	 * IOMMU TLB needs to be flushed before Device TLB to
2819 	 * prevent device TLB refill from IOMMU TLB
2820 	 */
2821 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2822 		if (domain->dev_iommu[i] == 0)
2823 			continue;
2824 
2825 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2826 		if (ret != 0)
2827 			goto out;
2828 	}
2829 
2830 	/* Wait until IOMMU TLB flushes are complete */
2831 	domain_flush_complete(domain);
2832 
2833 	/* Now flush device TLBs */
2834 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2835 		struct amd_iommu *iommu;
2836 		int qdep;
2837 
2838 		/*
2839 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2840 		 * domain.
2841 		 */
2842 		if (!dev_data->ats.enabled)
2843 			continue;
2844 
2845 		qdep  = dev_data->ats.qdep;
2846 		iommu = amd_iommu_rlookup_table[dev_data->devid];
2847 
2848 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2849 				      qdep, address, size);
2850 
2851 		ret = iommu_queue_command(iommu, &cmd);
2852 		if (ret != 0)
2853 			goto out;
2854 	}
2855 
2856 	/* Wait until all device TLBs are flushed */
2857 	domain_flush_complete(domain);
2858 
2859 	ret = 0;
2860 
2861 out:
2862 
2863 	return ret;
2864 }
2865 
2866 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2867 				  u64 address)
2868 {
2869 	return __flush_pasid(domain, pasid, address, false);
2870 }
2871 
2872 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2873 			 u64 address)
2874 {
2875 	struct protection_domain *domain = to_pdomain(dom);
2876 	unsigned long flags;
2877 	int ret;
2878 
2879 	spin_lock_irqsave(&domain->lock, flags);
2880 	ret = __amd_iommu_flush_page(domain, pasid, address);
2881 	spin_unlock_irqrestore(&domain->lock, flags);
2882 
2883 	return ret;
2884 }
2885 EXPORT_SYMBOL(amd_iommu_flush_page);
2886 
2887 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2888 {
2889 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2890 			     true);
2891 }
2892 
2893 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2894 {
2895 	struct protection_domain *domain = to_pdomain(dom);
2896 	unsigned long flags;
2897 	int ret;
2898 
2899 	spin_lock_irqsave(&domain->lock, flags);
2900 	ret = __amd_iommu_flush_tlb(domain, pasid);
2901 	spin_unlock_irqrestore(&domain->lock, flags);
2902 
2903 	return ret;
2904 }
2905 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2906 
2907 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2908 {
2909 	int index;
2910 	u64 *pte;
2911 
2912 	while (true) {
2913 
2914 		index = (pasid >> (9 * level)) & 0x1ff;
2915 		pte   = &root[index];
2916 
2917 		if (level == 0)
2918 			break;
2919 
2920 		if (!(*pte & GCR3_VALID)) {
2921 			if (!alloc)
2922 				return NULL;
2923 
2924 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2925 			if (root == NULL)
2926 				return NULL;
2927 
2928 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2929 		}
2930 
2931 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2932 
2933 		level -= 1;
2934 	}
2935 
2936 	return pte;
2937 }
2938 
2939 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2940 		      unsigned long cr3)
2941 {
2942 	struct domain_pgtable pgtable;
2943 	u64 *pte;
2944 
2945 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2946 	if (pgtable.mode != PAGE_MODE_NONE)
2947 		return -EINVAL;
2948 
2949 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2950 	if (pte == NULL)
2951 		return -ENOMEM;
2952 
2953 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2954 
2955 	return __amd_iommu_flush_tlb(domain, pasid);
2956 }
2957 
2958 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2959 {
2960 	struct domain_pgtable pgtable;
2961 	u64 *pte;
2962 
2963 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2964 	if (pgtable.mode != PAGE_MODE_NONE)
2965 		return -EINVAL;
2966 
2967 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2968 	if (pte == NULL)
2969 		return 0;
2970 
2971 	*pte = 0;
2972 
2973 	return __amd_iommu_flush_tlb(domain, pasid);
2974 }
2975 
2976 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2977 			      unsigned long cr3)
2978 {
2979 	struct protection_domain *domain = to_pdomain(dom);
2980 	unsigned long flags;
2981 	int ret;
2982 
2983 	spin_lock_irqsave(&domain->lock, flags);
2984 	ret = __set_gcr3(domain, pasid, cr3);
2985 	spin_unlock_irqrestore(&domain->lock, flags);
2986 
2987 	return ret;
2988 }
2989 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2990 
2991 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2992 {
2993 	struct protection_domain *domain = to_pdomain(dom);
2994 	unsigned long flags;
2995 	int ret;
2996 
2997 	spin_lock_irqsave(&domain->lock, flags);
2998 	ret = __clear_gcr3(domain, pasid);
2999 	spin_unlock_irqrestore(&domain->lock, flags);
