1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/amba/bus.h> 15 #include <linux/platform_device.h> 16 #include <linux/pci-ats.h> 17 #include <linux/bitmap.h> 18 #include <linux/slab.h> 19 #include <linux/debugfs.h> 20 #include <linux/scatterlist.h> 21 #include <linux/dma-map-ops.h> 22 #include <linux/dma-direct.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/iommu-helper.h> 25 #include <linux/delay.h> 26 #include <linux/amd-iommu.h> 27 #include <linux/notifier.h> 28 #include <linux/export.h> 29 #include <linux/irq.h> 30 #include <linux/msi.h> 31 #include <linux/irqdomain.h> 32 #include <linux/percpu.h> 33 #include <linux/io-pgtable.h> 34 #include <linux/cc_platform.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/io_apic.h> 37 #include <asm/apic.h> 38 #include <asm/hw_irq.h> 39 #include <asm/proto.h> 40 #include <asm/iommu.h> 41 #include <asm/gart.h> 42 #include <asm/dma.h> 43 44 #include "amd_iommu.h" 45 #include "../irq_remapping.h" 46 47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 48 49 #define LOOP_TIMEOUT 100000 50 51 /* IO virtual address start page frame number */ 52 #define IOVA_START_PFN (1) 53 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 54 55 /* Reserved IOVA ranges */ 56 #define MSI_RANGE_START (0xfee00000) 57 #define MSI_RANGE_END (0xfeefffff) 58 #define HT_RANGE_START (0xfd00000000ULL) 59 #define HT_RANGE_END (0xffffffffffULL) 60 61 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL 62 63 static DEFINE_SPINLOCK(pd_bitmap_lock); 64 65 LIST_HEAD(ioapic_map); 66 LIST_HEAD(hpet_map); 67 LIST_HEAD(acpihid_map); 68 69 /* 70 * Domain for untranslated devices - only allocated 71 * if iommu=pt passed on kernel cmd line. 72 */ 73 const struct iommu_ops amd_iommu_ops; 74 75 static ATOMIC_NOTIFIER_HEAD(ppr_notifier); 76 int amd_iommu_max_glx_val = -1; 77 78 /* 79 * general struct to manage commands send to an IOMMU 80 */ 81 struct iommu_cmd { 82 u32 data[4]; 83 }; 84 85 struct kmem_cache *amd_iommu_irq_cache; 86 87 static void detach_device(struct device *dev); 88 89 /**************************************************************************** 90 * 91 * Helper functions 92 * 93 ****************************************************************************/ 94 95 static inline int get_acpihid_device_id(struct device *dev, 96 struct acpihid_map_entry **entry) 97 { 98 struct acpi_device *adev = ACPI_COMPANION(dev); 99 struct acpihid_map_entry *p; 100 101 if (!adev) 102 return -ENODEV; 103 104 list_for_each_entry(p, &acpihid_map, list) { 105 if (acpi_dev_hid_uid_match(adev, p->hid, 106 p->uid[0] ? p->uid : NULL)) { 107 if (entry) 108 *entry = p; 109 return p->devid; 110 } 111 } 112 return -EINVAL; 113 } 114 115 static inline int get_device_sbdf_id(struct device *dev) 116 { 117 int sbdf; 118 119 if (dev_is_pci(dev)) 120 sbdf = get_pci_sbdf_id(to_pci_dev(dev)); 121 else 122 sbdf = get_acpihid_device_id(dev, NULL); 123 124 return sbdf; 125 } 126 127 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu) 128 { 129 struct dev_table_entry *dev_table; 130 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 131 132 BUG_ON(pci_seg == NULL); 133 dev_table = pci_seg->dev_table; 134 BUG_ON(dev_table == NULL); 135 136 return dev_table; 137 } 138 139 static inline u16 get_device_segment(struct device *dev) 140 { 141 u16 seg; 142 143 if (dev_is_pci(dev)) { 144 struct pci_dev *pdev = to_pci_dev(dev); 145 146 seg = pci_domain_nr(pdev->bus); 147 } else { 148 u32 devid = get_acpihid_device_id(dev, NULL); 149 150 seg = PCI_SBDF_TO_SEGID(devid); 151 } 152 153 return seg; 154 } 155 156 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */ 157 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid) 158 { 159 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 160 161 pci_seg->rlookup_table[devid] = iommu; 162 } 163 164 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid) 165 { 166 struct amd_iommu_pci_seg *pci_seg; 167 168 for_each_pci_segment(pci_seg) { 169 if (pci_seg->id == seg) 170 return pci_seg->rlookup_table[devid]; 171 } 172 return NULL; 173 } 174 175 static struct amd_iommu *rlookup_amd_iommu(struct device *dev) 176 { 177 u16 seg = get_device_segment(dev); 178 int devid = get_device_sbdf_id(dev); 179 180 if (devid < 0) 181 return NULL; 182 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid)); 183 } 184 185 static struct protection_domain *to_pdomain(struct iommu_domain *dom) 186 { 187 return container_of(dom, struct protection_domain, domain); 188 } 189 190 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid) 191 { 192 struct iommu_dev_data *dev_data; 193 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 194 195 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 196 if (!dev_data) 197 return NULL; 198 199 spin_lock_init(&dev_data->lock); 200 dev_data->devid = devid; 201 ratelimit_default_init(&dev_data->rs); 202 203 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list); 204 return dev_data; 205 } 206 207 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid) 208 { 209 struct iommu_dev_data *dev_data; 210 struct llist_node *node; 211 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 212 213 if (llist_empty(&pci_seg->dev_data_list)) 214 return NULL; 215 216 node = pci_seg->dev_data_list.first; 217 llist_for_each_entry(dev_data, node, dev_data_list) { 218 if (dev_data->devid == devid) 219 return dev_data; 220 } 221 222 return NULL; 223 } 224 225 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 226 { 227 struct amd_iommu *iommu; 228 struct dev_table_entry *dev_table; 229 u16 devid = pci_dev_id(pdev); 230 231 if (devid == alias) 232 return 0; 233 234 iommu = rlookup_amd_iommu(&pdev->dev); 235 if (!iommu) 236 return 0; 237 238 amd_iommu_set_rlookup_table(iommu, alias); 239 dev_table = get_dev_table(iommu); 240 memcpy(dev_table[alias].data, 241 dev_table[devid].data, 242 sizeof(dev_table[alias].data)); 243 244 return 0; 245 } 246 247 static void clone_aliases(struct amd_iommu *iommu, struct device *dev) 248 { 249 struct pci_dev *pdev; 250 251 if (!dev_is_pci(dev)) 252 return; 253 pdev = to_pci_dev(dev); 254 255 /* 256 * The IVRS alias stored in the alias table may not be 257 * part of the PCI DMA aliases if it's bus differs 258 * from the original device. 259 */ 260 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL); 261 262 pci_for_each_dma_alias(pdev, clone_alias, NULL); 263 } 264 265 static void setup_aliases(struct amd_iommu *iommu, struct device *dev) 266 { 267 struct pci_dev *pdev = to_pci_dev(dev); 268 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 269 u16 ivrs_alias; 270 271 /* For ACPI HID devices, there are no aliases */ 272 if (!dev_is_pci(dev)) 273 return; 274 275 /* 276 * Add the IVRS alias to the pci aliases if it is on the same 277 * bus. The IVRS table may know about a quirk that we don't. 278 */ 279 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)]; 280 if (ivrs_alias != pci_dev_id(pdev) && 281 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 282 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 283 284 clone_aliases(iommu, dev); 285 } 286 287 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid) 288 { 289 struct iommu_dev_data *dev_data; 290 291 dev_data = search_dev_data(iommu, devid); 292 293 if (dev_data == NULL) { 294 dev_data = alloc_dev_data(iommu, devid); 295 if (!dev_data) 296 return NULL; 297 298 if (translation_pre_enabled(iommu)) 299 dev_data->defer_attach = true; 300 } 301 302 return dev_data; 303 } 304 305 /* 306 * Find or create an IOMMU group for a acpihid device. 307 */ 308 static struct iommu_group *acpihid_device_group(struct device *dev) 309 { 310 struct acpihid_map_entry *p, *entry = NULL; 311 int devid; 312 313 devid = get_acpihid_device_id(dev, &entry); 314 if (devid < 0) 315 return ERR_PTR(devid); 316 317 list_for_each_entry(p, &acpihid_map, list) { 318 if ((devid == p->devid) && p->group) 319 entry->group = p->group; 320 } 321 322 if (!entry->group) 323 entry->group = generic_device_group(dev); 324 else 325 iommu_group_ref_get(entry->group); 326 327 return entry->group; 328 } 329 330 static bool pci_iommuv2_capable(struct pci_dev *pdev) 331 { 332 static const int caps[] = { 333 PCI_EXT_CAP_ID_PRI, 334 PCI_EXT_CAP_ID_PASID, 335 }; 336 int i, pos; 337 338 if (!pci_ats_supported(pdev)) 339 return false; 340 341 for (i = 0; i < 2; ++i) { 342 pos = pci_find_ext_capability(pdev, caps[i]); 343 if (pos == 0) 344 return false; 345 } 346 347 return true; 348 } 349 350 /* 351 * This function checks if the driver got a valid device from the caller to 352 * avoid dereferencing invalid pointers. 353 */ 354 static bool check_device(struct device *dev) 355 { 356 struct amd_iommu_pci_seg *pci_seg; 357 struct amd_iommu *iommu; 358 int devid, sbdf; 359 360 if (!dev) 361 return false; 362 363 sbdf = get_device_sbdf_id(dev); 364 if (sbdf < 0) 365 return false; 366 devid = PCI_SBDF_TO_DEVID(sbdf); 367 368 iommu = rlookup_amd_iommu(dev); 369 if (!iommu) 370 return false; 371 372 /* Out of our scope? */ 373 pci_seg = iommu->pci_seg; 374 if (devid > pci_seg->last_bdf) 375 return false; 376 377 return true; 378 } 379 380 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev) 381 { 382 struct iommu_dev_data *dev_data; 383 int devid, sbdf; 384 385 if (dev_iommu_priv_get(dev)) 386 return 0; 387 388 sbdf = get_device_sbdf_id(dev); 389 if (sbdf < 0) 390 return sbdf; 391 392 devid = PCI_SBDF_TO_DEVID(sbdf); 393 dev_data = find_dev_data(iommu, devid); 394 if (!dev_data) 395 return -ENOMEM; 396 397 dev_data->dev = dev; 398 setup_aliases(iommu, dev); 399 400 /* 401 * By default we use passthrough mode for IOMMUv2 capable device. 402 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 403 * invalid address), we ignore the capability for the device so 404 * it'll be forced to go into translation mode. 405 */ 406 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 407 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { 408 dev_data->iommu_v2 = iommu->is_iommu_v2; 409 } 410 411 dev_iommu_priv_set(dev, dev_data); 412 413 return 0; 414 } 415 416 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev) 417 { 418 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 419 struct dev_table_entry *dev_table = get_dev_table(iommu); 420 int devid, sbdf; 421 422 sbdf = get_device_sbdf_id(dev); 423 if (sbdf < 0) 424 return; 425 426 devid = PCI_SBDF_TO_DEVID(sbdf); 427 pci_seg->rlookup_table[devid] = NULL; 428 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry)); 429 430 setup_aliases(iommu, dev); 431 } 432 433 static void amd_iommu_uninit_device(struct device *dev) 434 { 435 struct iommu_dev_data *dev_data; 436 437 dev_data = dev_iommu_priv_get(dev); 438 if (!dev_data) 439 return; 440 441 if (dev_data->domain) 442 detach_device(dev); 443 444 dev_iommu_priv_set(dev, NULL); 445 446 /* 447 * We keep dev_data around for unplugged devices and reuse it when the 448 * device is re-plugged - not doing so would introduce a ton of races. 