1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/pci-ats.h> 15 #include <linux/bitmap.h> 16 #include <linux/slab.h> 17 #include <linux/debugfs.h> 18 #include <linux/scatterlist.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/dma-direct.h> 21 #include <linux/idr.h> 22 #include <linux/iommu-helper.h> 23 #include <linux/delay.h> 24 #include <linux/amd-iommu.h> 25 #include <linux/notifier.h> 26 #include <linux/export.h> 27 #include <linux/irq.h> 28 #include <linux/msi.h> 29 #include <linux/irqdomain.h> 30 #include <linux/percpu.h> 31 #include <linux/io-pgtable.h> 32 #include <linux/cc_platform.h> 33 #include <asm/irq_remapping.h> 34 #include <asm/io_apic.h> 35 #include <asm/apic.h> 36 #include <asm/hw_irq.h> 37 #include <asm/proto.h> 38 #include <asm/iommu.h> 39 #include <asm/gart.h> 40 #include <asm/dma.h> 41 #include <uapi/linux/iommufd.h> 42 43 #include "amd_iommu.h" 44 #include "../dma-iommu.h" 45 #include "../irq_remapping.h" 46 #include "../iommu-pages.h" 47 48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 49 50 /* Reserved IOVA ranges */ 51 #define MSI_RANGE_START (0xfee00000) 52 #define MSI_RANGE_END (0xfeefffff) 53 #define HT_RANGE_START (0xfd00000000ULL) 54 #define HT_RANGE_END (0xffffffffffULL) 55 56 LIST_HEAD(ioapic_map); 57 LIST_HEAD(hpet_map); 58 LIST_HEAD(acpihid_map); 59 60 const struct iommu_ops amd_iommu_ops; 61 static const struct iommu_dirty_ops amd_dirty_ops; 62 63 int amd_iommu_max_glx_val = -1; 64 65 /* 66 * general struct to manage commands send to an IOMMU 67 */ 68 struct iommu_cmd { 69 u32 data[4]; 70 }; 71 72 /* 73 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap 74 * to know which ones are already in use. 75 */ 76 DEFINE_IDA(pdom_ids); 77 78 struct kmem_cache *amd_iommu_irq_cache; 79 80 static int amd_iommu_attach_device(struct iommu_domain *dom, 81 struct device *dev); 82 83 static void set_dte_entry(struct amd_iommu *iommu, 84 struct iommu_dev_data *dev_data); 85 86 /**************************************************************************** 87 * 88 * Helper functions 89 * 90 ****************************************************************************/ 91 92 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom) 93 { 94 return (pdom && (pdom->pd_mode == PD_MODE_V2)); 95 } 96 97 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom) 98 { 99 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY); 100 } 101 102 /* 103 * We cannot support PASID w/ existing v1 page table in the same domain 104 * since it will be nested. However, existing domain w/ v2 page table 105 * or passthrough mode can be used for PASID. 106 */ 107 static inline bool pdom_is_sva_capable(struct protection_domain *pdom) 108 { 109 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom); 110 } 111 112 static inline int get_acpihid_device_id(struct device *dev, 113 struct acpihid_map_entry **entry) 114 { 115 struct acpi_device *adev = ACPI_COMPANION(dev); 116 struct acpihid_map_entry *p; 117 118 if (!adev) 119 return -ENODEV; 120 121 list_for_each_entry(p, &acpihid_map, list) { 122 if (acpi_dev_hid_uid_match(adev, p->hid, 123 p->uid[0] ? p->uid : NULL)) { 124 if (entry) 125 *entry = p; 126 return p->devid; 127 } 128 } 129 return -EINVAL; 130 } 131 132 static inline int get_device_sbdf_id(struct device *dev) 133 { 134 int sbdf; 135 136 if (dev_is_pci(dev)) 137 sbdf = get_pci_sbdf_id(to_pci_dev(dev)); 138 else 139 sbdf = get_acpihid_device_id(dev, NULL); 140 141 return sbdf; 142 } 143 144 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu) 145 { 146 struct dev_table_entry *dev_table; 147 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 148 149 BUG_ON(pci_seg == NULL); 150 dev_table = pci_seg->dev_table; 151 BUG_ON(dev_table == NULL); 152 153 return dev_table; 154 } 155 156 static inline u16 get_device_segment(struct device *dev) 157 { 158 u16 seg; 159 160 if (dev_is_pci(dev)) { 161 struct pci_dev *pdev = to_pci_dev(dev); 162 163 seg = pci_domain_nr(pdev->bus); 164 } else { 165 u32 devid = get_acpihid_device_id(dev, NULL); 166 167 seg = PCI_SBDF_TO_SEGID(devid); 168 } 169 170 return seg; 171 } 172 173 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */ 174 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid) 175 { 176 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 177 178 pci_seg->rlookup_table[devid] = iommu; 179 } 180 181 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid) 182 { 183 struct amd_iommu_pci_seg *pci_seg; 184 185 for_each_pci_segment(pci_seg) { 186 if (pci_seg->id == seg) 187 return pci_seg->rlookup_table[devid]; 188 } 189 return NULL; 190 } 191 192 static struct amd_iommu *rlookup_amd_iommu(struct device *dev) 193 { 194 u16 seg = get_device_segment(dev); 195 int devid = get_device_sbdf_id(dev); 196 197 if (devid < 0) 198 return NULL; 199 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid)); 200 } 201 202 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid) 203 { 204 struct iommu_dev_data *dev_data; 205 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 206 207 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 208 if (!dev_data) 209 return NULL; 210 211 mutex_init(&dev_data->mutex); 212 dev_data->devid = devid; 213 ratelimit_default_init(&dev_data->rs); 214 215 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list); 216 return dev_data; 217 } 218 219 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid) 220 { 221 struct iommu_dev_data *dev_data; 222 struct llist_node *node; 223 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 224 225 if (llist_empty(&pci_seg->dev_data_list)) 226 return NULL; 227 228 node = pci_seg->dev_data_list.first; 229 llist_for_each_entry(dev_data, node, dev_data_list) { 230 if (dev_data->devid == devid) 231 return dev_data; 232 } 233 234 return NULL; 235 } 236 237 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 238 { 239 struct amd_iommu *iommu; 240 struct dev_table_entry *dev_table; 241 u16 devid = pci_dev_id(pdev); 242 243 if (devid == alias) 244 return 0; 245 246 iommu = rlookup_amd_iommu(&pdev->dev); 247 if (!iommu) 248 return 0; 249 250 amd_iommu_set_rlookup_table(iommu, alias); 251 dev_table = get_dev_table(iommu); 252 memcpy(dev_table[alias].data, 253 dev_table[devid].data, 254 sizeof(dev_table[alias].data)); 255 256 return 0; 257 } 258 259 static void clone_aliases(struct amd_iommu *iommu, struct device *dev) 260 { 261 struct pci_dev *pdev; 262 263 if (!dev_is_pci(dev)) 264 return; 265 pdev = to_pci_dev(dev); 266 267 /* 268 * The IVRS alias stored in the alias table may not be 269 * part of the PCI DMA aliases if it's bus differs 270 * from the original device. 271 */ 272 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL); 273 274 pci_for_each_dma_alias(pdev, clone_alias, NULL); 275 } 276 277 static void setup_aliases(struct amd_iommu *iommu, struct device *dev) 278 { 279 struct pci_dev *pdev = to_pci_dev(dev); 280 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 281 u16 ivrs_alias; 282 283 /* For ACPI HID devices, there are no aliases */ 284 if (!dev_is_pci(dev)) 285 return; 286 287 /* 288 * Add the IVRS alias to the pci aliases if it is on the same 289 * bus. The IVRS table may know about a quirk that we don't. 290 */ 291 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)]; 292 if (ivrs_alias != pci_dev_id(pdev) && 293 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 294 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 295 296 clone_aliases(iommu, dev); 297 } 298 299 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid) 300 { 301 struct iommu_dev_data *dev_data; 302 303 dev_data = search_dev_data(iommu, devid); 304 305 if (dev_data == NULL) { 306 dev_data = alloc_dev_data(iommu, devid); 307 if (!dev_data) 308 return NULL; 309 310 if (translation_pre_enabled(iommu)) 311 dev_data->defer_attach = true; 312 } 313 314 return dev_data; 315 } 316 317 /* 318 * Find or create an IOMMU group for a acpihid device. 319 */ 320 static struct iommu_group *acpihid_device_group(struct device *dev) 321 { 322 struct acpihid_map_entry *p, *entry = NULL; 323 int devid; 324 325 devid = get_acpihid_device_id(dev, &entry); 326 if (devid < 0) 327 return ERR_PTR(devid); 328 329 list_for_each_entry(p, &acpihid_map, list) { 330 if ((devid == p->devid) && p->group) 331 entry->group = p->group; 332 } 333 334 if (!entry->group) 335 entry->group = generic_device_group(dev); 336 else 337 iommu_group_ref_get(entry->group); 338 339 return entry->group; 340 } 341 342 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data) 343 { 344 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP); 345 } 346 347 static u32 pdev_get_caps(struct pci_dev *pdev) 348 { 349 int features; 350 u32 flags = 0; 351 352 if (pci_ats_supported(pdev)) 353 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 354 355 if (pci_pri_supported(pdev)) 356 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 357 358 features = pci_pasid_features(pdev); 359 if (features >= 0) { 360 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 361 362 if (features & PCI_PASID_CAP_EXEC) 363 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 364 365 if (features & PCI_PASID_CAP_PRIV) 366 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 367 } 368 369 return flags; 370 } 371 372 static inline int pdev_enable_cap_ats(struct pci_dev *pdev) 373 { 374 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 375 int ret = -EINVAL; 376 377 if (dev_data->ats_enabled) 378 return 0; 379 380 if (amd_iommu_iotlb_sup && 381 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) { 382 ret = pci_enable_ats(pdev, PAGE_SHIFT); 383 if (!ret) { 384 dev_data->ats_enabled = 1; 385 dev_data->ats_qdep = pci_ats_queue_depth(pdev); 386 } 387 } 388 389 return ret; 390 } 391 392 static inline void pdev_disable_cap_ats(struct pci_dev *pdev) 393 { 394 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 395 396 if (dev_data->ats_enabled) { 397 pci_disable_ats(pdev); 398 dev_data->ats_enabled = 0; 399 } 400 } 401 402 static inline int pdev_enable_cap_pri(struct pci_dev *pdev) 403 { 404 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 405 int ret = -EINVAL; 406 407 if (dev_data->pri_enabled) 408 return 0; 409 410 if (!dev_data->ats_enabled) 411 return 0; 412 413 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) { 414 /* 415 * First reset the PRI state of the device. 416 * FIXME: Hardcode number of outstanding requests for now 417 */ 418 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) { 419 dev_data->pri_enabled = 1; 420 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 421 422 ret = 0; 423 } 424 } 425 426 return ret; 427 } 428 429 static inline void pdev_disable_cap_pri(struct pci_dev *pdev) 430 { 431 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 432 433 if (dev_data->pri_enabled) { 434 pci_disable_pri(pdev); 435 dev_data->pri_enabled = 0; 436 } 437 } 438 439 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev) 440 { 441 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 442 int ret = -EINVAL; 443 444 if (dev_data->pasid_enabled) 445 return 0; 446 447 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) { 448 /* Only allow access to user-accessible pages */ 449 ret = pci_enable_pasid(pdev, 0); 450 if (!ret) 451 dev_data->pasid_enabled = 1; 452 } 453 454 return ret; 455 } 456 457 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev) 458 { 459 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev); 460 461 if (dev_data->pasid_enabled) { 462 pci_disable_pasid(pdev); 463 dev_data->pasid_enabled = 0; 464 } 465 } 466 467 static void pdev_enable_caps(struct pci_dev *pdev) 468 { 469 pdev_enable_cap_ats(pdev); 470 pdev_enable_cap_pasid(pdev); 471 pdev_enable_cap_pri(pdev); 472 } 473 474 static void pdev_disable_caps(struct pci_dev *pdev) 475 { 476 pdev_disable_cap_ats(pdev); 477 pdev_disable_cap_pasid(pdev); 478 pdev_disable_cap_pri(pdev); 479 } 480 481 /* 482 * This function checks if the driver got a valid device from the caller to 483 * avoid dereferencing invalid pointers. 484 */ 485 static bool check_device(struct device *dev) 486 { 487 struct amd_iommu_pci_seg *pci_seg; 488 struct amd_iommu *iommu; 489 int devid, sbdf; 490 491 if (!dev) 492 return false; 493 494 sbdf = get_device_sbdf_id(dev); 495 if (sbdf < 0) 496 return false; 497 devid = PCI_SBDF_TO_DEVID(sbdf); 498 499 iommu = rlookup_amd_iommu(dev); 500 if (!iommu) 501 return false; 502 503 /* Out of our scope? */ 504 pci_seg = iommu->pci_seg; 505 if (devid > pci_seg->last_bdf) 506 return false; 507 508 return true; 509 } 510 511 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev) 512 { 513 struct iommu_dev_data *dev_data; 514 int devid, sbdf; 515 516 if (dev_iommu_priv_get(dev)) 517 return 0; 518 519 sbdf = get_device_sbdf_id(dev); 520 if (sbdf < 0) 521 return sbdf; 522 523 devid = PCI_SBDF_TO_DEVID(sbdf); 524 dev_data = find_dev_data(iommu, devid); 525 if (!dev_data) 526 return -ENOMEM; 527 528 dev_data->dev = dev; 529 setup_aliases(iommu, dev); 530 531 /* 532 * By default we use passthrough mode for IOMMUv2 capable device. 