3000 
3001 	return ret;
3002 }
3003 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3004 
3005 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
3006 			   int status, int tag)
3007 {
3008 	struct iommu_dev_data *dev_data;
3009 	struct amd_iommu *iommu;
3010 	struct iommu_cmd cmd;
3011 
3012 	dev_data = dev_iommu_priv_get(&pdev->dev);
3013 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3014 
3015 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3016 			   tag, dev_data->pri_tlp);
3017 
3018 	return iommu_queue_command(iommu, &cmd);
3019 }
3020 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3021 
3022 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3023 {
3024 	struct protection_domain *pdomain;
3025 	struct iommu_dev_data *dev_data;
3026 	struct device *dev = &pdev->dev;
3027 	struct iommu_domain *io_domain;
3028 
3029 	if (!check_device(dev))
3030 		return NULL;
3031 
3032 	dev_data  = dev_iommu_priv_get(&pdev->dev);
3033 	pdomain   = dev_data->domain;
3034 	io_domain = iommu_get_domain_for_dev(dev);
3035 
3036 	if (pdomain == NULL && dev_data->defer_attach) {
3037 		dev_data->defer_attach = false;
3038 		pdomain = to_pdomain(io_domain);
3039 		attach_device(dev, pdomain);
3040 	}
3041 
3042 	if (pdomain == NULL)
3043 		return NULL;
3044 
3045 	if (io_domain->type != IOMMU_DOMAIN_DMA)
3046 		return NULL;
3047 
3048 	/* Only return IOMMUv2 domains */
3049 	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3050 		return NULL;
3051 
3052 	return &pdomain->domain;
3053 }
3054 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3055 
3056 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3057 {
3058 	struct iommu_dev_data *dev_data;
3059 
3060 	if (!amd_iommu_v2_supported())
3061 		return;
3062 
3063 	dev_data = dev_iommu_priv_get(&pdev->dev);
3064 	dev_data->errata |= (1 << erratum);
3065 }
3066 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3067 
3068 int amd_iommu_device_info(struct pci_dev *pdev,
3069                           struct amd_iommu_device_info *info)
3070 {
3071 	int max_pasids;
3072 	int pos;
3073 
3074 	if (pdev == NULL || info == NULL)
3075 		return -EINVAL;
3076 
3077 	if (!amd_iommu_v2_supported())
3078 		return -EINVAL;
3079 
3080 	memset(info, 0, sizeof(*info));
3081 
3082 	if (pci_ats_supported(pdev))
3083 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3084 
3085 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3086 	if (pos)
3087 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3088 
3089 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3090 	if (pos) {
3091 		int features;
3092 
3093 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3094 		max_pasids = min(max_pasids, (1 << 20));
3095 
3096 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3097 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3098 
3099 		features = pci_pasid_features(pdev);
3100 		if (features & PCI_PASID_CAP_EXEC)
3101 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3102 		if (features & PCI_PASID_CAP_PRIV)
3103 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3104 	}
3105 
3106 	return 0;
3107 }
3108 EXPORT_SYMBOL(amd_iommu_device_info);
3109 
3110 #ifdef CONFIG_IRQ_REMAP
3111 
3112 /*****************************************************************************
3113  *
3114  * Interrupt Remapping Implementation
3115  *
3116  *****************************************************************************/
3117 
3118 static struct irq_chip amd_ir_chip;
3119 static DEFINE_SPINLOCK(iommu_table_lock);
3120 
3121 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3122 {
3123 	u64 dte;
3124 
3125 	dte	= amd_iommu_dev_table[devid].data[2];
3126 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3127 	dte	|= iommu_virt_to_phys(table->table);
3128 	dte	|= DTE_IRQ_REMAP_INTCTL;
3129 	dte	|= DTE_IRQ_TABLE_LEN;
3130 	dte	|= DTE_IRQ_REMAP_ENABLE;
3131 
3132 	amd_iommu_dev_table[devid].data[2] = dte;
3133 }
3134 
3135 static struct irq_remap_table *get_irq_table(u16 devid)
3136 {
3137 	struct irq_remap_table *table;
3138 
3139 	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3140 		      "%s: no iommu for devid %x\n", __func__, devid))
3141 		return NULL;
3142 
3143 	table = irq_lookup_table[devid];
3144 	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3145 		return NULL;
3146 
3147 	return table;
3148 }
3149 
3150 static struct irq_remap_table *__alloc_irq_table(void)
3151 {
3152 	struct irq_remap_table *table;
3153 
3154 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3155 	if (!table)
3156 		return NULL;
3157 
3158 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3159 	if (!table->table) {
3160 		kfree(table);
3161 		return NULL;
3162 	}
3163 	raw_spin_lock_init(&table->lock);