449 */ 450 } 451 452 /**************************************************************************** 453 * 454 * Interrupt handling functions 455 * 456 ****************************************************************************/ 457 458 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid) 459 { 460 int i; 461 struct dev_table_entry *dev_table = get_dev_table(iommu); 462 463 for (i = 0; i < 4; ++i) 464 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]); 465 } 466 467 static void dump_command(unsigned long phys_addr) 468 { 469 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 470 int i; 471 472 for (i = 0; i < 4; ++i) 473 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 474 } 475 476 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event) 477 { 478 struct iommu_dev_data *dev_data = NULL; 479 int devid, vmg_tag, flags; 480 struct pci_dev *pdev; 481 u64 spa; 482 483 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 484 vmg_tag = (event[1]) & 0xFFFF; 485 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 486 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); 487 488 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 489 devid & 0xff); 490 if (pdev) 491 dev_data = dev_iommu_priv_get(&pdev->dev); 492 493 if (dev_data) { 494 if (__ratelimit(&dev_data->rs)) { 495 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 496 vmg_tag, spa, flags); 497 } 498 } else { 499 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 500 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 501 vmg_tag, spa, flags); 502 } 503 504 if (pdev) 505 pci_dev_put(pdev); 506 } 507 508 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event) 509 { 510 struct iommu_dev_data *dev_data = NULL; 511 int devid, flags_rmp, vmg_tag, flags; 512 struct pci_dev *pdev; 513 u64 gpa; 514 515 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 516 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; 517 vmg_tag = (event[1]) & 0xFFFF; 518 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 519 gpa = ((u64)event[3] << 32) | event[2]; 520 521 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 522 devid & 0xff); 523 if (pdev) 524 dev_data = dev_iommu_priv_get(&pdev->dev); 525 526 if (dev_data) { 527 if (__ratelimit(&dev_data->rs)) { 528 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 529 vmg_tag, gpa, flags_rmp, flags); 530 } 531 } else { 532 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 533 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 534 vmg_tag, gpa, flags_rmp, flags); 535 } 536 537 if (pdev) 538 pci_dev_put(pdev); 539 } 540 541 #define IS_IOMMU_MEM_TRANSACTION(flags) \ 542 (((flags) & EVENT_FLAG_I) == 0) 543 544 #define IS_WRITE_REQUEST(flags) \ 545 ((flags) & EVENT_FLAG_RW) 546 547 static void amd_iommu_report_page_fault(struct amd_iommu *iommu, 548 u16 devid, u16 domain_id, 549 u64 address, int flags) 550 { 551 struct iommu_dev_data *dev_data = NULL; 552 struct pci_dev *pdev; 553 554 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 555 devid & 0xff); 556 if (pdev) 557 dev_data = dev_iommu_priv_get(&pdev->dev); 558 559 if (dev_data) { 560 /* 561 * If this is a DMA fault (for which the I(nterrupt) 562 * bit will be unset), allow report_iommu_fault() to 563 * prevent logging it. 564 */ 565 if (IS_IOMMU_MEM_TRANSACTION(flags)) { 566 if (!report_iommu_fault(&dev_data->domain->domain, 567 &pdev->dev, address, 568 IS_WRITE_REQUEST(flags) ? 569 IOMMU_FAULT_WRITE : 570 IOMMU_FAULT_READ)) 571 goto out; 572 } 573 574 if (__ratelimit(&dev_data->rs)) { 575 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 576 domain_id, address, flags); 577 } 578 } else { 579 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 580 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 581 domain_id, address, flags); 582 } 583 584 out: 585 if (pdev) 586 pci_dev_put(pdev); 587 } 588 589 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 590 { 591 struct device *dev = iommu->iommu.dev; 592 int type, devid, flags, tag; 593 volatile u32 *event = __evt; 594 int count = 0; 595 u64 address; 596 u32 pasid; 597 598 retry: 599 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 600 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 601 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 602 (event[1] & EVENT_DOMID_MASK_LO); 603 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 604 address = (u64)(((u64)event[3]) << 32) | event[2]; 605 606 if (type == 0) { 607 /* Did we hit the erratum? */ 608 if (++count == LOOP_TIMEOUT) { 609 pr_err("No event written to event log\n"); 610 return; 611 } 612 udelay(1); 613 goto retry; 614 } 615 616 if (type == EVENT_TYPE_IO_FAULT) { 617 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags); 618 return; 619 } 620 621 switch (type) { 622 case EVENT_TYPE_ILL_DEV: 623 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 624 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 625 pasid, address, flags); 626 dump_dte_entry(iommu, devid); 627 break; 628 case EVENT_TYPE_DEV_TAB_ERR: 629 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x " 630 "address=0x%llx flags=0x%04x]\n", 631 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 632 address, flags); 633 break; 634 case EVENT_TYPE_PAGE_TAB_ERR: 635 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 636 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 637 pasid, address, flags); 638 break; 639 case EVENT_TYPE_ILL_CMD: 640 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 641 dump_command(address); 642 break; 643 case EVENT_TYPE_CMD_HARD_ERR: 644 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 645 address, flags); 646 break; 647 case EVENT_TYPE_IOTLB_INV_TO: 648 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n", 649 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 650 address); 651 break; 652 case EVENT_TYPE_INV_DEV_REQ: 653 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 654 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 655 pasid, address, flags); 656 break; 657 case EVENT_TYPE_RMP_FAULT: 658 amd_iommu_report_rmp_fault(iommu, event); 659 break; 660 case EVENT_TYPE_RMP_HW_ERR: 661 amd_iommu_report_rmp_hw_error(iommu, event); 662 break; 663 case EVENT_TYPE_INV_PPR_REQ: 664 pasid = PPR_PASID(*((u64 *)__evt)); 665 tag = event[1] & 0x03FF; 666 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 667 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 668 pasid, address, flags, tag); 669 break; 670 default: 671 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 672 event[0], event[1], event[2], event[3]); 673 } 674 675 memset(__evt, 0, 4 * sizeof(u32)); 676 } 677 678 static void iommu_poll_events(struct amd_iommu *iommu) 679 { 680 u32 head, tail; 681 682 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 683 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 684 685 while (head != tail) { 686 iommu_print_event(iommu, iommu->evt_buf + head); 687 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 688 } 689 690 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 691 } 692 693 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) 694 { 695 struct amd_iommu_fault fault; 696 697 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { 698 pr_err_ratelimited("Unknown PPR request received\n"); 699 return; 700 } 701 702 fault.address = raw[1]; 703 fault.pasid = PPR_PASID(raw[0]); 704 fault.sbdf = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0])); 705 fault.tag = PPR_TAG(raw[0]); 706 fault.flags = PPR_FLAGS(raw[0]); 707 708 atomic_notifier_call_chain(&ppr_notifier, 0, &fault); 709 } 710 711 static void iommu_poll_ppr_log(struct amd_iommu *iommu) 712 { 713 u32 head, tail; 714 715 if (iommu->ppr_log == NULL) 716 return; 717 718 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 719 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 720 721 while (head != tail) { 722 volatile u64 *raw; 723 u64 entry[2]; 724 int i; 725 726 raw = (u64 *)(iommu->ppr_log + head); 727 728 /* 729 * Hardware bug: Interrupt may arrive before the entry is 730 * written to memory. If this happens we need to wait for the 731 * entry to arrive. 732 */ 733 for (i = 0; i < LOOP_TIMEOUT; ++i) { 734 if (PPR_REQ_TYPE(raw[0]) != 0) 735 break; 736 udelay(1); 737 } 738 739 /* Avoid memcpy function-call overhead */ 740 entry[0] = raw[0]; 741 entry[1] = raw[1]; 742 743 /* 744 * To detect the hardware bug we need to clear the entry 745 * back to zero. 746 */ 747 raw[0] = raw[1] = 0UL; 748 749 /* Update head pointer of hardware ring-buffer */ 750 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; 751 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 752 753 /* Handle PPR entry */ 754 iommu_handle_ppr_entry(iommu, entry); 755 756 /* Refresh ring-buffer information */ 757 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 758 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 759 } 760 } 761 762 #ifdef CONFIG_IRQ_REMAP 763 static int (*iommu_ga_log_notifier)(u32); 764 765 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 766 { 767 iommu_ga_log_notifier = notifier; 768 769 return 0; 770 } 771 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 772 773 static void iommu_poll_ga_log(struct amd_iommu *iommu) 774 { 775 u32 head, tail, cnt = 0; 776 777 if (iommu->ga_log == NULL) 778 return; 779 780 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 781 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 782 783 while (head != tail) { 784 volatile u64 *raw; 785 u64 log_entry; 786 787 raw = (u64 *)(iommu->ga_log + head); 788 cnt++; 789 790 /* Avoid memcpy function-call overhead */ 791 log_entry = *raw; 792 793 /* Update head pointer of hardware ring-buffer */ 794 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 795 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 796 797 /* Handle GA entry */ 798 switch (GA_REQ_TYPE(log_entry)) { 799 case GA_GUEST_NR: 800 if (!iommu_ga_log_notifier) 801 break; 802 803 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 804 __func__, GA_DEVID(log_entry), 805 GA_TAG(log_entry)); 806 807 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 808 pr_err("GA log notifier failed.\n"); 809 break; 810 default: 811 break; 812 } 813 } 814 } 815 816 static void 817 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 818 { 819 if (!irq_remapping_enabled || !dev_is_pci(dev) || 820 pci_dev_has_special_msi_domain(to_pci_dev(dev))) 821 return; 822 823 dev_set_msi_domain(dev, iommu->msi_domain); 824 } 825 826 #else /* CONFIG_IRQ_REMAP */ 827 static inline void 828 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 829 #endif /* !CONFIG_IRQ_REMAP */ 830 831 #define AMD_IOMMU_INT_MASK \ 832 (MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \ 833 MMIO_STATUS_EVT_INT_MASK | \ 834 MMIO_STATUS_PPR_INT_MASK | \ 835 MMIO_STATUS_GALOG_INT_MASK) 836 837 irqreturn_t amd_iommu_int_thread(int irq, void *data) 838 { 839 struct amd_iommu *iommu = (struct amd_iommu *) data; 840 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 841 842 while (status & AMD_IOMMU_INT_MASK) { 843 /* Enable interrupt sources again */ 844 writel(AMD_IOMMU_INT_MASK, 845 iommu->mmio_base + MMIO_STATUS_OFFSET); 846 847 if (status & MMIO_STATUS_EVT_INT_MASK) { 848 pr_devel("Processing IOMMU Event Log\n"); 849 iommu_poll_events(iommu); 850 } 851 852 if (status & MMIO_STATUS_PPR_INT_MASK) { 853 pr_devel("Processing IOMMU PPR Log\n"); 854 iommu_poll_ppr_log(iommu); 855 } 856 857 #ifdef CONFIG_IRQ_REMAP 858 if (status & MMIO_STATUS_GALOG_INT_MASK) { 859 pr_devel("Processing IOMMU GA Log\n"); 860 iommu_poll_ga_log(iommu); 861 } 862 #endif 863 864 if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) { 865 pr_info_ratelimited("IOMMU event log overflow\n"); 866 amd_iommu_restart_event_logging(iommu); 867 } 868 869 /* 870 * Hardware bug: ERBT1312 871 * When re-enabling interrupt (by writing 1 872 * to clear the bit), the hardware might also try to set 873 * the interrupt bit in the event status register. 874 * In this scenario, the bit will be set, and disable 875 * subsequent interrupts. 876 * 877 * Workaround: The IOMMU driver should read back the 878 * status register and check if the interrupt bits are cleared. 879 * If not, driver will need to go through the interrupt handler 880 * again and re-clear the bits 881 */ 882 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 883 } 884 return IRQ_HANDLED; 885 } 886 887 irqreturn_t amd_iommu_int_handler(int irq, void *data) 888 { 889 return IRQ_WAKE_THREAD; 890 } 891 892 /**************************************************************************** 893 * 894 * IOMMU command queuing functions 895 * 896 ****************************************************************************/ 897 898 static int wait_on_sem(struct amd_iommu *iommu, u64 data) 899 { 900 int i = 0; 901 902 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { 903 udelay(1); 904 i += 1; 905 } 906 907 if (i == LOOP_TIMEOUT) { 908 pr_alert("Completion-Wait loop timed out\n"); 909 return -EIO; 910 } 911 912 return 0; 913 } 914 915 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 916 struct iommu_cmd *cmd) 917 { 918 u8 *target; 919 u32 tail; 920 921 /* Copy command to buffer */ 922 tail = iommu->cmd_buf_tail; 923 target = iommu->cmd_buf + tail; 924 memcpy(target, cmd, sizeof(*cmd)); 925 926 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 927 iommu->cmd_buf_tail = tail; 928 929 /* Tell the IOMMU about it */ 930 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 931 } 932 933 static void build_completion_wait(struct iommu_cmd *cmd, 934 struct amd_iommu *iommu, 935 u64 data) 936 { 937 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); 938 939 memset(cmd, 0, sizeof(*cmd)); 940 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 941 cmd->data[1] = upper_32_bits(paddr); 942 cmd->data[2] = lower_32_bits(data); 943 cmd->data[3] = upper_32_bits(data); 944 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 945 } 946 947 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 948 { 949 memset(cmd, 0, sizeof(*cmd)); 950 cmd->data[0] = devid; 951 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 952 } 953 954 /* 955 * Builds an invalidation address which is suitable for one page or multiple 956 * pages. Sets the size bit (S) as needed is more than one page is flushed. 