533 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 534 * invalid address), we ignore the capability for the device so 535 * it'll be forced to go into translation mode. 536 */ 537 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 538 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) { 539 dev_data->flags = pdev_get_caps(to_pci_dev(dev)); 540 } 541 542 dev_iommu_priv_set(dev, dev_data); 543 544 return 0; 545 } 546 547 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev) 548 { 549 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 550 struct dev_table_entry *dev_table = get_dev_table(iommu); 551 int devid, sbdf; 552 553 sbdf = get_device_sbdf_id(dev); 554 if (sbdf < 0) 555 return; 556 557 devid = PCI_SBDF_TO_DEVID(sbdf); 558 pci_seg->rlookup_table[devid] = NULL; 559 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry)); 560 561 setup_aliases(iommu, dev); 562 } 563 564 565 /**************************************************************************** 566 * 567 * Interrupt handling functions 568 * 569 ****************************************************************************/ 570 571 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid) 572 { 573 int i; 574 struct dev_table_entry *dev_table = get_dev_table(iommu); 575 576 for (i = 0; i < 4; ++i) 577 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]); 578 } 579 580 static void dump_command(unsigned long phys_addr) 581 { 582 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 583 int i; 584 585 for (i = 0; i < 4; ++i) 586 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 587 } 588 589 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event) 590 { 591 struct iommu_dev_data *dev_data = NULL; 592 int devid, vmg_tag, flags; 593 struct pci_dev *pdev; 594 u64 spa; 595 596 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 597 vmg_tag = (event[1]) & 0xFFFF; 598 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 599 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); 600 601 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 602 devid & 0xff); 603 if (pdev) 604 dev_data = dev_iommu_priv_get(&pdev->dev); 605 606 if (dev_data) { 607 if (__ratelimit(&dev_data->rs)) { 608 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 609 vmg_tag, spa, flags); 610 } 611 } else { 612 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 613 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 614 vmg_tag, spa, flags); 615 } 616 617 if (pdev) 618 pci_dev_put(pdev); 619 } 620 621 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event) 622 { 623 struct iommu_dev_data *dev_data = NULL; 624 int devid, flags_rmp, vmg_tag, flags; 625 struct pci_dev *pdev; 626 u64 gpa; 627 628 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 629 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; 630 vmg_tag = (event[1]) & 0xFFFF; 631 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 632 gpa = ((u64)event[3] << 32) | event[2]; 633 634 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 635 devid & 0xff); 636 if (pdev) 637 dev_data = dev_iommu_priv_get(&pdev->dev); 638 639 if (dev_data) { 640 if (__ratelimit(&dev_data->rs)) { 641 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 642 vmg_tag, gpa, flags_rmp, flags); 643 } 644 } else { 645 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 646 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 647 vmg_tag, gpa, flags_rmp, flags); 648 } 649 650 if (pdev) 651 pci_dev_put(pdev); 652 } 653 654 #define IS_IOMMU_MEM_TRANSACTION(flags) \ 655 (((flags) & EVENT_FLAG_I) == 0) 656 657 #define IS_WRITE_REQUEST(flags) \ 658 ((flags) & EVENT_FLAG_RW) 659 660 static void amd_iommu_report_page_fault(struct amd_iommu *iommu, 661 u16 devid, u16 domain_id, 662 u64 address, int flags) 663 { 664 struct iommu_dev_data *dev_data = NULL; 665 struct pci_dev *pdev; 666 667 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 668 devid & 0xff); 669 if (pdev) 670 dev_data = dev_iommu_priv_get(&pdev->dev); 671 672 if (dev_data) { 673 /* 674 * If this is a DMA fault (for which the I(nterrupt) 675 * bit will be unset), allow report_iommu_fault() to 676 * prevent logging it. 677 */ 678 if (IS_IOMMU_MEM_TRANSACTION(flags)) { 679 /* Device not attached to domain properly */ 680 if (dev_data->domain == NULL) { 681 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n"); 682 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n", 683 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), 684 PCI_FUNC(devid), domain_id); 685 goto out; 686 } 687 688 if (!report_iommu_fault(&dev_data->domain->domain, 689 &pdev->dev, address, 690 IS_WRITE_REQUEST(flags) ? 691 IOMMU_FAULT_WRITE : 692 IOMMU_FAULT_READ)) 693 goto out; 694 } 695 696 if (__ratelimit(&dev_data->rs)) { 697 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 698 domain_id, address, flags); 699 } 700 } else { 701 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 702 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 703 domain_id, address, flags); 704 } 705 706 out: 707 if (pdev) 708 pci_dev_put(pdev); 709 } 710 711 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 712 { 713 struct device *dev = iommu->iommu.dev; 714 int type, devid, flags, tag; 715 volatile u32 *event = __evt; 716 int count = 0; 717 u64 address; 718 u32 pasid; 719 720 retry: 721 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 722 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 723 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 724 (event[1] & EVENT_DOMID_MASK_LO); 725 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 726 address = (u64)(((u64)event[3]) << 32) | event[2]; 727 728 if (type == 0) { 729 /* Did we hit the erratum? */ 730 if (++count == LOOP_TIMEOUT) { 731 pr_err("No event written to event log\n"); 732 return; 733 } 734 udelay(1); 735 goto retry; 736 } 737 738 if (type == EVENT_TYPE_IO_FAULT) { 739 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags); 740 return; 741 } 742 743 switch (type) { 744 case EVENT_TYPE_ILL_DEV: 745 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 746 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 747 pasid, address, flags); 748 dump_dte_entry(iommu, devid); 749 break; 750 case EVENT_TYPE_DEV_TAB_ERR: 751 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x " 752 "address=0x%llx flags=0x%04x]\n", 753 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 754 address, flags); 755 break; 756 case EVENT_TYPE_PAGE_TAB_ERR: 757 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 758 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 759 pasid, address, flags); 760 break; 761 case EVENT_TYPE_ILL_CMD: 762 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 763 dump_command(address); 764 break; 765 case EVENT_TYPE_CMD_HARD_ERR: 766 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 767 address, flags); 768 break; 769 case EVENT_TYPE_IOTLB_INV_TO: 770 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n", 771 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 772 address); 773 break; 774 case EVENT_TYPE_INV_DEV_REQ: 775 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 776 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 777 pasid, address, flags); 778 break; 779 case EVENT_TYPE_RMP_FAULT: 780 amd_iommu_report_rmp_fault(iommu, event); 781 break; 782 case EVENT_TYPE_RMP_HW_ERR: 783 amd_iommu_report_rmp_hw_error(iommu, event); 784 break; 785 case EVENT_TYPE_INV_PPR_REQ: 786 pasid = PPR_PASID(*((u64 *)__evt)); 787 tag = event[1] & 0x03FF; 788 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 789 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 790 pasid, address, flags, tag); 791 break; 792 default: 793 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 794 event[0], event[1], event[2], event[3]); 795 } 796 797 /* 798 * To detect the hardware errata 732 we need to clear the 799 * entry back to zero. This issue does not exist on SNP 800 * enabled system. Also this buffer is not writeable on 801 * SNP enabled system. 802 */ 803 if (!amd_iommu_snp_en) 804 memset(__evt, 0, 4 * sizeof(u32)); 805 } 806 807 static void iommu_poll_events(struct amd_iommu *iommu) 808 { 809 u32 head, tail; 810 811 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 812 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 813 814 while (head != tail) { 815 iommu_print_event(iommu, iommu->evt_buf + head); 816 817 /* Update head pointer of hardware ring-buffer */ 818 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 819 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 820 } 821 822 } 823 824 #ifdef CONFIG_IRQ_REMAP 825 static int (*iommu_ga_log_notifier)(u32); 826 827 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 828 { 829 iommu_ga_log_notifier = notifier; 830 831 return 0; 832 } 833 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 834 835 static void iommu_poll_ga_log(struct amd_iommu *iommu) 836 { 837 u32 head, tail; 838 839 if (iommu->ga_log == NULL) 840 return; 841 842 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 843 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 844 845 while (head != tail) { 846 volatile u64 *raw; 847 u64 log_entry; 848 849 raw = (u64 *)(iommu->ga_log + head); 850 851 /* Avoid memcpy function-call overhead */ 852 log_entry = *raw; 853 854 /* Update head pointer of hardware ring-buffer */ 855 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 856 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 857 858 /* Handle GA entry */ 859 switch (GA_REQ_TYPE(log_entry)) { 860 case GA_GUEST_NR: 861 if (!iommu_ga_log_notifier) 862 break; 863 864 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 865 __func__, GA_DEVID(log_entry), 866 GA_TAG(log_entry)); 867 868 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 869 pr_err("GA log notifier failed.\n"); 870 break; 871 default: 872 break; 873 } 874 } 875 } 876 877 static void 878 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 879 { 880 if (!irq_remapping_enabled || !dev_is_pci(dev) || 881 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev))) 882 return; 883 884 dev_set_msi_domain(dev, iommu->ir_domain); 885 } 886 887 #else /* CONFIG_IRQ_REMAP */ 888 static inline void 889 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 890 #endif /* !CONFIG_IRQ_REMAP */ 891 892 static void amd_iommu_handle_irq(void *data, const char *evt_type, 893 u32 int_mask, u32 overflow_mask, 894 void (*int_handler)(struct amd_iommu *), 895 void (*overflow_handler)(struct amd_iommu *)) 896 { 897 struct amd_iommu *iommu = (struct amd_iommu *) data; 898 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 899 u32 mask = int_mask | overflow_mask; 900 901 while (status & mask) { 902 /* Enable interrupt sources again */ 903 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET); 904 905 if (int_handler) { 906 pr_devel("Processing IOMMU (ivhd%d) %s Log\n", 907 iommu->index, evt_type); 908 int_handler(iommu); 909 } 910 911 if ((status & overflow_mask) && overflow_handler) 912 overflow_handler(iommu); 913 914 /* 915 * Hardware bug: ERBT1312 916 * When re-enabling interrupt (by writing 1 917 * to clear the bit), the hardware might also try to set 918 * the interrupt bit in the event status register. 919 * In this scenario, the bit will be set, and disable 920 * subsequent interrupts. 921 * 922 * Workaround: The IOMMU driver should read back the 923 * status register and check if the interrupt bits are cleared. 924 * If not, driver will need to go through the interrupt handler 925 * again and re-clear the bits 926 */ 927 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 928 } 929 } 930 931 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data) 932 { 933 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK, 934 MMIO_STATUS_EVT_OVERFLOW_MASK, 935 iommu_poll_events, amd_iommu_restart_event_logging); 936 937 return IRQ_HANDLED; 938 } 939 940 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data) 941 { 942 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK, 943 MMIO_STATUS_PPR_OVERFLOW_MASK, 944 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log); 945 946 return IRQ_HANDLED; 947 } 948 949 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data) 950 { 951 #ifdef CONFIG_IRQ_REMAP 952 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK, 953 MMIO_STATUS_GALOG_OVERFLOW_MASK, 954 iommu_poll_ga_log, amd_iommu_restart_ga_log); 955 #endif 956 957 return IRQ_HANDLED; 958 } 959 960 irqreturn_t amd_iommu_int_thread(int irq, void *data) 961 { 962 amd_iommu_int_thread_evtlog(irq, data); 963 amd_iommu_int_thread_pprlog(irq, data); 964 amd_iommu_int_thread_galog(irq, data); 965 966 return IRQ_HANDLED; 967 } 968 969 irqreturn_t amd_iommu_int_handler(int irq, void *data) 970 { 971 return IRQ_WAKE_THREAD; 972 } 973 974 /**************************************************************************** 975 * 976 * IOMMU command queuing functions 977 * 978 ****************************************************************************/ 979 980 static int wait_on_sem(struct amd_iommu *iommu, u64 data) 981 { 982 int i = 0; 983 984 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { 985 udelay(1); 986 i += 1; 987 } 988 989 if (i == LOOP_TIMEOUT) { 990 pr_alert("Completion-Wait loop timed out\n"); 991 return -EIO; 992 } 993 994 return 0; 995 } 996 997 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 998 struct iommu_cmd *cmd) 999 { 1000 u8 *target; 1001 u32 tail; 1002 1003 /* Copy command to buffer */ 1004 tail = iommu->cmd_buf_tail; 1005 target = iommu->cmd_buf + tail; 1006 memcpy(target, cmd, sizeof(*cmd)); 1007 1008 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1009 iommu->cmd_buf_tail = tail; 1010 1011 /* Tell the IOMMU about it */ 1012 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 1013 } 1014 1015 static void build_completion_wait(struct iommu_cmd *cmd, 1016 struct amd_iommu *iommu, 1017 u64 data) 1018 { 1019 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); 1020 1021 memset(cmd, 0, sizeof(*cmd)); 1022 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 1023 cmd->data[1] = upper_32_bits(paddr); 1024 cmd->data[2] = lower_32_bits(data); 1025 cmd->data[3] = upper_32_bits(data); 1026 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 1027 } 1028 1029 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 1030 { 1031 memset(cmd, 0, sizeof(*cmd)); 1032 cmd->data[0] = devid; 1033 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 1034 } 1035 1036 /* 1037 * Builds an invalidation address which is suitable for one page or multiple 1038 * pages. Sets the size bit (S) as needed is more than one page is flushed. 