3164 
3165 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3166 		memset(table->table, 0,
3167 		       MAX_IRQS_PER_TABLE * sizeof(u32));
3168 	else
3169 		memset(table->table, 0,
3170 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3171 	return table;
3172 }
3173 
3174 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3175 				  struct irq_remap_table *table)
3176 {
3177 	irq_lookup_table[devid] = table;
3178 	set_dte_irq_entry(devid, table);
3179 	iommu_flush_dte(iommu, devid);
3180 }
3181 
3182 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3183 				       void *data)
3184 {
3185 	struct irq_remap_table *table = data;
3186 
3187 	irq_lookup_table[alias] = table;
3188 	set_dte_irq_entry(alias, table);
3189 
3190 	iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
3191 
3192 	return 0;
3193 }
3194 
3195 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
3196 {
3197 	struct irq_remap_table *table = NULL;
3198 	struct irq_remap_table *new_table = NULL;
3199 	struct amd_iommu *iommu;
3200 	unsigned long flags;
3201 	u16 alias;
3202 
3203 	spin_lock_irqsave(&iommu_table_lock, flags);
3204 
3205 	iommu = amd_iommu_rlookup_table[devid];
3206 	if (!iommu)
3207 		goto out_unlock;
3208 
3209 	table = irq_lookup_table[devid];
3210 	if (table)
3211 		goto out_unlock;
3212 
3213 	alias = amd_iommu_alias_table[devid];
3214 	table = irq_lookup_table[alias];
3215 	if (table) {
3216 		set_remap_table_entry(iommu, devid, table);
3217 		goto out_wait;
3218 	}
3219 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3220 
3221 	/* Nothing there yet, allocate new irq remapping table */
3222 	new_table = __alloc_irq_table();
3223 	if (!new_table)
3224 		return NULL;
3225 
3226 	spin_lock_irqsave(&iommu_table_lock, flags);
3227 
3228 	table = irq_lookup_table[devid];
3229 	if (table)
3230 		goto out_unlock;
3231 
3232 	table = irq_lookup_table[alias];
3233 	if (table) {
3234 		set_remap_table_entry(iommu, devid, table);
3235 		goto out_wait;
3236 	}
3237 
3238 	table = new_table;
3239 	new_table = NULL;
3240 
3241 	if (pdev)
3242 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3243 				       table);
3244 	else
3245 		set_remap_table_entry(iommu, devid, table);
3246 
3247 	if (devid != alias)
3248 		set_remap_table_entry(iommu, alias, table);
3249 
3250 out_wait:
3251 	iommu_completion_wait(iommu);
3252 
3253 out_unlock:
3254 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3255 
3256 	if (new_table) {
3257 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3258 		kfree(new_table);
3259 	}
3260 	return table;
3261 }
3262 
3263 static int alloc_irq_index(u16 devid, int count, bool align,
3264 			   struct pci_dev *pdev)
3265 {
3266 	struct irq_remap_table *table;
3267 	int index, c, alignment = 1;
3268 	unsigned long flags;
3269 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3270 
3271 	if (!iommu)
3272 		return -ENODEV;
3273 
3274 	table = alloc_irq_table(devid, pdev);
3275 	if (!table)
3276 		return -ENODEV;
3277 
3278 	if (align)
3279 		alignment = roundup_pow_of_two(count);
3280 
3281 	raw_spin_lock_irqsave(&table->lock, flags);
3282 
3283 	/* Scan table for free entries */
3284 	for (index = ALIGN(table->min_index, alignment), c = 0;
3285 	     index < MAX_IRQS_PER_TABLE;) {
3286 		if (!iommu->irte_ops->is_allocated(table, index)) {
3287 			c += 1;
3288 		} else {
3289 			c     = 0;
3290 			index = ALIGN(index + 1, alignment);
3291 			continue;
3292 		}
3293 
3294 		if (c == count)	{
3295 			for (; c != 0; --c)
3296 				iommu->irte_ops->set_allocated(table, index - c + 1);
3297 
3298 			index -= count - 1;
3299 			goto out;
3300 		}
3301 
3302 		index++;
3303 	}
3304 
3305 	index = -ENOSPC;
3306 
3307 out:
3308 	raw_spin_unlock_irqrestore(&table->lock, flags);
3309 
3310 	return index;
3311 }
3312 
3313 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3314 			  struct amd_ir_data *data)
3315 {
3316 	bool ret;
3317 	struct irq_remap_table *table;
3318 	struct amd_iommu *iommu;
3319 	unsigned long flags;
3320 	struct irte_ga *entry;
3321 
3322 	iommu = amd_iommu_rlookup_table[devid];
3323 	if (iommu == NULL)
3324 		return -EINVAL;
3325 
3326 	table = get_irq_table(devid);
3327 	if (!table)
3328 		return -ENOMEM;
3329 
3330 	raw_spin_lock_irqsave(&table->lock, flags);
3331 
3332 	entry = (struct irte_ga *)table->table;
3333 	entry = &entry[index];
3334 
3335 	ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
3336 			     entry->lo.val, entry->hi.val,
3337 			     irte->lo.val, irte->hi.val);
3338 	/*
3339 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3340 	 * and it cannot be updated by the hardware or other processors
3341 	 * behind us, so the return value of cmpxchg16 should be the
3342 	 * same as the old value.