957 */ 958 static inline u64 build_inv_address(u64 address, size_t size) 959 { 960 u64 pages, end, msb_diff; 961 962 pages = iommu_num_pages(address, size, PAGE_SIZE); 963 964 if (pages == 1) 965 return address & PAGE_MASK; 966 967 end = address + size - 1; 968 969 /* 970 * msb_diff would hold the index of the most significant bit that 971 * flipped between the start and end. 972 */ 973 msb_diff = fls64(end ^ address) - 1; 974 975 /* 976 * Bits 63:52 are sign extended. If for some reason bit 51 is different 977 * between the start and the end, invalidate everything. 978 */ 979 if (unlikely(msb_diff > 51)) { 980 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 981 } else { 982 /* 983 * The msb-bit must be clear on the address. Just set all the 984 * lower bits. 985 */ 986 address |= (1ull << msb_diff) - 1; 987 } 988 989 /* Clear bits 11:0 */ 990 address &= PAGE_MASK; 991 992 /* Set the size bit - we flush more than one 4kb page */ 993 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; 994 } 995 996 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 997 size_t size, u16 domid, int pde) 998 { 999 u64 inv_address = build_inv_address(address, size); 1000 1001 memset(cmd, 0, sizeof(*cmd)); 1002 cmd->data[1] |= domid; 1003 cmd->data[2] = lower_32_bits(inv_address); 1004 cmd->data[3] = upper_32_bits(inv_address); 1005 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1006 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ 1007 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1008 } 1009 1010 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 1011 u64 address, size_t size) 1012 { 1013 u64 inv_address = build_inv_address(address, size); 1014 1015 memset(cmd, 0, sizeof(*cmd)); 1016 cmd->data[0] = devid; 1017 cmd->data[0] |= (qdep & 0xff) << 24; 1018 cmd->data[1] = devid; 1019 cmd->data[2] = lower_32_bits(inv_address); 1020 cmd->data[3] = upper_32_bits(inv_address); 1021 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1022 } 1023 1024 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid, 1025 u64 address, bool size) 1026 { 1027 memset(cmd, 0, sizeof(*cmd)); 1028 1029 address &= ~(0xfffULL); 1030 1031 cmd->data[0] = pasid; 1032 cmd->data[1] = domid; 1033 cmd->data[2] = lower_32_bits(address); 1034 cmd->data[3] = upper_32_bits(address); 1035 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1036 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1037 if (size) 1038 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 1039 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1040 } 1041 1042 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1043 int qdep, u64 address, bool size) 1044 { 1045 memset(cmd, 0, sizeof(*cmd)); 1046 1047 address &= ~(0xfffULL); 1048 1049 cmd->data[0] = devid; 1050 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 1051 cmd->data[0] |= (qdep & 0xff) << 24; 1052 cmd->data[1] = devid; 1053 cmd->data[1] |= (pasid & 0xff) << 16; 1054 cmd->data[2] = lower_32_bits(address); 1055 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1056 cmd->data[3] = upper_32_bits(address); 1057 if (size) 1058 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 1059 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1060 } 1061 1062 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1063 int status, int tag, bool gn) 1064 { 1065 memset(cmd, 0, sizeof(*cmd)); 1066 1067 cmd->data[0] = devid; 1068 if (gn) { 1069 cmd->data[1] = pasid; 1070 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 1071 } 1072 cmd->data[3] = tag & 0x1ff; 1073 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 1074 1075 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 1076 } 1077 1078 static void build_inv_all(struct iommu_cmd *cmd) 1079 { 1080 memset(cmd, 0, sizeof(*cmd)); 1081 CMD_SET_TYPE(cmd, CMD_INV_ALL); 1082 } 1083 1084 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 1085 { 1086 memset(cmd, 0, sizeof(*cmd)); 1087 cmd->data[0] = devid; 1088 CMD_SET_TYPE(cmd, CMD_INV_IRT); 1089 } 1090 1091 /* 1092 * Writes the command to the IOMMUs command buffer and informs the 1093 * hardware about the new command. 1094 */ 1095 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 1096 struct iommu_cmd *cmd, 1097 bool sync) 1098 { 1099 unsigned int count = 0; 1100 u32 left, next_tail; 1101 1102 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1103 again: 1104 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1105 1106 if (left <= 0x20) { 1107 /* Skip udelay() the first time around */ 1108 if (count++) { 1109 if (count == LOOP_TIMEOUT) { 1110 pr_err("Command buffer timeout\n"); 1111 return -EIO; 1112 } 1113 1114 udelay(1); 1115 } 1116 1117 /* Update head and recheck remaining space */ 1118 iommu->cmd_buf_head = readl(iommu->mmio_base + 1119 MMIO_CMD_HEAD_OFFSET); 1120 1121 goto again; 1122 } 1123 1124 copy_cmd_to_buffer(iommu, cmd); 1125 1126 /* Do we need to make sure all commands are processed? */ 1127 iommu->need_sync = sync; 1128 1129 return 0; 1130 } 1131 1132 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1133 struct iommu_cmd *cmd, 1134 bool sync) 1135 { 1136 unsigned long flags; 1137 int ret; 1138 1139 raw_spin_lock_irqsave(&iommu->lock, flags); 1140 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1141 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1142 1143 return ret; 1144 } 1145 1146 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1147 { 1148 return iommu_queue_command_sync(iommu, cmd, true); 1149 } 1150 1151 /* 1152 * This function queues a completion wait command into the command 1153 * buffer of an IOMMU 1154 */ 1155 static int iommu_completion_wait(struct amd_iommu *iommu) 1156 { 1157 struct iommu_cmd cmd; 1158 unsigned long flags; 1159 int ret; 1160 u64 data; 1161 1162 if (!iommu->need_sync) 1163 return 0; 1164 1165 raw_spin_lock_irqsave(&iommu->lock, flags); 1166 1167 data = ++iommu->cmd_sem_val; 1168 build_completion_wait(&cmd, iommu, data); 1169 1170 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1171 if (ret) 1172 goto out_unlock; 1173 1174 ret = wait_on_sem(iommu, data); 1175 1176 out_unlock: 1177 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1178 1179 return ret; 1180 } 1181 1182 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1183 { 1184 struct iommu_cmd cmd; 1185 1186 build_inv_dte(&cmd, devid); 1187 1188 return iommu_queue_command(iommu, &cmd); 1189 } 1190 1191 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1192 { 1193 u32 devid; 1194 u16 last_bdf = iommu->pci_seg->last_bdf; 1195 1196 for (devid = 0; devid <= last_bdf; ++devid) 1197 iommu_flush_dte(iommu, devid); 1198 1199 iommu_completion_wait(iommu); 1200 } 1201 1202 /* 1203 * This function uses heavy locking and may disable irqs for some time. But 1204 * this is no issue because it is only called during resume. 1205 */ 1206 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1207 { 1208 u32 dom_id; 1209 u16 last_bdf = iommu->pci_seg->last_bdf; 1210 1211 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) { 1212 struct iommu_cmd cmd; 1213 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1214 dom_id, 1); 1215 iommu_queue_command(iommu, &cmd); 1216 } 1217 1218 iommu_completion_wait(iommu); 1219 } 1220 1221 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1222 { 1223 struct iommu_cmd cmd; 1224 1225 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1226 dom_id, 1); 1227 iommu_queue_command(iommu, &cmd); 1228 1229 iommu_completion_wait(iommu); 1230 } 1231 1232 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1233 { 1234 struct iommu_cmd cmd; 1235 1236 build_inv_all(&cmd); 1237 1238 iommu_queue_command(iommu, &cmd); 1239 iommu_completion_wait(iommu); 1240 } 1241 1242 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1243 { 1244 struct iommu_cmd cmd; 1245 1246 build_inv_irt(&cmd, devid); 1247 1248 iommu_queue_command(iommu, &cmd); 1249 } 1250 1251 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1252 { 1253 u32 devid; 1254 u16 last_bdf = iommu->pci_seg->last_bdf; 1255 1256 for (devid = 0; devid <= last_bdf; devid++) 1257 iommu_flush_irt(iommu, devid); 1258 1259 iommu_completion_wait(iommu); 1260 } 1261 1262 void iommu_flush_all_caches(struct amd_iommu *iommu) 1263 { 1264 if (iommu_feature(iommu, FEATURE_IA)) { 1265 amd_iommu_flush_all(iommu); 1266 } else { 1267 amd_iommu_flush_dte_all(iommu); 1268 amd_iommu_flush_irt_all(iommu); 1269 amd_iommu_flush_tlb_all(iommu); 1270 } 1271 } 1272 1273 /* 1274 * Command send function for flushing on-device TLB 1275 */ 1276 static int device_flush_iotlb(struct iommu_dev_data *dev_data, 1277 u64 address, size_t size) 1278 { 1279 struct amd_iommu *iommu; 1280 struct iommu_cmd cmd; 1281 int qdep; 1282 1283 qdep = dev_data->ats.qdep; 1284 iommu = rlookup_amd_iommu(dev_data->dev); 1285 if (!iommu) 1286 return -EINVAL; 1287 1288 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); 1289 1290 return iommu_queue_command(iommu, &cmd); 1291 } 1292 1293 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1294 { 1295 struct amd_iommu *iommu = data; 1296 1297 return iommu_flush_dte(iommu, alias); 1298 } 1299 1300 /* 1301 * Command send function for invalidating a device table entry 1302 */ 1303 static int device_flush_dte(struct iommu_dev_data *dev_data) 1304 { 1305 struct amd_iommu *iommu; 1306 struct pci_dev *pdev = NULL; 1307 struct amd_iommu_pci_seg *pci_seg; 1308 u16 alias; 1309 int ret; 1310 1311 iommu = rlookup_amd_iommu(dev_data->dev); 1312 if (!iommu) 1313 return -EINVAL; 1314 1315 if (dev_is_pci(dev_data->dev)) 1316 pdev = to_pci_dev(dev_data->dev); 1317 1318 if (pdev) 1319 ret = pci_for_each_dma_alias(pdev, 1320 device_flush_dte_alias, iommu); 1321 else 1322 ret = iommu_flush_dte(iommu, dev_data->devid); 1323 if (ret) 1324 return ret; 1325 1326 pci_seg = iommu->pci_seg; 1327 alias = pci_seg->alias_table[dev_data->devid]; 1328 if (alias != dev_data->devid) { 1329 ret = iommu_flush_dte(iommu, alias); 1330 if (ret) 1331 return ret; 1332 } 1333 1334 if (dev_data->ats.enabled) 1335 ret = device_flush_iotlb(dev_data, 0, ~0UL); 1336 1337 return ret; 1338 } 1339 1340 /* 1341 * TLB invalidation function which is called from the mapping functions. 1342 * It invalidates a single PTE if the range to flush is within a single 1343 * page. Otherwise it flushes the whole TLB of the IOMMU. 1344 */ 1345 static void __domain_flush_pages(struct protection_domain *domain, 1346 u64 address, size_t size, int pde) 1347 { 1348 struct iommu_dev_data *dev_data; 1349 struct iommu_cmd cmd; 1350 int ret = 0, i; 1351 1352 build_inv_iommu_pages(&cmd, address, size, domain->id, pde); 1353 1354 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1355 if (!domain->dev_iommu[i]) 1356 continue; 1357 1358 /* 1359 * Devices of this domain are behind this IOMMU 1360 * We need a TLB flush 1361 */ 1362 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1363 } 1364 1365 list_for_each_entry(dev_data, &domain->dev_list, list) { 1366 1367 if (!dev_data->ats.enabled) 1368 continue; 1369 1370 ret |= device_flush_iotlb(dev_data, address, size); 1371 } 1372 1373 WARN_ON(ret); 1374 } 1375 1376 static void domain_flush_pages(struct protection_domain *domain, 1377 u64 address, size_t size, int pde) 1378 { 1379 if (likely(!amd_iommu_np_cache)) { 1380 __domain_flush_pages(domain, address, size, pde); 1381 return; 1382 } 1383 1384 /* 1385 * When NpCache is on, we infer that we run in a VM and use a vIOMMU. 1386 * In such setups it is best to avoid flushes of ranges which are not 1387 * naturally aligned, since it would lead to flushes of unmodified 1388 * PTEs. Such flushes would require the hypervisor to do more work than 1389 * necessary. Therefore, perform repeated flushes of aligned ranges 1390 * until you cover the range. Each iteration flushes the smaller 1391 * between the natural alignment of the address that we flush and the 1392 * greatest naturally aligned region that fits in the range. 1393 */ 1394 while (size != 0) { 1395 int addr_alignment = __ffs(address); 1396 int size_alignment = __fls(size); 1397 int min_alignment; 1398 size_t flush_size; 1399 1400 /* 1401 * size is always non-zero, but address might be zero, causing 1402 * addr_alignment to be negative. As the casting of the 1403 * argument in __ffs(address) to long might trim the high bits 1404 * of the address on x86-32, cast to long when doing the check. 