1039 */ 1040 static inline u64 build_inv_address(u64 address, size_t size) 1041 { 1042 u64 pages, end, msb_diff; 1043 1044 pages = iommu_num_pages(address, size, PAGE_SIZE); 1045 1046 if (pages == 1) 1047 return address & PAGE_MASK; 1048 1049 end = address + size - 1; 1050 1051 /* 1052 * msb_diff would hold the index of the most significant bit that 1053 * flipped between the start and end. 1054 */ 1055 msb_diff = fls64(end ^ address) - 1; 1056 1057 /* 1058 * Bits 63:52 are sign extended. If for some reason bit 51 is different 1059 * between the start and the end, invalidate everything. 1060 */ 1061 if (unlikely(msb_diff > 51)) { 1062 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 1063 } else { 1064 /* 1065 * The msb-bit must be clear on the address. Just set all the 1066 * lower bits. 1067 */ 1068 address |= (1ull << msb_diff) - 1; 1069 } 1070 1071 /* Clear bits 11:0 */ 1072 address &= PAGE_MASK; 1073 1074 /* Set the size bit - we flush more than one 4kb page */ 1075 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; 1076 } 1077 1078 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 1079 size_t size, u16 domid, 1080 ioasid_t pasid, bool gn) 1081 { 1082 u64 inv_address = build_inv_address(address, size); 1083 1084 memset(cmd, 0, sizeof(*cmd)); 1085 1086 cmd->data[1] |= domid; 1087 cmd->data[2] = lower_32_bits(inv_address); 1088 cmd->data[3] = upper_32_bits(inv_address); 1089 /* PDE bit - we want to flush everything, not only the PTEs */ 1090 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1091 if (gn) { 1092 cmd->data[0] |= pasid; 1093 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1094 } 1095 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1096 } 1097 1098 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 1099 u64 address, size_t size, 1100 ioasid_t pasid, bool gn) 1101 { 1102 u64 inv_address = build_inv_address(address, size); 1103 1104 memset(cmd, 0, sizeof(*cmd)); 1105 1106 cmd->data[0] = devid; 1107 cmd->data[0] |= (qdep & 0xff) << 24; 1108 cmd->data[1] = devid; 1109 cmd->data[2] = lower_32_bits(inv_address); 1110 cmd->data[3] = upper_32_bits(inv_address); 1111 if (gn) { 1112 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 1113 cmd->data[1] |= (pasid & 0xff) << 16; 1114 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1115 } 1116 1117 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1118 } 1119 1120 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1121 int status, int tag, u8 gn) 1122 { 1123 memset(cmd, 0, sizeof(*cmd)); 1124 1125 cmd->data[0] = devid; 1126 if (gn) { 1127 cmd->data[1] = pasid; 1128 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 1129 } 1130 cmd->data[3] = tag & 0x1ff; 1131 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 1132 1133 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 1134 } 1135 1136 static void build_inv_all(struct iommu_cmd *cmd) 1137 { 1138 memset(cmd, 0, sizeof(*cmd)); 1139 CMD_SET_TYPE(cmd, CMD_INV_ALL); 1140 } 1141 1142 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 1143 { 1144 memset(cmd, 0, sizeof(*cmd)); 1145 cmd->data[0] = devid; 1146 CMD_SET_TYPE(cmd, CMD_INV_IRT); 1147 } 1148 1149 /* 1150 * Writes the command to the IOMMUs command buffer and informs the 1151 * hardware about the new command. 1152 */ 1153 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 1154 struct iommu_cmd *cmd, 1155 bool sync) 1156 { 1157 unsigned int count = 0; 1158 u32 left, next_tail; 1159 1160 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1161 again: 1162 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1163 1164 if (left <= 0x20) { 1165 /* Skip udelay() the first time around */ 1166 if (count++) { 1167 if (count == LOOP_TIMEOUT) { 1168 pr_err("Command buffer timeout\n"); 1169 return -EIO; 1170 } 1171 1172 udelay(1); 1173 } 1174 1175 /* Update head and recheck remaining space */ 1176 iommu->cmd_buf_head = readl(iommu->mmio_base + 1177 MMIO_CMD_HEAD_OFFSET); 1178 1179 goto again; 1180 } 1181 1182 copy_cmd_to_buffer(iommu, cmd); 1183 1184 /* Do we need to make sure all commands are processed? */ 1185 iommu->need_sync = sync; 1186 1187 return 0; 1188 } 1189 1190 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1191 struct iommu_cmd *cmd, 1192 bool sync) 1193 { 1194 unsigned long flags; 1195 int ret; 1196 1197 raw_spin_lock_irqsave(&iommu->lock, flags); 1198 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1199 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1200 1201 return ret; 1202 } 1203 1204 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1205 { 1206 return iommu_queue_command_sync(iommu, cmd, true); 1207 } 1208 1209 /* 1210 * This function queues a completion wait command into the command 1211 * buffer of an IOMMU 1212 */ 1213 static int iommu_completion_wait(struct amd_iommu *iommu) 1214 { 1215 struct iommu_cmd cmd; 1216 unsigned long flags; 1217 int ret; 1218 u64 data; 1219 1220 if (!iommu->need_sync) 1221 return 0; 1222 1223 data = atomic64_inc_return(&iommu->cmd_sem_val); 1224 build_completion_wait(&cmd, iommu, data); 1225 1226 raw_spin_lock_irqsave(&iommu->lock, flags); 1227 1228 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1229 if (ret) 1230 goto out_unlock; 1231 1232 ret = wait_on_sem(iommu, data); 1233 1234 out_unlock: 1235 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1236 1237 return ret; 1238 } 1239 1240 static void domain_flush_complete(struct protection_domain *domain) 1241 { 1242 struct pdom_iommu_info *pdom_iommu_info; 1243 unsigned long i; 1244 1245 lockdep_assert_held(&domain->lock); 1246 1247 /* 1248 * Devices of this domain are behind this IOMMU 1249 * We need to wait for completion of all commands. 1250 */ 1251 xa_for_each(&domain->iommu_array, i, pdom_iommu_info) 1252 iommu_completion_wait(pdom_iommu_info->iommu); 1253 } 1254 1255 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1256 { 1257 struct iommu_cmd cmd; 1258 1259 build_inv_dte(&cmd, devid); 1260 1261 return iommu_queue_command(iommu, &cmd); 1262 } 1263 1264 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1265 { 1266 u32 devid; 1267 u16 last_bdf = iommu->pci_seg->last_bdf; 1268 1269 for (devid = 0; devid <= last_bdf; ++devid) 1270 iommu_flush_dte(iommu, devid); 1271 1272 iommu_completion_wait(iommu); 1273 } 1274 1275 /* 1276 * This function uses heavy locking and may disable irqs for some time. But 1277 * this is no issue because it is only called during resume. 1278 */ 1279 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1280 { 1281 u32 dom_id; 1282 u16 last_bdf = iommu->pci_seg->last_bdf; 1283 1284 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) { 1285 struct iommu_cmd cmd; 1286 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1287 dom_id, IOMMU_NO_PASID, false); 1288 iommu_queue_command(iommu, &cmd); 1289 } 1290 1291 iommu_completion_wait(iommu); 1292 } 1293 1294 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1295 { 1296 struct iommu_cmd cmd; 1297 1298 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1299 dom_id, IOMMU_NO_PASID, false); 1300 iommu_queue_command(iommu, &cmd); 1301 1302 iommu_completion_wait(iommu); 1303 } 1304 1305 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1306 { 1307 struct iommu_cmd cmd; 1308 1309 build_inv_all(&cmd); 1310 1311 iommu_queue_command(iommu, &cmd); 1312 iommu_completion_wait(iommu); 1313 } 1314 1315 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1316 { 1317 struct iommu_cmd cmd; 1318 1319 build_inv_irt(&cmd, devid); 1320 1321 iommu_queue_command(iommu, &cmd); 1322 } 1323 1324 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1325 { 1326 u32 devid; 1327 u16 last_bdf = iommu->pci_seg->last_bdf; 1328 1329 if (iommu->irtcachedis_enabled) 1330 return; 1331 1332 for (devid = 0; devid <= last_bdf; devid++) 1333 iommu_flush_irt(iommu, devid); 1334 1335 iommu_completion_wait(iommu); 1336 } 1337 1338 void amd_iommu_flush_all_caches(struct amd_iommu *iommu) 1339 { 1340 if (check_feature(FEATURE_IA)) { 1341 amd_iommu_flush_all(iommu); 1342 } else { 1343 amd_iommu_flush_dte_all(iommu); 1344 amd_iommu_flush_irt_all(iommu); 1345 amd_iommu_flush_tlb_all(iommu); 1346 } 1347 } 1348 1349 /* 1350 * Command send function for flushing on-device TLB 1351 */ 1352 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address, 1353 size_t size, ioasid_t pasid, bool gn) 1354 { 1355 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 1356 struct iommu_cmd cmd; 1357 int qdep = dev_data->ats_qdep; 1358 1359 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, 1360 size, pasid, gn); 1361 1362 return iommu_queue_command(iommu, &cmd); 1363 } 1364 1365 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1366 { 1367 struct amd_iommu *iommu = data; 1368 1369 return iommu_flush_dte(iommu, alias); 1370 } 1371 1372 /* 1373 * Command send function for invalidating a device table entry 1374 */ 1375 static int device_flush_dte(struct iommu_dev_data *dev_data) 1376 { 1377 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 1378 struct pci_dev *pdev = NULL; 1379 struct amd_iommu_pci_seg *pci_seg; 1380 u16 alias; 1381 int ret; 1382 1383 if (dev_is_pci(dev_data->dev)) 1384 pdev = to_pci_dev(dev_data->dev); 1385 1386 if (pdev) 1387 ret = pci_for_each_dma_alias(pdev, 1388 device_flush_dte_alias, iommu); 1389 else 1390 ret = iommu_flush_dte(iommu, dev_data->devid); 1391 if (ret) 1392 return ret; 1393 1394 pci_seg = iommu->pci_seg; 1395 alias = pci_seg->alias_table[dev_data->devid]; 1396 if (alias != dev_data->devid) { 1397 ret = iommu_flush_dte(iommu, alias); 1398 if (ret) 1399 return ret; 1400 } 1401 1402 if (dev_data->ats_enabled) { 1403 /* Invalidate the entire contents of an IOTLB */ 1404 ret = device_flush_iotlb(dev_data, 0, ~0UL, 1405 IOMMU_NO_PASID, false); 1406 } 1407 1408 return ret; 1409 } 1410 1411 static int domain_flush_pages_v2(struct protection_domain *pdom, 1412 u64 address, size_t size) 1413 { 1414 struct iommu_dev_data *dev_data; 1415 struct iommu_cmd cmd; 1416 int ret = 0; 1417 1418 list_for_each_entry(dev_data, &pdom->dev_list, list) { 1419 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 1420 u16 domid = dev_data->gcr3_info.domid; 1421 1422 build_inv_iommu_pages(&cmd, address, size, 1423 domid, IOMMU_NO_PASID, true); 1424 1425 ret |= iommu_queue_command(iommu, &cmd); 1426 } 1427 1428 return ret; 1429 } 1430 1431 static int domain_flush_pages_v1(struct protection_domain *pdom, 1432 u64 address, size_t size) 1433 { 1434 struct pdom_iommu_info *pdom_iommu_info; 1435 struct iommu_cmd cmd; 1436 int ret = 0; 1437 unsigned long i; 1438 1439 lockdep_assert_held(&pdom->lock); 1440 1441 build_inv_iommu_pages(&cmd, address, size, 1442 pdom->id, IOMMU_NO_PASID, false); 1443 1444 xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) { 1445 /* 1446 * Devices of this domain are behind this IOMMU 1447 * We need a TLB flush 1448 */ 1449 ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd); 1450 } 1451 1452 return ret; 1453 } 1454 1455 /* 1456 * TLB invalidation function which is called from the mapping functions. 1457 * It flushes range of PTEs of the domain. 1458 */ 1459 static void __domain_flush_pages(struct protection_domain *domain, 1460 u64 address, size_t size) 1461 { 1462 struct iommu_dev_data *dev_data; 1463 int ret = 0; 1464 ioasid_t pasid = IOMMU_NO_PASID; 1465 bool gn = false; 1466 1467 if (pdom_is_v2_pgtbl_mode(domain)) { 1468 gn = true; 1469 ret = domain_flush_pages_v2(domain, address, size); 1470 } else { 1471 ret = domain_flush_pages_v1(domain, address, size); 1472 } 1473 1474 list_for_each_entry(dev_data, &domain->dev_list, list) { 1475 1476 if (!dev_data->ats_enabled) 1477 continue; 1478 1479 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn); 1480 } 1481 1482 WARN_ON(ret); 1483 } 1484 1485 void amd_iommu_domain_flush_pages(struct protection_domain *domain, 1486 u64 address, size_t size) 1487 { 1488 lockdep_assert_held(&domain->lock); 1489 1490 if (likely(!amd_iommu_np_cache)) { 1491 __domain_flush_pages(domain, address, size); 1492 1493 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */ 1494 domain_flush_complete(domain); 1495 1496 return; 1497 } 1498 1499 /* 1500 * When NpCache is on, we infer that we run in a VM and use a vIOMMU. 1501 * In such setups it is best to avoid flushes of ranges which are not 1502 * naturally aligned, since it would lead to flushes of unmodified 1503 * PTEs. Such flushes would require the hypervisor to do more work than 1504 * necessary. Therefore, perform repeated flushes of aligned ranges 1505 * until you cover the range. Each iteration flushes the smaller 1506 * between the natural alignment of the address that we flush and the 1507 * greatest naturally aligned region that fits in the range. 