3343 	 */
3344 	WARN_ON(!ret);
3345 
3346 	if (data)
3347 		data->ref = entry;
3348 
3349 	raw_spin_unlock_irqrestore(&table->lock, flags);
3350 
3351 	iommu_flush_irt(iommu, devid);
3352 	iommu_completion_wait(iommu);
3353 
3354 	return 0;
3355 }
3356 
3357 static int modify_irte(u16 devid, int index, union irte *irte)
3358 {
3359 	struct irq_remap_table *table;
3360 	struct amd_iommu *iommu;
3361 	unsigned long flags;
3362 
3363 	iommu = amd_iommu_rlookup_table[devid];
3364 	if (iommu == NULL)
3365 		return -EINVAL;
3366 
3367 	table = get_irq_table(devid);
3368 	if (!table)
3369 		return -ENOMEM;
3370 
3371 	raw_spin_lock_irqsave(&table->lock, flags);
3372 	table->table[index] = irte->val;
3373 	raw_spin_unlock_irqrestore(&table->lock, flags);
3374 
3375 	iommu_flush_irt(iommu, devid);
3376 	iommu_completion_wait(iommu);
3377 
3378 	return 0;
3379 }
3380 
3381 static void free_irte(u16 devid, int index)
3382 {
3383 	struct irq_remap_table *table;
3384 	struct amd_iommu *iommu;
3385 	unsigned long flags;
3386 
3387 	iommu = amd_iommu_rlookup_table[devid];
3388 	if (iommu == NULL)
3389 		return;
3390 
3391 	table = get_irq_table(devid);
3392 	if (!table)
3393 		return;
3394 
3395 	raw_spin_lock_irqsave(&table->lock, flags);
3396 	iommu->irte_ops->clear_allocated(table, index);
3397 	raw_spin_unlock_irqrestore(&table->lock, flags);
3398 
3399 	iommu_flush_irt(iommu, devid);
3400 	iommu_completion_wait(iommu);
3401 }
3402 
3403 static void irte_prepare(void *entry,
3404 			 u32 delivery_mode, u32 dest_mode,
3405 			 u8 vector, u32 dest_apicid, int devid)
3406 {
3407 	union irte *irte = (union irte *) entry;
3408 
3409 	irte->val                = 0;
3410 	irte->fields.vector      = vector;
3411 	irte->fields.int_type    = delivery_mode;
3412 	irte->fields.destination = dest_apicid;
3413 	irte->fields.dm          = dest_mode;
3414 	irte->fields.valid       = 1;
3415 }
3416 
3417 static void irte_ga_prepare(void *entry,
3418 			    u32 delivery_mode, u32 dest_mode,
3419 			    u8 vector, u32 dest_apicid, int devid)
3420 {
3421 	struct irte_ga *irte = (struct irte_ga *) entry;
3422 
3423 	irte->lo.val                      = 0;
3424 	irte->hi.val                      = 0;
3425 	irte->lo.fields_remap.int_type    = delivery_mode;
3426 	irte->lo.fields_remap.dm          = dest_mode;
3427 	irte->hi.fields.vector            = vector;
3428 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3429 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3430 	irte->lo.fields_remap.valid       = 1;
3431 }
3432 
3433 static void irte_activate(void *entry, u16 devid, u16 index)
3434 {
3435 	union irte *irte = (union irte *) entry;
3436 
3437 	irte->fields.valid = 1;
3438 	modify_irte(devid, index, irte);
3439 }
3440 
3441 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3442 {
3443 	struct irte_ga *irte = (struct irte_ga *) entry;
3444 
3445 	irte->lo.fields_remap.valid = 1;
3446 	modify_irte_ga(devid, index, irte, NULL);
3447 }
3448 
3449 static void irte_deactivate(void *entry, u16 devid, u16 index)
3450 {
3451 	union irte *irte = (union irte *) entry;
3452 
3453 	irte->fields.valid = 0;
3454 	modify_irte(devid, index, irte);
3455 }
3456 
3457 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3458 {
3459 	struct irte_ga *irte = (struct irte_ga *) entry;
3460 
3461 	irte->lo.fields_remap.valid = 0;
3462 	modify_irte_ga(devid, index, irte, NULL);
3463 }
3464 
3465 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3466 			      u8 vector, u32 dest_apicid)
3467 {
3468 	union irte *irte = (union irte *) entry;
3469 
3470 	irte->fields.vector = vector;
3471 	irte->fields.destination = dest_apicid;
3472 	modify_irte(devid, index, irte);
3473 }
3474 
3475 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3476 				 u8 vector, u32 dest_apicid)
3477 {
3478 	struct irte_ga *irte = (struct irte_ga *) entry;
3479 
3480 	if (!irte->lo.fields_remap.guest_mode) {
3481 		irte->hi.fields.vector = vector;
3482 		irte->lo.fields_remap.destination =
3483 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3484 		irte->hi.fields.destination =
3485 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3486 		modify_irte_ga(devid, index, irte, NULL);
3487 	}
3488 }
3489 
3490 #define IRTE_ALLOCATED (~1U)
3491 static void irte_set_allocated(struct irq_remap_table *table, int index)
3492 {
3493 	table->table[index] = IRTE_ALLOCATED;
3494 }
3495 
3496 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3497 {