1405 */ 1406 if (likely((unsigned long)address != 0)) 1407 min_alignment = min(addr_alignment, size_alignment); 1408 else 1409 min_alignment = size_alignment; 1410 1411 flush_size = 1ul << min_alignment; 1412 1413 __domain_flush_pages(domain, address, flush_size, pde); 1414 address += flush_size; 1415 size -= flush_size; 1416 } 1417 } 1418 1419 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1420 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain) 1421 { 1422 domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); 1423 } 1424 1425 void amd_iommu_domain_flush_complete(struct protection_domain *domain) 1426 { 1427 int i; 1428 1429 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1430 if (domain && !domain->dev_iommu[i]) 1431 continue; 1432 1433 /* 1434 * Devices of this domain are behind this IOMMU 1435 * We need to wait for completion of all commands. 1436 */ 1437 iommu_completion_wait(amd_iommus[i]); 1438 } 1439 } 1440 1441 /* Flush the not present cache if it exists */ 1442 static void domain_flush_np_cache(struct protection_domain *domain, 1443 dma_addr_t iova, size_t size) 1444 { 1445 if (unlikely(amd_iommu_np_cache)) { 1446 unsigned long flags; 1447 1448 spin_lock_irqsave(&domain->lock, flags); 1449 domain_flush_pages(domain, iova, size, 1); 1450 amd_iommu_domain_flush_complete(domain); 1451 spin_unlock_irqrestore(&domain->lock, flags); 1452 } 1453 } 1454 1455 1456 /* 1457 * This function flushes the DTEs for all devices in domain 1458 */ 1459 static void domain_flush_devices(struct protection_domain *domain) 1460 { 1461 struct iommu_dev_data *dev_data; 1462 1463 list_for_each_entry(dev_data, &domain->dev_list, list) 1464 device_flush_dte(dev_data); 1465 } 1466 1467 /**************************************************************************** 1468 * 1469 * The next functions belong to the domain allocation. A domain is 1470 * allocated for every IOMMU as the default domain. If device isolation 1471 * is enabled, every device get its own domain. The most important thing 1472 * about domains is the page table mapping the DMA address space they 1473 * contain. 1474 * 1475 ****************************************************************************/ 1476 1477 static u16 domain_id_alloc(void) 1478 { 1479 int id; 1480 1481 spin_lock(&pd_bitmap_lock); 1482 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1483 BUG_ON(id == 0); 1484 if (id > 0 && id < MAX_DOMAIN_ID) 1485 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1486 else 1487 id = 0; 1488 spin_unlock(&pd_bitmap_lock); 1489 1490 return id; 1491 } 1492 1493 static void domain_id_free(int id) 1494 { 1495 spin_lock(&pd_bitmap_lock); 1496 if (id > 0 && id < MAX_DOMAIN_ID) 1497 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1498 spin_unlock(&pd_bitmap_lock); 1499 } 1500 1501 static void free_gcr3_tbl_level1(u64 *tbl) 1502 { 1503 u64 *ptr; 1504 int i; 1505 1506 for (i = 0; i < 512; ++i) { 1507 if (!(tbl[i] & GCR3_VALID)) 1508 continue; 1509 1510 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1511 1512 free_page((unsigned long)ptr); 1513 } 1514 } 1515 1516 static void free_gcr3_tbl_level2(u64 *tbl) 1517 { 1518 u64 *ptr; 1519 int i; 1520 1521 for (i = 0; i < 512; ++i) { 1522 if (!(tbl[i] & GCR3_VALID)) 1523 continue; 1524 1525 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1526 1527 free_gcr3_tbl_level1(ptr); 1528 } 1529 } 1530 1531 static void free_gcr3_table(struct protection_domain *domain) 1532 { 1533 if (domain->glx == 2) 1534 free_gcr3_tbl_level2(domain->gcr3_tbl); 1535 else if (domain->glx == 1) 1536 free_gcr3_tbl_level1(domain->gcr3_tbl); 1537 else 1538 BUG_ON(domain->glx != 0); 1539 1540 free_page((unsigned long)domain->gcr3_tbl); 1541 } 1542 1543 static void set_dte_entry(struct amd_iommu *iommu, u16 devid, 1544 struct protection_domain *domain, bool ats, bool ppr) 1545 { 1546 u64 pte_root = 0; 1547 u64 flags = 0; 1548 u32 old_domid; 1549 struct dev_table_entry *dev_table = get_dev_table(iommu); 1550 1551 if (domain->iop.mode != PAGE_MODE_NONE) 1552 pte_root = iommu_virt_to_phys(domain->iop.root); 1553 1554 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) 1555 << DEV_ENTRY_MODE_SHIFT; 1556 1557 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V; 1558 1559 /* 1560 * When SNP is enabled, Only set TV bit when IOMMU 1561 * page translation is in use. 1562 */ 1563 if (!amd_iommu_snp_en || (domain->id != 0)) 1564 pte_root |= DTE_FLAG_TV; 1565 1566 flags = dev_table[devid].data[1]; 1567 1568 if (ats) 1569 flags |= DTE_FLAG_IOTLB; 1570 1571 if (ppr) { 1572 if (iommu_feature(iommu, FEATURE_EPHSUP)) 1573 pte_root |= 1ULL << DEV_ENTRY_PPR; 1574 } 1575 1576 if (domain->flags & PD_IOMMUV2_MASK) { 1577 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); 1578 u64 glx = domain->glx; 1579 u64 tmp; 1580 1581 pte_root |= DTE_FLAG_GV; 1582 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1583 1584 /* First mask out possible old values for GCR3 table */ 1585 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1586 flags &= ~tmp; 1587 1588 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1589 flags &= ~tmp; 1590 1591 /* Encode GCR3 table into DTE */ 1592 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1593 pte_root |= tmp; 1594 1595 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1596 flags |= tmp; 1597 1598 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1599 flags |= tmp; 1600 } 1601 1602 flags &= ~DEV_DOMID_MASK; 1603 flags |= domain->id; 1604 1605 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK; 1606 dev_table[devid].data[1] = flags; 1607 dev_table[devid].data[0] = pte_root; 1608 1609 /* 1610 * A kdump kernel might be replacing a domain ID that was copied from 1611 * the previous kernel--if so, it needs to flush the translation cache 1612 * entries for the old domain ID that is being overwritten 1613 */ 1614 if (old_domid) { 1615 amd_iommu_flush_tlb_domid(iommu, old_domid); 1616 } 1617 } 1618 1619 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid) 1620 { 1621 struct dev_table_entry *dev_table = get_dev_table(iommu); 1622 1623 /* remove entry from the device table seen by the hardware */ 1624 dev_table[devid].data[0] = DTE_FLAG_V; 1625 1626 if (!amd_iommu_snp_en) 1627 dev_table[devid].data[0] |= DTE_FLAG_TV; 1628 1629 dev_table[devid].data[1] &= DTE_FLAG_MASK; 1630 1631 amd_iommu_apply_erratum_63(iommu, devid); 1632 } 1633 1634 static void do_attach(struct iommu_dev_data *dev_data, 1635 struct protection_domain *domain) 1636 { 1637 struct amd_iommu *iommu; 1638 bool ats; 1639 1640 iommu = rlookup_amd_iommu(dev_data->dev); 1641 if (!iommu) 1642 return; 1643 ats = dev_data->ats.enabled; 1644 1645 /* Update data structures */ 1646 dev_data->domain = domain; 1647 list_add(&dev_data->list, &domain->dev_list); 1648 1649 /* Do reference counting */ 1650 domain->dev_iommu[iommu->index] += 1; 1651 domain->dev_cnt += 1; 1652 1653 /* Update device table */ 1654 set_dte_entry(iommu, dev_data->devid, domain, 1655 ats, dev_data->iommu_v2); 1656 clone_aliases(iommu, dev_data->dev); 1657 1658 device_flush_dte(dev_data); 1659 } 1660 1661 static void do_detach(struct iommu_dev_data *dev_data) 1662 { 1663 struct protection_domain *domain = dev_data->domain; 1664 struct amd_iommu *iommu; 1665 1666 iommu = rlookup_amd_iommu(dev_data->dev); 1667 if (!iommu) 1668 return; 1669 1670 /* Update data structures */ 1671 dev_data->domain = NULL; 1672 list_del(&dev_data->list); 1673 clear_dte_entry(iommu, dev_data->devid); 1674 clone_aliases(iommu, dev_data->dev); 1675 1676 /* Flush the DTE entry */ 1677 device_flush_dte(dev_data); 1678 1679 /* Flush IOTLB */ 1680 amd_iommu_domain_flush_tlb_pde(domain); 1681 1682 /* Wait for the flushes to finish */ 1683 amd_iommu_domain_flush_complete(domain); 1684 1685 /* decrease reference counters - needs to happen after the flushes */ 1686 domain->dev_iommu[iommu->index] -= 1; 1687 domain->dev_cnt -= 1; 1688 } 1689 1690 static void pdev_iommuv2_disable(struct pci_dev *pdev) 1691 { 1692 pci_disable_ats(pdev); 1693 pci_disable_pri(pdev); 1694 pci_disable_pasid(pdev); 1695 } 1696 1697 static int pdev_iommuv2_enable(struct pci_dev *pdev) 1698 { 1699 int ret; 1700 1701 /* Only allow access to user-accessible pages */ 1702 ret = pci_enable_pasid(pdev, 0); 1703 if (ret) 1704 goto out_err; 1705 1706 /* First reset the PRI state of the device */ 1707 ret = pci_reset_pri(pdev); 1708 if (ret) 1709 goto out_err; 1710 1711 /* Enable PRI */ 1712 /* FIXME: Hardcode number of outstanding requests for now */ 1713 ret = pci_enable_pri(pdev, 32); 1714 if (ret) 1715 goto out_err; 1716 1717 ret = pci_enable_ats(pdev, PAGE_SHIFT); 1718 if (ret) 1719 goto out_err; 1720 1721 return 0; 1722 1723 out_err: 1724 pci_disable_pri(pdev); 1725 pci_disable_pasid(pdev); 1726 1727 return ret; 1728 } 1729 1730 /* 1731 * If a device is not yet associated with a domain, this function makes the 1732 * device visible in the domain 1733 */ 1734 static int attach_device(struct device *dev, 1735 struct protection_domain *domain) 1736 { 1737 struct iommu_dev_data *dev_data; 1738 struct pci_dev *pdev; 1739 unsigned long flags; 1740 int ret; 1741 1742 spin_lock_irqsave(&domain->lock, flags); 1743 1744 dev_data = dev_iommu_priv_get(dev); 1745 1746 spin_lock(&dev_data->lock); 1747 1748 ret = -EBUSY; 1749 if (dev_data->domain != NULL) 1750 goto out; 1751 1752 if (!dev_is_pci(dev)) 1753 goto skip_ats_check; 1754 1755 pdev = to_pci_dev(dev); 1756 if (domain->flags & PD_IOMMUV2_MASK) { 1757 struct iommu_domain *def_domain = iommu_get_dma_domain(dev); 1758 1759 ret = -EINVAL; 1760 if (def_domain->type != IOMMU_DOMAIN_IDENTITY) 1761 goto out; 1762 1763 if (dev_data->iommu_v2) { 1764 if (pdev_iommuv2_enable(pdev) != 0) 1765 goto out; 1766 1767 dev_data->ats.enabled = true; 1768 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1769 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 1770 } 1771 } else if (amd_iommu_iotlb_sup && 1772 pci_enable_ats(pdev, PAGE_SHIFT) == 0) { 1773 dev_data->ats.enabled = true; 1774 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1775 } 1776 1777 skip_ats_check: 1778 ret = 0; 1779 1780 do_attach(dev_data, domain); 1781 1782 /* 1783 * We might boot into a crash-kernel here. The crashed kernel 1784 * left the caches in the IOMMU dirty. So we have to flush 1785 * here to evict all dirty stuff. 1786 */ 1787 amd_iommu_domain_flush_tlb_pde(domain); 1788 1789 amd_iommu_domain_flush_complete(domain); 1790 1791 out: 1792 spin_unlock(&dev_data->lock); 1793 1794 spin_unlock_irqrestore(&domain->lock, flags); 1795 1796 return ret; 1797 } 1798 1799 /* 1800 * Removes a device from a protection domain (with devtable_lock held) 1801 */ 1802 static void detach_device(struct device *dev) 1803 { 1804 struct protection_domain *domain; 1805 struct iommu_dev_data *dev_data; 1806 unsigned long flags; 1807 1808 dev_data = dev_iommu_priv_get(dev); 1809 domain = dev_data->domain; 1810 1811 spin_lock_irqsave(&domain->lock, flags); 1812 1813 spin_lock(&dev_data->lock); 1814 1815 /* 1816 * First check if the device is still attached. It might already 1817 * be detached from its domain because the generic 1818 * iommu_detach_group code detached it and we try again here in 1819 * our alias handling. 