1508 */ 1509 while (size != 0) { 1510 int addr_alignment = __ffs(address); 1511 int size_alignment = __fls(size); 1512 int min_alignment; 1513 size_t flush_size; 1514 1515 /* 1516 * size is always non-zero, but address might be zero, causing 1517 * addr_alignment to be negative. As the casting of the 1518 * argument in __ffs(address) to long might trim the high bits 1519 * of the address on x86-32, cast to long when doing the check. 1520 */ 1521 if (likely((unsigned long)address != 0)) 1522 min_alignment = min(addr_alignment, size_alignment); 1523 else 1524 min_alignment = size_alignment; 1525 1526 flush_size = 1ul << min_alignment; 1527 1528 __domain_flush_pages(domain, address, flush_size); 1529 address += flush_size; 1530 size -= flush_size; 1531 } 1532 1533 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */ 1534 domain_flush_complete(domain); 1535 } 1536 1537 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1538 static void amd_iommu_domain_flush_all(struct protection_domain *domain) 1539 { 1540 amd_iommu_domain_flush_pages(domain, 0, 1541 CMD_INV_IOMMU_ALL_PAGES_ADDRESS); 1542 } 1543 1544 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data, 1545 ioasid_t pasid, u64 address, size_t size) 1546 { 1547 struct iommu_cmd cmd; 1548 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 1549 1550 build_inv_iommu_pages(&cmd, address, size, 1551 dev_data->gcr3_info.domid, pasid, true); 1552 iommu_queue_command(iommu, &cmd); 1553 1554 if (dev_data->ats_enabled) 1555 device_flush_iotlb(dev_data, address, size, pasid, true); 1556 1557 iommu_completion_wait(iommu); 1558 } 1559 1560 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data, 1561 ioasid_t pasid) 1562 { 1563 amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0, 1564 CMD_INV_IOMMU_ALL_PAGES_ADDRESS); 1565 } 1566 1567 /* Flush the not present cache if it exists */ 1568 static void domain_flush_np_cache(struct protection_domain *domain, 1569 dma_addr_t iova, size_t size) 1570 { 1571 if (unlikely(amd_iommu_np_cache)) { 1572 unsigned long flags; 1573 1574 spin_lock_irqsave(&domain->lock, flags); 1575 amd_iommu_domain_flush_pages(domain, iova, size); 1576 spin_unlock_irqrestore(&domain->lock, flags); 1577 } 1578 } 1579 1580 1581 /* 1582 * This function flushes the DTEs for all devices in domain 1583 */ 1584 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) 1585 { 1586 struct iommu_dev_data *dev_data; 1587 1588 list_for_each_entry(dev_data, &domain->dev_list, list) { 1589 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev); 1590 1591 set_dte_entry(iommu, dev_data); 1592 clone_aliases(iommu, dev_data->dev); 1593 } 1594 1595 list_for_each_entry(dev_data, &domain->dev_list, list) 1596 device_flush_dte(dev_data); 1597 1598 domain_flush_complete(domain); 1599 } 1600 1601 void amd_iommu_domain_update(struct protection_domain *domain) 1602 { 1603 /* Update device table */ 1604 amd_iommu_update_and_flush_device_table(domain); 1605 1606 /* Flush domain TLB(s) and wait for completion */ 1607 amd_iommu_domain_flush_all(domain); 1608 } 1609 1610 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag) 1611 { 1612 struct iommu_dev_data *dev_data; 1613 struct amd_iommu *iommu; 1614 struct iommu_cmd cmd; 1615 1616 dev_data = dev_iommu_priv_get(dev); 1617 iommu = get_amd_iommu_from_dev(dev); 1618 1619 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 1620 tag, dev_data->pri_tlp); 1621 1622 return iommu_queue_command(iommu, &cmd); 1623 } 1624 1625 /**************************************************************************** 1626 * 1627 * The next functions belong to the domain allocation. A domain is 1628 * allocated for every IOMMU as the default domain. If device isolation 1629 * is enabled, every device get its own domain. The most important thing 1630 * about domains is the page table mapping the DMA address space they 1631 * contain. 1632 * 1633 ****************************************************************************/ 1634 1635 static int pdom_id_alloc(void) 1636 { 1637 return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC); 1638 } 1639 1640 static void pdom_id_free(int id) 1641 { 1642 ida_free(&pdom_ids, id); 1643 } 1644 1645 static void free_gcr3_tbl_level1(u64 *tbl) 1646 { 1647 u64 *ptr; 1648 int i; 1649 1650 for (i = 0; i < 512; ++i) { 1651 if (!(tbl[i] & GCR3_VALID)) 1652 continue; 1653 1654 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1655 1656 iommu_free_page(ptr); 1657 } 1658 } 1659 1660 static void free_gcr3_tbl_level2(u64 *tbl) 1661 { 1662 u64 *ptr; 1663 int i; 1664 1665 for (i = 0; i < 512; ++i) { 1666 if (!(tbl[i] & GCR3_VALID)) 1667 continue; 1668 1669 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1670 1671 free_gcr3_tbl_level1(ptr); 1672 } 1673 } 1674 1675 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info) 1676 { 1677 if (gcr3_info->glx == 2) 1678 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl); 1679 else if (gcr3_info->glx == 1) 1680 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl); 1681 else 1682 WARN_ON_ONCE(gcr3_info->glx != 0); 1683 1684 gcr3_info->glx = 0; 1685 1686 /* Free per device domain ID */ 1687 pdom_id_free(gcr3_info->domid); 1688 1689 iommu_free_page(gcr3_info->gcr3_tbl); 1690 gcr3_info->gcr3_tbl = NULL; 1691 } 1692 1693 /* 1694 * Number of GCR3 table levels required. Level must be 4-Kbyte 1695 * page and can contain up to 512 entries. 1696 */ 1697 static int get_gcr3_levels(int pasids) 1698 { 1699 int levels; 1700 1701 if (pasids == -1) 1702 return amd_iommu_max_glx_val; 1703 1704 levels = get_count_order(pasids); 1705 1706 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels; 1707 } 1708 1709 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info, 1710 struct amd_iommu *iommu, int pasids) 1711 { 1712 int levels = get_gcr3_levels(pasids); 1713 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE; 1714 int domid; 1715 1716 if (levels > amd_iommu_max_glx_val) 1717 return -EINVAL; 1718 1719 if (gcr3_info->gcr3_tbl) 1720 return -EBUSY; 1721 1722 /* Allocate per device domain ID */ 1723 domid = pdom_id_alloc(); 1724 if (domid <= 0) 1725 return -ENOSPC; 1726 gcr3_info->domid = domid; 1727 1728 gcr3_info->gcr3_tbl = iommu_alloc_page_node(nid, GFP_ATOMIC); 1729 if (gcr3_info->gcr3_tbl == NULL) { 1730 pdom_id_free(domid); 1731 return -ENOMEM; 1732 } 1733 1734 gcr3_info->glx = levels; 1735 1736 return 0; 1737 } 1738 1739 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info, 1740 ioasid_t pasid, bool alloc) 1741 { 1742 int index; 1743 u64 *pte; 1744 u64 *root = gcr3_info->gcr3_tbl; 1745 int level = gcr3_info->glx; 1746 1747 while (true) { 1748 1749 index = (pasid >> (9 * level)) & 0x1ff; 1750 pte = &root[index]; 1751 1752 if (level == 0) 1753 break; 1754 1755 if (!(*pte & GCR3_VALID)) { 1756 if (!alloc) 1757 return NULL; 1758 1759 root = (void *)get_zeroed_page(GFP_ATOMIC); 1760 if (root == NULL) 1761 return NULL; 1762 1763 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 1764 } 1765 1766 root = iommu_phys_to_virt(*pte & PAGE_MASK); 1767 1768 level -= 1; 1769 } 1770 1771 return pte; 1772 } 1773 1774 static int update_gcr3(struct iommu_dev_data *dev_data, 1775 ioasid_t pasid, unsigned long gcr3, bool set) 1776 { 1777 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1778 u64 *pte; 1779 1780 pte = __get_gcr3_pte(gcr3_info, pasid, true); 1781 if (pte == NULL) 1782 return -ENOMEM; 1783 1784 if (set) 1785 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID; 1786 else 1787 *pte = 0; 1788 1789 dev_flush_pasid_all(dev_data, pasid); 1790 return 0; 1791 } 1792 1793 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid, 1794 unsigned long gcr3) 1795 { 1796 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1797 int ret; 1798 1799 iommu_group_mutex_assert(dev_data->dev); 1800 1801 ret = update_gcr3(dev_data, pasid, gcr3, true); 1802 if (ret) 1803 return ret; 1804 1805 gcr3_info->pasid_cnt++; 1806 return ret; 1807 } 1808 1809 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid) 1810 { 1811 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1812 int ret; 1813 1814 iommu_group_mutex_assert(dev_data->dev); 1815 1816 ret = update_gcr3(dev_data, pasid, 0, false); 1817 if (ret) 1818 return ret; 1819 1820 gcr3_info->pasid_cnt--; 1821 return ret; 1822 } 1823 1824 static void set_dte_entry(struct amd_iommu *iommu, 1825 struct iommu_dev_data *dev_data) 1826 { 1827 u64 pte_root = 0; 1828 u64 flags = 0; 1829 u32 old_domid; 1830 u16 devid = dev_data->devid; 1831 u16 domid; 1832 struct protection_domain *domain = dev_data->domain; 1833 struct dev_table_entry *dev_table = get_dev_table(iommu); 1834 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1835 1836 if (gcr3_info && gcr3_info->gcr3_tbl) 1837 domid = dev_data->gcr3_info.domid; 1838 else 1839 domid = domain->id; 1840 1841 if (domain->iop.mode != PAGE_MODE_NONE) 1842 pte_root = iommu_virt_to_phys(domain->iop.root); 1843 1844 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) 1845 << DEV_ENTRY_MODE_SHIFT; 1846 1847 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V; 1848 1849 /* 1850 * When SNP is enabled, Only set TV bit when IOMMU 1851 * page translation is in use. 1852 */ 1853 if (!amd_iommu_snp_en || (domid != 0)) 1854 pte_root |= DTE_FLAG_TV; 1855 1856 flags = dev_table[devid].data[1]; 1857 1858 if (dev_data->ats_enabled) 1859 flags |= DTE_FLAG_IOTLB; 1860 1861 if (dev_data->ppr) 1862 pte_root |= 1ULL << DEV_ENTRY_PPR; 1863 1864 if (domain->dirty_tracking) 1865 pte_root |= DTE_FLAG_HAD; 1866 1867 if (gcr3_info && gcr3_info->gcr3_tbl) { 1868 u64 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl); 1869 u64 glx = gcr3_info->glx; 1870 u64 tmp; 1871 1872 pte_root |= DTE_FLAG_GV; 1873 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1874 1875 /* First mask out possible old values for GCR3 table */ 1876 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1877 flags &= ~tmp; 1878 1879 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1880 flags &= ~tmp; 1881 1882 /* Encode GCR3 table into DTE */ 1883 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1884 pte_root |= tmp; 1885 1886 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1887 flags |= tmp; 1888 1889 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1890 flags |= tmp; 1891 1892 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) { 1893 dev_table[devid].data[2] |= 1894 ((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT); 1895 } 1896 1897 /* GIOV is supported with V2 page table mode only */ 1898 if (pdom_is_v2_pgtbl_mode(domain)) 1899 pte_root |= DTE_FLAG_GIOV; 1900 } 1901 1902 flags &= ~DEV_DOMID_MASK; 1903 flags |= domid; 1904 1905 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK; 1906 dev_table[devid].data[1] = flags; 1907 dev_table[devid].data[0] = pte_root; 1908 1909 /* 1910 * A kdump kernel might be replacing a domain ID that was copied from 1911 * the previous kernel--if so, it needs to flush the translation cache 1912 * entries for the old domain ID that is being overwritten 1913 */ 1914 if (old_domid) { 1915 amd_iommu_flush_tlb_domid(iommu, old_domid); 1916 } 1917 } 1918 1919 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid) 1920 { 1921 struct dev_table_entry *dev_table = get_dev_table(iommu); 1922 1923 /* remove entry from the device table seen by the hardware */ 1924 dev_table[devid].data[0] = DTE_FLAG_V; 1925 1926 if (!amd_iommu_snp_en) 1927 dev_table[devid].data[0] |= DTE_FLAG_TV; 1928 1929 dev_table[devid].data[1] &= DTE_FLAG_MASK; 1930 1931 amd_iommu_apply_erratum_63(iommu, devid); 1932 } 1933 1934 /* Update and flush DTE for the given device */ 1935 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set) 1936 { 1937 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev); 1938 1939 if (set) 1940 set_dte_entry(iommu, dev_data); 1941 else 1942 clear_dte_entry(iommu, dev_data->devid); 1943 1944 clone_aliases(iommu, dev_data->dev); 1945 device_flush_dte(dev_data); 1946 iommu_completion_wait(iommu); 1947 } 1948 1949 /* 1950 * If domain is SVA capable then initialize GCR3 table. Also if domain is 1951 * in v2 page table mode then update GCR3[0]. 1952 */ 1953 static int init_gcr3_table(struct iommu_dev_data *dev_data, 1954 struct protection_domain *pdom) 1955 { 1956 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 1957 int max_pasids = dev_data->max_pasids; 1958 int ret = 0; 1959 1960 /* 1961 * If domain is in pt mode then setup GCR3 table only if device 1962 * is PASID capable 1963 */ 1964 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data)) 1965 return ret; 1966 1967 /* 1968 * By default, setup GCR3 table to support MAX PASIDs 1969 * supported by the device/IOMMU. 