3498 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3499 	struct irte_ga *irte = &ptr[index];
3500 
3501 	memset(&irte->lo.val, 0, sizeof(u64));
3502 	memset(&irte->hi.val, 0, sizeof(u64));
3503 	irte->hi.fields.vector = 0xff;
3504 }
3505 
3506 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3507 {
3508 	union irte *ptr = (union irte *)table->table;
3509 	union irte *irte = &ptr[index];
3510 
3511 	return irte->val != 0;
3512 }
3513 
3514 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3515 {
3516 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3517 	struct irte_ga *irte = &ptr[index];
3518 
3519 	return irte->hi.fields.vector != 0;
3520 }
3521 
3522 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3523 {
3524 	table->table[index] = 0;
3525 }
3526 
3527 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3528 {
3529 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3530 	struct irte_ga *irte = &ptr[index];
3531 
3532 	memset(&irte->lo.val, 0, sizeof(u64));
3533 	memset(&irte->hi.val, 0, sizeof(u64));
3534 }
3535 
3536 static int get_devid(struct irq_alloc_info *info)
3537 {
3538 	switch (info->type) {
3539 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3540 	case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT:
3541 		return get_ioapic_devid(info->devid);
3542 	case X86_IRQ_ALLOC_TYPE_HPET:
3543 	case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT:
3544 		return get_hpet_devid(info->devid);
3545 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3546 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3547 		return get_device_id(msi_desc_to_dev(info->desc));
3548 	default:
3549 		WARN_ON_ONCE(1);
3550 		return -1;
3551 	}
3552 }
3553 
3554 static struct irq_domain *get_irq_domain_for_devid(struct irq_alloc_info *info,
3555 						   int devid)
3556 {
3557 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3558 
3559 	if (!iommu)
3560 		return NULL;
3561 
3562 	switch (info->type) {
3563 	case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT:
3564 	case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT:
3565 		return iommu->ir_domain;
3566 	default:
3567 		WARN_ON_ONCE(1);
3568 		return NULL;
3569 	}
3570 }
3571 
3572 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3573 {
3574 	int devid;
3575 
3576 	if (!info)
3577 		return NULL;
3578 
3579 	devid = get_devid(info);
3580 	if (devid < 0)
3581 		return NULL;
3582 	return get_irq_domain_for_devid(info, devid);
3583 }
3584 
3585 struct irq_remap_ops amd_iommu_irq_ops = {
3586 	.prepare		= amd_iommu_prepare,
3587 	.enable			= amd_iommu_enable,
3588 	.disable		= amd_iommu_disable,
3589 	.reenable		= amd_iommu_reenable,
3590 	.enable_faulting	= amd_iommu_enable_faulting,
3591 	.get_irq_domain		= get_irq_domain,
3592 };
3593 
3594 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3595 				       struct irq_cfg *irq_cfg,
3596 				       struct irq_alloc_info *info,
3597 				       int devid, int index, int sub_handle)
3598 {
3599 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3600 	struct msi_msg *msg = &data->msi_entry;
3601 	struct IO_APIC_route_entry *entry;
3602 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3603 
3604 	if (!iommu)
3605 		return;
3606 
3607 	data->irq_2_irte.devid = devid;
3608 	data->irq_2_irte.index = index + sub_handle;
3609 	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
3610 				 apic->irq_dest_mode, irq_cfg->vector,
3611 				 irq_cfg->dest_apicid, devid);
3612 
3613 	switch (info->type) {
3614 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3615 		/* Setup IOAPIC entry */
3616 		entry = info->ioapic.entry;
3617 		info->ioapic.entry = NULL;
3618 		memset(entry, 0, sizeof(*entry));
3619 		entry->vector        = index;
3620 		entry->mask          = 0;
3621 		entry->trigger       = info->ioapic.trigger;
3622 		entry->polarity      = info->ioapic.polarity;
3623 		/* Mask level triggered irqs. */
3624 		if (info->ioapic.trigger)
3625 			entry->mask = 1;
3626 		break;
3627 
3628 	case X86_IRQ_ALLOC_TYPE_HPET:
3629 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3630 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3631 		msg->address_hi = MSI_ADDR_BASE_HI;
3632 		msg->address_lo = MSI_ADDR_BASE_LO;
3633 		msg->data = irte_info->index;
3634 		break;
3635 
3636 	default:
3637 		BUG_ON(1);
3638 		break;
3639 	}
3640 }
3641 
3642 struct amd_irte_ops irte_32_ops = {
3643 	.prepare = irte_prepare,