1820 */ 1821 if (WARN_ON(!dev_data->domain)) 1822 goto out; 1823 1824 do_detach(dev_data); 1825 1826 if (!dev_is_pci(dev)) 1827 goto out; 1828 1829 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) 1830 pdev_iommuv2_disable(to_pci_dev(dev)); 1831 else if (dev_data->ats.enabled) 1832 pci_disable_ats(to_pci_dev(dev)); 1833 1834 dev_data->ats.enabled = false; 1835 1836 out: 1837 spin_unlock(&dev_data->lock); 1838 1839 spin_unlock_irqrestore(&domain->lock, flags); 1840 } 1841 1842 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 1843 { 1844 struct iommu_device *iommu_dev; 1845 struct amd_iommu *iommu; 1846 int ret; 1847 1848 if (!check_device(dev)) 1849 return ERR_PTR(-ENODEV); 1850 1851 iommu = rlookup_amd_iommu(dev); 1852 if (!iommu) 1853 return ERR_PTR(-ENODEV); 1854 1855 if (dev_iommu_priv_get(dev)) 1856 return &iommu->iommu; 1857 1858 ret = iommu_init_device(iommu, dev); 1859 if (ret) { 1860 if (ret != -ENOTSUPP) 1861 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 1862 iommu_dev = ERR_PTR(ret); 1863 iommu_ignore_device(iommu, dev); 1864 } else { 1865 amd_iommu_set_pci_msi_domain(dev, iommu); 1866 iommu_dev = &iommu->iommu; 1867 } 1868 1869 iommu_completion_wait(iommu); 1870 1871 return iommu_dev; 1872 } 1873 1874 static void amd_iommu_probe_finalize(struct device *dev) 1875 { 1876 /* Domains are initialized for this device - have a look what we ended up with */ 1877 set_dma_ops(dev, NULL); 1878 iommu_setup_dma_ops(dev, 0, U64_MAX); 1879 } 1880 1881 static void amd_iommu_release_device(struct device *dev) 1882 { 1883 struct amd_iommu *iommu; 1884 1885 if (!check_device(dev)) 1886 return; 1887 1888 iommu = rlookup_amd_iommu(dev); 1889 if (!iommu) 1890 return; 1891 1892 amd_iommu_uninit_device(dev); 1893 iommu_completion_wait(iommu); 1894 } 1895 1896 static struct iommu_group *amd_iommu_device_group(struct device *dev) 1897 { 1898 if (dev_is_pci(dev)) 1899 return pci_device_group(dev); 1900 1901 return acpihid_device_group(dev); 1902 } 1903 1904 /***************************************************************************** 1905 * 1906 * The next functions belong to the dma_ops mapping/unmapping code. 1907 * 1908 *****************************************************************************/ 1909 1910 static void update_device_table(struct protection_domain *domain) 1911 { 1912 struct iommu_dev_data *dev_data; 1913 1914 list_for_each_entry(dev_data, &domain->dev_list, list) { 1915 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev); 1916 1917 if (!iommu) 1918 continue; 1919 set_dte_entry(iommu, dev_data->devid, domain, 1920 dev_data->ats.enabled, dev_data->iommu_v2); 1921 clone_aliases(iommu, dev_data->dev); 1922 } 1923 } 1924 1925 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) 1926 { 1927 update_device_table(domain); 1928 domain_flush_devices(domain); 1929 } 1930 1931 void amd_iommu_domain_update(struct protection_domain *domain) 1932 { 1933 /* Update device table */ 1934 amd_iommu_update_and_flush_device_table(domain); 1935 1936 /* Flush domain TLB(s) and wait for completion */ 1937 amd_iommu_domain_flush_tlb_pde(domain); 1938 amd_iommu_domain_flush_complete(domain); 1939 } 1940 1941 int __init amd_iommu_init_api(void) 1942 { 1943 int err; 1944 1945 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops); 1946 if (err) 1947 return err; 1948 #ifdef CONFIG_ARM_AMBA 1949 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops); 1950 if (err) 1951 return err; 1952 #endif 1953 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops); 1954 if (err) 1955 return err; 1956 1957 return 0; 1958 } 1959 1960 /***************************************************************************** 1961 * 1962 * The following functions belong to the exported interface of AMD IOMMU 1963 * 1964 * This interface allows access to lower level functions of the IOMMU 1965 * like protection domain handling and assignement of devices to domains 1966 * which is not possible with the dma_ops interface. 1967 * 1968 *****************************************************************************/ 1969 1970 static void cleanup_domain(struct protection_domain *domain) 1971 { 1972 struct iommu_dev_data *entry; 1973 unsigned long flags; 1974 1975 spin_lock_irqsave(&domain->lock, flags); 1976 1977 while (!list_empty(&domain->dev_list)) { 1978 entry = list_first_entry(&domain->dev_list, 1979 struct iommu_dev_data, list); 1980 BUG_ON(!entry->domain); 1981 do_detach(entry); 1982 } 1983 1984 spin_unlock_irqrestore(&domain->lock, flags); 1985 } 1986 1987 static void protection_domain_free(struct protection_domain *domain) 1988 { 1989 if (!domain) 1990 return; 1991 1992 if (domain->id) 1993 domain_id_free(domain->id); 1994 1995 if (domain->iop.pgtbl_cfg.tlb) 1996 free_io_pgtable_ops(&domain->iop.iop.ops); 1997 1998 kfree(domain); 1999 } 2000 2001 static int protection_domain_init_v1(struct protection_domain *domain, int mode) 2002 { 2003 u64 *pt_root = NULL; 2004 2005 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); 2006 2007 spin_lock_init(&domain->lock); 2008 domain->id = domain_id_alloc(); 2009 if (!domain->id) 2010 return -ENOMEM; 2011 INIT_LIST_HEAD(&domain->dev_list); 2012 2013 if (mode != PAGE_MODE_NONE) { 2014 pt_root = (void *)get_zeroed_page(GFP_KERNEL); 2015 if (!pt_root) 2016 return -ENOMEM; 2017 } 2018 2019 amd_iommu_domain_set_pgtable(domain, pt_root, mode); 2020 2021 return 0; 2022 } 2023 2024 static struct protection_domain *protection_domain_alloc(unsigned int type) 2025 { 2026 struct io_pgtable_ops *pgtbl_ops; 2027 struct protection_domain *domain; 2028 int pgtable = amd_iommu_pgtable; 2029 int mode = DEFAULT_PGTABLE_LEVEL; 2030 int ret; 2031 2032 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2033 if (!domain) 2034 return NULL; 2035 2036 /* 2037 * Force IOMMU v1 page table when iommu=pt and 2038 * when allocating domain for pass-through devices. 2039 */ 2040 if (type == IOMMU_DOMAIN_IDENTITY) { 2041 pgtable = AMD_IOMMU_V1; 2042 mode = PAGE_MODE_NONE; 2043 } else if (type == IOMMU_DOMAIN_UNMANAGED) { 2044 pgtable = AMD_IOMMU_V1; 2045 } 2046 2047 switch (pgtable) { 2048 case AMD_IOMMU_V1: 2049 ret = protection_domain_init_v1(domain, mode); 2050 break; 2051 default: 2052 ret = -EINVAL; 2053 } 2054 2055 if (ret) 2056 goto out_err; 2057 2058 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain); 2059 if (!pgtbl_ops) 2060 goto out_err; 2061 2062 return domain; 2063 out_err: 2064 kfree(domain); 2065 return NULL; 2066 } 2067 2068 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) 2069 { 2070 struct protection_domain *domain; 2071 2072 /* 2073 * Since DTE[Mode]=0 is prohibited on SNP-enabled system, 2074 * default to use IOMMU_DOMAIN_DMA[_FQ]. 2075 */ 2076 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY)) 2077 return NULL; 2078 2079 domain = protection_domain_alloc(type); 2080 if (!domain) 2081 return NULL; 2082 2083 domain->domain.geometry.aperture_start = 0; 2084 domain->domain.geometry.aperture_end = ~0ULL; 2085 domain->domain.geometry.force_aperture = true; 2086 2087 return &domain->domain; 2088 } 2089 2090 static void amd_iommu_domain_free(struct iommu_domain *dom) 2091 { 2092 struct protection_domain *domain; 2093 2094 domain = to_pdomain(dom); 2095 2096 if (domain->dev_cnt > 0) 2097 cleanup_domain(domain); 2098 2099 BUG_ON(domain->dev_cnt != 0); 2100 2101 if (!dom) 2102 return; 2103 2104 if (domain->flags & PD_IOMMUV2_MASK) 2105 free_gcr3_table(domain); 2106 2107 protection_domain_free(domain); 2108 } 2109 2110 static void amd_iommu_detach_device(struct iommu_domain *dom, 2111 struct device *dev) 2112 { 2113 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2114 struct amd_iommu *iommu; 2115 2116 if (!check_device(dev)) 2117 return; 2118 2119 if (dev_data->domain != NULL) 2120 detach_device(dev); 2121 2122 iommu = rlookup_amd_iommu(dev); 2123 if (!iommu) 2124 return; 2125 2126 #ifdef CONFIG_IRQ_REMAP 2127 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && 2128 (dom->type == IOMMU_DOMAIN_UNMANAGED)) 2129 dev_data->use_vapic = 0; 2130 #endif 2131 2132 iommu_completion_wait(iommu); 2133 } 2134 2135 static int amd_iommu_attach_device(struct iommu_domain *dom, 2136 struct device *dev) 2137 { 2138 struct protection_domain *domain = to_pdomain(dom); 2139 struct iommu_dev_data *dev_data; 2140 struct amd_iommu *iommu; 2141 int ret; 2142 2143 if (!check_device(dev)) 2144 return -EINVAL; 2145 2146 dev_data = dev_iommu_priv_get(dev); 2147 dev_data->defer_attach = false; 2148 2149 iommu = rlookup_amd_iommu(dev); 2150 if (!iommu) 2151 return -EINVAL; 2152 2153 if (dev_data->domain) 2154 detach_device(dev); 2155 2156 ret = attach_device(dev, domain); 2157 2158 #ifdef CONFIG_IRQ_REMAP 2159 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2160 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2161 dev_data->use_vapic = 1; 2162 else 2163 dev_data->use_vapic = 0; 2164 } 2165 #endif 2166 2167 iommu_completion_wait(iommu); 2168 2169 return ret; 2170 } 2171 2172 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom, 2173 unsigned long iova, size_t size) 2174 { 2175 struct protection_domain *domain = to_pdomain(dom); 2176 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2177 2178 if (ops->map) 2179 domain_flush_np_cache(domain, iova, size); 2180 } 2181 2182 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, 2183 phys_addr_t paddr, size_t page_size, int iommu_prot, 2184 gfp_t gfp) 2185 { 2186 struct protection_domain *domain = to_pdomain(dom); 2187 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2188 int prot = 0; 2189 int ret = -EINVAL; 2190 2191 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2192 (domain->iop.mode == PAGE_MODE_NONE)) 2193 return -EINVAL; 2194 2195 if (iommu_prot & IOMMU_READ) 2196 prot |= IOMMU_PROT_IR; 2197 if (iommu_prot & IOMMU_WRITE) 2198 prot |= IOMMU_PROT_IW; 2199 2200 if (ops->map) 2201 ret = ops->map(ops, iova, paddr, page_size, prot, gfp); 2202 2203 return ret; 2204 } 2205 2206 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, 2207 struct iommu_iotlb_gather *gather, 2208 unsigned long iova, size_t size) 2209 { 2210 /* 2211 * AMD's IOMMU can flush as many pages as necessary in a single flush. 2212 * Unless we run in a virtual machine, which can be inferred according 2213 * to whether "non-present cache" is on, it is probably best to prefer 2214 * (potentially) too extensive TLB flushing (i.e., more misses) over 2215 * mutliple TLB flushes (i.e., more flushes). For virtual machines the 2216 * hypervisor needs to synchronize the host IOMMU PTEs with those of 2217 * the guest, and the trade-off is different: unnecessary TLB flushes 2218 * should be avoided. 2219 */ 2220 if (amd_iommu_np_cache && 2221 iommu_iotlb_gather_is_disjoint(gather, iova, size)) 2222 iommu_iotlb_sync(domain, gather); 2223 2224 iommu_iotlb_gather_add_range(gather, iova, size); 2225 } 2226 2227 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, 2228 size_t page_size, 2229 struct iommu_iotlb_gather *gather) 2230 { 2231 struct protection_domain *domain = to_pdomain(dom); 2232 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2233 size_t r; 2234 2235 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2236 (domain->iop.mode == PAGE_MODE_NONE)) 2237 return 0; 2238 2239 r = (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0; 2240 2241 amd_iommu_iotlb_gather_add_page(dom, gather, iova, page_size); 2242 2243 return r; 2244 } 2245 2246 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2247 dma_addr_t iova) 2248 { 2249 struct protection_domain *domain = to_pdomain(dom); 2250 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2251 2252 return ops->iova_to_phys(ops, iova); 2253 } 2254 2255 static bool amd_iommu_capable(enum iommu_cap cap) 2256 { 2257 switch (cap) { 2258 case IOMMU_CAP_CACHE_COHERENCY: 2259 return true; 2260 case IOMMU_CAP_INTR_REMAP: 2261 return (irq_remapping_enabled == 1); 2262 case IOMMU_CAP_NOEXEC: 2263 return false; 2264 case IOMMU_CAP_PRE_BOOT_PROTECTION: 2265 return amdr_ivrs_remap_support; 2266 default: 2267 break; 2268 } 2269 2270 return false; 2271 } 2272 2273 static void amd_iommu_get_resv_regions(struct device *dev, 2274 struct list_head *head) 2275 { 2276 struct iommu_resv_region *region; 2277 struct unity_map_entry *entry; 2278 struct amd_iommu *iommu; 2279 struct amd_iommu_pci_seg *pci_seg; 2280 int devid, sbdf; 2281 2282 sbdf = get_device_sbdf_id(dev); 2283 if (sbdf < 0) 2284 return; 2285 2286 devid = PCI_SBDF_TO_DEVID(sbdf); 2287 iommu = rlookup_amd_iommu(dev); 2288 if (!iommu) 2289 return; 2290 pci_seg = iommu->pci_seg; 2291 2292 list_for_each_entry(entry, &pci_seg->unity_map, list) { 2293 int type, prot = 0; 2294 size_t length; 2295 2296 if (devid < entry->devid_start || devid > entry->devid_end) 2297 continue; 2298 2299 type = IOMMU_RESV_DIRECT; 2300 length = entry->address_end - entry->address_start; 2301 if (entry->prot & IOMMU_PROT_IR) 2302 prot |= IOMMU_READ; 2303 if (entry->prot & IOMMU_PROT_IW) 2304 prot |= IOMMU_WRITE; 2305 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2306 /* Exclusion range */ 2307 type = IOMMU_RESV_RESERVED; 2308 2309 region = iommu_alloc_resv_region(entry->address_start, 2310 length, prot, type); 2311 if (!region) { 2312 dev_err(dev, "Out of memory allocating dm-regions\n"); 2313 return; 2314 } 2315 list_add_tail(®ion->list, head); 2316 } 2317 2318 region = iommu_alloc_resv_region(MSI_RANGE_START, 2319 MSI_RANGE_END - MSI_RANGE_START + 1, 2320 0, IOMMU_RESV_MSI); 2321 if (!region) 2322 return; 2323 list_add_tail(®ion->list, head); 2324 2325 region = iommu_alloc_resv_region(HT_RANGE_START, 2326 HT_RANGE_END - HT_RANGE_START + 1, 2327 0, IOMMU_RESV_RESERVED); 2328 if (!region) 2329 return; 2330 list_add_tail(®ion->list, head); 2331 } 2332 2333 bool amd_iommu_is_attach_deferred(struct device *dev) 2334 { 2335 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2336 2337 return dev_data->defer_attach; 2338 } 2339 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); 2340 2341 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2342 { 2343 struct protection_domain *dom = to_pdomain(domain); 2344 unsigned long flags; 2345 2346 spin_lock_irqsave(&dom->lock, flags); 2347 amd_iommu_domain_flush_tlb_pde(dom); 2348 amd_iommu_domain_flush_complete(dom); 2349 spin_unlock_irqrestore(&dom->lock, flags); 2350 } 2351 2352 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2353 struct iommu_iotlb_gather *gather) 2354 { 2355 struct protection_domain *dom = to_pdomain(domain); 2356 unsigned long flags; 2357 2358 spin_lock_irqsave(&dom->lock, flags); 2359 domain_flush_pages(dom, gather->start, gather->end - gather->start, 1); 2360 amd_iommu_domain_flush_complete(dom); 2361 spin_unlock_irqrestore(&dom->lock, flags); 2362 } 2363 2364 static int amd_iommu_def_domain_type(struct device *dev) 2365 { 2366 struct iommu_dev_data *dev_data; 2367 2368 dev_data = dev_iommu_priv_get(dev); 2369 if (!dev_data) 2370 return 0; 2371 2372 /* 2373 * Do not identity map IOMMUv2 capable devices when memory encryption is 2374 * active, because some of those devices (AMD GPUs) don't have the 2375 * encryption bit in their DMA-mask and require remapping. 