1970 */ 1971 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu, 1972 max_pasids > 0 ? max_pasids : 1); 1973 if (ret) 1974 return ret; 1975 1976 /* Setup GCR3[0] only if domain is setup with v2 page table mode */ 1977 if (!pdom_is_v2_pgtbl_mode(pdom)) 1978 return ret; 1979 1980 ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true); 1981 if (ret) 1982 free_gcr3_table(&dev_data->gcr3_info); 1983 1984 return ret; 1985 } 1986 1987 static void destroy_gcr3_table(struct iommu_dev_data *dev_data, 1988 struct protection_domain *pdom) 1989 { 1990 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info; 1991 1992 if (pdom_is_v2_pgtbl_mode(pdom)) 1993 update_gcr3(dev_data, 0, 0, false); 1994 1995 if (gcr3_info->gcr3_tbl == NULL) 1996 return; 1997 1998 free_gcr3_table(gcr3_info); 1999 } 2000 2001 static int pdom_attach_iommu(struct amd_iommu *iommu, 2002 struct protection_domain *pdom) 2003 { 2004 struct pdom_iommu_info *pdom_iommu_info, *curr; 2005 struct io_pgtable_cfg *cfg = &pdom->iop.pgtbl.cfg; 2006 unsigned long flags; 2007 int ret = 0; 2008 2009 spin_lock_irqsave(&pdom->lock, flags); 2010 2011 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index); 2012 if (pdom_iommu_info) { 2013 pdom_iommu_info->refcnt++; 2014 goto out_unlock; 2015 } 2016 2017 pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC); 2018 if (!pdom_iommu_info) { 2019 ret = -ENOMEM; 2020 goto out_unlock; 2021 } 2022 2023 pdom_iommu_info->iommu = iommu; 2024 pdom_iommu_info->refcnt = 1; 2025 2026 curr = xa_cmpxchg(&pdom->iommu_array, iommu->index, 2027 NULL, pdom_iommu_info, GFP_ATOMIC); 2028 if (curr) { 2029 kfree(pdom_iommu_info); 2030 ret = -ENOSPC; 2031 goto out_unlock; 2032 } 2033 2034 /* Update NUMA Node ID */ 2035 if (cfg->amd.nid == NUMA_NO_NODE) 2036 cfg->amd.nid = dev_to_node(&iommu->dev->dev); 2037 2038 out_unlock: 2039 spin_unlock_irqrestore(&pdom->lock, flags); 2040 return ret; 2041 } 2042 2043 static void pdom_detach_iommu(struct amd_iommu *iommu, 2044 struct protection_domain *pdom) 2045 { 2046 struct pdom_iommu_info *pdom_iommu_info; 2047 unsigned long flags; 2048 2049 spin_lock_irqsave(&pdom->lock, flags); 2050 2051 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index); 2052 if (!pdom_iommu_info) { 2053 spin_unlock_irqrestore(&pdom->lock, flags); 2054 return; 2055 } 2056 2057 pdom_iommu_info->refcnt--; 2058 if (pdom_iommu_info->refcnt == 0) { 2059 xa_erase(&pdom->iommu_array, iommu->index); 2060 kfree(pdom_iommu_info); 2061 } 2062 2063 spin_unlock_irqrestore(&pdom->lock, flags); 2064 } 2065 2066 /* 2067 * If a device is not yet associated with a domain, this function makes the 2068 * device visible in the domain 2069 */ 2070 static int attach_device(struct device *dev, 2071 struct protection_domain *domain) 2072 { 2073 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2074 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2075 struct pci_dev *pdev; 2076 int ret = 0; 2077 2078 mutex_lock(&dev_data->mutex); 2079 2080 if (dev_data->domain != NULL) { 2081 ret = -EBUSY; 2082 goto out; 2083 } 2084 2085 /* Do reference counting */ 2086 ret = pdom_attach_iommu(iommu, domain); 2087 if (ret) 2088 goto out; 2089 2090 /* Setup GCR3 table */ 2091 if (pdom_is_sva_capable(domain)) { 2092 ret = init_gcr3_table(dev_data, domain); 2093 if (ret) { 2094 pdom_detach_iommu(iommu, domain); 2095 goto out; 2096 } 2097 } 2098 2099 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL; 2100 if (pdev && pdom_is_sva_capable(domain)) { 2101 pdev_enable_caps(pdev); 2102 2103 /* 2104 * Device can continue to function even if IOPF 2105 * enablement failed. Hence in error path just 2106 * disable device PRI support. 2107 */ 2108 if (amd_iommu_iopf_add_device(iommu, dev_data)) 2109 pdev_disable_cap_pri(pdev); 2110 } else if (pdev) { 2111 pdev_enable_cap_ats(pdev); 2112 } 2113 2114 /* Update data structures */ 2115 dev_data->domain = domain; 2116 list_add(&dev_data->list, &domain->dev_list); 2117 2118 /* Update device table */ 2119 dev_update_dte(dev_data, true); 2120 2121 out: 2122 mutex_unlock(&dev_data->mutex); 2123 2124 return ret; 2125 } 2126 2127 /* 2128 * Removes a device from a protection domain (with devtable_lock held) 2129 */ 2130 static void detach_device(struct device *dev) 2131 { 2132 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2133 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data); 2134 struct protection_domain *domain = dev_data->domain; 2135 unsigned long flags; 2136 2137 mutex_lock(&dev_data->mutex); 2138 2139 /* 2140 * First check if the device is still attached. It might already 2141 * be detached from its domain because the generic 2142 * iommu_detach_group code detached it and we try again here in 2143 * our alias handling. 2144 */ 2145 if (WARN_ON(!dev_data->domain)) 2146 goto out; 2147 2148 /* Remove IOPF handler */ 2149 if (dev_data->ppr) { 2150 iopf_queue_flush_dev(dev); 2151 amd_iommu_iopf_remove_device(iommu, dev_data); 2152 } 2153 2154 if (dev_is_pci(dev)) 2155 pdev_disable_caps(to_pci_dev(dev)); 2156 2157 /* Clear DTE and flush the entry */ 2158 dev_update_dte(dev_data, false); 2159 2160 /* Flush IOTLB and wait for the flushes to finish */ 2161 spin_lock_irqsave(&domain->lock, flags); 2162 amd_iommu_domain_flush_all(domain); 2163 spin_unlock_irqrestore(&domain->lock, flags); 2164 2165 /* Clear GCR3 table */ 2166 if (pdom_is_sva_capable(domain)) 2167 destroy_gcr3_table(dev_data, domain); 2168 2169 /* Update data structures */ 2170 dev_data->domain = NULL; 2171 list_del(&dev_data->list); 2172 2173 /* decrease reference counters - needs to happen after the flushes */ 2174 pdom_detach_iommu(iommu, domain); 2175 2176 out: 2177 mutex_unlock(&dev_data->mutex); 2178 } 2179 2180 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 2181 { 2182 struct iommu_device *iommu_dev; 2183 struct amd_iommu *iommu; 2184 struct iommu_dev_data *dev_data; 2185 int ret; 2186 2187 if (!check_device(dev)) 2188 return ERR_PTR(-ENODEV); 2189 2190 iommu = rlookup_amd_iommu(dev); 2191 if (!iommu) 2192 return ERR_PTR(-ENODEV); 2193 2194 /* Not registered yet? */ 2195 if (!iommu->iommu.ops) 2196 return ERR_PTR(-ENODEV); 2197 2198 if (dev_iommu_priv_get(dev)) 2199 return &iommu->iommu; 2200 2201 ret = iommu_init_device(iommu, dev); 2202 if (ret) { 2203 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 2204 iommu_dev = ERR_PTR(ret); 2205 iommu_ignore_device(iommu, dev); 2206 goto out_err; 2207 } 2208 2209 amd_iommu_set_pci_msi_domain(dev, iommu); 2210 iommu_dev = &iommu->iommu; 2211 2212 /* 2213 * If IOMMU and device supports PASID then it will contain max 2214 * supported PASIDs, else it will be zero. 2215 */ 2216 dev_data = dev_iommu_priv_get(dev); 2217 if (amd_iommu_pasid_supported() && dev_is_pci(dev) && 2218 pdev_pasid_supported(dev_data)) { 2219 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids, 2220 pci_max_pasids(to_pci_dev(dev))); 2221 } 2222 2223 out_err: 2224 iommu_completion_wait(iommu); 2225 2226 if (dev_is_pci(dev)) 2227 pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT); 2228 2229 return iommu_dev; 2230 } 2231 2232 static void amd_iommu_release_device(struct device *dev) 2233 { 2234 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2235 2236 WARN_ON(dev_data->domain); 2237 2238 /* 2239 * We keep dev_data around for unplugged devices and reuse it when the 2240 * device is re-plugged - not doing so would introduce a ton of races. 2241 */ 2242 } 2243 2244 static struct iommu_group *amd_iommu_device_group(struct device *dev) 2245 { 2246 if (dev_is_pci(dev)) 2247 return pci_device_group(dev); 2248 2249 return acpihid_device_group(dev); 2250 } 2251 2252 /***************************************************************************** 2253 * 2254 * The following functions belong to the exported interface of AMD IOMMU 2255 * 2256 * This interface allows access to lower level functions of the IOMMU 2257 * like protection domain handling and assignement of devices to domains 2258 * which is not possible with the dma_ops interface. 2259 * 2260 *****************************************************************************/ 2261 2262 void protection_domain_free(struct protection_domain *domain) 2263 { 2264 WARN_ON(!list_empty(&domain->dev_list)); 2265 if (domain->domain.type & __IOMMU_DOMAIN_PAGING) 2266 free_io_pgtable_ops(&domain->iop.pgtbl.ops); 2267 pdom_id_free(domain->id); 2268 kfree(domain); 2269 } 2270 2271 static void protection_domain_init(struct protection_domain *domain, int nid) 2272 { 2273 spin_lock_init(&domain->lock); 2274 INIT_LIST_HEAD(&domain->dev_list); 2275 INIT_LIST_HEAD(&domain->dev_data_list); 2276 xa_init(&domain->iommu_array); 2277 domain->iop.pgtbl.cfg.amd.nid = nid; 2278 } 2279 2280 struct protection_domain *protection_domain_alloc(unsigned int type, int nid) 2281 { 2282 struct protection_domain *domain; 2283 int domid; 2284 2285 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2286 if (!domain) 2287 return NULL; 2288 2289 domid = pdom_id_alloc(); 2290 if (domid <= 0) { 2291 kfree(domain); 2292 return NULL; 2293 } 2294 domain->id = domid; 2295 2296 protection_domain_init(domain, nid); 2297 2298 return domain; 2299 } 2300 2301 static int pdom_setup_pgtable(struct protection_domain *domain, 2302 unsigned int type, int pgtable) 2303 { 2304 struct io_pgtable_ops *pgtbl_ops; 2305 2306 /* No need to allocate io pgtable ops in passthrough mode */ 2307 if (!(type & __IOMMU_DOMAIN_PAGING)) 2308 return 0; 2309 2310 switch (pgtable) { 2311 case AMD_IOMMU_V1: 2312 domain->pd_mode = PD_MODE_V1; 2313 break; 2314 case AMD_IOMMU_V2: 2315 domain->pd_mode = PD_MODE_V2; 2316 break; 2317 default: 2318 return -EINVAL; 2319 } 2320 2321 pgtbl_ops = 2322 alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl.cfg, domain); 2323 if (!pgtbl_ops) 2324 return -ENOMEM; 2325 2326 return 0; 2327 } 2328 2329 static inline u64 dma_max_address(int pgtable) 2330 { 2331 if (pgtable == AMD_IOMMU_V1) 2332 return ~0ULL; 2333 2334 /* V2 with 4/5 level page table */ 2335 return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1); 2336 } 2337 2338 static bool amd_iommu_hd_support(struct amd_iommu *iommu) 2339 { 2340 return iommu && (iommu->features & FEATURE_HDSUP); 2341 } 2342 2343 static struct iommu_domain *do_iommu_domain_alloc(unsigned int type, 2344 struct device *dev, 2345 u32 flags, int pgtable) 2346 { 2347 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING; 2348 struct protection_domain *domain; 2349 struct amd_iommu *iommu = NULL; 2350 int ret; 2351 2352 if (dev) 2353 iommu = get_amd_iommu_from_dev(dev); 2354 2355 /* 2356 * Since DTE[Mode]=0 is prohibited on SNP-enabled system, 2357 * default to use IOMMU_DOMAIN_DMA[_FQ]. 2358 */ 2359 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY)) 2360 return ERR_PTR(-EINVAL); 2361 2362 domain = protection_domain_alloc(type, 2363 dev ? dev_to_node(dev) : NUMA_NO_NODE); 2364 if (!domain) 2365 return ERR_PTR(-ENOMEM); 2366 2367 ret = pdom_setup_pgtable(domain, type, pgtable); 2368 if (ret) { 2369 pdom_id_free(domain->id); 2370 kfree(domain); 2371 return ERR_PTR(ret); 2372 } 2373 2374 domain->domain.geometry.aperture_start = 0; 2375 domain->domain.geometry.aperture_end = dma_max_address(pgtable); 2376 domain->domain.geometry.force_aperture = true; 2377 domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap; 2378 2379 if (iommu) { 2380 domain->domain.type = type; 2381 domain->domain.ops = iommu->iommu.ops->default_domain_ops; 2382 2383 if (dirty_tracking) 2384 domain->domain.dirty_ops = &amd_dirty_ops; 2385 } 2386 2387 return &domain->domain; 2388 } 2389 2390 static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type) 2391 { 2392 struct iommu_domain *domain; 2393 int pgtable = amd_iommu_pgtable; 2394 2395 /* 2396 * Force IOMMU v1 page table when allocating 2397 * domain for pass-through devices. 2398 */ 2399 if (type == IOMMU_DOMAIN_UNMANAGED) 2400 pgtable = AMD_IOMMU_V1; 2401 2402 domain = do_iommu_domain_alloc(type, NULL, 0, pgtable); 2403 if (IS_ERR(domain)) 2404 return NULL; 2405 2406 return domain; 2407 } 2408 2409 static struct iommu_domain * 2410 amd_iommu_domain_alloc_user(struct device *dev, u32 flags, 2411 struct iommu_domain *parent, 2412 const struct iommu_user_data *user_data) 2413 2414 { 2415 unsigned int type = IOMMU_DOMAIN_UNMANAGED; 2416 struct amd_iommu *iommu = NULL; 2417 const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING | 2418 IOMMU_HWPT_ALLOC_PASID; 2419 2420 if (dev) 2421 iommu = get_amd_iommu_from_dev(dev); 2422 2423 if ((flags & ~supported_flags) || parent || user_data) 2424 return ERR_PTR(-EOPNOTSUPP); 2425 2426 /* Allocate domain with v2 page table if IOMMU supports PASID. */ 2427 if (flags & IOMMU_HWPT_ALLOC_PASID) { 2428 if (!amd_iommu_pasid_supported()) 2429 return ERR_PTR(-EOPNOTSUPP); 2430 2431 return do_iommu_domain_alloc(type, dev, flags, AMD_IOMMU_V2); 2432 } 2433 2434 /* Allocate domain with v1 page table for dirty tracking */ 2435 if (flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING) { 2436 if (iommu && amd_iommu_hd_support(iommu)) { 2437 return do_iommu_domain_alloc(type, dev, 2438 flags, AMD_IOMMU_V1); 2439 } 2440 2441 return ERR_PTR(-EOPNOTSUPP); 2442 } 2443 2444 /* If nothing specific is required use the kernel commandline default */ 2445 return do_iommu_domain_alloc(type, dev, 0, amd_iommu_pgtable); 2446 } 2447 2448 void amd_iommu_domain_free(struct iommu_domain *dom) 2449 { 2450 struct protection_domain *domain = to_pdomain(dom); 2451 2452 protection_domain_free(domain); 2453 } 2454 2455 static int blocked_domain_attach_device(struct iommu_domain *domain, 2456 struct device *dev) 2457 { 2458 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2459 2460 if (dev_data->domain) 2461 detach_device(dev); 2462 2463 /* Clear DTE and flush the entry */ 2464 mutex_lock(&dev_data->mutex); 2465 dev_update_dte(dev_data, false); 2466 mutex_unlock(&dev_data->mutex); 2467 2468 return 0; 2469 } 2470 2471 static struct iommu_domain blocked_domain = { 2472 .type = IOMMU_DOMAIN_BLOCKED, 2473 .ops = &(const struct iommu_domain_ops) { 2474 .attach_dev = blocked_domain_attach_device, 2475 } 2476 }; 2477 2478 static struct protection_domain identity_domain; 2479 2480 static const struct iommu_domain_ops identity_domain_ops = { 2481 .attach_dev = amd_iommu_attach_device, 2482 }; 2483 2484 void amd_iommu_init_identity_domain(void) 2485 { 2486 struct iommu_domain *domain = &identity_domain.domain; 2487 2488 domain->type = IOMMU_DOMAIN_IDENTITY; 2489 domain->ops = &identity_domain_ops; 2490 domain->owner = &amd_iommu_ops; 2491 2492 identity_domain.id = pdom_id_alloc(); 2493 2494 protection_domain_init(&identity_domain, NUMA_NO_NODE); 2495 } 2496 2497 /* Same as blocked domain except it supports only ops->attach_dev() */ 2498 static struct iommu_domain release_domain = { 2499 .type = IOMMU_DOMAIN_BLOCKED, 2500 .ops = &(const struct iommu_domain_ops) { 2501 .attach_dev = blocked_domain_attach_device, 2502 } 2503 }; 2504 2505 static int amd_iommu_attach_device(struct iommu_domain *dom, 2506 struct device *dev) 2507 { 2508 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2509 struct protection_domain *domain = to_pdomain(dom); 2510 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2511 int ret; 2512 2513 /* 2514 * Skip attach device to domain if new domain is same as 2515 * devices current domain 2516 */ 2517 if (dev_data->domain == domain) 2518 return 0; 2519 2520 dev_data->defer_attach = false; 2521 2522 /* 2523 * Restrict to devices with compatible IOMMU hardware support 2524 * when enforcement of dirty tracking is enabled. 