3644 	.activate = irte_activate,
3645 	.deactivate = irte_deactivate,
3646 	.set_affinity = irte_set_affinity,
3647 	.set_allocated = irte_set_allocated,
3648 	.is_allocated = irte_is_allocated,
3649 	.clear_allocated = irte_clear_allocated,
3650 };
3651 
3652 struct amd_irte_ops irte_128_ops = {
3653 	.prepare = irte_ga_prepare,
3654 	.activate = irte_ga_activate,
3655 	.deactivate = irte_ga_deactivate,
3656 	.set_affinity = irte_ga_set_affinity,
3657 	.set_allocated = irte_ga_set_allocated,
3658 	.is_allocated = irte_ga_is_allocated,
3659 	.clear_allocated = irte_ga_clear_allocated,
3660 };
3661 
3662 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3663 			       unsigned int nr_irqs, void *arg)
3664 {
3665 	struct irq_alloc_info *info = arg;
3666 	struct irq_data *irq_data;
3667 	struct amd_ir_data *data = NULL;
3668 	struct irq_cfg *cfg;
3669 	int i, ret, devid;
3670 	int index;
3671 
3672 	if (!info)
3673 		return -EINVAL;
3674 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3675 	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3676 		return -EINVAL;
3677 
3678 	/*
3679 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
3680 	 * to support multiple MSI interrupts.
3681 	 */
3682 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3683 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3684 
3685 	devid = get_devid(info);
3686 	if (devid < 0)
3687 		return -EINVAL;
3688 
3689 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3690 	if (ret < 0)
3691 		return ret;
3692 
3693 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3694 		struct irq_remap_table *table;
3695 		struct amd_iommu *iommu;
3696 
3697 		table = alloc_irq_table(devid, NULL);
3698 		if (table) {
3699 			if (!table->min_index) {
3700 				/*
3701 				 * Keep the first 32 indexes free for IOAPIC
3702 				 * interrupts.
3703 				 */
3704 				table->min_index = 32;
3705 				iommu = amd_iommu_rlookup_table[devid];
3706 				for (i = 0; i < 32; ++i)
3707 					iommu->irte_ops->set_allocated(table, i);
3708 			}
3709 			WARN_ON(table->min_index != 32);
3710 			index = info->ioapic.pin;
3711 		} else {
3712 			index = -ENOMEM;
3713 		}
3714 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3715 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3716 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3717 
3718 		index = alloc_irq_index(devid, nr_irqs, align,
3719 					msi_desc_to_pci_dev(info->desc));
3720 	} else {
3721 		index = alloc_irq_index(devid, nr_irqs, false, NULL);
3722 	}
3723 
3724 	if (index < 0) {
3725 		pr_warn("Failed to allocate IRTE\n");
3726 		ret = index;
3727 		goto out_free_parent;
3728 	}
3729 
3730 	for (i = 0; i < nr_irqs; i++) {
3731 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3732 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3733 		if (!cfg) {
3734 			ret = -EINVAL;
3735 			goto out_free_data;
3736 		}
3737 
3738 		ret = -ENOMEM;
3739 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3740 		if (!data)
3741 			goto out_free_data;
3742 
3743 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3744 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3745 		else
3746 			data->entry = kzalloc(sizeof(struct irte_ga),
3747 						     GFP_KERNEL);
3748 		if (!data->entry) {
3749 			kfree(data);
3750 			goto out_free_data;
3751 		}
3752 
3753 		irq_data->hwirq = (devid << 16) + i;
3754 		irq_data->chip_data = data;
3755 		irq_data->chip = &amd_ir_chip;
3756 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3757 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3758 	}
3759 
3760 	return 0;
3761 
3762 out_free_data:
3763 	for (i--; i >= 0; i--) {
3764 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3765 		if (irq_data)
3766 			kfree(irq_data->chip_data);
3767 	}
3768 	for (i = 0; i < nr_irqs; i++)
3769 		free_irte(devid, index + i);
3770 out_free_parent:
3771 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3772 	return ret;
3773 }
3774 
3775 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3776 			       unsigned int nr_irqs)
3777 {
3778 	struct irq_2_irte *irte_info;
3779 	struct irq_data *irq_data;
3780 	struct amd_ir_data *data;
3781 	int i;
3782 
3783 	for (i = 0; i < nr_irqs; i++) {
3784 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3785 		if (irq_data && irq_data->chip_data) {
3786 			data = irq_data->chip_data;
3787 			irte_info = &data->irq_2_irte;
3788 			free_irte(irte_info->devid, irte_info->index);