2376 */ 2377 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2) 2378 return IOMMU_DOMAIN_IDENTITY; 2379 2380 return 0; 2381 } 2382 2383 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain) 2384 { 2385 /* IOMMU_PTE_FC is always set */ 2386 return true; 2387 } 2388 2389 const struct iommu_ops amd_iommu_ops = { 2390 .capable = amd_iommu_capable, 2391 .domain_alloc = amd_iommu_domain_alloc, 2392 .probe_device = amd_iommu_probe_device, 2393 .release_device = amd_iommu_release_device, 2394 .probe_finalize = amd_iommu_probe_finalize, 2395 .device_group = amd_iommu_device_group, 2396 .get_resv_regions = amd_iommu_get_resv_regions, 2397 .is_attach_deferred = amd_iommu_is_attach_deferred, 2398 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 2399 .def_domain_type = amd_iommu_def_domain_type, 2400 .default_domain_ops = &(const struct iommu_domain_ops) { 2401 .attach_dev = amd_iommu_attach_device, 2402 .detach_dev = amd_iommu_detach_device, 2403 .map = amd_iommu_map, 2404 .unmap = amd_iommu_unmap, 2405 .iotlb_sync_map = amd_iommu_iotlb_sync_map, 2406 .iova_to_phys = amd_iommu_iova_to_phys, 2407 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2408 .iotlb_sync = amd_iommu_iotlb_sync, 2409 .free = amd_iommu_domain_free, 2410 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency, 2411 } 2412 }; 2413 2414 /***************************************************************************** 2415 * 2416 * The next functions do a basic initialization of IOMMU for pass through 2417 * mode 2418 * 2419 * In passthrough mode the IOMMU is initialized and enabled but not used for 2420 * DMA-API translation. 2421 * 2422 *****************************************************************************/ 2423 2424 /* IOMMUv2 specific functions */ 2425 int amd_iommu_register_ppr_notifier(struct notifier_block *nb) 2426 { 2427 return atomic_notifier_chain_register(&ppr_notifier, nb); 2428 } 2429 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); 2430 2431 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) 2432 { 2433 return atomic_notifier_chain_unregister(&ppr_notifier, nb); 2434 } 2435 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); 2436 2437 void amd_iommu_domain_direct_map(struct iommu_domain *dom) 2438 { 2439 struct protection_domain *domain = to_pdomain(dom); 2440 unsigned long flags; 2441 2442 spin_lock_irqsave(&domain->lock, flags); 2443 2444 if (domain->iop.pgtbl_cfg.tlb) 2445 free_io_pgtable_ops(&domain->iop.iop.ops); 2446 2447 spin_unlock_irqrestore(&domain->lock, flags); 2448 } 2449 EXPORT_SYMBOL(amd_iommu_domain_direct_map); 2450 2451 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) 2452 { 2453 struct protection_domain *domain = to_pdomain(dom); 2454 unsigned long flags; 2455 int levels, ret; 2456 2457 /* Number of GCR3 table levels required */ 2458 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) 2459 levels += 1; 2460 2461 if (levels > amd_iommu_max_glx_val) 2462 return -EINVAL; 2463 2464 spin_lock_irqsave(&domain->lock, flags); 2465 2466 /* 2467 * Save us all sanity checks whether devices already in the 2468 * domain support IOMMUv2. Just force that the domain has no 2469 * devices attached when it is switched into IOMMUv2 mode. 2470 */ 2471 ret = -EBUSY; 2472 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) 2473 goto out; 2474 2475 ret = -ENOMEM; 2476 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); 2477 if (domain->gcr3_tbl == NULL) 2478 goto out; 2479 2480 domain->glx = levels; 2481 domain->flags |= PD_IOMMUV2_MASK; 2482 2483 amd_iommu_domain_update(domain); 2484 2485 ret = 0; 2486 2487 out: 2488 spin_unlock_irqrestore(&domain->lock, flags); 2489 2490 return ret; 2491 } 2492 EXPORT_SYMBOL(amd_iommu_domain_enable_v2); 2493 2494 static int __flush_pasid(struct protection_domain *domain, u32 pasid, 2495 u64 address, bool size) 2496 { 2497 struct iommu_dev_data *dev_data; 2498 struct iommu_cmd cmd; 2499 int i, ret; 2500 2501 if (!(domain->flags & PD_IOMMUV2_MASK)) 2502 return -EINVAL; 2503 2504 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); 2505 2506 /* 2507 * IOMMU TLB needs to be flushed before Device TLB to 2508 * prevent device TLB refill from IOMMU TLB 2509 */ 2510 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 2511 if (domain->dev_iommu[i] == 0) 2512 continue; 2513 2514 ret = iommu_queue_command(amd_iommus[i], &cmd); 2515 if (ret != 0) 2516 goto out; 2517 } 2518 2519 /* Wait until IOMMU TLB flushes are complete */ 2520 amd_iommu_domain_flush_complete(domain); 2521 2522 /* Now flush device TLBs */ 2523 list_for_each_entry(dev_data, &domain->dev_list, list) { 2524 struct amd_iommu *iommu; 2525 int qdep; 2526 2527 /* 2528 There might be non-IOMMUv2 capable devices in an IOMMUv2 2529 * domain. 2530 */ 2531 if (!dev_data->ats.enabled) 2532 continue; 2533 2534 qdep = dev_data->ats.qdep; 2535 iommu = rlookup_amd_iommu(dev_data->dev); 2536 if (!iommu) 2537 continue; 2538 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, 2539 qdep, address, size); 2540 2541 ret = iommu_queue_command(iommu, &cmd); 2542 if (ret != 0) 2543 goto out; 2544 } 2545 2546 /* Wait until all device TLBs are flushed */ 2547 amd_iommu_domain_flush_complete(domain); 2548 2549 ret = 0; 2550 2551 out: 2552 2553 return ret; 2554 } 2555 2556 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid, 2557 u64 address) 2558 { 2559 return __flush_pasid(domain, pasid, address, false); 2560 } 2561 2562 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid, 2563 u64 address) 2564 { 2565 struct protection_domain *domain = to_pdomain(dom); 2566 unsigned long flags; 2567 int ret; 2568 2569 spin_lock_irqsave(&domain->lock, flags); 2570 ret = __amd_iommu_flush_page(domain, pasid, address); 2571 spin_unlock_irqrestore(&domain->lock, flags); 2572 2573 return ret; 2574 } 2575 EXPORT_SYMBOL(amd_iommu_flush_page); 2576 2577 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid) 2578 { 2579 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 2580 true); 2581 } 2582 2583 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid) 2584 { 2585 struct protection_domain *domain = to_pdomain(dom); 2586 unsigned long flags; 2587 int ret; 2588 2589 spin_lock_irqsave(&domain->lock, flags); 2590 ret = __amd_iommu_flush_tlb(domain, pasid); 2591 spin_unlock_irqrestore(&domain->lock, flags); 2592 2593 return ret; 2594 } 2595 EXPORT_SYMBOL(amd_iommu_flush_tlb); 2596 2597 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc) 2598 { 2599 int index; 2600 u64 *pte; 2601 2602 while (true) { 2603 2604 index = (pasid >> (9 * level)) & 0x1ff; 2605 pte = &root[index]; 2606 2607 if (level == 0) 2608 break; 2609 2610 if (!(*pte & GCR3_VALID)) { 2611 if (!alloc) 2612 return NULL; 2613 2614 root = (void *)get_zeroed_page(GFP_ATOMIC); 2615 if (root == NULL) 2616 return NULL; 2617 2618 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 2619 } 2620 2621 root = iommu_phys_to_virt(*pte & PAGE_MASK); 2622 2623 level -= 1; 2624 } 2625 2626 return pte; 2627 } 2628 2629 static int __set_gcr3(struct protection_domain *domain, u32 pasid, 2630 unsigned long cr3) 2631 { 2632 u64 *pte; 2633 2634 if (domain->iop.mode != PAGE_MODE_NONE) 2635 return -EINVAL; 2636 2637 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); 2638 if (pte == NULL) 2639 return -ENOMEM; 2640 2641 *pte = (cr3 & PAGE_MASK) | GCR3_VALID; 2642 2643 return __amd_iommu_flush_tlb(domain, pasid); 2644 } 2645 2646 static int __clear_gcr3(struct protection_domain *domain, u32 pasid) 2647 { 2648 u64 *pte; 2649 2650 if (domain->iop.mode != PAGE_MODE_NONE) 2651 return -EINVAL; 2652 2653 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); 2654 if (pte == NULL) 2655 return 0; 2656 2657 *pte = 0; 2658 2659 return __amd_iommu_flush_tlb(domain, pasid); 2660 } 2661 2662 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid, 2663 unsigned long cr3) 2664 { 2665 struct protection_domain *domain = to_pdomain(dom); 2666 unsigned long flags; 2667 int ret; 2668 2669 spin_lock_irqsave(&domain->lock, flags); 2670 ret = __set_gcr3(domain, pasid, cr3); 2671 spin_unlock_irqrestore(&domain->lock, flags); 2672 2673 return ret; 2674 } 2675 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); 2676 2677 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid) 2678 { 2679 struct protection_domain *domain = to_pdomain(dom); 2680 unsigned long flags; 2681 int ret; 2682 2683 spin_lock_irqsave(&domain->lock, flags); 2684 ret = __clear_gcr3(domain, pasid); 2685 spin_unlock_irqrestore(&domain->lock, flags); 2686 2687 return ret; 2688 } 2689 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); 2690 2691 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid, 2692 int status, int tag) 2693 { 2694 struct iommu_dev_data *dev_data; 2695 struct amd_iommu *iommu; 2696 struct iommu_cmd cmd; 2697 2698 dev_data = dev_iommu_priv_get(&pdev->dev); 2699 iommu = rlookup_amd_iommu(&pdev->dev); 2700 if (!iommu) 2701 return -ENODEV; 2702 2703 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 2704 tag, dev_data->pri_tlp); 2705 2706 return iommu_queue_command(iommu, &cmd); 2707 } 2708 EXPORT_SYMBOL(amd_iommu_complete_ppr); 2709 2710 int amd_iommu_device_info(struct pci_dev *pdev, 2711 struct amd_iommu_device_info *info) 2712 { 2713 int max_pasids; 2714 int pos; 2715 2716 if (pdev == NULL || info == NULL) 2717 return -EINVAL; 2718 2719 if (!amd_iommu_v2_supported()) 2720 return -EINVAL; 2721 2722 memset(info, 0, sizeof(*info)); 2723 2724 if (pci_ats_supported(pdev)) 2725 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 2726 2727 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 2728 if (pos) 2729 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 2730 2731 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); 2732 if (pos) { 2733 int features; 2734 2735 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); 2736 max_pasids = min(max_pasids, (1 << 20)); 2737 2738 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 2739 info->max_pasids = min(pci_max_pasids(pdev), max_pasids); 2740 2741 features = pci_pasid_features(pdev); 2742 if (features & PCI_PASID_CAP_EXEC) 2743 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 2744 if (features & PCI_PASID_CAP_PRIV) 2745 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 2746 } 2747 2748 return 0; 2749 } 2750 EXPORT_SYMBOL(amd_iommu_device_info); 2751 2752 #ifdef CONFIG_IRQ_REMAP 2753 2754 /***************************************************************************** 2755 * 2756 * Interrupt Remapping Implementation 2757 * 2758 *****************************************************************************/ 2759 2760 static struct irq_chip amd_ir_chip; 2761 static DEFINE_SPINLOCK(iommu_table_lock); 2762 2763 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid, 2764 struct irq_remap_table *table) 2765 { 2766 u64 dte; 2767 struct dev_table_entry *dev_table = get_dev_table(iommu); 2768 2769 dte = dev_table[devid].data[2]; 2770 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 2771 dte |= iommu_virt_to_phys(table->table); 2772 dte |= DTE_IRQ_REMAP_INTCTL; 2773 dte |= DTE_INTTABLEN; 2774 dte |= DTE_IRQ_REMAP_ENABLE; 2775 2776 dev_table[devid].data[2] = dte; 2777 } 2778 2779 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid) 2780 { 2781 struct irq_remap_table *table; 2782 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2783 2784 if (WARN_ONCE(!pci_seg->rlookup_table[devid], 2785 "%s: no iommu for devid %x:%x\n", 2786 __func__, pci_seg->id, devid)) 2787 return NULL; 2788 2789 table = pci_seg->irq_lookup_table[devid]; 2790 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n", 2791 __func__, pci_seg->id, devid)) 2792 return NULL; 2793 2794 return table; 2795 } 2796 2797 static struct irq_remap_table *__alloc_irq_table(void) 2798 { 2799 struct irq_remap_table *table; 2800 2801 table = kzalloc(sizeof(*table), GFP_KERNEL); 2802 if (!table) 2803 return NULL; 2804 2805 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 2806 if (!table->table) { 2807 kfree(table); 2808 return NULL; 2809 } 