2525 */ 2526 if (dom->dirty_ops && !amd_iommu_hd_support(iommu)) 2527 return -EINVAL; 2528 2529 if (dev_data->domain) 2530 detach_device(dev); 2531 2532 ret = attach_device(dev, domain); 2533 2534 #ifdef CONFIG_IRQ_REMAP 2535 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2536 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2537 dev_data->use_vapic = 1; 2538 else 2539 dev_data->use_vapic = 0; 2540 } 2541 #endif 2542 2543 return ret; 2544 } 2545 2546 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom, 2547 unsigned long iova, size_t size) 2548 { 2549 struct protection_domain *domain = to_pdomain(dom); 2550 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2551 2552 if (ops->map_pages) 2553 domain_flush_np_cache(domain, iova, size); 2554 return 0; 2555 } 2556 2557 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova, 2558 phys_addr_t paddr, size_t pgsize, size_t pgcount, 2559 int iommu_prot, gfp_t gfp, size_t *mapped) 2560 { 2561 struct protection_domain *domain = to_pdomain(dom); 2562 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2563 int prot = 0; 2564 int ret = -EINVAL; 2565 2566 if ((domain->pd_mode == PD_MODE_V1) && 2567 (domain->iop.mode == PAGE_MODE_NONE)) 2568 return -EINVAL; 2569 2570 if (iommu_prot & IOMMU_READ) 2571 prot |= IOMMU_PROT_IR; 2572 if (iommu_prot & IOMMU_WRITE) 2573 prot |= IOMMU_PROT_IW; 2574 2575 if (ops->map_pages) { 2576 ret = ops->map_pages(ops, iova, paddr, pgsize, 2577 pgcount, prot, gfp, mapped); 2578 } 2579 2580 return ret; 2581 } 2582 2583 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, 2584 struct iommu_iotlb_gather *gather, 2585 unsigned long iova, size_t size) 2586 { 2587 /* 2588 * AMD's IOMMU can flush as many pages as necessary in a single flush. 2589 * Unless we run in a virtual machine, which can be inferred according 2590 * to whether "non-present cache" is on, it is probably best to prefer 2591 * (potentially) too extensive TLB flushing (i.e., more misses) over 2592 * mutliple TLB flushes (i.e., more flushes). For virtual machines the 2593 * hypervisor needs to synchronize the host IOMMU PTEs with those of 2594 * the guest, and the trade-off is different: unnecessary TLB flushes 2595 * should be avoided. 2596 */ 2597 if (amd_iommu_np_cache && 2598 iommu_iotlb_gather_is_disjoint(gather, iova, size)) 2599 iommu_iotlb_sync(domain, gather); 2600 2601 iommu_iotlb_gather_add_range(gather, iova, size); 2602 } 2603 2604 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova, 2605 size_t pgsize, size_t pgcount, 2606 struct iommu_iotlb_gather *gather) 2607 { 2608 struct protection_domain *domain = to_pdomain(dom); 2609 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2610 size_t r; 2611 2612 if ((domain->pd_mode == PD_MODE_V1) && 2613 (domain->iop.mode == PAGE_MODE_NONE)) 2614 return 0; 2615 2616 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0; 2617 2618 if (r) 2619 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r); 2620 2621 return r; 2622 } 2623 2624 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2625 dma_addr_t iova) 2626 { 2627 struct protection_domain *domain = to_pdomain(dom); 2628 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops; 2629 2630 return ops->iova_to_phys(ops, iova); 2631 } 2632 2633 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap) 2634 { 2635 switch (cap) { 2636 case IOMMU_CAP_CACHE_COHERENCY: 2637 return true; 2638 case IOMMU_CAP_NOEXEC: 2639 return false; 2640 case IOMMU_CAP_PRE_BOOT_PROTECTION: 2641 return amdr_ivrs_remap_support; 2642 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY: 2643 return true; 2644 case IOMMU_CAP_DEFERRED_FLUSH: 2645 return true; 2646 case IOMMU_CAP_DIRTY_TRACKING: { 2647 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev); 2648 2649 return amd_iommu_hd_support(iommu); 2650 } 2651 default: 2652 break; 2653 } 2654 2655 return false; 2656 } 2657 2658 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain, 2659 bool enable) 2660 { 2661 struct protection_domain *pdomain = to_pdomain(domain); 2662 struct dev_table_entry *dev_table; 2663 struct iommu_dev_data *dev_data; 2664 bool domain_flush = false; 2665 struct amd_iommu *iommu; 2666 unsigned long flags; 2667 u64 pte_root; 2668 2669 spin_lock_irqsave(&pdomain->lock, flags); 2670 if (!(pdomain->dirty_tracking ^ enable)) { 2671 spin_unlock_irqrestore(&pdomain->lock, flags); 2672 return 0; 2673 } 2674 2675 list_for_each_entry(dev_data, &pdomain->dev_list, list) { 2676 iommu = get_amd_iommu_from_dev_data(dev_data); 2677 2678 dev_table = get_dev_table(iommu); 2679 pte_root = dev_table[dev_data->devid].data[0]; 2680 2681 pte_root = (enable ? pte_root | DTE_FLAG_HAD : 2682 pte_root & ~DTE_FLAG_HAD); 2683 2684 /* Flush device DTE */ 2685 dev_table[dev_data->devid].data[0] = pte_root; 2686 device_flush_dte(dev_data); 2687 domain_flush = true; 2688 } 2689 2690 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */ 2691 if (domain_flush) 2692 amd_iommu_domain_flush_all(pdomain); 2693 2694 pdomain->dirty_tracking = enable; 2695 spin_unlock_irqrestore(&pdomain->lock, flags); 2696 2697 return 0; 2698 } 2699 2700 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain, 2701 unsigned long iova, size_t size, 2702 unsigned long flags, 2703 struct iommu_dirty_bitmap *dirty) 2704 { 2705 struct protection_domain *pdomain = to_pdomain(domain); 2706 struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops; 2707 unsigned long lflags; 2708 2709 if (!ops || !ops->read_and_clear_dirty) 2710 return -EOPNOTSUPP; 2711 2712 spin_lock_irqsave(&pdomain->lock, lflags); 2713 if (!pdomain->dirty_tracking && dirty->bitmap) { 2714 spin_unlock_irqrestore(&pdomain->lock, lflags); 2715 return -EINVAL; 2716 } 2717 spin_unlock_irqrestore(&pdomain->lock, lflags); 2718 2719 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty); 2720 } 2721 2722 static void amd_iommu_get_resv_regions(struct device *dev, 2723 struct list_head *head) 2724 { 2725 struct iommu_resv_region *region; 2726 struct unity_map_entry *entry; 2727 struct amd_iommu *iommu; 2728 struct amd_iommu_pci_seg *pci_seg; 2729 int devid, sbdf; 2730 2731 sbdf = get_device_sbdf_id(dev); 2732 if (sbdf < 0) 2733 return; 2734 2735 devid = PCI_SBDF_TO_DEVID(sbdf); 2736 iommu = get_amd_iommu_from_dev(dev); 2737 pci_seg = iommu->pci_seg; 2738 2739 list_for_each_entry(entry, &pci_seg->unity_map, list) { 2740 int type, prot = 0; 2741 size_t length; 2742 2743 if (devid < entry->devid_start || devid > entry->devid_end) 2744 continue; 2745 2746 type = IOMMU_RESV_DIRECT; 2747 length = entry->address_end - entry->address_start; 2748 if (entry->prot & IOMMU_PROT_IR) 2749 prot |= IOMMU_READ; 2750 if (entry->prot & IOMMU_PROT_IW) 2751 prot |= IOMMU_WRITE; 2752 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2753 /* Exclusion range */ 2754 type = IOMMU_RESV_RESERVED; 2755 2756 region = iommu_alloc_resv_region(entry->address_start, 2757 length, prot, type, 2758 GFP_KERNEL); 2759 if (!region) { 2760 dev_err(dev, "Out of memory allocating dm-regions\n"); 2761 return; 2762 } 2763 list_add_tail(®ion->list, head); 2764 } 2765 2766 region = iommu_alloc_resv_region(MSI_RANGE_START, 2767 MSI_RANGE_END - MSI_RANGE_START + 1, 2768 0, IOMMU_RESV_MSI, GFP_KERNEL); 2769 if (!region) 2770 return; 2771 list_add_tail(®ion->list, head); 2772 2773 region = iommu_alloc_resv_region(HT_RANGE_START, 2774 HT_RANGE_END - HT_RANGE_START + 1, 2775 0, IOMMU_RESV_RESERVED, GFP_KERNEL); 2776 if (!region) 2777 return; 2778 list_add_tail(®ion->list, head); 2779 } 2780 2781 static bool amd_iommu_is_attach_deferred(struct device *dev) 2782 { 2783 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2784 2785 return dev_data->defer_attach; 2786 } 2787 2788 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2789 { 2790 struct protection_domain *dom = to_pdomain(domain); 2791 unsigned long flags; 2792 2793 spin_lock_irqsave(&dom->lock, flags); 2794 amd_iommu_domain_flush_all(dom); 2795 spin_unlock_irqrestore(&dom->lock, flags); 2796 } 2797 2798 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2799 struct iommu_iotlb_gather *gather) 2800 { 2801 struct protection_domain *dom = to_pdomain(domain); 2802 unsigned long flags; 2803 2804 spin_lock_irqsave(&dom->lock, flags); 2805 amd_iommu_domain_flush_pages(dom, gather->start, 2806 gather->end - gather->start + 1); 2807 spin_unlock_irqrestore(&dom->lock, flags); 2808 } 2809 2810 static int amd_iommu_def_domain_type(struct device *dev) 2811 { 2812 struct iommu_dev_data *dev_data; 2813 2814 dev_data = dev_iommu_priv_get(dev); 2815 if (!dev_data) 2816 return 0; 2817 2818 /* Always use DMA domain for untrusted device */ 2819 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 2820 return IOMMU_DOMAIN_DMA; 2821 2822 /* 2823 * Do not identity map IOMMUv2 capable devices when: 2824 * - memory encryption is active, because some of those devices 2825 * (AMD GPUs) don't have the encryption bit in their DMA-mask 2826 * and require remapping. 2827 * - SNP is enabled, because it prohibits DTE[Mode]=0. 2828 */ 2829 if (pdev_pasid_supported(dev_data) && 2830 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) && 2831 !amd_iommu_snp_en) { 2832 return IOMMU_DOMAIN_IDENTITY; 2833 } 2834 2835 return 0; 2836 } 2837 2838 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain) 2839 { 2840 /* IOMMU_PTE_FC is always set */ 2841 return true; 2842 } 2843 2844 static const struct iommu_dirty_ops amd_dirty_ops = { 2845 .set_dirty_tracking = amd_iommu_set_dirty_tracking, 2846 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty, 2847 }; 2848 2849 static int amd_iommu_dev_enable_feature(struct device *dev, 2850 enum iommu_dev_features feat) 2851 { 2852 int ret = 0; 2853 2854 switch (feat) { 2855 case IOMMU_DEV_FEAT_IOPF: 2856 case IOMMU_DEV_FEAT_SVA: 2857 break; 2858 default: 2859 ret = -EINVAL; 2860 break; 2861 } 2862 return ret; 2863 } 2864 2865 static int amd_iommu_dev_disable_feature(struct device *dev, 2866 enum iommu_dev_features feat) 2867 { 2868 int ret = 0; 2869 2870 switch (feat) { 2871 case IOMMU_DEV_FEAT_IOPF: 2872 case IOMMU_DEV_FEAT_SVA: 2873 break; 2874 default: 2875 ret = -EINVAL; 2876 break; 2877 } 2878 return ret; 2879 } 2880 2881 const struct iommu_ops amd_iommu_ops = { 2882 .capable = amd_iommu_capable, 2883 .blocked_domain = &blocked_domain, 2884 .release_domain = &release_domain, 2885 .identity_domain = &identity_domain.domain, 2886 .domain_alloc = amd_iommu_domain_alloc, 2887 .domain_alloc_user = amd_iommu_domain_alloc_user, 2888 .domain_alloc_sva = amd_iommu_domain_alloc_sva, 2889 .probe_device = amd_iommu_probe_device, 2890 .release_device = amd_iommu_release_device, 2891 .device_group = amd_iommu_device_group, 2892 .get_resv_regions = amd_iommu_get_resv_regions, 2893 .is_attach_deferred = amd_iommu_is_attach_deferred, 2894 .def_domain_type = amd_iommu_def_domain_type, 2895 .dev_enable_feat = amd_iommu_dev_enable_feature, 2896 .dev_disable_feat = amd_iommu_dev_disable_feature, 2897 .remove_dev_pasid = amd_iommu_remove_dev_pasid, 2898 .page_response = amd_iommu_page_response, 2899 .default_domain_ops = &(const struct iommu_domain_ops) { 2900 .attach_dev = amd_iommu_attach_device, 2901 .map_pages = amd_iommu_map_pages, 2902 .unmap_pages = amd_iommu_unmap_pages, 2903 .iotlb_sync_map = amd_iommu_iotlb_sync_map, 2904 .iova_to_phys = amd_iommu_iova_to_phys, 2905 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2906 .iotlb_sync = amd_iommu_iotlb_sync, 2907 .free = amd_iommu_domain_free, 2908 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency, 2909 } 2910 }; 2911 2912 #ifdef CONFIG_IRQ_REMAP 2913 2914 /***************************************************************************** 2915 * 2916 * Interrupt Remapping Implementation 2917 * 2918 *****************************************************************************/ 2919 2920 static struct irq_chip amd_ir_chip; 2921 static DEFINE_SPINLOCK(iommu_table_lock); 