3789 			kfree(data->entry);
3790 			kfree(data);
3791 		}
3792 	}
3793 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3794 }
3795 
3796 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3797 			       struct amd_ir_data *ir_data,
3798 			       struct irq_2_irte *irte_info,
3799 			       struct irq_cfg *cfg);
3800 
3801 static int irq_remapping_activate(struct irq_domain *domain,
3802 				  struct irq_data *irq_data, bool reserve)
3803 {
3804 	struct amd_ir_data *data = irq_data->chip_data;
3805 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3806 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3807 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3808 
3809 	if (!iommu)
3810 		return 0;
3811 
3812 	iommu->irte_ops->activate(data->entry, irte_info->devid,
3813 				  irte_info->index);
3814 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3815 	return 0;
3816 }
3817 
3818 static void irq_remapping_deactivate(struct irq_domain *domain,
3819 				     struct irq_data *irq_data)
3820 {
3821 	struct amd_ir_data *data = irq_data->chip_data;
3822 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3823 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3824 
3825 	if (iommu)
3826 		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
3827 					    irte_info->index);
3828 }
3829 
3830 static const struct irq_domain_ops amd_ir_domain_ops = {
3831 	.alloc = irq_remapping_alloc,
3832 	.free = irq_remapping_free,
3833 	.activate = irq_remapping_activate,
3834 	.deactivate = irq_remapping_deactivate,
3835 };
3836 
3837 int amd_iommu_activate_guest_mode(void *data)
3838 {
3839 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3840 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3841 	u64 valid;
3842 
3843 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3844 	    !entry || entry->lo.fields_vapic.guest_mode)
3845 		return 0;
3846 
3847 	valid = entry->lo.fields_vapic.valid;
3848 
3849 	entry->lo.val = 0;
3850 	entry->hi.val = 0;
3851 
3852 	entry->lo.fields_vapic.valid       = valid;
3853 	entry->lo.fields_vapic.guest_mode  = 1;
3854 	entry->lo.fields_vapic.ga_log_intr = 1;
3855 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3856 	entry->hi.fields.vector            = ir_data->ga_vector;
3857 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3858 
3859 	return modify_irte_ga(ir_data->irq_2_irte.devid,
3860 			      ir_data->irq_2_irte.index, entry, ir_data);
3861 }
3862 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3863 
3864 int amd_iommu_deactivate_guest_mode(void *data)
3865 {
3866 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3867 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3868 	struct irq_cfg *cfg = ir_data->cfg;
3869 	u64 valid;
3870 
3871 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3872 	    !entry || !entry->lo.fields_vapic.guest_mode)
3873 		return 0;
3874 
3875 	valid = entry->lo.fields_remap.valid;
3876 
3877 	entry->lo.val = 0;
3878 	entry->hi.val = 0;
3879 
3880 	entry->lo.fields_remap.valid       = valid;
3881 	entry->lo.fields_remap.dm          = apic->irq_dest_mode;
3882 	entry->lo.fields_remap.int_type    = apic->irq_delivery_mode;
3883 	entry->hi.fields.vector            = cfg->vector;
3884 	entry->lo.fields_remap.destination =
3885 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3886 	entry->hi.fields.destination =
3887 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3888 
3889 	return modify_irte_ga(ir_data->irq_2_irte.devid,
3890 			      ir_data->irq_2_irte.index, entry, ir_data);
3891 }
3892 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3893 
3894 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3895 {
3896 	int ret;
3897 	struct amd_iommu *iommu;
3898 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3899 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3900 	struct amd_ir_data *ir_data = data->chip_data;
3901 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3902 	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
3903 
3904 	/* Note:
3905 	 * This device has never been set up for guest mode.
3906 	 * we should not modify the IRTE
3907 	 */
3908 	if (!dev_data || !dev_data->use_vapic)
3909 		return 0;
3910 
3911 	ir_data->cfg = irqd_cfg(data);
3912 	pi_data->ir_data = ir_data;
3913 
3914 	/* Note:
3915 	 * SVM tries to set up for VAPIC mode, but we are in
3916 	 * legacy mode. So, we force legacy mode instead.