2810 raw_spin_lock_init(&table->lock); 2811 2812 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 2813 memset(table->table, 0, 2814 MAX_IRQS_PER_TABLE * sizeof(u32)); 2815 else 2816 memset(table->table, 0, 2817 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 2818 return table; 2819 } 2820 2821 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 2822 struct irq_remap_table *table) 2823 { 2824 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2825 2826 pci_seg->irq_lookup_table[devid] = table; 2827 set_dte_irq_entry(iommu, devid, table); 2828 iommu_flush_dte(iommu, devid); 2829 } 2830 2831 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 2832 void *data) 2833 { 2834 struct irq_remap_table *table = data; 2835 struct amd_iommu_pci_seg *pci_seg; 2836 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev); 2837 2838 if (!iommu) 2839 return -EINVAL; 2840 2841 pci_seg = iommu->pci_seg; 2842 pci_seg->irq_lookup_table[alias] = table; 2843 set_dte_irq_entry(iommu, alias, table); 2844 iommu_flush_dte(pci_seg->rlookup_table[alias], alias); 2845 2846 return 0; 2847 } 2848 2849 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu, 2850 u16 devid, struct pci_dev *pdev) 2851 { 2852 struct irq_remap_table *table = NULL; 2853 struct irq_remap_table *new_table = NULL; 2854 struct amd_iommu_pci_seg *pci_seg; 2855 unsigned long flags; 2856 u16 alias; 2857 2858 spin_lock_irqsave(&iommu_table_lock, flags); 2859 2860 pci_seg = iommu->pci_seg; 2861 table = pci_seg->irq_lookup_table[devid]; 2862 if (table) 2863 goto out_unlock; 2864 2865 alias = pci_seg->alias_table[devid]; 2866 table = pci_seg->irq_lookup_table[alias]; 2867 if (table) { 2868 set_remap_table_entry(iommu, devid, table); 2869 goto out_wait; 2870 } 2871 spin_unlock_irqrestore(&iommu_table_lock, flags); 2872 2873 /* Nothing there yet, allocate new irq remapping table */ 2874 new_table = __alloc_irq_table(); 2875 if (!new_table) 2876 return NULL; 2877 2878 spin_lock_irqsave(&iommu_table_lock, flags); 2879 2880 table = pci_seg->irq_lookup_table[devid]; 2881 if (table) 2882 goto out_unlock; 2883 2884 table = pci_seg->irq_lookup_table[alias]; 2885 if (table) { 2886 set_remap_table_entry(iommu, devid, table); 2887 goto out_wait; 2888 } 2889 2890 table = new_table; 2891 new_table = NULL; 2892 2893 if (pdev) 2894 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 2895 table); 2896 else 2897 set_remap_table_entry(iommu, devid, table); 2898 2899 if (devid != alias) 2900 set_remap_table_entry(iommu, alias, table); 2901 2902 out_wait: 2903 iommu_completion_wait(iommu); 2904 2905 out_unlock: 2906 spin_unlock_irqrestore(&iommu_table_lock, flags); 2907 2908 if (new_table) { 2909 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 2910 kfree(new_table); 2911 } 2912 return table; 2913 } 2914 2915 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count, 2916 bool align, struct pci_dev *pdev) 2917 { 2918 struct irq_remap_table *table; 2919 int index, c, alignment = 1; 2920 unsigned long flags; 2921 2922 table = alloc_irq_table(iommu, devid, pdev); 2923 if (!table) 2924 return -ENODEV; 2925 2926 if (align) 2927 alignment = roundup_pow_of_two(count); 2928 2929 raw_spin_lock_irqsave(&table->lock, flags); 2930 2931 /* Scan table for free entries */ 2932 for (index = ALIGN(table->min_index, alignment), c = 0; 2933 index < MAX_IRQS_PER_TABLE;) { 2934 if (!iommu->irte_ops->is_allocated(table, index)) { 2935 c += 1; 2936 } else { 2937 c = 0; 2938 index = ALIGN(index + 1, alignment); 2939 continue; 2940 } 2941 2942 if (c == count) { 2943 for (; c != 0; --c) 2944 iommu->irte_ops->set_allocated(table, index - c + 1); 2945 2946 index -= count - 1; 2947 goto out; 2948 } 2949 2950 index++; 2951 } 2952 2953 index = -ENOSPC; 2954 2955 out: 2956 raw_spin_unlock_irqrestore(&table->lock, flags); 2957 2958 return index; 2959 } 2960 2961 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 2962 struct irte_ga *irte, struct amd_ir_data *data) 2963 { 2964 bool ret; 2965 struct irq_remap_table *table; 2966 unsigned long flags; 2967 struct irte_ga *entry; 2968 2969 table = get_irq_table(iommu, devid); 2970 if (!table) 2971 return -ENOMEM; 2972 2973 raw_spin_lock_irqsave(&table->lock, flags); 2974 2975 entry = (struct irte_ga *)table->table; 2976 entry = &entry[index]; 2977 2978 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val, 2979 entry->lo.val, entry->hi.val, 2980 irte->lo.val, irte->hi.val); 2981 /* 2982 * We use cmpxchg16 to atomically update the 128-bit IRTE, 2983 * and it cannot be updated by the hardware or other processors 2984 * behind us, so the return value of cmpxchg16 should be the 2985 * same as the old value. 2986 */ 2987 WARN_ON(!ret); 2988 2989 if (data) 2990 data->ref = entry; 2991 2992 raw_spin_unlock_irqrestore(&table->lock, flags); 2993 2994 iommu_flush_irt(iommu, devid); 2995 iommu_completion_wait(iommu); 2996 2997 return 0; 2998 } 2999 3000 static int modify_irte(struct amd_iommu *iommu, 3001 u16 devid, int index, union irte *irte) 3002 { 3003 struct irq_remap_table *table; 3004 unsigned long flags; 3005 3006 table = get_irq_table(iommu, devid); 3007 if (!table) 3008 return -ENOMEM; 3009 3010 raw_spin_lock_irqsave(&table->lock, flags); 3011 table->table[index] = irte->val; 3012 raw_spin_unlock_irqrestore(&table->lock, flags); 3013 3014 iommu_flush_irt(iommu, devid); 3015 iommu_completion_wait(iommu); 3016 3017 return 0; 3018 } 3019 3020 static void free_irte(struct amd_iommu *iommu, u16 devid, int index) 3021 { 3022 struct irq_remap_table *table; 3023 unsigned long flags; 3024 3025 table = get_irq_table(iommu, devid); 3026 if (!table) 3027 return; 3028 3029 raw_spin_lock_irqsave(&table->lock, flags); 3030 iommu->irte_ops->clear_allocated(table, index); 3031 raw_spin_unlock_irqrestore(&table->lock, flags); 3032 3033 iommu_flush_irt(iommu, devid); 3034 iommu_completion_wait(iommu); 3035 } 3036 3037 static void irte_prepare(void *entry, 3038 u32 delivery_mode, bool dest_mode, 3039 u8 vector, u32 dest_apicid, int devid) 3040 { 3041 union irte *irte = (union irte *) entry; 3042 3043 irte->val = 0; 3044 irte->fields.vector = vector; 3045 irte->fields.int_type = delivery_mode; 3046 irte->fields.destination = dest_apicid; 3047 irte->fields.dm = dest_mode; 3048 irte->fields.valid = 1; 3049 } 3050 3051 static void irte_ga_prepare(void *entry, 3052 u32 delivery_mode, bool dest_mode, 3053 u8 vector, u32 dest_apicid, int devid) 3054 { 3055 struct irte_ga *irte = (struct irte_ga *) entry; 3056 3057 irte->lo.val = 0; 3058 irte->hi.val = 0; 3059 irte->lo.fields_remap.int_type = delivery_mode; 3060 irte->lo.fields_remap.dm = dest_mode; 3061 irte->hi.fields.vector = vector; 3062 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3063 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3064 irte->lo.fields_remap.valid = 1; 3065 } 3066 3067 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3068 { 3069 union irte *irte = (union irte *) entry; 3070 3071 irte->fields.valid = 1; 3072 modify_irte(iommu, devid, index, irte); 3073 } 3074 3075 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3076 { 3077 struct irte_ga *irte = (struct irte_ga *) entry; 3078 3079 irte->lo.fields_remap.valid = 1; 3080 modify_irte_ga(iommu, devid, index, irte, NULL); 3081 } 3082 3083 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3084 { 3085 union irte *irte = (union irte *) entry; 3086 3087 irte->fields.valid = 0; 3088 modify_irte(iommu, devid, index, irte); 3089 } 3090 3091 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3092 { 3093 struct irte_ga *irte = (struct irte_ga *) entry; 3094 3095 irte->lo.fields_remap.valid = 0; 3096 modify_irte_ga(iommu, devid, index, irte, NULL); 3097 } 3098 3099 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3100 u8 vector, u32 dest_apicid) 3101 { 3102 union irte *irte = (union irte *) entry; 3103 3104 irte->fields.vector = vector; 3105 irte->fields.destination = dest_apicid; 3106 modify_irte(iommu, devid, index, irte); 3107 } 3108 3109 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3110 u8 vector, u32 dest_apicid) 3111 { 3112 struct irte_ga *irte = (struct irte_ga *) entry; 3113 3114 if (!irte->lo.fields_remap.guest_mode) { 3115 irte->hi.fields.vector = vector; 3116 irte->lo.fields_remap.destination = 3117 APICID_TO_IRTE_DEST_LO(dest_apicid); 3118 irte->hi.fields.destination = 3119 APICID_TO_IRTE_DEST_HI(dest_apicid); 3120 modify_irte_ga(iommu, devid, index, irte, NULL); 3121 } 3122 } 3123 3124 #define IRTE_ALLOCATED (~1U) 3125 static void irte_set_allocated(struct irq_remap_table *table, int index) 3126 { 3127 table->table[index] = IRTE_ALLOCATED; 3128 } 3129 3130 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3131 { 3132 struct irte_ga *ptr = (struct irte_ga *)table->table; 3133 struct irte_ga *irte = &ptr[index]; 3134 3135 memset(&irte->lo.val, 0, sizeof(u64)); 3136 memset(&irte->hi.val, 0, sizeof(u64)); 3137 irte->hi.fields.vector = 0xff; 3138 } 3139 3140 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3141 { 3142 union irte *ptr = (union irte *)table->table; 3143 union irte *irte = &ptr[index]; 3144 3145 return irte->val != 0; 3146 } 3147 3148 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3149 { 3150 struct irte_ga *ptr = (struct irte_ga *)table->table; 3151 struct irte_ga *irte = &ptr[index]; 3152 3153 return irte->hi.fields.vector != 0; 3154 } 3155 3156 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3157 { 3158 table->table[index] = 0; 3159 } 3160 3161 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3162 { 3163 struct irte_ga *ptr = (struct irte_ga *)table->table; 3164 struct irte_ga *irte = &ptr[index]; 3165 3166 memset(&irte->lo.val, 0, sizeof(u64)); 3167 memset(&irte->hi.val, 0, sizeof(u64)); 3168 } 3169 3170 static int get_devid(struct irq_alloc_info *info) 3171 { 3172 switch (info->type) { 3173 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3174 return get_ioapic_devid(info->devid); 3175 case X86_IRQ_ALLOC_TYPE_HPET: 3176 return get_hpet_devid(info->devid); 3177 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3178 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3179 return get_device_sbdf_id(msi_desc_to_dev(info->desc)); 3180 default: 3181 WARN_ON_ONCE(1); 3182 return -1; 3183 } 3184 } 3185 3186 struct irq_remap_ops amd_iommu_irq_ops = { 3187 .prepare = amd_iommu_prepare, 3188 .enable = amd_iommu_enable, 3189 .disable = amd_iommu_disable, 3190 .reenable = amd_iommu_reenable, 3191 .enable_faulting = amd_iommu_enable_faulting, 3192 }; 3193 3194 static void fill_msi_msg(struct msi_msg *msg, u32 index) 3195 { 3196 msg->data = index; 3197 msg->address_lo = 0; 3198 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 3199 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 3200 } 3201 3202 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3203 struct irq_cfg *irq_cfg, 3204 struct irq_alloc_info *info, 3205 int devid, int index, int sub_handle) 3206 { 3207 struct irq_2_irte *irte_info = &data->irq_2_irte; 3208 struct amd_iommu *iommu = data->iommu; 3209 3210 if (!iommu) 3211 return; 3212 3213 data->irq_2_irte.devid = devid; 3214 data->irq_2_irte.index = index + sub_handle; 3215 iommu->irte_ops->prepare(data->entry, apic->delivery_mode, 3216 apic->dest_mode_logical, irq_cfg->vector, 3217 irq_cfg->dest_apicid, devid); 3218 3219 switch (info->type) { 3220 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3221 case X86_IRQ_ALLOC_TYPE_HPET: 3222 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3223 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3224 fill_msi_msg(&data->msi_entry, irte_info->index); 3225 break; 3226 3227 default: 3228 BUG_ON(1); 3229 break; 3230 } 3231 } 3232 3233 struct amd_irte_ops irte_32_ops = { 3234 .prepare = irte_prepare, 3235 .activate = irte_activate, 3236 .deactivate = irte_deactivate, 3237 .set_affinity = irte_set_affinity, 3238 .set_allocated = irte_set_allocated, 3239 .is_allocated = irte_is_allocated, 3240 .clear_allocated = irte_clear_allocated, 3241 }; 3242 3243 struct amd_irte_ops irte_128_ops = { 3244 .prepare = irte_ga_prepare, 3245 .activate = irte_ga_activate, 3246 .deactivate = irte_ga_deactivate, 3247 .set_affinity = irte_ga_set_affinity, 3248 .set_allocated = irte_ga_set_allocated, 3249 .is_allocated = irte_ga_is_allocated, 3250 .clear_allocated = irte_ga_clear_allocated, 3251 }; 3252 3253 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3254 unsigned int nr_irqs, void *arg) 3255 { 3256 struct irq_alloc_info *info = arg; 3257 struct irq_data *irq_data; 3258 struct amd_ir_data *data = NULL; 3259 struct amd_iommu *iommu; 3260 struct irq_cfg *cfg; 3261 int i, ret, devid, seg, sbdf; 3262 int index; 3263 3264 if (!info) 3265 return -EINVAL; 3266 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && 3267 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) 3268 return -EINVAL; 3269 3270 /* 3271 * With IRQ remapping enabled, don't need contiguous CPU vectors 3272 * to support multiple MSI interrupts. 