2922 2923 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid) 2924 { 2925 int ret; 2926 u64 data; 2927 unsigned long flags; 2928 struct iommu_cmd cmd, cmd2; 2929 2930 if (iommu->irtcachedis_enabled) 2931 return; 2932 2933 build_inv_irt(&cmd, devid); 2934 data = atomic64_inc_return(&iommu->cmd_sem_val); 2935 build_completion_wait(&cmd2, iommu, data); 2936 2937 raw_spin_lock_irqsave(&iommu->lock, flags); 2938 ret = __iommu_queue_command_sync(iommu, &cmd, true); 2939 if (ret) 2940 goto out; 2941 ret = __iommu_queue_command_sync(iommu, &cmd2, false); 2942 if (ret) 2943 goto out; 2944 wait_on_sem(iommu, data); 2945 out: 2946 raw_spin_unlock_irqrestore(&iommu->lock, flags); 2947 } 2948 2949 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid, 2950 struct irq_remap_table *table) 2951 { 2952 u64 dte; 2953 struct dev_table_entry *dev_table = get_dev_table(iommu); 2954 2955 dte = dev_table[devid].data[2]; 2956 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 2957 dte |= iommu_virt_to_phys(table->table); 2958 dte |= DTE_IRQ_REMAP_INTCTL; 2959 dte |= DTE_INTTABLEN; 2960 dte |= DTE_IRQ_REMAP_ENABLE; 2961 2962 dev_table[devid].data[2] = dte; 2963 } 2964 2965 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid) 2966 { 2967 struct irq_remap_table *table; 2968 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2969 2970 if (WARN_ONCE(!pci_seg->rlookup_table[devid], 2971 "%s: no iommu for devid %x:%x\n", 2972 __func__, pci_seg->id, devid)) 2973 return NULL; 2974 2975 table = pci_seg->irq_lookup_table[devid]; 2976 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n", 2977 __func__, pci_seg->id, devid)) 2978 return NULL; 2979 2980 return table; 2981 } 2982 2983 static struct irq_remap_table *__alloc_irq_table(void) 2984 { 2985 struct irq_remap_table *table; 2986 2987 table = kzalloc(sizeof(*table), GFP_KERNEL); 2988 if (!table) 2989 return NULL; 2990 2991 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 2992 if (!table->table) { 2993 kfree(table); 2994 return NULL; 2995 } 2996 raw_spin_lock_init(&table->lock); 2997 2998 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 2999 memset(table->table, 0, 3000 MAX_IRQS_PER_TABLE * sizeof(u32)); 3001 else 3002 memset(table->table, 0, 3003 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 3004 return table; 3005 } 3006 3007 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 3008 struct irq_remap_table *table) 3009 { 3010 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 3011 3012 pci_seg->irq_lookup_table[devid] = table; 3013 set_dte_irq_entry(iommu, devid, table); 3014 iommu_flush_dte(iommu, devid); 3015 } 3016 3017 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 3018 void *data) 3019 { 3020 struct irq_remap_table *table = data; 3021 struct amd_iommu_pci_seg *pci_seg; 3022 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev); 3023 3024 if (!iommu) 3025 return -EINVAL; 3026 3027 pci_seg = iommu->pci_seg; 3028 pci_seg->irq_lookup_table[alias] = table; 3029 set_dte_irq_entry(iommu, alias, table); 3030 iommu_flush_dte(pci_seg->rlookup_table[alias], alias); 3031 3032 return 0; 3033 } 3034 3035 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu, 3036 u16 devid, struct pci_dev *pdev) 3037 { 3038 struct irq_remap_table *table = NULL; 3039 struct irq_remap_table *new_table = NULL; 3040 struct amd_iommu_pci_seg *pci_seg; 3041 unsigned long flags; 3042 u16 alias; 3043 3044 spin_lock_irqsave(&iommu_table_lock, flags); 3045 3046 pci_seg = iommu->pci_seg; 3047 table = pci_seg->irq_lookup_table[devid]; 3048 if (table) 3049 goto out_unlock; 3050 3051 alias = pci_seg->alias_table[devid]; 3052 table = pci_seg->irq_lookup_table[alias]; 3053 if (table) { 3054 set_remap_table_entry(iommu, devid, table); 3055 goto out_wait; 3056 } 3057 spin_unlock_irqrestore(&iommu_table_lock, flags); 3058 3059 /* Nothing there yet, allocate new irq remapping table */ 3060 new_table = __alloc_irq_table(); 3061 if (!new_table) 3062 return NULL; 3063 3064 spin_lock_irqsave(&iommu_table_lock, flags); 3065 3066 table = pci_seg->irq_lookup_table[devid]; 3067 if (table) 3068 goto out_unlock; 3069 3070 table = pci_seg->irq_lookup_table[alias]; 3071 if (table) { 3072 set_remap_table_entry(iommu, devid, table); 3073 goto out_wait; 3074 } 3075 3076 table = new_table; 3077 new_table = NULL; 3078 3079 if (pdev) 3080 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 3081 table); 3082 else 3083 set_remap_table_entry(iommu, devid, table); 3084 3085 if (devid != alias) 3086 set_remap_table_entry(iommu, alias, table); 3087 3088 out_wait: 3089 iommu_completion_wait(iommu); 3090 3091 out_unlock: 3092 spin_unlock_irqrestore(&iommu_table_lock, flags); 3093 3094 if (new_table) { 3095 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 3096 kfree(new_table); 3097 } 3098 return table; 3099 } 3100 3101 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count, 3102 bool align, struct pci_dev *pdev) 3103 { 3104 struct irq_remap_table *table; 3105 int index, c, alignment = 1; 3106 unsigned long flags; 3107 3108 table = alloc_irq_table(iommu, devid, pdev); 3109 if (!table) 3110 return -ENODEV; 3111 3112 if (align) 3113 alignment = roundup_pow_of_two(count); 3114 3115 raw_spin_lock_irqsave(&table->lock, flags); 3116 3117 /* Scan table for free entries */ 3118 for (index = ALIGN(table->min_index, alignment), c = 0; 3119 index < MAX_IRQS_PER_TABLE;) { 3120 if (!iommu->irte_ops->is_allocated(table, index)) { 3121 c += 1; 3122 } else { 3123 c = 0; 3124 index = ALIGN(index + 1, alignment); 3125 continue; 3126 } 3127 3128 if (c == count) { 3129 for (; c != 0; --c) 3130 iommu->irte_ops->set_allocated(table, index - c + 1); 3131 3132 index -= count - 1; 3133 goto out; 3134 } 3135 3136 index++; 3137 } 3138 3139 index = -ENOSPC; 3140 3141 out: 3142 raw_spin_unlock_irqrestore(&table->lock, flags); 3143 3144 return index; 3145 } 3146 3147 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 3148 struct irte_ga *irte) 3149 { 3150 struct irq_remap_table *table; 3151 struct irte_ga *entry; 3152 unsigned long flags; 3153 u128 old; 3154 3155 table = get_irq_table(iommu, devid); 3156 if (!table) 3157 return -ENOMEM; 3158 3159 raw_spin_lock_irqsave(&table->lock, flags); 3160 3161 entry = (struct irte_ga *)table->table; 3162 entry = &entry[index]; 3163 3164 /* 3165 * We use cmpxchg16 to atomically update the 128-bit IRTE, 3166 * and it cannot be updated by the hardware or other processors 3167 * behind us, so the return value of cmpxchg16 should be the 3168 * same as the old value. 3169 */ 3170 old = entry->irte; 3171 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte)); 3172 3173 raw_spin_unlock_irqrestore(&table->lock, flags); 3174 3175 return 0; 3176 } 3177 3178 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 3179 struct irte_ga *irte) 3180 { 3181 bool ret; 3182 3183 ret = __modify_irte_ga(iommu, devid, index, irte); 3184 if (ret) 3185 return ret; 3186 3187 iommu_flush_irt_and_complete(iommu, devid); 3188 3189 return 0; 3190 } 3191 3192 static int modify_irte(struct amd_iommu *iommu, 3193 u16 devid, int index, union irte *irte) 3194 { 3195 struct irq_remap_table *table; 3196 unsigned long flags; 3197 3198 table = get_irq_table(iommu, devid); 3199 if (!table) 3200 return -ENOMEM; 3201 3202 raw_spin_lock_irqsave(&table->lock, flags); 3203 table->table[index] = irte->val; 3204 raw_spin_unlock_irqrestore(&table->lock, flags); 3205 3206 iommu_flush_irt_and_complete(iommu, devid); 3207 3208 return 0; 3209 } 3210 3211 static void free_irte(struct amd_iommu *iommu, u16 devid, int index) 3212 { 3213 struct irq_remap_table *table; 3214 unsigned long flags; 3215 3216 table = get_irq_table(iommu, devid); 3217 if (!table) 3218 return; 3219 3220 raw_spin_lock_irqsave(&table->lock, flags); 3221 iommu->irte_ops->clear_allocated(table, index); 3222 raw_spin_unlock_irqrestore(&table->lock, flags); 3223 3224 iommu_flush_irt_and_complete(iommu, devid); 3225 } 3226 3227 static void irte_prepare(void *entry, 3228 u32 delivery_mode, bool dest_mode, 3229 u8 vector, u32 dest_apicid, int devid) 3230 { 3231 union irte *irte = (union irte *) entry; 3232 3233 irte->val = 0; 3234 irte->fields.vector = vector; 3235 irte->fields.int_type = delivery_mode; 3236 irte->fields.destination = dest_apicid; 3237 irte->fields.dm = dest_mode; 3238 irte->fields.valid = 1; 3239 } 3240 3241 static void irte_ga_prepare(void *entry, 3242 u32 delivery_mode, bool dest_mode, 3243 u8 vector, u32 dest_apicid, int devid) 3244 { 3245 struct irte_ga *irte = (struct irte_ga *) entry; 3246 3247 irte->lo.val = 0; 3248 irte->hi.val = 0; 3249 irte->lo.fields_remap.int_type = delivery_mode; 3250 irte->lo.fields_remap.dm = dest_mode; 3251 irte->hi.fields.vector = vector; 3252 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3253 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3254 irte->lo.fields_remap.valid = 1; 3255 } 3256 3257 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3258 { 3259 union irte *irte = (union irte *) entry; 3260 3261 irte->fields.valid = 1; 3262 modify_irte(iommu, devid, index, irte); 3263 } 3264 3265 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3266 { 3267 struct irte_ga *irte = (struct irte_ga *) entry; 3268 3269 irte->lo.fields_remap.valid = 1; 3270 modify_irte_ga(iommu, devid, index, irte); 3271 } 3272 3273 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3274 { 3275 union irte *irte = (union irte *) entry; 3276 3277 irte->fields.valid = 0; 3278 modify_irte(iommu, devid, index, irte); 3279 } 3280 3281 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3282 { 3283 struct irte_ga *irte = (struct irte_ga *) entry; 3284 3285 irte->lo.fields_remap.valid = 0; 3286 modify_irte_ga(iommu, devid, index, irte); 3287 } 3288 3289 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3290 u8 vector, u32 dest_apicid) 3291 { 3292 union irte *irte = (union irte *) entry; 3293 3294 irte->fields.vector = vector; 3295 irte->fields.destination = dest_apicid; 3296 modify_irte(iommu, devid, index, irte); 3297 } 3298 3299 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3300 u8 vector, u32 dest_apicid) 3301 { 3302 struct irte_ga *irte = (struct irte_ga *) entry; 3303 3304 if (!irte->lo.fields_remap.guest_mode) { 3305 irte->hi.fields.vector = vector; 3306 irte->lo.fields_remap.destination = 3307 APICID_TO_IRTE_DEST_LO(dest_apicid); 3308 irte->hi.fields.destination = 3309 APICID_TO_IRTE_DEST_HI(dest_apicid); 3310 modify_irte_ga(iommu, devid, index, irte); 3311 } 3312 } 3313 3314 #define IRTE_ALLOCATED (~1U) 3315 static void irte_set_allocated(struct irq_remap_table *table, int index) 3316 { 3317 table->table[index] = IRTE_ALLOCATED; 3318 } 3319 3320 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3321 { 3322 struct irte_ga *ptr = (struct irte_ga *)table->table; 3323 struct irte_ga *irte = &ptr[index]; 3324 3325 memset(&irte->lo.val, 0, sizeof(u64)); 3326 memset(&irte->hi.val, 0, sizeof(u64)); 3327 irte->hi.fields.vector = 0xff; 3328 } 3329 3330 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3331 { 3332 union irte *ptr = (union irte *)table->table; 3333 union irte *irte = &ptr[index]; 3334 3335 return irte->val != 0; 3336 } 3337 3338 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3339 { 3340 struct irte_ga *ptr = (struct irte_ga *)table->table; 3341 struct irte_ga *irte = &ptr[index]; 3342 3343 return irte->hi.fields.vector != 0; 3344 } 3345 3346 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3347 { 3348 table->table[index] = 0; 3349 } 3350 3351 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3352 { 3353 struct irte_ga *ptr = (struct irte_ga *)table->table; 3354 struct irte_ga *irte = &ptr[index]; 3355 3356 memset(&irte->lo.val, 0, sizeof(u64)); 3357 memset(&irte->hi.val, 0, sizeof(u64)); 3358 } 3359 3360 static int get_devid(struct irq_alloc_info *info) 3361 { 3362 switch (info->type) { 3363 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3364 return get_ioapic_devid(info->devid); 3365 case X86_IRQ_ALLOC_TYPE_HPET: 3366 return get_hpet_devid(info->devid); 3367 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3368 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3369 return get_device_sbdf_id(msi_desc_to_dev(info->desc)); 3370 default: 3371 WARN_ON_ONCE(1); 3372 return -1; 3373 } 3374 } 3375 3376 struct irq_remap_ops amd_iommu_irq_ops = { 3377 .prepare = amd_iommu_prepare, 3378 .enable = amd_iommu_enable, 3379 .disable = amd_iommu_disable, 3380 .reenable = amd_iommu_reenable, 3381 .enable_faulting = amd_iommu_enable_faulting, 3382 }; 3383 3384 static void fill_msi_msg(struct msi_msg *msg, u32 index) 3385 { 3386 msg->data = index; 3387 msg->address_lo = 0; 3388 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 3389 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 3390 } 3391 3392 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3393 struct irq_cfg *irq_cfg, 3394 struct irq_alloc_info *info, 3395 int devid, int index, int sub_handle) 3396 { 3397 struct irq_2_irte *irte_info = &data->irq_2_irte; 3398 struct amd_iommu *iommu = data->iommu; 3399 3400 if (!iommu) 3401 return; 3402 3403 data->irq_2_irte.devid = devid; 3404 data->irq_2_irte.index = index + sub_handle; 3405 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED, 3406 apic->dest_mode_logical, irq_cfg->vector, 3407 irq_cfg->dest_apicid, devid); 3408 3409 switch (info->type) { 3410 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3411 case X86_IRQ_ALLOC_TYPE_HPET: 3412 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3413 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3414 fill_msi_msg(&data->msi_entry, irte_info->index); 3415 break; 3416 3417 default: 3418 BUG_ON(1); 3419 break; 3420 } 3421 } 3422 3423 struct amd_irte_ops irte_32_ops = { 3424 .prepare = irte_prepare, 3425 .activate = irte_activate, 3426 .deactivate = irte_deactivate, 3427 .set_affinity = irte_set_affinity, 3428 .set_allocated = irte_set_allocated, 3429 .is_allocated = irte_is_allocated, 3430 .clear_allocated = irte_clear_allocated, 3431 }; 3432 3433 struct amd_irte_ops irte_128_ops = { 3434 .prepare = irte_ga_prepare, 3435 .activate = irte_ga_activate, 3436 .deactivate = irte_ga_deactivate, 3437 .set_affinity = irte_ga_set_affinity, 3438 .set_allocated = irte_ga_set_allocated, 3439 .is_allocated = irte_ga_is_allocated, 3440 .clear_allocated = irte_ga_clear_allocated, 3441 }; 3442 3443 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3444 unsigned int nr_irqs, void *arg) 3445 { 3446 struct irq_alloc_info *info = arg; 3447 struct irq_data *irq_data; 3448 struct amd_ir_data *data = NULL; 3449 struct amd_iommu *iommu; 3450 struct irq_cfg *cfg; 3451 int i, ret, devid, seg, sbdf; 3452 int index; 3453 3454 if (!info) 3455 return -EINVAL; 3456 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI) 3457 return -EINVAL; 3458 3459 sbdf = get_devid(info); 3460 if (sbdf < 0) 3461 return -EINVAL; 3462 3463 seg = PCI_SBDF_TO_SEGID(sbdf); 3464 devid = PCI_SBDF_TO_DEVID(sbdf); 3465 iommu = __rlookup_amd_iommu(seg, devid); 3466 if (!iommu) 3467 return -EINVAL; 3468 3469 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3470 if (ret < 0) 3471 return ret; 3472 3473 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3474 struct irq_remap_table *table; 3475 3476 table = alloc_irq_table(iommu, devid, NULL); 3477 if (table) { 3478 if (!table->min_index) { 3479 /* 3480 * Keep the first 32 indexes free for IOAPIC 3481 * interrupts. 