3917 	 */
3918 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3919 		pr_debug("%s: Fall back to using intr legacy remap\n",
3920 			 __func__);
3921 		pi_data->is_guest_mode = false;
3922 	}
3923 
3924 	iommu = amd_iommu_rlookup_table[irte_info->devid];
3925 	if (iommu == NULL)
3926 		return -EINVAL;
3927 
3928 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3929 	if (pi_data->is_guest_mode) {
3930 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3931 		ir_data->ga_vector = vcpu_pi_info->vector;
3932 		ir_data->ga_tag = pi_data->ga_tag;
3933 		ret = amd_iommu_activate_guest_mode(ir_data);
3934 		if (!ret)
3935 			ir_data->cached_ga_tag = pi_data->ga_tag;
3936 	} else {
3937 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3938 
3939 		/*
3940 		 * This communicates the ga_tag back to the caller
3941 		 * so that it can do all the necessary clean up.
3942 		 */
3943 		if (!ret)
3944 			ir_data->cached_ga_tag = 0;
3945 	}
3946 
3947 	return ret;
3948 }
3949 
3950 
3951 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3952 			       struct amd_ir_data *ir_data,
3953 			       struct irq_2_irte *irte_info,
3954 			       struct irq_cfg *cfg)
3955 {
3956 
3957 	/*
3958 	 * Atomically updates the IRTE with the new destination, vector
3959 	 * and flushes the interrupt entry cache.
3960 	 */
3961 	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
3962 				      irte_info->index, cfg->vector,
3963 				      cfg->dest_apicid);
3964 }
3965 
3966 static int amd_ir_set_affinity(struct irq_data *data,
3967 			       const struct cpumask *mask, bool force)
3968 {
3969 	struct amd_ir_data *ir_data = data->chip_data;
3970 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3971 	struct irq_cfg *cfg = irqd_cfg(data);
3972 	struct irq_data *parent = data->parent_data;
3973 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3974 	int ret;
3975 
3976 	if (!iommu)
3977 		return -ENODEV;
3978 
3979 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3980 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3981 		return ret;
3982 
3983 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3984 	/*
3985 	 * After this point, all the interrupts will start arriving
3986 	 * at the new destination. So, time to cleanup the previous
3987 	 * vector allocation.
3988 	 */
3989 	send_cleanup_vector(cfg);
3990 
3991 	return IRQ_SET_MASK_OK_DONE;
3992 }
3993 
3994 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3995 {
3996 	struct amd_ir_data *ir_data = irq_data->chip_data;
3997 
3998 	*msg = ir_data->msi_entry;
3999 }
4000 
4001 static struct irq_chip amd_ir_chip = {
4002 	.name			= "AMD-IR",
4003 	.irq_ack		= apic_ack_irq,
4004 	.irq_set_affinity	= amd_ir_set_affinity,
4005 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
4006 	.irq_compose_msi_msg	= ir_compose_msi_msg,
4007 };
4008 
4009 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4010 {
4011 	struct fwnode_handle *fn;
4012 
4013 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4014 	if (!fn)
4015 		return -ENOMEM;
4016 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4017 	if (!iommu->ir_domain) {
4018 		irq_domain_free_fwnode(fn);
4019 		return -ENOMEM;
4020 	}
4021 
4022 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4023 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4024 							     "AMD-IR-MSI",
4025 							     iommu->index);
4026 	return 0;
4027 }
4028 
4029 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4030 {
4031 	unsigned long flags;
4032 	struct amd_iommu *iommu;
4033 	struct irq_remap_table *table;
4034 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4035 	int devid = ir_data->irq_2_irte.devid;
4036 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4037 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4038 
4039 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4040 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4041 		return 0;
4042 
4043 	iommu = amd_iommu_rlookup_table[devid];
4044 	if (!iommu)
4045 		return -ENODEV;
4046 
4047 	table = get_irq_table(devid);
4048 	if (!table)
4049 		return -ENODEV;
4050 
4051 	raw_spin_lock_irqsave(&table->lock, flags);
4052 
4053 	if (ref->lo.fields_vapic.guest_mode) {
4054 		if (cpu >= 0) {
4055 			ref->lo.fields_vapic.destination =
4056 						APICID_TO_IRTE_DEST_LO(cpu);
4057 			ref->hi.fields.destination =
4058 						APICID_TO_IRTE_DEST_HI(cpu);
4059 		}
4060 		ref->lo.fields_vapic.is_run = is_run;
4061 		barrier();
4062 	}
4063 
4064 	raw_spin_unlock_irqrestore(&table->lock, flags);
4065 
4066 	iommu_flush_irt(iommu, devid);
4067 	iommu_completion_wait(iommu);
4068 	return 0;
4069 }
4070 EXPORT_SYMBOL(amd_iommu_update_ga);
4071 #endif
4072