3273 */ 3274 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) 3275 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 3276 3277 sbdf = get_devid(info); 3278 if (sbdf < 0) 3279 return -EINVAL; 3280 3281 seg = PCI_SBDF_TO_SEGID(sbdf); 3282 devid = PCI_SBDF_TO_DEVID(sbdf); 3283 iommu = __rlookup_amd_iommu(seg, devid); 3284 if (!iommu) 3285 return -EINVAL; 3286 3287 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3288 if (ret < 0) 3289 return ret; 3290 3291 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3292 struct irq_remap_table *table; 3293 3294 table = alloc_irq_table(iommu, devid, NULL); 3295 if (table) { 3296 if (!table->min_index) { 3297 /* 3298 * Keep the first 32 indexes free for IOAPIC 3299 * interrupts. 3300 */ 3301 table->min_index = 32; 3302 for (i = 0; i < 32; ++i) 3303 iommu->irte_ops->set_allocated(table, i); 3304 } 3305 WARN_ON(table->min_index != 32); 3306 index = info->ioapic.pin; 3307 } else { 3308 index = -ENOMEM; 3309 } 3310 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3311 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3312 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3313 3314 index = alloc_irq_index(iommu, devid, nr_irqs, align, 3315 msi_desc_to_pci_dev(info->desc)); 3316 } else { 3317 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL); 3318 } 3319 3320 if (index < 0) { 3321 pr_warn("Failed to allocate IRTE\n"); 3322 ret = index; 3323 goto out_free_parent; 3324 } 3325 3326 for (i = 0; i < nr_irqs; i++) { 3327 irq_data = irq_domain_get_irq_data(domain, virq + i); 3328 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3329 if (!cfg) { 3330 ret = -EINVAL; 3331 goto out_free_data; 3332 } 3333 3334 ret = -ENOMEM; 3335 data = kzalloc(sizeof(*data), GFP_KERNEL); 3336 if (!data) 3337 goto out_free_data; 3338 3339 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3340 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3341 else 3342 data->entry = kzalloc(sizeof(struct irte_ga), 3343 GFP_KERNEL); 3344 if (!data->entry) { 3345 kfree(data); 3346 goto out_free_data; 3347 } 3348 3349 data->iommu = iommu; 3350 irq_data->hwirq = (devid << 16) + i; 3351 irq_data->chip_data = data; 3352 irq_data->chip = &amd_ir_chip; 3353 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3354 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3355 } 3356 3357 return 0; 3358 3359 out_free_data: 3360 for (i--; i >= 0; i--) { 3361 irq_data = irq_domain_get_irq_data(domain, virq + i); 3362 if (irq_data) 3363 kfree(irq_data->chip_data); 3364 } 3365 for (i = 0; i < nr_irqs; i++) 3366 free_irte(iommu, devid, index + i); 3367 out_free_parent: 3368 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3369 return ret; 3370 } 3371 3372 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3373 unsigned int nr_irqs) 3374 { 3375 struct irq_2_irte *irte_info; 3376 struct irq_data *irq_data; 3377 struct amd_ir_data *data; 3378 int i; 3379 3380 for (i = 0; i < nr_irqs; i++) { 3381 irq_data = irq_domain_get_irq_data(domain, virq + i); 3382 if (irq_data && irq_data->chip_data) { 3383 data = irq_data->chip_data; 3384 irte_info = &data->irq_2_irte; 3385 free_irte(data->iommu, irte_info->devid, irte_info->index); 3386 kfree(data->entry); 3387 kfree(data); 3388 } 3389 } 3390 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3391 } 3392 3393 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3394 struct amd_ir_data *ir_data, 3395 struct irq_2_irte *irte_info, 3396 struct irq_cfg *cfg); 3397 3398 static int irq_remapping_activate(struct irq_domain *domain, 3399 struct irq_data *irq_data, bool reserve) 3400 { 3401 struct amd_ir_data *data = irq_data->chip_data; 3402 struct irq_2_irte *irte_info = &data->irq_2_irte; 3403 struct amd_iommu *iommu = data->iommu; 3404 struct irq_cfg *cfg = irqd_cfg(irq_data); 3405 3406 if (!iommu) 3407 return 0; 3408 3409 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid, 3410 irte_info->index); 3411 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3412 return 0; 3413 } 3414 3415 static void irq_remapping_deactivate(struct irq_domain *domain, 3416 struct irq_data *irq_data) 3417 { 3418 struct amd_ir_data *data = irq_data->chip_data; 3419 struct irq_2_irte *irte_info = &data->irq_2_irte; 3420 struct amd_iommu *iommu = data->iommu; 3421 3422 if (iommu) 3423 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid, 3424 irte_info->index); 3425 } 3426 3427 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, 3428 enum irq_domain_bus_token bus_token) 3429 { 3430 struct amd_iommu *iommu; 3431 int devid = -1; 3432 3433 if (!amd_iommu_irq_remap) 3434 return 0; 3435 3436 if (x86_fwspec_is_ioapic(fwspec)) 3437 devid = get_ioapic_devid(fwspec->param[0]); 3438 else if (x86_fwspec_is_hpet(fwspec)) 3439 devid = get_hpet_devid(fwspec->param[0]); 3440 3441 if (devid < 0) 3442 return 0; 3443 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff)); 3444 3445 return iommu && iommu->ir_domain == d; 3446 } 3447 3448 static const struct irq_domain_ops amd_ir_domain_ops = { 3449 .select = irq_remapping_select, 3450 .alloc = irq_remapping_alloc, 3451 .free = irq_remapping_free, 3452 .activate = irq_remapping_activate, 3453 .deactivate = irq_remapping_deactivate, 3454 }; 3455 3456 int amd_iommu_activate_guest_mode(void *data) 3457 { 3458 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3459 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3460 u64 valid; 3461 3462 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3463 !entry || entry->lo.fields_vapic.guest_mode) 3464 return 0; 3465 3466 valid = entry->lo.fields_vapic.valid; 3467 3468 entry->lo.val = 0; 3469 entry->hi.val = 0; 3470 3471 entry->lo.fields_vapic.valid = valid; 3472 entry->lo.fields_vapic.guest_mode = 1; 3473 entry->lo.fields_vapic.ga_log_intr = 1; 3474 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3475 entry->hi.fields.vector = ir_data->ga_vector; 3476 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3477 3478 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3479 ir_data->irq_2_irte.index, entry, ir_data); 3480 } 3481 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3482 3483 int amd_iommu_deactivate_guest_mode(void *data) 3484 { 3485 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3486 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3487 struct irq_cfg *cfg = ir_data->cfg; 3488 u64 valid; 3489 3490 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3491 !entry || !entry->lo.fields_vapic.guest_mode) 3492 return 0; 3493 3494 valid = entry->lo.fields_remap.valid; 3495 3496 entry->lo.val = 0; 3497 entry->hi.val = 0; 3498 3499 entry->lo.fields_remap.valid = valid; 3500 entry->lo.fields_remap.dm = apic->dest_mode_logical; 3501 entry->lo.fields_remap.int_type = apic->delivery_mode; 3502 entry->hi.fields.vector = cfg->vector; 3503 entry->lo.fields_remap.destination = 3504 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3505 entry->hi.fields.destination = 3506 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3507 3508 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3509 ir_data->irq_2_irte.index, entry, ir_data); 3510 } 3511 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3512 3513 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3514 { 3515 int ret; 3516 struct amd_iommu_pi_data *pi_data = vcpu_info; 3517 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3518 struct amd_ir_data *ir_data = data->chip_data; 3519 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3520 struct iommu_dev_data *dev_data; 3521 3522 if (ir_data->iommu == NULL) 3523 return -EINVAL; 3524 3525 dev_data = search_dev_data(ir_data->iommu, irte_info->devid); 3526 3527 /* Note: 3528 * This device has never been set up for guest mode. 3529 * we should not modify the IRTE 3530 */ 3531 if (!dev_data || !dev_data->use_vapic) 3532 return 0; 3533 3534 ir_data->cfg = irqd_cfg(data); 3535 pi_data->ir_data = ir_data; 3536 3537 /* Note: 3538 * SVM tries to set up for VAPIC mode, but we are in 3539 * legacy mode. So, we force legacy mode instead. 3540 */ 3541 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3542 pr_debug("%s: Fall back to using intr legacy remap\n", 3543 __func__); 3544 pi_data->is_guest_mode = false; 3545 } 3546 3547 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3548 if (pi_data->is_guest_mode) { 3549 ir_data->ga_root_ptr = (pi_data->base >> 12); 3550 ir_data->ga_vector = vcpu_pi_info->vector; 3551 ir_data->ga_tag = pi_data->ga_tag; 3552 ret = amd_iommu_activate_guest_mode(ir_data); 3553 if (!ret) 3554 ir_data->cached_ga_tag = pi_data->ga_tag; 3555 } else { 3556 ret = amd_iommu_deactivate_guest_mode(ir_data); 3557 3558 /* 3559 * This communicates the ga_tag back to the caller 3560 * so that it can do all the necessary clean up. 3561 */ 3562 if (!ret) 3563 ir_data->cached_ga_tag = 0; 3564 } 3565 3566 return ret; 3567 } 3568 3569 3570 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3571 struct amd_ir_data *ir_data, 3572 struct irq_2_irte *irte_info, 3573 struct irq_cfg *cfg) 3574 { 3575 3576 /* 3577 * Atomically updates the IRTE with the new destination, vector 3578 * and flushes the interrupt entry cache. 3579 */ 3580 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid, 3581 irte_info->index, cfg->vector, 3582 cfg->dest_apicid); 3583 } 3584 3585 static int amd_ir_set_affinity(struct irq_data *data, 3586 const struct cpumask *mask, bool force) 3587 { 3588 struct amd_ir_data *ir_data = data->chip_data; 3589 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3590 struct irq_cfg *cfg = irqd_cfg(data); 3591 struct irq_data *parent = data->parent_data; 3592 struct amd_iommu *iommu = ir_data->iommu; 3593 int ret; 3594 3595 if (!iommu) 3596 return -ENODEV; 3597 3598 ret = parent->chip->irq_set_affinity(parent, mask, force); 3599 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3600 return ret; 3601 3602 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3603 /* 3604 * After this point, all the interrupts will start arriving 3605 * at the new destination. So, time to cleanup the previous 3606 * vector allocation. 3607 */ 3608 send_cleanup_vector(cfg); 3609 3610 return IRQ_SET_MASK_OK_DONE; 3611 } 3612 3613 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3614 { 3615 struct amd_ir_data *ir_data = irq_data->chip_data; 3616 3617 *msg = ir_data->msi_entry; 3618 } 3619 3620 static struct irq_chip amd_ir_chip = { 3621 .name = "AMD-IR", 3622 .irq_ack = apic_ack_irq, 3623 .irq_set_affinity = amd_ir_set_affinity, 3624 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3625 .irq_compose_msi_msg = ir_compose_msi_msg, 3626 }; 3627 3628 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3629 { 3630 struct fwnode_handle *fn; 3631 3632 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3633 if (!fn) 3634 return -ENOMEM; 3635 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu); 3636 if (!iommu->ir_domain) { 3637 irq_domain_free_fwnode(fn); 3638 return -ENOMEM; 3639 } 3640 3641 iommu->ir_domain->parent = arch_get_ir_parent_domain(); 3642 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, 3643 "AMD-IR-MSI", 3644 iommu->index); 3645 return 0; 3646 } 3647 3648 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 3649 { 3650 unsigned long flags; 3651 struct amd_iommu *iommu; 3652 struct irq_remap_table *table; 3653 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3654 int devid = ir_data->irq_2_irte.devid; 3655 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3656 struct irte_ga *ref = (struct irte_ga *) ir_data->ref; 3657 3658 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3659 !ref || !entry || !entry->lo.fields_vapic.guest_mode) 3660 return 0; 3661 3662 iommu = ir_data->iommu; 3663 if (!iommu) 3664 return -ENODEV; 3665 3666 table = get_irq_table(iommu, devid); 3667 if (!table) 3668 return -ENODEV; 3669 3670 raw_spin_lock_irqsave(&table->lock, flags); 3671 3672 if (ref->lo.fields_vapic.guest_mode) { 3673 if (cpu >= 0) { 3674 ref->lo.fields_vapic.destination = 3675 APICID_TO_IRTE_DEST_LO(cpu); 3676 ref->hi.fields.destination = 3677 APICID_TO_IRTE_DEST_HI(cpu); 3678 } 3679 ref->lo.fields_vapic.is_run = is_run; 3680 barrier(); 3681 } 3682 3683 raw_spin_unlock_irqrestore(&table->lock, flags); 3684 3685 iommu_flush_irt(iommu, devid); 3686 iommu_completion_wait(iommu); 3687 return 0; 3688 } 3689 EXPORT_SYMBOL(amd_iommu_update_ga); 3690 #endif 3691