3482 */ 3483 table->min_index = 32; 3484 for (i = 0; i < 32; ++i) 3485 iommu->irte_ops->set_allocated(table, i); 3486 } 3487 WARN_ON(table->min_index != 32); 3488 index = info->ioapic.pin; 3489 } else { 3490 index = -ENOMEM; 3491 } 3492 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3493 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3494 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3495 3496 index = alloc_irq_index(iommu, devid, nr_irqs, align, 3497 msi_desc_to_pci_dev(info->desc)); 3498 } else { 3499 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL); 3500 } 3501 3502 if (index < 0) { 3503 pr_warn("Failed to allocate IRTE\n"); 3504 ret = index; 3505 goto out_free_parent; 3506 } 3507 3508 for (i = 0; i < nr_irqs; i++) { 3509 irq_data = irq_domain_get_irq_data(domain, virq + i); 3510 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3511 if (!cfg) { 3512 ret = -EINVAL; 3513 goto out_free_data; 3514 } 3515 3516 ret = -ENOMEM; 3517 data = kzalloc(sizeof(*data), GFP_KERNEL); 3518 if (!data) 3519 goto out_free_data; 3520 3521 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3522 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3523 else 3524 data->entry = kzalloc(sizeof(struct irte_ga), 3525 GFP_KERNEL); 3526 if (!data->entry) { 3527 kfree(data); 3528 goto out_free_data; 3529 } 3530 3531 data->iommu = iommu; 3532 irq_data->hwirq = (devid << 16) + i; 3533 irq_data->chip_data = data; 3534 irq_data->chip = &amd_ir_chip; 3535 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3536 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3537 } 3538 3539 return 0; 3540 3541 out_free_data: 3542 for (i--; i >= 0; i--) { 3543 irq_data = irq_domain_get_irq_data(domain, virq + i); 3544 if (irq_data) 3545 kfree(irq_data->chip_data); 3546 } 3547 for (i = 0; i < nr_irqs; i++) 3548 free_irte(iommu, devid, index + i); 3549 out_free_parent: 3550 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3551 return ret; 3552 } 3553 3554 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3555 unsigned int nr_irqs) 3556 { 3557 struct irq_2_irte *irte_info; 3558 struct irq_data *irq_data; 3559 struct amd_ir_data *data; 3560 int i; 3561 3562 for (i = 0; i < nr_irqs; i++) { 3563 irq_data = irq_domain_get_irq_data(domain, virq + i); 3564 if (irq_data && irq_data->chip_data) { 3565 data = irq_data->chip_data; 3566 irte_info = &data->irq_2_irte; 3567 free_irte(data->iommu, irte_info->devid, irte_info->index); 3568 kfree(data->entry); 3569 kfree(data); 3570 } 3571 } 3572 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3573 } 3574 3575 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3576 struct amd_ir_data *ir_data, 3577 struct irq_2_irte *irte_info, 3578 struct irq_cfg *cfg); 3579 3580 static int irq_remapping_activate(struct irq_domain *domain, 3581 struct irq_data *irq_data, bool reserve) 3582 { 3583 struct amd_ir_data *data = irq_data->chip_data; 3584 struct irq_2_irte *irte_info = &data->irq_2_irte; 3585 struct amd_iommu *iommu = data->iommu; 3586 struct irq_cfg *cfg = irqd_cfg(irq_data); 3587 3588 if (!iommu) 3589 return 0; 3590 3591 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid, 3592 irte_info->index); 3593 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3594 return 0; 3595 } 3596 3597 static void irq_remapping_deactivate(struct irq_domain *domain, 3598 struct irq_data *irq_data) 3599 { 3600 struct amd_ir_data *data = irq_data->chip_data; 3601 struct irq_2_irte *irte_info = &data->irq_2_irte; 3602 struct amd_iommu *iommu = data->iommu; 3603 3604 if (iommu) 3605 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid, 3606 irte_info->index); 3607 } 3608 3609 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, 3610 enum irq_domain_bus_token bus_token) 3611 { 3612 struct amd_iommu *iommu; 3613 int devid = -1; 3614 3615 if (!amd_iommu_irq_remap) 3616 return 0; 3617 3618 if (x86_fwspec_is_ioapic(fwspec)) 3619 devid = get_ioapic_devid(fwspec->param[0]); 3620 else if (x86_fwspec_is_hpet(fwspec)) 3621 devid = get_hpet_devid(fwspec->param[0]); 3622 3623 if (devid < 0) 3624 return 0; 3625 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff)); 3626 3627 return iommu && iommu->ir_domain == d; 3628 } 3629 3630 static const struct irq_domain_ops amd_ir_domain_ops = { 3631 .select = irq_remapping_select, 3632 .alloc = irq_remapping_alloc, 3633 .free = irq_remapping_free, 3634 .activate = irq_remapping_activate, 3635 .deactivate = irq_remapping_deactivate, 3636 }; 3637 3638 int amd_iommu_activate_guest_mode(void *data) 3639 { 3640 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3641 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3642 u64 valid; 3643 3644 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry) 3645 return 0; 3646 3647 valid = entry->lo.fields_vapic.valid; 3648 3649 entry->lo.val = 0; 3650 entry->hi.val = 0; 3651 3652 entry->lo.fields_vapic.valid = valid; 3653 entry->lo.fields_vapic.guest_mode = 1; 3654 entry->lo.fields_vapic.ga_log_intr = 1; 3655 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3656 entry->hi.fields.vector = ir_data->ga_vector; 3657 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3658 3659 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3660 ir_data->irq_2_irte.index, entry); 3661 } 3662 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3663 3664 int amd_iommu_deactivate_guest_mode(void *data) 3665 { 3666 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3667 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3668 struct irq_cfg *cfg = ir_data->cfg; 3669 u64 valid; 3670 3671 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3672 !entry || !entry->lo.fields_vapic.guest_mode) 3673 return 0; 3674 3675 valid = entry->lo.fields_remap.valid; 3676 3677 entry->lo.val = 0; 3678 entry->hi.val = 0; 3679 3680 entry->lo.fields_remap.valid = valid; 3681 entry->lo.fields_remap.dm = apic->dest_mode_logical; 3682 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED; 3683 entry->hi.fields.vector = cfg->vector; 3684 entry->lo.fields_remap.destination = 3685 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3686 entry->hi.fields.destination = 3687 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3688 3689 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3690 ir_data->irq_2_irte.index, entry); 3691 } 3692 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3693 3694 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3695 { 3696 int ret; 3697 struct amd_iommu_pi_data *pi_data = vcpu_info; 3698 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3699 struct amd_ir_data *ir_data = data->chip_data; 3700 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3701 struct iommu_dev_data *dev_data; 3702 3703 if (ir_data->iommu == NULL) 3704 return -EINVAL; 3705 3706 dev_data = search_dev_data(ir_data->iommu, irte_info->devid); 3707 3708 /* Note: 3709 * This device has never been set up for guest mode. 3710 * we should not modify the IRTE 3711 */ 3712 if (!dev_data || !dev_data->use_vapic) 3713 return 0; 3714 3715 ir_data->cfg = irqd_cfg(data); 3716 pi_data->ir_data = ir_data; 3717 3718 /* Note: 3719 * SVM tries to set up for VAPIC mode, but we are in 3720 * legacy mode. So, we force legacy mode instead. 3721 */ 3722 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3723 pr_debug("%s: Fall back to using intr legacy remap\n", 3724 __func__); 3725 pi_data->is_guest_mode = false; 3726 } 3727 3728 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3729 if (pi_data->is_guest_mode) { 3730 ir_data->ga_root_ptr = (pi_data->base >> 12); 3731 ir_data->ga_vector = vcpu_pi_info->vector; 3732 ir_data->ga_tag = pi_data->ga_tag; 3733 ret = amd_iommu_activate_guest_mode(ir_data); 3734 if (!ret) 3735 ir_data->cached_ga_tag = pi_data->ga_tag; 3736 } else { 3737 ret = amd_iommu_deactivate_guest_mode(ir_data); 3738 3739 /* 3740 * This communicates the ga_tag back to the caller 3741 * so that it can do all the necessary clean up. 3742 */ 3743 if (!ret) 3744 ir_data->cached_ga_tag = 0; 3745 } 3746 3747 return ret; 3748 } 3749 3750 3751 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3752 struct amd_ir_data *ir_data, 3753 struct irq_2_irte *irte_info, 3754 struct irq_cfg *cfg) 3755 { 3756 3757 /* 3758 * Atomically updates the IRTE with the new destination, vector 3759 * and flushes the interrupt entry cache. 3760 */ 3761 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid, 3762 irte_info->index, cfg->vector, 3763 cfg->dest_apicid); 3764 } 3765 3766 static int amd_ir_set_affinity(struct irq_data *data, 3767 const struct cpumask *mask, bool force) 3768 { 3769 struct amd_ir_data *ir_data = data->chip_data; 3770 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3771 struct irq_cfg *cfg = irqd_cfg(data); 3772 struct irq_data *parent = data->parent_data; 3773 struct amd_iommu *iommu = ir_data->iommu; 3774 int ret; 3775 3776 if (!iommu) 3777 return -ENODEV; 3778 3779 ret = parent->chip->irq_set_affinity(parent, mask, force); 3780 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3781 return ret; 3782 3783 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3784 /* 3785 * After this point, all the interrupts will start arriving 3786 * at the new destination. So, time to cleanup the previous 3787 * vector allocation. 3788 */ 3789 vector_schedule_cleanup(cfg); 3790 3791 return IRQ_SET_MASK_OK_DONE; 3792 } 3793 3794 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3795 { 3796 struct amd_ir_data *ir_data = irq_data->chip_data; 3797 3798 *msg = ir_data->msi_entry; 3799 } 3800 3801 static struct irq_chip amd_ir_chip = { 3802 .name = "AMD-IR", 3803 .irq_ack = apic_ack_irq, 3804 .irq_set_affinity = amd_ir_set_affinity, 3805 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3806 .irq_compose_msi_msg = ir_compose_msi_msg, 3807 }; 3808 3809 static const struct msi_parent_ops amdvi_msi_parent_ops = { 3810 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI, 3811 .prefix = "IR-", 3812 .init_dev_msi_info = msi_parent_init_dev_msi_info, 3813 }; 3814 3815 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3816 { 3817 struct fwnode_handle *fn; 3818 3819 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3820 if (!fn) 3821 return -ENOMEM; 3822 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0, 3823 fn, &amd_ir_domain_ops, iommu); 3824 if (!iommu->ir_domain) { 3825 irq_domain_free_fwnode(fn); 3826 return -ENOMEM; 3827 } 3828 3829 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI); 3830 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT | 3831 IRQ_DOMAIN_FLAG_ISOLATED_MSI; 3832 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops; 3833 3834 return 0; 3835 } 3836 3837 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 3838 { 3839 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3840 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3841 3842 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3843 !entry || !entry->lo.fields_vapic.guest_mode) 3844 return 0; 3845 3846 if (!ir_data->iommu) 3847 return -ENODEV; 3848 3849 if (cpu >= 0) { 3850 entry->lo.fields_vapic.destination = 3851 APICID_TO_IRTE_DEST_LO(cpu); 3852 entry->hi.fields.destination = 3853 APICID_TO_IRTE_DEST_HI(cpu); 3854 } 3855 entry->lo.fields_vapic.is_run = is_run; 3856 3857 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3858 ir_data->irq_2_irte.index, entry); 3859 } 3860 EXPORT_SYMBOL(amd_iommu_update_ga); 3861 #endif 3862